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Hydrogen has been identified as a potential fuel for air transportation without carbon emis-
sions. Hydrogen containsmuch higher energy per unit mass than any conceivable rechargeable
battery, potentially making longer-range missions possible than pure electric configurations.
However, hydrogen’s low volumetric energy density presents practical challenges. Hydrogen
must either be kept under deep cryogenic conditions or compressed under very high pressure.
Either solution is likely to require adding significant drag and tank weight to the airplane.
This is a packing optimization problem subject to aerostructural physics, and we can employ
multidisciplinary design optimization techniques to provide insight into optimal wing design
for novel hydrogen aircraft concepts. In this paper, we extend prior work on wing packing opti-
mization subject to aerodynamics only, and now incorporate structural analysis and structure
geometry into the problem. We optimize the range of a hydrogen-electric aircraft with hydro-
gen fuel storage located inside the wing outer mold line. The geometry of the hydrogen storage
tanks influences the shape of the wing as well as the weight and volumetric capacity of the tank.
While the effect of hydrogen storage on other aircraft concepts cannot be generalized from this
study, the optimization methods we use are promising for performing relevant aircraft design
trade studies. The optimizer finds the correct tradeoff between weight, drag, and fuel storage
for the mission, subject to spatial integration feasibility. In our test scenario, we find that the
optimal aerostructural design involves substantial wing root thickening.

I. Introduction
Electric propulsion is rapidly evolving as a research topic where one of the most pressing technical challenges is

increasing range capability [1]. The limited specific energy of today’s batteries (on the order of 200 Wh kg−1) [1]
places unacceptable limits on design range for important applications, such as single-aisle commercial air transport.
Hybrid-electric designs can exploit electric motors to reduce weight, fuel burn, cost, and drag [1], but they still consume
fuel and remain a point source of carbon dioxide (CO2) emissions.

Hydrogen fuel can theoretically alleviate the range issues of battery-electric propulsion without producing point-
source CO2 emissions. Fuel cells consume hydrogen and produce electricity, emitting only water vapor [2]. Alternatively,
hydrogen can be burned in adapted engines, emitting water vapor and trace nitrogen oxides [3]. If the hydrogen is
produced cleanly (e.g., through electrolysis powered by renewable energy), it can achieve CO2-free flying. While
the impact (and potential mitigation) of high-altitude water vapor emissions on climate change is not entirely clear,
eliminating CO2 emissions would be a significant step towards greener aviation.

Hydrogen fuel in aviation has a surprisingly long history. Soon after liquid hydrogen was first produced for the
space program, NACA experimented with hydrogen combustion aircraft concepts. Silverstein and Hall [4] proposed
using hydrogen fuel for a subsonic high-altitude bomber (Figure 1) in a declassified 1955 NACA research memo. Even
then, it was apparent that integrating the enormous hydrogen tanks into the aircraft would be a significant challenge.
From 1957 to 1959, NACA flew a B-57 Canberra bomber (Figure 2) converted to run one engine using liquid hydrogen
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fuel [5]. The airplane was able to transition from jet fuel to hydrogen and back again on numerous successful flights.
The pilots noted that the hydrogen-powered engine tended to leave contrails even when the kerosene-powered engine did
not. Simultaneously, Kelly Johnson’s Skunk Works was seriously considering building a hydrogen-powered supersonic
bomber [5]. The study airplane, known as the CL-400 Suntan, was canceled by 1958, but the government learned
valuable insights on the safe handling of hydrogen fuels.

