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Abstract
In the practical use of multidisciplinary design optimization, the prevalent approach for the multidisciplinary
analyses (MDA) is nonlinear block Gauss–Seidel iteration, which consists in solving each discipline in a
sequential manner, and repeating this sequence until convergence. This approach is easy to implement but
often exhibits slow convergence rates or does not converge at all. An alternative is to use approaches based
on Newton’s method to solve the coupled system, also known as tightly coupled or monolithic approaches.
Past work, especially in the field of fluid-structure interaction, shows that Newton-based tightly coupled
approaches can be more efficient and robust than loosely coupled approaches for the analyses of coupled
systems. With the computing power and methods currently available, it is expected that the application
of MDA and MDO to systems of greater complexity in terms of coupling and number of disciplines will
increase. This makes it important to compare loosely and tightly coupled approaches for complex systems.
To address the lack of literature providing such comparisons, we use a novel and highly flexible Taylor series-
based analytical scalable problem with OpenMDAO—an open-source framework for MDA and MDO—to
compare coupled Newton and nonlinear block Gauss–Seidel approaches for complex systems. We find that
assembly time of the linear systems involved, linear solver efficiency, and strength of coupling in the problem
play a major role in determining which approach is more efficient for a given problem. We also observe that
the coupled Newton approaches are more robust and scale better than the nonlinear block Gauss–Seidel
approaches as the strength of coupling between components increases.
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1 Introduction
Before solving a multidisciplinary design optimization (MDO) problem, we need to decide which architecture
and type of optimizer to use. These decisions affect both the speed and robustness of optimizations. For
the commonly used multidisciplinary feasible (MDF) architecture [1], another decision that affects the speed
and robustness of optimizations is the approach for the multidisciplinary analysis (MDA).

A popular strategy for the MDA is the nonlinear block Gauss–Seidel (NLBGS) approach, where each
discipline is solved sequentially given fixed values of the unknowns from other disciplines [2–10]. The block
Jacobi approach is another option, where discipline analyses are solved in parallel. Since the variables are
only updated at each iteration instead of being used as soon as they are computed, the block Jacobi approach
takes more iterations than block Gauss–Seidel. These approaches are also often referred to as fixed point
iterations, loosely coupled approaches [8, 11], or partitioned approaches [4, 5].

When it is possible to compute derivatives for the residual equations being solved, we can use Newton-
based methods, where the systems of equations for the multiple disciplines are solved simultaneously. We
refer to this as the coupled Newton (CN) approach in this paper. This type of approach is also often
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referred to as a tightly coupled approach [8, 11] or a monolithic approach [4, 5]. Due to its convergence
properties, CN has the potential to provide significant reductions in computation time over loosely coupled
approaches. Additionally, with a good initial guess, CN approaches can also be more robust than NLBGS
type approaches [5, 12, 13].

Recently, tightly coupled approaches have become popular in the field of fluid-structure interaction
(FSI) [5, 12, 14–16]. Fernandez and Moubachir [14] compare NLBGS and CN approaches for the tran-
sient flow in a thin elastic vessel which is representative of blood flow in large arteries. Their results show
that the CN approach is almost twice as fast as the NLBGS approach (with Aitken’s acceleration) for the
solution of their test problems. Heil et al. [5] compare NLBGS and CN approaches using the problem of flow
in a collapsible channel with an adjustable parameter used to control the strength of the FSI. In their test
problems the approaches are competitive when the coupling is weak. However, when the coupling is strong,
the CN approach outperforms the loosely coupled approach. Additionally, the CN approach is shown to be
more robust and efficient for unsteady problems, while the NLBGS approach diverges rapidly unless strong
under-relaxation is applied. Sheldon et al. [16] compare NLBGS and CN approaches using an unsteady flow
benchmark [17]. Their results show that the NLBGS approach (with Aitken’s acceleration) requires over 4
times more CPU time than the CN approach. In the related field of aerostructural optimization, Maute et
al. [3] developed an NLBGS method with relaxation for the solution of high fidelity aerostructural systems.
Later, to improve robustness and efficiency, Barcelos et al. [13] proposed a Schur–Newton–Krylov method
for the solution of aerostructural systems. Kenway et al. [18] addressed shortcomings of prior research by
developing a more advanced flow solver and a new parallel structural solver. Additionally, they benchmarked
NLBGS (with Aitken’s acceleration) and tightly coupled Newton–Krylov approaches for a long-range wide-
body aircraft. Their results show that both methods require similar aerostructural solution times, but the
coupled Newton–Krylov method required less time when the right preconditioning options were selected.

