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Abstract An asymmetric suboptimization method for performing multidisciplinary
design optimization is introduced. The objective of the proposed method is to improve
the overall efficiency of aerostructural optimization, by simplifying the system-level
problem, and thereby reducing the number of calls to a potentially costly aerodynam-
ics solver. To guide a gradient-based optimization algorithm, an extension of the cou-
pled sensitivity equations is developed to include post-optimality information from
the structural suboptimization. The optimization of an aircraft wing is performed
using linear aerodynamic and structural analyses, and a thorough performance com-
parison is made between the new approach and the conventional multidisciplinary
feasible method. The asymmetric suboptimization method is found to be the more
efficient approach when it adequately simplifies the system-level problem, or when
there is a large enough discrepancy between disciplinary solution times.

Keywords Asymmetric suboptimization · Coupled post-optimality sensitivity
analysis · Multidisciplinary design optimization

1 Introduction

Multidisciplinary design optimization (MDO) is an emerging field of engineering
that uses numerical optimization methods to solve design problems involving more
than one discipline. By considering the interactions between the multiple disciplines
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during the optimization process, the optimum achieved using an MDO approach is
superior to the one found by optimizing each discipline in sequence. MDO methods
have been used in a wide variety of applications, but due to the complex and mul-
tidisciplinary nature of aircraft, interest in MDO has been particularly strong in the
field of aerospace engineering.

1.1 Aerostructural optimization

One of the most common applications of MDO techniques is coupled aerody-
namic and structural (aerostructural) optimization, because of the strong interac-
tions between these two disciplines. Extensive research has been conducted in
the field of MDO and its application to aerostructural design. The survey paper
by Sobieszczanski-Sobieski and Haftka (1997) provides a comprehensive overview
of the work accomplished in this area. Understandably, most of the early studies in
aerostructural optimization centered on low-fidelity models, in order to demonstrate
the benefits of MDO, and to advocate its use during the preliminary design stages.
With the availability of ever faster computing platforms, application of these meth-
ods to high-fidelity aerostructural analysis and optimization has followed suit (Chat-
topadhyay and Pagaldipti 1995; Giunta 2000; Maute et al. 2001). However, due to
the computational expenses incurred by more complex solvers, practical implemen-
tations have generally been limited to only a few design variables.

Different strategies have emerged to address the high computational costs asso-
ciated with MDO. The use of variable-fidelity (Marduel et al. 2006) and variable-
complexity (Thokala and Martins 2006) models has been examined to decrease com-
putational expense, and the advent of the coupled adjoint method has drastically
reduced the cost of performing high-fidelity sensitivity analysis with many design
variables (Martins et al. 2005). The approach that we propose herein involves modify-
ing the formulation of the MDO problem, in order to exploit the uneven load balance
that is common in aerostructural analysis.

1.2 MDO architectures

The interdisciplinary coupling intrinsic to MDO tends to pose significant organiza-
tional and computational challenges, and there exist several different MDO architec-
tures for dealing with this complexity. Work by Alexandrov and Kodiyalam (1998)
serves as a good introduction to the various MDO methods, and the πMDO frame-
work developed by Tedford and Martins (2006a, 2006b) presents a platform for stan-
dardized comparisons of the different formulations.

The conventional MDO architectures can be divided into two main classes: single-
level formulations and multilevel formulations. Single-level formulations, such as
multidisciplinary feasible (MDF) and simultaneous analysis and design (SAND),
employ a single optimizer that is given control over the entire state of the system
(Cramer et al. 1994; Tribes et al. 2005). These methods are often the easiest to im-
plement, but can scale poorly with the number of design parameters and disciplines.
Multilevel formulations, which include collaborative optimization (CO) (Kroo 1997;
Braun and Kroo 1997) and bi-level system synthesis (BLISS) (Kodiyalam and
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Sobieszczanski-Sobieski 2000; Sobieszczanski-Sobieski et al. 2003), divide the orig-
inal problem into smaller subproblem optimizations. These approaches allow for a
higher degree of discipline autonomy, but require a system-level optimizer to man-
age the interactions between the disciplines.

In this research, we examine a new hybrid architecture that shares characteris-
tics with both the single-level and decompositional formulations. As with the MDF
method, the new architecture enforces multidisciplinary feasibility after each eval-
uation of the coupled system. Similar to multilevel strategies, the new architecture
involves a subspace optimization to help decrease the size of the system-level prob-
lem. The overall objective of the new approach is to decrease the cost of solving
MDO problems that exhibit a large discrepancy between disciplinary solution times,
as is often the case in high-fidelity aerostructural optimization.

1.3 Motivation

The trade-off between aerodynamic and structural efficiency in aircraft wings is gov-
erned by two main interactions. First, the structural weight affects the required lift,
which in turn affects the lift-induced drag. Second, the aerodynamic loads affect the
structural deformations, which in turn change the aerodynamic shape. Consequently,
performing aerostructural analysis is an iterative process, and in order to obtain a
converged state, several evaluations of the two disciplines are needed.