Fig. 1 The Silverstein–Hall subsonic bomber concept used liquid hydrogen tanks in both the wing and fuse-
lage [4]

Fig. 2 NACA’s converted B-57 testbed used liquid hydrogen to power one engine [5]

After the cancellation of the CL-400, hydrogen aviation fuel was not seriously pursued operationally again. However,
the concept is experiencing a renaissance. In the last two decades, prototype hydrogen-powered aircraft have been
built and flown, including the Hy4 [6] and Boeing Fuel Cell Demonstrator [2]. NASA has also funded a university
consortium to examine liquid hydrogen propulsion for transport aircraft applications [3]. Finally, the concept seems to
be gaining some traction in industry, with both startups (ZeroAvia) and incumbents (Airbus) promoting hydrogen as
environmentally-friendly alternatives to petroleum fuels [3].

Notwithstanding hydrogen’s very high energy mass density, its volumetric density under normal conditions is much
lower than jet fuel [3]. Commercial aircraft carry the vast majority of their fuel in sealed wing tanks without significant
aerodynamic penalty; hydrogen at ambient pressure is volume-limited in the same space. Therefore, while hydrogen
alleviates some of the weight challenges of green aviation concepts, it creates a new spatial integration challenge.
Spatial integration involves the packing of all required passengers, payload, structural elements, fuel, and equipment
into a feasible aircraft layout [7].

In this paper, we introduce an optimization-based method for integrating compressed hydrogen fuel into a wing with
minimum weight and drag penalty. This is not a hydrogen aircraft design study per se. Instead, we introduce a new
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methodology and validate that it performs well on a relevant wing design test case. We do not claim to have designed a
feasible or desirable airplane at the top level (e.g., we do not consider fuselage design or propulsion). We also do not
claim that design trends observed on this test case are generalizable to other potential hydrogen aircraft configurations.

II. Packing Optimization in Multidisciplinary Design Optimization
Packing optimization problems are well known in the operations research literature, but the formulations developed

for other canonical problems (reviewed by Brelje et al. [7]) are not well suited to gradient-based optimization. On
the other hand, the differentiable geometry constraints commonly used in gradient-based shape optimization (such as
one- and two-dimensional thicknesses; also reviewed by Brelje et al. [7]) are not flexible or general enough to handle
arbitrary packing problems. To overcome these limitations, Brelje et al. [7] formulated a more general packing constraint
based on the Kreisselmeier–Steinhauser (KS) aggregation function. The KS constraint formulation is smooth and
differentiable, making it useful for gradient-based multidisciplinary design optimization (MDO).

Subsequently, we applied this methodology to design minimum-drag aeroshells around a human avatar [7] and the
maximum-range wing-battery combination for a notional electric aircraft [8]. For the latter problem, batteries inside
the wing box were optimized together with the outer mold line for maximum Breguet range +battery!/� subject to
aerodynamic analysis only. We found that the optimizer found the correct tradeoff between wing thinness (advantageous
for drag) versus thickness (beneficial for energy storage). We also found that sectioning the battery into three banks
substantially increased the packing efficiency of the battery and extended aircraft range. However, neither of the previous
examples involved multidisciplinary physics (e.g., aerodynamic and structural design), and the complexity of the packing
problem was simple compared to problems of broader industrial interest. A packing problem with both high-fidelity
multidisciplinary physics and many objects to pack has not yet been demonstrated.

III. Problem Description
This work extends the wing packing design optimization problem described by Brelje and Martins [8] to the

aerostructural domain. Considering structure complicates the wing packing optimization problem in three primary ways.
First, the structural analysis enables the airplane model to vary both weight and drag, likely producing a different optimal
design than when considering aerodynamics alone. Second, structural members such as spars and ribs significantly
increase the packing problem’s complexity compared to considering the wing OML only. Finally, each optimization
iteration’s computational cost significantly increases because an iterative solution to the aerostructural problem is now
required, and a coupled-adjoint must also be computed.