There is a lack of benchmarking that compares CN and NLBGS approaches in fields outside FSI, espe-
cially for complex systems, where use of NLBGS is widespread. This work addresses the need for better
benchmarking for such systems by developing a new scalable problem and by studying the factors that
influence the relative performance of CN and NLBGS approaches. With the improved computing power
and methods currently available, it is expected that the application of numerical analysis and optimization
to multidisciplinary systems with greater complexity in terms of coupling and number of disciplines will
increase. This makes it important to compare these approaches for those interested in the analysis and
optimization of complex systems in the present and the future.

NLBGS approaches are easier to implement with existing solvers and do not require significant mod-
ifications or in-depth understanding of the solvers. However, NASA’s OpenMDAO framework facilitates
the implementation of tightly coupled analyses. OpenMDAO is an open-source Python based computing
platform for multidisciplinary analysis and optimization. It formulates the MDA problem using the modular
analysis and unified derivatives (MAUD) architecture [19]. In MAUD, disciplines are implemented as system
components that are then combined into a hierarchical structure of groups to facilitate the solution of the
multidisciplinary analysis using a range of approaches and methods. In OpenMDAO and MAUD, any system
of explicit or implicit equations can be treated as a separate discipline by defining components. OpenMDAO
simplifies the assembly and solution of the linear systems involved when using CN approaches. Using Krylov
subspace methods, OpenMDAO can solve these systems with lower computation and memory costs than
direct methods. OpenMDAO also provides the user with the flexibility to switch between CN and NLBGS
approaches, or use hybrid approaches that combine both. Additionally, it provides automated derivative
computations that can be used for gradient-based optimization.

The scalable problem developed for this work consists of a parametrized system of equations that allows
arbitrary control of its dimensionality and other characteristics, such as nonlinearity and structure. The
intent is for this scalable problem to represent actual systems of equations that arise in practical computa-
tional design in terms of problem size, numerical properties (such as conditioning), and problem structure
(i.e., the sparsity and structure of the Jacobian matrix). The scalable problem should:

1. Define a system of equations using only closed-form mathematical expressions.

2. Let users set the problem size—i.e., the number of variables.

3. Let users divide the equations arbitrarily into groups to represent disciplines.

4. Generate both linear and nonlinear equations.
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5. Let users control the coupling between disciplines and the Jacobian structure of the problem.

While benchmark MDO problems exist [20–25], there is a lack of problems that are scalable and provide the
desired level of flexibility. Balling and Wilkinson [21] presented a flexible analytical scalable problem formu-
lation for testing MDO architectures; however, this formulation only generates components with nonlinear
governing equations and does not include the option for coupled linear equations. Tedford and Martins [25]
also developed an analytical scalable problem to benchmark MDO architectures, but the formulation does
not include nonlinear components.

In this paper we present an analytical problem formulation based on the multivariate Taylor series. The
advantage of using a Taylor series-based formulation is that it provides flexibility and control over all the
various characteristics listed above. This provides the user with the flexibility to test a range of different
types of problems and also the ability to set up problems that represent applications more realistically.

2 Scalable problem formulation
The formulation consists of a system of n residual equations that depends on n variables (v1, . . . , vn),

R1(v1, . . . , vn) = 0
...

Rn(v1, . . . , vn) = 0

. (1)

The LHS of the ith equation in this system is obtained using the Taylor polynomial form

Ri(v1, . . . , vn) =

di∑
r=1

1

r!

∑
(j1,...,jr)

1≤jk≤n
j1,...,jr∈A(i)

∂rRi

∂vj1 . . . ∂vjr

r∏
k=1

(vjk − v∗jk). (2)

The partial derivative terms in Eq. (2) are specified by the user. In this paper we use

∂rRi

∂vj1 . . . ∂vjr
= f(r)

r∏
k=1

α(i, jk)g(i, jk), (3)

where

α(i, jk) =

{
1, if i and jk belong to the same component

α, otherwise
.