The aerodynamic discipline typically incorporates a computational fluid dynamics
(CFD) analysis that solves a set of partial differential equations, which is an iterative
process in itself. In contrast, the structural analysis usually consists of a linear finite-
element solver with a symmetric stiffness matrix, requiring only a single linear solve
operation to obtain the structural state. As a result, the computational cost of an aero-
dynamic solve is generally at least an order of magnitude greater than a structural
solve.

The goal of the present work is to take advantage of this computational im-
balance by solving a structural suboptimization problem within the aerostructural
analysis module. The idea of combining an aerodynamic analysis with a struc-
tural optimization routine is not an entirely new concept. For example, Raveh et
al. (2000) integrated maneuver load CFD computations with a structural optimiza-
tion. However, this type of coupled analysis has not been explicitly formulated for
an MDO application. The presence of the subspace optimization means that for
each aerodynamic analysis one has to perform a structural optimization, which in-
creases the computational cost of the coupled analysis. The advantage of the pro-
posed method, however, is that it confines all of the structural design variables and
constraints within the structural discipline. This simplifies the system-level prob-
lem, which should decrease the number of calls to the costly aerodynamic analy-
sis. The overall objective is to achieve a more efficient approach to aerostructural
optimization, without having to limit the interdisciplinary coupling. The interac-
tions between the disciplines are modeled exactly, and the fidelity of the analyses
is not compromised by any approximation technique, such as a response surface,
which are sometimes used in hierarchical architectures (Sobieski and Kroo 2000;
Kodiyalam and Sobieszczanski-Sobieski 2000).
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2 Aerostructural model

Our work to date has focused on a lower-fidelity model, combining linear aerody-
namic and structural analyses. Although the motivation for this research is rooted in
the computational expense of nonlinear aerodynamic solvers, our simplified model
has proven invaluable in testing the overall procedure and the multilevel convergence
of the asymmetric suboptimization method. More importantly, it has allowed a sen-
sitivity method for the new architecture to be developed and verified without being
encumbered by long turn-around times in the analysis modules. The drawback of us-
ing a linear aerodynamic model is taken into account when discussing the results in
Sect. 5.

The aerodynamic analysis employs an inviscid panel code to model the wing,
which solves the system,

A! − v = 0, (1)

where A is the aerodynamic influence coefficients matrix, ! is the vector of panel
circulations, and v is the vector of panel boundary conditions, which is simply the
local angle of attack of each panel. The aerodynamic discipline also enforces that the
wing must produce the lift needed to maintain level flight, i.e.,

L − W = 0, (2)

where L is the total wing lift and W is the total weight of the aircraft. This require-
ment can be satisfied by selecting the appropriate angle of attack (α).

The structural model consists of a single wing spar, which is modeled using frame
finite-elements to represent a tube-shaped spar. The structural analysis is governed
by the following equation,

Ku − f = 0, (3)

where K is the stiffness matrix of the structure, u is the displacement vector and f is
the vector of external forces. The number of aerodynamic panels and structural ele-
ments are variable parameters, and they dictate the fidelity of the discipline analyses.
Figure 1 shows the wing discretized with 15 panels and elements, and the structural
displacements resulting from a sample load distribution.

The simultaneous solution of (1) through (3) defines the state of the aerostructural
system. The state variables of the coupled system are !, α, and u. The design vari-
ables that we use herein are the jig twist distribution of the wing (γ jig) and the wall
thicknesses of the tube finite elements (t ). Note that the A matrix is based on fixed
parameters, and the remaining variables that are not state variables have the following
dependencies,

v = v(γ jig,u,α), (4)

L = L(!), (5)

W = W(t), (6)

K = K(t), (7)

f = f (!). (8)
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Fig. 1 Aerodynamic and structural discretization of the wing

The objective function of interest is the Breguet range equation. This expression
represents the trade-off between the drag and the structural weight of the aircraft, and
can be written as,

R(D,W) = V

c

L(!)

D(!)
ln

W(t)

W(t) − Wf
, (9)

where V is the cruise velocity, c is the specific fuel consumption, L/D is the ratio
of lift to drag, and W/(W − Wf ) is the ratio of initial and final cruise weights of
the aircraft. The final weight is simply the structural weight without the fixed fuel
weight, Wf . The optimization problem can be stated as follows,

maximize: R(D,W)

w.r.t.: γ jig, t

s.t.: σ yield − σ (u) ≥ 0 (10)

t − tmin ≥ 0

r − t ≥ 0,
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where the element stresses (σ ) cannot exceed by the yield stress of the material, and
the structural design variables are constrained between the minimum gauge thick-
ness (tmin) of the spar material and the radius of the beam elements (r). In this
research we focus on gradient-based optimization, and the optimizer used is SNOPT,
which employs a sequential quadratic programming algorithm (Gill et al. 2005).
More specifically we use pySNOPT, a version of the optimization code wrapped in
Python (Alonso et al. 2004).