A. Wing Description
The baseline wing design is representative of a simple, single-aisle transport aircraft and is identical to the wing

featured in the University of Michigan MDO Lab aerodynamic shape optimization tutorial∗. The wing planform is
modeled after the Douglas DC-9, but we use a RAE2822 transonic airfoil at baseline. The wingbox front and rear spar
locations generally approximate the proportions of the DC-9 wing structure (Figure 3). We generated a conventional
wingbox structural layout with 18 evenly-spaced rib bays and 8 stringers between the spars. The stringers each run all
the way out to the end of the wing box. The cruise condition is Mach 0.8 at 10,000 m altitude. The baseline weight at
cruise is 54,900 kg, which equates to approximately �! = 0.5. We compute structural loads at a 2.5 g static condition,
flown at Mach 0.75 and 5,000 m altitude.

B. Tank Description
Unlike the previous wing problem that featured a battery, we optimize a set of seven hydrogen tanks in each wing

root (one per rib bay). The 700 bar compressed hydrogen tanks are cylindrical with spherical endcaps. Each tank can
vary in radius and length, with additional variables to position each tank relative to its rib bay (Figure 4). The tanks
consist of optimized carbon fiber reinforced polymer (CFRP) laminate.

∗https://github.com/mdolab/mach-aero
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Fig. 3 Wingbox structural mesh overlaid on OML planform
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Fig. 4 A representative compressed hydrogen tank with design variables labeled

IV. Methodology
To perform aerostructural analysis and design, we used the MDO of Aircraft Configurations with High Fidelity

(MACH) framework [9]. The MACH framework integrates several high-fidelity analysis tools with geometry engines
while propagating design variable derivatives [10]. The subset of aerodynamic shape optimization tools is open-source
and freely available.

A. Aerostructural Analysis
We used the open-source ADflow solver for aerodynamic analysis and derivatives [11]. ADflow is a structured,

multiblock, overset RANS solver with discrete adjoint gradients. We use the Spalart–Allmaras turbulence model and an
approximate Newton–Krylov solver for this problem [12]. The aerodynamic mesh (Figure 5) consists of approximately
800,000 volume cells and was generated using pyHyp [13], an open-source implementation of the hyperbolic scheme
described in [14]. The aero solver settings and mesh are virtually identical to those in the MACH aero shape optimization
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tutorial†.

Fig. 5 Aerodynamic surface mesh pictured with free-form deformation (FFD) control points

For structural analysis, we use the open-source finite element solver TACS [15]. TACS computes efficient adjoint
derivatives with respect to the structural sizing (thickness) variables and geometry. The structural mesh consists of
7,632 CQUAD4 elements (Figure 3), with explicitly-modeled stringers. We only performed a linear static analysis in
this scenario, though TACS supports geometric nonlinearity and buckling.

Because structural deflections affect the aerodynamic surface and vice-versa, an aerostructural solver is required.
We use a block Gauss–Seidel approach to solve the aerostructural analysis and a Krylov method to solve the coupled
adjoint [10].

B. Geometry
We use two different geometry engines in this problem; one for the wing and one for the hydrogen tanks. The

wing was parameterized using the free-form deformation (FFD) method [16] using the open-source implementation
in pyGeo [17]. The FFD volume (Figure 5) is identical to the one generated in the MACH aero tutorial and contains
96 design variables. Both the CFD surface mesh coordinates and the structural elements are embedded in the same
FFD volume, so geometric displacements are always consistent between the two. CFD surface mesh displacements
are propagated to the volume using IDwarp, an open-source implementation of the inverse-distance weighted warping
scheme from [18].

We use a different approach to parameterize the tank geometry. An initial triangulated representation of each tank
surface is generated using Engineering Sketch Pad (ESP) [19], an open-source CAD application. Using a Python
wrapper around ESP’s OpenCSM library, we map each point on the tank surface onto the CAD B-spline surface in
parametric coordinates and save the result. When the geometry is perturbed, we retrieve a new set of surface mesh points
using the same parametric coordinates. This way, the topology of the mesh is preserved across geometric perturbations.
The design variables are as pictured in Figure 4—five variables per tank, for a total of 35.