The nomenclature and the problem parameters are detailed in Table 1. The system of equations given by
Eq. (1) can be split up arbitrarily to represent components.

Table 1: Nomenclature and description of the user-specified parameters for the scalable problem formulation

Parameter Description Problem characteristic

n Number of variables Problem size

di Degree of polynomial Nonlinearity

v∗i Solution value Solution (set to zero WLOG)

A(i) Arguments of the ith equation. Jacobian structure and coupling
A : {1, . . . , n} → P({1, . . . , n})
where P() is the power set.

f(r) A user-defined function of r Nonlinearity

g(i, jk) A user-defined function of |i− jk| Conditioning and coupling strength

α(i, jk) Coupling strength amplification factor Coupling strength
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2.1 Symbolic example
The following is a simple example to illustrate how the above equations are used. For a system with
parameters n = 2, di = 2, v∗i = i, f(r) = 2−r, α = 1, and g(i, jk) = 3−|i−jk|, the equations corresponding to
a fully populated Jacobian (A(i) = {1, 2}) are

R1 =
1

2
(v1 − 1) +

1

6
(v2 − 2) +

1

8
(v1 − 1)2 + 2 · 1

24
(v1 − 1)(v2 − 2) +

1

72
(v2 − 2)2 (4)

and

R2 =
1

6
(v1 − 1) +

1

2
(v2 − 2) +

1

72
(v1 − 1)2 + 2 · 1

24
(v1 − 1)(v2 − 2) +

1

8
(v2 − 2)2. (5)

If we want a system with a lower triangular Jacobian, we can exclude the v2 terms in Eq. (4) and reduce the
system to

R1 =
1

2
(v1 − 1) +

1

8
(v1 − 1)2 (6)

and

R2 =
1

6
(v1 − 1) +

1

2
(v2 − 2) +

1

72
(v1 − 1)2 + 2 · 1

24
(v1 − 1)(v2 − 2) +

1

8
(v2 − 2)2. (7)

This is equivalent to restricting the jk values in the second summation of the RHS of Eq. (2) to 1 for i = 1
(i.e., A(1) = {1}).

2.2 Extension to an MDO problem
Although the focus of this paper is on MDA approaches, we also developed a scalable MDO formulation that
builds upon the above analysis problem and can be stated as

minimize R0(v1, . . . , vn)
with respect to vi i = 1, . . . , ndv

with governing equations Ri(v1, . . . , vn) = 0 i = ndv + 1, . . . , n
subject to Ri(v1, . . . , vn) ≥ 0 i = n+ 1, . . . , n+ nic

(8)

where n is the total number of variables, ndv is the number of design variables, and nic is the number of
inequality constraints. Note that with this MDO formulation, the solution to the governing equations now
depends on the design variables. Therefore, the user-specified solution values, v∗i , for the analysis formulation,
become user-specified constants for the MDO formulation and no longer play the role of solution values for
the governing equations.

3 Benchmark problem details
For this study, we are interested in the types of complex systems that may arise in engineering design
problems. Typically, complex engineering design problems like aircraft [26], satellites [9, 27, 28], and wind-
turbines [10, 29] involve O(10) disciplines. For this reason, we select 20 as a reasonably representative number
of components for the benchmark problems. The design structure matrices (DSM) [30, 31] for the problems
are randomly generated such that each component depends on at least one other component. A sample
randomly generated component-level Jacobian structure (transpose of N2 diagram) is shown in Fig. 1a.
Fig. 1 also shows a smaller illustrative example with 5 components and a total of 50 residual equations.
Fig. 1c shows the Jacobian structure detailing the internal structure of the diagonal and off-diagonal blocks
shown in Fig. 1b. The patterns shown in Fig. 1c for the diagonal and off-diagonal blocks are used for the
benchmark problems. The component blocks on the diagonal have fully filled in tridiagonal structures and
the off-diagonal blocks have tridiagonal structures with every other row empty.