3 Architecture validation

The new asymmetric suboptimization approach to our aerostructural design problem
is shown as Fig. 2. Throughout this work, the routine that converges a coupled set
of disciplines will be referred to as the multidisciplinary analysis (MDA) module.
Therefore, the MDA of the new architecture includes the aerodynamic analysis and
the structural suboptimization. The two disciplines are linked within the MDA mod-
ule through the exchange of coupling variables, which consist of the vector of exter-
nal forces returned from the aerodynamic analysis, and the vector of displacements
as determined by the structural suboptimization. A fixed-point iteration scheme is
used to alternate between the two disciplines. Each call to the structural side results
in a full gradient-based optimization, where, given a set of loads, the range is max-
imized with respect to the structural thicknesses, subject to the stress and thickness
constraints. Since the aerodynamic parameters are held fixed during each subopti-
mization, maximizing the range is equivalent to minimizing the weight of the wing.
Once the aerostructural system has converged, the suboptimization provides the value
of the optimized structural weight (W ∗) to the range calculation, while the aerody-
namic solver provides the lift and drag values. As mentioned, the benefit of the new
formulation is that it leaves the system-level with an unconstrained design space,
with only the aerodynamic design variables to consider. The challenge, of course, is

Fig. 2 Asymmetric
suboptimization method
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to be able accurately and efficiently calculate the system-level sensitivities, which is
discussed in Sect. 4.

3.1 Reference formulations

The multidisciplinary feasible (MDF) method, shown as Fig. 3, is the traditional ap-
proach to solving MDO problems, and as such, it is well suited to providing a base-
line solution to the design problem. In this monolithic method, a single optimizer is
connected to the MDA, which again uses an iteration scheme to converge the aero-
dynamic and structural solvers. Without a suboptimization routine, all of the design
variables and constraints involved in the problem need to be considered at the system-
level. As a result, compared to the asymmetric suboptimization approach, the MDF
optimizer faces a more challenging design space, thus requiring a larger set of sensi-
tivity terms when determining an appropriate design step.

Sequential optimization, as the name suggests, involves optimizing the two disci-
plines in sequence. Figure 4 shows the flow of variables for the aerostructural system
in a sequential configuration. The coupling variables are exchanged between the two
separate optimization routines until a solution is reached. However, this approach
does not converge to the true optimal solution. More specifically, the aerodynamic
optimization is unaware of the effect that it has on the element stresses by varying
the jig twist. The structural optimization is then limited to a design space dictated
by the aerodynamic state, which always results in a convergence to an aerodynamic
optimum as opposed to the true system optimum. Although not a valid MDO archi-
tecture, the sequential method is included in the following discussion to show how an
incomplete consideration of the disciplinary interactions results in an inferior design.
By including the structural optimization routine within the aerodynamic optimiza-
tion loop, we will demonstrate that the asymmetric suboptimization method does not
suffer the same shortcoming.

Fig. 3 MDF formulation
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Fig. 4 Sequential method

Table 1 Range results for the
three approaches MDF AS Sequential

L (×106 N) 1.16035 1.16035 1.20964

D (×105 N) 2.35625 2.35625 2.36796

Wi (×106 kg) 1.16035 1.16035 1.20965

Wf (×105 kg) 8.66352 8.66352 9.15648

R (km) 6690.32 6690.32 6613.89

3.2 Reference results

In order to show that our asymmetric suboptimization method is a valid alternative to
the standard MDF architecture, our aerostructural model was optimized using both
approaches. The results are shown in Fig. 5, along with the sequential results for
comparison. These trials were run using 15 jig twist and thickness design variables.

The final designs achieved by the proposed method and the MDF method show
very close agreement. The jig twist distributions of both methods result in a deflected
wing that twists downwards in the same manner, which is expected for a swept con-
figuration. Similarly, both methods exhibit an identical thickness distribution, which
decreases from root to tip until the minimum gauge thickness is reached. In con-
trast, the sequential approach results in a slightly heavier configuration with a less
pronounced wing deflection. The lift distribution graph indicates that the sequential
approach does indeed result in a minimum drag design, since it agree very closely
with the theoretical aerodynamic optimum, which is given by an elliptical curve. The
asymmetric suboptimization and MDF methods, on the other hand, deviate from the
elliptical distribution. Instead, the wing loading is shifted rootward, resulting in re-
duced wing bending moments. This allows for a lighter structure, and a greater range
value, as summarized in Table 1. In other words, unlike the sequential method, the
MDF and asymmetric suboptimization approaches choose to sacrifice aerodynamic
performance in order to achieve greater overall system gains.
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Fig. 5 Reference results for the three formulations. The distributions over the half-span of the wing are
shown from root to tip

3.3 Reduced dimensionality

The fact that the asymmetric suboptimization method was able to avoid the sub-
optimal result of the sequential approach, and achieve the MDF solution, helps to
validate the new approach. However, to form a better understanding of how the meth-
ods differ, the aerostructural model was simplified to a two design variable problem:
a constant beam thickness value and a linear interpolation of the jig twist from a vari-
able wing tip value to a fixed root twist of zero. This allowed the design space to be
visualized using a contour plot, as shown in Fig. 6.