Gradients with respect to geometric design variables are computed using a parallel finite differencing approach.
Since the aerostructural design optimization is done in a high-performance computing (HPC) environment with 100 or
more available cores, we can perform finite differences across dozens of geometry variables without incurring much cost
in terms of wall time (a few seconds). The advantages of using this open-source CAD package were readily apparent at
several points. For example, we were able to edit the source to suppress certain console output, which, while useful in
interactive mode, clogs the output when running dozens of instances simultaneously. Open source code also made the
Python wrapper possible, which was indispensable for this project.

The spatial integration constraints are computed using a newly-developed software package, geograd. Geograd is a
reimplementation of the method described by Brelje et al. [7] in Fortran. The software computes two metrics for each
pair of objects to be packaged: the KS aggregated distances between all the triangular facet pairs and the length of the
intersection curve(s) between the two objects (if any). When adequately constrained in the optimization, these metrics
produce spatially-feasible packing solutions.

†https://github.com/mdolab/mach-aero
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There is a tuning parameter, d in the KS function, which controls how conservative the constraint aggregator is.
Choosing a larger d gives a more exact result for the constraint, but it increases the constraint curvature. Excessively-large
d will prevent the optimizer from taking efficient steps near the active zone due to the aggressive curvature. Unless
otherwise specified, we used d = 250 for all the described cases below.

The Tensorflow implementation in the previous work was well-suited to a desktop environment with a GPU; however,
its CPU runtime was not scaling well. The new Fortran implementation enables orders of magnitude speedup via
heuristics such as bounding-box testing. We compute derivatives of the outputs with respect to surface mesh inputs
using the Tapenade automatic differentiation tool [20]. We wrapped the Fortran codebase in Python using the f2py
utility [21].

C. Optimization
To solve the MDO problem, we use the gradient-based nonlinear optimizer SNOPT 7.7.5 [22, 23]. We wrap SNOPT

using the Python interface pyOptSparse [24]. We exploit a unique feature of SNOPT in this problem. In our experience,
optimizers often take steps that are too big early on in a packing problem, before a good quasi-Newton estimate of the
constraint curvature is built up in the optimizer. To prevent unreasonably large steps from consuming wall time, we pass
a "fail" flag to SNOPT if any packing objects intersect by more than a moderate tolerance during a step. When this
happens, we also prevent the aerostructural solution or adjoints from running. SNOPT then backtracks by a factor of ten
and continues. Significant time savings can be achieved this way.

Because we are using constraint aggregation for both the structural failure constraints and spatial integration, the
optimization problems have aggressive curvature near the optimum. This is a challenging scenario for the optimizer.
The optimizer computes an internal optimality criterion, and it usually expects this figure to drop by six orders of
magnitude for successful convergence. We find qualitatively that the optimality metric stays artificially high when
constraint aggregation is used, preventing the optimizer from a “normal” exit. Our criteria for run convergence in this
paper include:

• Optimality metric on the order of 10−3 or less
• Feasibility metric on the order of 10−4 or less
• Diminished continued improvement (per-iteration improvement on the order of 0.01%)
We ran the cases using two or three Intel Skylake nodes on the Stampede2 supercomputer at the University of

Texas—a total of 96 to 144 physical processors.

V. Results
This section contains a progression of optimization results for the wing-tank problem with increasing complexity.

First, we kept the wingbox fixed and optimized the tank shape only for maximum volume. Next, we allowed the wing
outer mold line to vary, but considered only packing and aerodynamics, and minimized drag subject to a fuel volume
constraint. Then, we ran a series of aerostructural optimization cases with all design variables active.