The nonlinearity and coupling functions used for the problems are f(r) = r−1 and g(i, jk) = 1.0001−|i−jk|.
We run these problems on a desktop computer with a 4 GHz Intel Core i7-4790K processor and 32 GB RAM.
Fortran [32] is used to compute the residuals and partial derivatives for the systems of equations. The rest of
the computations are performed using the Python-based OpenMDAO framework. Two sets of problems are
studied. The first set consists of problems with linear and nonlinear components. The second set consists of
problems with only linear components.
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(a) A sample randomly generated
component-level Jacobian struc-
ture for the benchmark problems

(b) Component-level Jacobian
structure for a smaller illustrative
example
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(c) Internal structure of the Jaco-
bian for the smaller illustrative ex-
ample in Fig. 1b

Figure 1: Jacobian structures

3.1 Problem set 1: Linear and nonlinear components
Nine subsets of problems are generated by specifying three different values for the coupling amplification
factor, α, and three different ranges for numbers of equations per component. Each subset contains 20
problems. The three values used for α are 0.5, 1.0, and 1.5. The three ranges used for the number of
equations per component are 100 to 500, 200 to 1000, and 500 to 2000. These ranges are used to randomly
assign a number of equations for each component. Each component is also randomly assigned a degree for
the polynomial residual equations that belong to it. Random number generators are used for this such that,
on average, half of the components are expected to be linear and half are expected to be nonlinear. Of the
half that are nonlinear, half are expected to be quadratic and the other half are expected to be cubic. The
three subsets of problems that have the same number of equations per component also share the same 20
randomly generated DSMs and other problem settings (except for α, which is varied to study the effect of
coupling strength). The initial guess for every variable is randomly set to an integer between -15 and 15,
excluding 0, which is the solution. The problems are set to converge when the L2-norm of all the residuals
is less than 10−6.

3.2 Problem set 2: Linear components only
The settings for these problems are the same as the settings for problem set 1, except the ranges for the
number of equations per component and the degree of the polynomial equations. The three ranges used for
the number of equations per component are 200 to 1000, 500 to 2000, and 1000 to 4000.

4 Solution approaches
Four solution approaches are benchmarked for this paper using OpenMDAO release 1.7.3. Two are variations
of the CN approach, and two are variations of the NLBGS approach.

4.1 Approach 1 (A1): Monolithic CN
With this approach, a solution to all the residual equations is computed simultaneously using Newton’s
method. For computing the Newton step, the PETSc [33] Krylov subspace with preconditioning (KSP)
flexible generalized minimal residual (fGMRES) [34] solver is used. For preconditioning, the linear block
Gauss–Seidel (LNBGS) option is selected in OpenMDAO, which sequentially solves smaller linear systems
using each component’s Jacobian and SciPy’s [35] linalg.solve direct solver.

4.2 Approach 2 (A2): CN with strongly connected grouping
For the second approach, the strongly connected components [36, 37] graph partitioning algorithm is used
to identify the largest groups of components in which every component directly or indirectly depends on the
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output of every other component. The NetworkX [38] Python package is used by OpenMDAO for identifying
strongly connected component groups. If more than one of these groups are present, they can be reordered
relative to each other for feed-forward information flow and each group can be solved sequentially on its
own. This improves computation time by reducing the size of the coupled systems of equations that need to
be solved together by the Newton solver. Fig. 2 shows a simple example component level Jacobian structure
with two strongly connected component groups outlined with dashed lines. For this example, with approach
A2, the group containing components 3 to 5 is solved first using a CN solver and then the group containing
components 1 and 2 is solved with a CN solver using the converged input from the first group. The group
with components 3 to 5 can be individually solved first because it does not directly or indirectly depend on
the outputs of components 1 and 2.