A. Optimizing Tank Shape Only
As a simple test, we exercised the CAD-based tank geometry by maximizing the volume of the tanks +tank within the

baseline wing box. Since there was no high-fidelity analysis in the loop, we used a Linux desktop for this case. Because
there were fewer design variables and constraints, we chose a slightly more aggressive d = 300. We found that the
maximum achievable volume was approximately 1.718 m3 and the optimizer converged without difficulty. Table 1 lists
the design variables, objective, and constraints and Figure 6 illustrates the resulting geometry (in black). The tanks
expand to efficiently fill the wingbox, as expected.
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Quantity Lower Upper Scaling
maximize +tank 1 1.0
with respect to Tank radius 7 0.14 m 3.0 m 0.1

Tank length 7 1.0 m 2.5 m 0.1
Tank G-H offset 14 −0.2 m 0.2 m 0.1
Tank tilt 7 −1.0 ° 4.0 ° 1.0
Total number of design variables 35

subject to Packing (aggregated distance) 7 0.0 m 100
Intersection perimeter 7 0.0 m 1.0
Total number of constraints 14

Table 1 Problem formulation: tank shape optimization for maximum volume

Fig. 6 Solutions to the volume maximization and minimum drag subproblems

B. Optimizing Wing OML and Tank Shape
Next, we increased the degree of difficulty substantially by adding aerodynamic physics. We add the angle of attack

and outer mold line shape variables to the problem and include a constraint balancing lift ! and weight, (a notional
cruise condition). Because they have entirely separate geometric parameterizations, the inner tanks and OML are only
coupled via the spatial integration constraints. The objective is to minimize drag � subject to a minimum hydrogen fuel
volume constraint of 2.4 m3 (arbitrary, but intended to push out the OML a reasonable amount). The KS parameter d
remains at 300 for comparison to the volume-only case. The problem summary is in Table 2 and the optimization result
is included in Figure 6 (in blue). We see that the inboard OML grows substantially to accommodate larger diameter
tanks. The optimizer strategically adds thickness near the aft spar to allow tanks to expand rearward. The far outer part
of the wing is constrained by minimum thickness.
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Quantity Lower Upper Scaling
minimize � 1 1.0
with respect to Angle of attack 1 0 ° 10 ° 0.1

Sectional shape 96 −0.5 0.5 1.0
Tank radius 7 0.14 m 3.0 m 0.1
Tank length 7 1.0 m 2.5 m 0.1
Tank G-H offset 14 −0.2 m 0.2 m 0.1
Tank tilt 7 −1.0 ° 4.0 ° 1.0
Total number of design variables 132

subject to ! −, (cruise) 1 0 N 0 N 1/,
+tank 1 2.4 m3 1.0
Wingbox thickness (vs. baseline) 100 1.0 1.0
Packing (aggregated distance) 7 0.0 m 100
Intersection perimeter 7 0.0 m 1.0
Total number of constraints 116

Table 2 Problem formulation: aerodynamic shape optimization of wing and fuel tanks for minimum drag

C. Aerostructural Optimization at Fixed Tank Volume
This case adds structural analysis, including a 2.5 g maneuver condition (Figure 8), and structural design variables

to the previous problem. In the absence of a whole-airplane performance model, this aerostructural optimization is a
multiobjective problem between wing weight and drag. We simply choose 2,wing, struct + � as a reasonable compromise
objective function. Table 3 describes the problem formulation.
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Fig. 7 Increasing fuel storage in the wing requires an aerostructural penalty, though aerodynamics and
structure move in opposite directions

Consider an aircraft design team that wishes to know how adding fuel volume in the wing might affect weight and
aerodynamic performance. This is an important piece of information when deciding how to allocate fuel throughout the
whole airplane. We can answer this problem using packing optimization. We ran the problem in Table 3 at several fuel
volume requirements, from 2.0 to 2.6 m3. Figure 7 shows how the aerostructural performance of the airplane changes as
fuel volume is added. At 2.2 m3 or less, the wing aerostructural optimum has enough room to accommodate the tanks
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without affecting the design. At 2.4 m3 tank volume and above, the optimizer can no longer accommodate the tanks
without pushing out the OML, incurring a sharp rise in drag. The drag increase is partially offset by a structural weight
decrease due to the increased structural depth at the side-of-body.

This example illustrates why it is essential to consider multiple disciplines when evaluating spatial integration
tradeoffs. Without optimization, engineers would need to perform laborious analysis and iterate internally to achieve a
good result. Using our optimization framework, each of the runs used 400 to 600 core-hours on the HPC (four to six
hours wall time each). If the cases run in parallel on an in-house or cloud HPC service, it is easily conceivable that the
data for this trade study could be collected and analyzed in one working day.

Figure 9 illustrates the solution for 2.4 m3 fuel volume (in black).

Fig. 8 Aeroelastic solutions at the cruise and maneuver conditions

Fig. 9 Solutions to the aerostructural problem with and without considering the weight of the tanks
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Quantity Lower Upper Scaling
minimize 2,wing, struct + � 1 1.0
with respect to Angle of attack 2 0 ° 10 ° 0.1

Stringer thickness 54 0.0016 m 0.02 m 100.0
Spar thickness 18 0.0016 m 0.02 m 100.0
Skin thickness 18 0.0016 m 0.02 m 100.0
Rib thickness 18 0.0016 m 0.02 m 100.0
Sectional shape 96 −0.5 0.5 1.0
Tank radius 7 0.14 m 3.0 m 0.1
Tank length 7 1.0 m 2.5 m 0.1
Tank G-H offset 14 −0.2 m 0.2 m 0.1
Tank tilt 7 −1.0 ° 4.0 ° 1.0
Total number of design variables 241

subject to ! −, (cruise) 1 0 N 0 N 1/,
! − 2.5, (maneuver) 1 0 N 0 N 1/,
+tank 1 various m3 1.0
Structural failure at 2.5 g (aggregated) 3 1.0 1.0
Wingbox thickness (vs. baseline) 100 1.0 1.0
Packing (aggregated distance) 7 0.0 m 100
Intersection perimeter 7 0.0 m 1.0
Total number of constraints 120

Table 3 Problem formulation: aerostructural design optimization of wing and fuel tanks with composite
objective
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D. Aerostructural Optimization Considering Tank Weight
While the previous subsections showed a series of successful aerostructural optimization packing cases, we have

still neglected a significant effect: hydrogen tank weight. Because of the extreme pressure and low density of the
compressed fuel, even a CFRP composite tank will have a hydrogen fuel fraction significantly less than ten percent [25].
The radius and length of the tank will affect its weight significantly.

Offline, we set up a structural optimization problem to minimize the weight of a tank made from a bidirectional
carbon fiber laminate, considering both axial and hoop stresses ‡. The method uses a simplified classical laminate
theory model and computes the required laminate thickness in the cylindrical portion of the tank subject to hoop and
axial stress. We compared the optimization model to a detailed finite element study of a CFRP tank [25] and found that
our structural weight estimate was within 15% of the published value §. At 700 bar and 2.35 burst pressure safety factor,
using an optimal bidirectional laminate with Toray 1100G prepreg [26], we found that the optimal tank wall thickness is
a constant 0.1315 times the tank radius. Therefore, we did not need to explicitly incorporate tank structural analysis
into the optimization—only a weight calculation based on tank radius and length. The density of the CFRP material is
1,573 kg/m3. The problem formulation is summarized in Table 4.

The resulting geometry is visualized in Figure 9 (in blue). While the OML only changes subtly at the lower trailing
edge, the changes allow the tanks to become much longer and narrower, reducing hoop stress and tank weight. This is a
complex tradeoff between the structural weight of a component and the structural weight and drag at the airplane level.
It is a good illustration of MDO’s potential to find non-obvious solutions in airplane trade studies rapidly.

Figure 10 shows the structural sizing variables for this case. Some of the structural zones are minimum gauged, such
as the ribs and some spar web zones. Figure 11 shows the structural failure criterion at the 2.5 g maneuver case. We can
see that the optimizer has removed material almost everywhere until most of the wingbox is nearly at failure at ultimate
load (2.5 g plus 1.5 safety factor).