Component
1

Component
2

Component
3

Component
4

Component
5

Figure 2: A sample Jacobian structure with two strongly connected component groups

Mathematically, this means that the CN system given by Eq. (9) is repeatedly solved first until con-
vergence. Then the CN system given by Eq. (10), which uses the converged output from component 3 to
compute its right hand side, will be repeatedly solved until convergence.∂R(3)

∂v(3)
∂R(3)

∂v(4) 0

0 ∂R(4)

∂v(4)
∂R(4)

∂v(5)

∂R(5)

∂v(3) 0 ∂R(5)

∂v(5)


∆v(3)

∆v(4)

∆v(5)

 = −

r(3)r(4)

r(5)

 (9)

[
∂R(1)

∂v(1)
∂R(1)

∂v(2)

∂R(2)

∂v(1)
∂R(2)

∂v(2)

] [
∆v(1)

∆v(2)

]
= −

[
r(1)

r(2)

]
(10)

Here, R(a) is a vector containing the residual equations for the ath component, v(a) is a vector containing
the variables for the ath component, and r(a) is a vector containing the values of the residuals for the ath

component. If all components happen to form a single strongly connected component group, this approach
is equivalent to A1. Similarly to A1, the PETSc KSP fGMRES solver is used with OpenMDAO’s LNBGS
option for preconditioning to compute the Newton step for each group. The convergence tolerance for the
L2-norm of the residuals of each group is set to

atol = 10−6

√
number of equations in the group

total number of equations in the problem
. (11)

4.3 Approach 3 (A3): NLBGS with strongly connected grouping and Aitken’s relaxation
In this approach, similarly to A2, the strongly connected components algorithm is used to identify groups
that can be executed in a feed-forward manner and solved individually. The system of each group is solved
by cycling through every component belonging to the group. SciPy’s linalg.solve direct solver is used
for solving linear components and the linear Newton systems for nonlinear components. If multiple strongly
connected component groups are identified, the solution time reduces due to the lower number of components
that need to be iterated through together [39]. OpenMDAO’s built-in reordering algorithm is used to
determine the execution order of the components within each group and Aitken’s acceleration [40] based
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relaxation is used to help accelerate convergence and prevent divergence. The tolerances for each group are
calculated using Eq. (11). If all components happen to form a single strongly connected component group,
this approach is equivalent to approach 4.

4.4 Approach 4 (A4): NLBGS with Aitken’s relaxation
This approach is based on the standard NLBGS approach where each component is solved sequentially.
SciPy’s linalg.solve direct solver is used for solving linear components and the linear Newton systems
for nonlinear components. OpenMDAO’s built-in reordering algorithm is used to determine the execution
order of the components and Aitken’s acceleration based relaxation is used to help accelerate convergence
and prevent divergence.

4.5 Reordering
OpenMDAO’s inbuilt reordering algorithm aims to help reduce the number of iterations required for an
NLBGS approach. Subgraphs of the directed graph representation of the DSM are identified using the
strongly connected components algorithm. Then, using a simple heuristic approach [41, 42], the most
imbalanced node in terms of input and output edges is identified and the fewest edges are removed so that
the node has unidirectional information flow. This process is repeated recursively until a directed acyclic
graph is obtained, and finally a topological sort is used to obtain the execution order.

4.6 Aitken’s acceleration
As discussed in the introduction, Aitken’s acceleration [40] based relaxation methods have been shown to be
simple and effective for NLBGS approaches. The procedure used for the benchmark problems in this paper,
based on the approach used by Kenway et al. [18], is expressed as

u(n+1) = u(n) + θ(n)∆u(n), (12)

where the u(n+1) is the vector of variables obtained after applying the relaxation procedure, u(n) is the
vector from the previous iteration, θ is the relaxation factor, and the update ∆u(n) is given by

∆u(n) = ũ(n+1) − u(n), (13)

where ũ(n+1) is the vector obtained at the end of the latest NLBGS iteration. The relaxation factor is
updated at every iteration using

θ̃(n) = θ(n−1)
(

1− (∆u(n) −∆u(n−1))T∆u(n)

‖∆u(n) −∆u(n−1)‖22

)
,

θ(n) = max(0.25,min(2.0, θ̃(n))).

(14)

Note that this can only be applied after the second iteration. For the problems in this paper, the relaxation
is applied to all the variables of a group at the end of each NLBGS iteration instead of after solving
each component. Based on initial trials, we found that this approach is more effective for these problems.
Additionally, based on initial trials, we found the range of 0.25 to 2.0 to be an effective range for the relaxation
factor for both accelerating convergence and preventing divergence when possible.

5 Results and discussion
Figs. 3 to 5 show box plots for problem set 1. In these plots, the data points are blue if all problems
corresponding to that particular approach and subset of problems converged, otherwise they are red. If less
than 75% of the problems converged for a particular approach and subset of problems, the data points are
shown but the box and whiskers are not.