Fig. 10 Structural sizing variables at the optimum (with tank weight, 2.4 m3 fuel volume)

‡https://gist.github.com/bbrelje/b599102f2d83749df681dd5c2c0865e1
§https://gist.github.com/bbrelje/947ef6ff401a201812fde465518b74ff
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Quantity Lower Upper Scaling
minimize 2(,wing, struct +,tanks) + � 1 1.0
with respect to Angle of attack 2 0 ° 10 ° 0.1

Stringer thickness 54 0.0016 m 0.02 m 100.0
Spar thickness 18 0.0016 m 0.02 m 100.0
Skin thickness 18 0.0016 m 0.02 m 100.0
Rib thickness 18 0.0016 m 0.02 m 100.0
Sectional shape 96 -0.5 0.5 1.0
Tank radius 7 0.14 m 3.0 m 0.1
Tank length 7 1.0 m 2.5 m 0.1
Tank G-H offset 14 -0.2 m 0.2 m 0.1
Tank tilt 7 -1.0 ° 4.0 ° 1.0
Total number of design variables 241

subject to ! −, (cruise) 1 0 N 0 N 1/,
! − 2.5, (maneuver) 1 0 N 0 N 1/,
+tank 1 2.4 m3 1.0
Structural failure at 2.5 g (aggregated) 3 1.0 1.0
Wingbox thickness (vs. baseline) 100 1.0 1.0
Packing (aggregated distance) 7 0.0 m 100
Intersection perimeter 7 0.0 m 1.0
Total number of constraints 120

Table 4 Problem formulation: aerostructural design optimization of wing and fuel tanks with composite
objective, considering tank weight
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Fig. 11 Structural failure criterion at the optimum (with tank weight, 2.4 m3 fuel volume)

E. Aerostructural Optimization for Maximum Range
In the previous example, we relied on a composite objective function in the absence of an airplane-level performance

model and assumed a given fuel volume. We can make some assumptions and gain some intuition on whether placing
compressed hydrogen in the wing of this test case airplane is viable. For the new objective function, let us maximize the
range subject to a design payload.

Since we don’t have an airplane-level empty weight model, we assume that the aircraft’s operating empty weight
(OEW) is 53% of MTOW and that the design payload is 23% of MTOW. We subtract the wing structure’s weight from
the previous optimum point (2,586 kg) and obtain OEW-less-wing of 26,511 kg. We then attribute the remaining 24%
weight to fuel. A small fraction of the fuel is wing fuel from the previous optimum point (100.8 kg hydrogen at 42
kg/m3 plus 1070.7 kg tank weight per wing). The remainder is computed at 9% hydrogen weight fraction and installed
in the fuselage (975 kg hydrogen plus 9858 kg tank weight).

The actual TOW can now be computed as:

,TO = ,payload + OEWless wing +,fuselage fuel +,fuselage tank + 2(,wing structure +,wing tank +,wing fuel) (1)

and the zero fuel weight as:

,zero fuel = ,payload + OEWless wing +,fuselage tank + 2(,wing structure +,wing tank) (2)

An obvious limitation of this simplified model is that it neglects OEW growth outside the wing due to MTOW growth.
Now that we have pre- and post-mission weights, we can compute the range using the Breguet range equation as

follows:

' =
*∞
6

!

�

1
1000 SFC

;=
,TO

,zero fuel
(3)

where R is the range in km, 6 is the gravitational constant, *∞ is the true airspeed in m/s, SFC is the specific fuel
consumption in kg/Ns (assumed to be 1.5 × 10−5, slightly better than published figures for previous-generation single
aisle turbofans). We can correct this SFC to account for the higher heating value of hydrogen compared to kerosene
(nearly three times greater), but it won’t affect the optimization result. With the heat value correction, the previous
optimum airplane is computed to have a range of about 1900 km at design payload—much less than contemporary
single aisles, but much more than all-electric proposals. We can now optimize the airplane with respect to this objective
function as described in Table 5.
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Quantity Lower Upper Scaling
maximize range (km) 1 0.001
with respect to Angle of attack 2 0 ° 10 ° 0.1

Stringer thickness 54 0.0016 m 0.02 m 100.0
Spar thickness 18 0.0016 m 0.02 m 100.0
Skin thickness 18 0.0016 m 0.02 m 100.0
Rib thickness 18 0.0016 m 0.02 m 100.0
Sectional shape 96 -0.5 0.5 1.0
Tank radius 7 0.14 m 3.0 m 0.1
Tank length 7 1.0 m 2.5 m 0.1
Tank G-H offset 14 -0.2 m 0.2 m 0.1
Tank tilt 7 -1.0 ° 4.0 ° 1.0
Total number of design variables 241

subject to ! −, (cruise) 1 0 N 0 N 1/,
! − 2.5, (maneuver) 1 0 N 0 N 1/,
Structural failure at 2.5 g (aggregated) 3 1.0 1.0
Wingbox thickness (vs. baseline) 100 1.0 1.0
Packing (aggregated distance) 7 0.0 m 100
Intersection perimeter 7 0.0 m 1.0
Total number of constraints 119

Table 5 Problem formulation: aerostructural design optimization of wing and fuel tanks for maximum range

Figures 12 and 13 illustrate that, for this demonstration airplane, it is favorable to add more fuel tank volume in the
wing root, even after considering the aerodynamic, structural, and weight penalties using high-fidelity physics. The
optimizer increased each wing’s fuel volume from 2.4 to 3.1 m3.

This is a technology validation study for the optimization approach, not an airplane study per se. Our CFD and
structural meshes were reasonably coarse, and the airplane-level weight model was of very low fidelity. We were not
explicitly modeling the fuel cell or electric propulsion system. Nonetheless, the result suggests that storing compressed
hydrogen in the wing root of a transport-class airplane can, in principle, be favorable even after considering aerodynamic
and structural penalties. While this result cannot and should not be generalized to other configurations, it illustrates that
compressed hydrogen may be an intriguing fuel for regional-length missions.
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Fig. 12 The maximum range optimization problem adds significant fuel volume and root thickness
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Fig. 13 The optimizer increases range at the expense of tank weight and drag by adding fuel volume
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VI. Conclusion
Hydrogen fuel is an intriguing option for zero-emissions aviation at typical commercial transport ranges. However,

its extremely low density and inadequate options for mitigating this fact (high pressure or deep cryogenics) create
spatial integration challenges for airplane designers (and thus providing a relevant test case for our technical approach to
multidisciplinary packing problems). By solving a series of aerostructural packing optimization problems involving a
wing and several hydrogen fuel tanks, we have validated the approach on a problem of significantly greater complexity
than previously demonstrated. We showed that MDO can be used to perform spatial integration trade studies on a
relevant wing design using high-fidelity aerostructural physics and the new KS-distance geometry constraint. We find
that the aerostructural packing optimization runs can be performed on relevant time scales (less than one eight-hour
shift using modest HPC resources). The optimization runs converge with regularity and identify subtle changes in OML
shape that enable major improvements in system capability.

Despite the limitations we acknowledge above, our results suggest that storing compressed hydrogen in the wing
root of a single-aisle transport may be a useful option at the airplane level. Compressed hydrogen may be feasible for
regional-length missions outside the reach of battery-electric airplanes. However, the immense weight of compressed
hydrogen storage, even under the relatively optimistic weight assumptions we make here, is a significant drawback of
the compressed hydrogen approach and probably forecloses the possibility of using it for transcontinental routes. Other
potential zero-carbon fuels (such as ammonia) should be explored in parallel.
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