Fig. 3 plots the number of iterations for approaches A1 and A4. One iteration of A1 corresponds to one
Newton step and one iteration of A4 corresponds to one cycle through all components. Fig. 3, shows that
the number of iterations required by A4 is more sensitive to the strength of coupling in the problems than
the other approaches. For the weakest coupling amplification factor (α = 0.5), both approaches happen to
require similar numbers of iterations. However, as the coupling amplification factor is increased, the number
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of iterations required by A4 increases significantly more than the number of iterations required by A1. For
example, the median number of iterations for the problems with 500 to 2000 equations per component and
A1 increases from 10 for α = 0.5 to 11 for α = 1.0. On the other hand, the median number of iterations
for the same problems with approach A4 increases from 8.5 for α = 0.5 to 20 for α = 1.0. Similar trends
are observed in other subplots of Fig. 3. Based on Fig. 3 alone, we might conclude that for problems with
stronger coupling, a CN approach will be significantly more efficient than an NLBGS approach. However,
Fig. 4 leads to a different conclusion.
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Figure 3: Number of iterations for approaches A1 and A4 with problem set 1. Data points are blue if all
problems converged for the combination of approach and problem settings, otherwise they are red. Box and
whiskers are not shown if less than 75% of the problems converged for a particular approach and combination
of problem settings.

For the CN based approaches (A1 and A2), we use the LNBGS preconditioning option in OpenMDAO
with the PETSc fGMRES solver for the Newton systems. This preconditions the larger Newton linear system
for each fGMRES iteration by sequentially solving smaller linear systems using each component’s Jacobian.
For the NLBGS approaches (A3 and A4), each component is solved in sequence. A single linear solution
is carried out if the component is linear, or multiple linear solutions are carried out for the component’s
linearized system by a Newton solver if the component is nonlinear. A direct solver is used for these three
types of linear solutions that involve a component’s Jacobian or linearized system. Fig. 4 plots the total
number of direct linear solutions carried out during the different approaches. A1 and A2 perform significantly
larger numbers of direct linear solutions. As the coupling strength is increased, the number of linear solutions
carried out by all approaches increases, but they increase by different amounts. For example, the median
number of direct linear solutions carried out for the problems with 500 to 2000 equations per component
and A1 increases from 1319 for α = 0.5 to 2520 for α = 1.0. On the other hand, the median for the same
problems with A4 increases from 294 for α = 0.5 to 677 for α = 1.0. Similarly, the median number of direct
linear solutions carried out for these same problems increases from 911 to 1568 with A2, and from 240 to
405 with A3. Based on Fig. 4 alone, we might conclude that for these problems, an NLBGS approach will
be significantly faster than a CN approach. However, Fig. 5 shows that this is not the case.

Fig. 5 plots the wall time for problem set 1 and Table 2 lists the corresponding mean and median times.
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Figure 4: Number of direct linear solutions carried out with the four approaches and problem set 1. Data
points are blue if all problems converged for the combination of approach and problem settings, otherwise
they are red. Box and whiskers are not shown if less than 75% of the problems converged for a particular
approach and combination of problem settings.

A2 consistently performs better than A1, and A3 consistently performs better than A4. This demonstrates
the benefits of grouping based on the strongly connected components algorithm. However, it is difficult to
conclude which one of A2 and A3 is faster in general. Two major costs contribute to the observed performance
of these approaches. One is the cost of assembling the linear systems involved, and the other is the cost
of solving these linear systems. NLBGS approaches suffer from the disadvantage of requiring increasingly
larger numbers of iterations as the coupling strength increases. Along with increasing the number of linear
solutions carried out, this also increases the number of times the linearized systems are assembled for the
components. This may be inexpensive for linear components, which only require recomputing the right hand
side. However, this may become expensive for nonlinear components that require recomputing Jacobians
for each iteration. Since the required number of iterations for NLBGS approaches is observed to be more
sensitive to coupling strength, their cost, as coupling strength increases, is also more sensitive to the cost
of recomputing the terms of the linear systems involved. On the other hand, while the number of Newton
iterations for a CN approach does not depend strongly on the coupling strength, CN based approaches have
the disadvantage of assembling and solving larger linear systems that tend to have poorer conditioning as
the coupling strength increases. This requires more iterations for iterative solvers, which are generally the
only practical option for large systems due to the poor scaling of direct solvers with problem size. Therefore,
we conclude that the cost of all the approaches studied in this paper is related to the coupling strength of
the problems.

Table 3 lists the mean and median wall times for problem set 2 which contains only problems with
linear components. These results are included to study the effect of nonlinearity on the different approaches.
Once again, it is not clear which of A2 and A3 will be faster in general. For this problem set, the NLBGS
approaches benefit from the lower cost of setting up the linear systems for the linear components. However,
the cost for the CN approaches also decrease because, neglecting numerical errors, only one Newton iteration
is required to converge the coupled linear system. Overall, we conclude that the relative performance of the
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Figure 5: Solution wall time for the four approaches with problem set 1. Data points are blue if all problems
converged for the combination of approach and problem settings, otherwise they are red. Box and whiskers
are not shown if less than 75% of the problems converged for a particular approach and combination of
problem settings.

different approaches depends on multiple factors including the strength of coupling in the problem, the cost of
assembling the linearized systems involved, and the performance of the selected linear solvers. Depending on
different combinations of these factors, which are dependent on the problem itself, the solver implementation,
and the solver settings, one approach may be faster than the other.

Even though it is difficult to conclude which of A2 and A3 will be faster in general, it is clear that
A2 converges for a greater number of the benchmark problems than A3. Table 4 lists the percentages of
problems that converged for both problem sets. As the coupling amplification factor is increased for the
problems, even with the under-relaxation provided by Aitken’s acceleration, the NLBGS approaches tend to
become unstable and diverge. Note that some problems did not converge with the CN approaches as well for
α = 1.5. However, unlike most problems that did not converge with the NLBGS approaches, these problems
did not diverge. The Newton solvers could not converge to the specified tolerance due to numerical errors
arising from poor conditioning.

We can also analyze how the performance of different approaches scales with coupling strength. Fig. 6a
plots the wall times for the 12 problems from problem set 1 that converged for all three values of α used. By
observing the changing slopes of the curves, we see that the wall times scale better for A2 as the coupling
strength increases.

Since α is a parameter specific to the problem formulation presented in this paper, we introduce a more
general coupling strength metric, ρc, which we use in Fig. 6b. This is defined as

ρc = Spectral radius

([
∂R

∂v

]−1
lower

[
∂R

∂v

]
upper

)
, (15)

where
[
∂R
∂v

]
lower

is the block lower triangle of the Jacobian (including the diagonal blocks) and
[
∂R
∂v

]
upper

is the block upper triangle of the Jacobian (excluding the diagonal blocks). For Fig. 6b, this parameter is
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Table 2: Wall time statistics (in seconds) for problem set 2 (with linear and nonlinear components). Values
are omitted if less than 75% of problems converged, and the lowest values are highlighted with bold font.

α = 0.5 α = 1.0 α = 1.5

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

100 to 500 eqs. mean 5.62 4.26 7.34 9.29 15.73 11.64 - - 22.03 14.32 - -
per component median 4.65 3.90 5.71 6.94 14.39 10.89 - - 19.22 14.74 - -

200 to 1000 eqs. mean 15.24 11.51 15.37 18.41 32.19 21.97 47.96 66.09 55.07 36.72 - -
per component median 12.98 8.43 8.32 12.49 25.33 14.54 16.36 26.82 54.71 18.48 - -

500 to 2000 eqs. mean 46.47 33.41 23.69 27.30 86.26 55.70 44.30 79.89 190.00 124.98 - -
per component median 46.49 33.02 19.18 23.11 81.06 58.00 33.45 49.72 146.71 87.24 - -

Table 3: Wall time statistics (in seconds) for problem set 2 (with linear components only). Values are omitted
if less than 75% of problems converged, and the lowest values are highlighted in bold font.

α = 0.5 α = 1.0 α = 1.5

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

200 to 1000 eqs. mean 0.91 0.61 0.50 0.80 2.11 1.30 1.83 3.84 20.48 6.51 - -
per component median 0.92 0.59 0.50 0.84 1.68 1.07 1.04 2.84 4.64 2.56 - -

500 to 2000 eqs. mean 4.24 2.54 2.38 3.89 7.26 4.69 5.37 10.35 21.53 10.10 - -
per component median 4.20 2.36 2.30 3.73 7.10 3.50 3.62 8.04 11.90 5.47 - -

1000 to 4000 eqs. mean 19.39 13.47 13.37 20.21 37.09 23.39 24.87 36.02 52.01 29.44 - -
per component median 20.77 14.21 12.74 20.58 25.24 14.33 18.85 27.49 40.76 20.94 - -

Table 4: Percentage of problems that converged with varying coupling amplification factor

α = 0.5 α = 1.0 α = 1.5

Problem Set A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

1 100% 100% 100% 100% 100% 100% 68% 68% 85% 83% 20% 18%

2 100% 100% 100% 100% 100% 100% 95% 95% 100% 100% 38% 38%

calculated for each strongly connected component group in a problem and the largest value is selected to
represent the problem. For problem set 1, the mean and median ρc are 1.17 and 0.87, respectively. The mean
and median ρc for the problems in this set that did not converge with A3 are 2.28 and 1.89, respectively.
Fig. 6b shows that visibly fewer problems converged with A3 for ρc greater than 1.0 (12 for A3 vs. 69 for
A2). Similarly, for problem set 2, the mean and median ρc are 0.69 and 0.43, respectively. The mean and
median ρc for the problems in this set that did not converge with A3 are 1.74 and 1.73, respectively. Note
that, for a nonlinear component, the Jacobian changes with every iteration. The values of ρc used in Fig. 6b
correspond to the initial Jacobian.

6 Conclusion
In this paper, we presented a novel Taylor series-based scalable problem, implemented it in the OpenMDAO
framework, and used it to compare approaches for the multidisciplinary analysis of complex systems. The
scalable problem is a Taylor series-based system of equations, with several tunable parameters including the
total number of variables, degree of nonlinearity, coupling strength, and sparsity structure.

This problem is implemented in NASA’s OpenMDAO framework, an open-source Python-based software
package for multidisciplinary optimization. OpenMDAO also provides a library of integrated nonlinear and
linear solvers that simplifies experimenting with and switching between multiple solvers.

We used the OpenMDAO implementation of the scalable problem to compare coupled Newton and
nonlinear block Gauss–Seidel approaches for the analysis of complex systems. The four approaches compared
are: a monolithic coupled Newton approach (A1), a coupled Newton approach with grouping based on the
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Figure 6: Wall times for problem set 1 showing the behaviors of A2 and A3 with increasing coupling strength

strongly connected components algorithm (A2), a nonlinear block Gauss–Seidel approach with grouping
based on the strongly connected components algorithm and relaxation based on Aitken’s acceleration (A3),
and a nonlinear block Gauss–Seidel approach with relaxation based on Aitken’s acceleration (A4).

The two approaches with grouping based on the strongly connected components algorithm consistently
outperform the other two approaches when multiple strongly connected component groups can be identified.
However, it is not possible to reach a general conclusion on which single approach will be faster. The relative
performances depend on several factors: linear system assembly time, linear solver efficiency, strength of cou-
pling in the problem, number of variables per component, number of components, degree of nonlinearity, and
the overall nonlinear solver tolerance. We found that the first three factors play a major role in determining
which approach is more efficient for a given problem. We present plots showing how these three factors
affect the trade-off and also introduce a general metric for the strength of coupling between components.
Based on the 360 randomly generated problems, we also observed that the coupled Newton approaches are
more robust and less likely to diverge than the nonlinear block Gauss–Seidel approaches as the strength of
coupling between components increases. Additionally, the coupled Newton approach is observed to scale
better as coupling strength increases.
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[6] Melike Nikbay, Levent Öncü, and Ahmet Aysan. Multidisciplinary code coupling for analysis and
optimization of aeroelastic systems. Journal of Aircraft, 46(6):1938–1944, November 2009. ISSN 0021-
8669. doi:10.2514/1.41491. URL http://dx.doi.org/10.2514/1.41491.
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