The contour lines indicate the range value for a given jig twist and thickness.
These range values were obtained from a converged aerostructural solution, so to be
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Fig. 6 Contour plot of the simplified aerostructural design space

more accurate, Fig. 6 displays the multidisciplinary feasible design space. Due to
a decrease in the structural weight, the aircraft range increases in magnitude as the
wing thickness is reduced. The maximum range for a given thickness value is shown
with a dashed line, labeled as the aerodynamic optima. Also shown on the contour
plot are the boundaries imposed by the stress constraints. The thinner tube elements
result in more pronounced structural deflections, which translate into greater stress
values. The stresses also slope upwards with higher thickness values, because the
added weight increases the required lift and the consequent aerodynamic loading on
the wing. Therefore, the feasible region of the design space falls between the top and
bottom yield stress contours. For completeness, the minimum gauge thickness is also
indicated near the bottom of the contour plot. Beginning from the same initial design
point, the range was maximized using the sequential, MDF, and asymmetric subopti-
mization formulations, and the resulting convergence plots are shown on Fig. 6.

3.3.1 Sequential convergence

The sequential approach exhibits a staircase-style convergence. This is expected be-
cause each design variable is being considered in isolation, so the sequential method
is only able to proceed along one axis at a time. Each aerodynamic optimization
pushes the jig twist distribution towards the dashed line, while every subsequent
structural optimization yields a reduced thickness value. Eventually, the method con-
verges where the stress constraint intersects with an aerodynamic optimum. It should
be noted that the sequential method actually operates in the individual discipline fea-
sible design space, and does not represent a valid aerostructural state until it arrives
at its solution. This explains why the aerodynamic optima and the stress constraints
are not reached on Fig. 6 until the method has converged. The inherent flaw of the
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Fig. 7 Magnified view of the aerostructural solution

sequential formulation is an incomplete consideration of the disciplinary interactions.
The aerodynamic optimization is unaware of how its state variables effect the struc-
tural constraint, and therefore has no reason to give up aerodynamic performance for
structural improvement. As a result, the sequential method always converges to an
aerodynamic optimum, and in the process, fails to see the broader picture afforded by
the fully coupled design space.

3.3.2 MDF convergence

From the initial design point, the MDF method steps towards the unconstrained opti-
mum and stops when the minimum thickness constraint is reached. Operating in the
infeasible design space, the MDF method retreats back towards the breached stress
constraint. Based on the sensitivity information computed at each intermediate design
point, the optimizer is able to take a relatively direct route towards its final solution.
Figure 7 shows a closer view of the MDF solution. From this plot it is evident that the
MDF method arrives at the true aerostructural optimum, because at the final design
point, the stress constraint is tangent to the range contour. In other words, no design
step can be taken to improve the objective function without violating the yield stress.
By continually considering the interactions between the aerodynamics and structures,
the MDF formulation is able to achieve the design that maximizes the range of the
coupled system.

3.3.3 Asymmetric suboptimization convergence

Starting from the same initial design as the other two methods, the new architecture
steps immediately to the yield stress constraint. The system-level optimizer then se-
lects variable values that move the design along the constraint, converging quickly to
the aerostructural optimum. A magnified view of the convergence is shown on Fig. 7,
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and it is apparent that the new architecture attains the same solution as the MDF
method. The presence of the structural subspace optimizer ensures that the MDA
module returns a design point that is not only multidisciplinary feasible, but also a
structural optimum. One way of describing the convergence of the new architecture is
that it travels along a series of structural optima until the aerostructural optimum is en-
countered. This differs fundamentally from the sequential approach, which converges
towards the intersection of an aerodynamic optimum and a structural optimum.

Comparing the convergence of the new architecture against the MDF method, it
is visibly apparent on the contour plot that the new architecture requires significantly
fewer design steps. It needs to be remembered, however, that each design step re-
quires several evaluations of the structural subspace optimization. Regardless, the
new formulation succeeds in simplifying the system-level problem. From the point
of view of the system-level optimizer, the structural design variables and constraints
have moved behind the scenes, hidden within the analysis used to compute the range
values.

4 Coupled post-optimality sensitivity analysis

Sensitivity analysis is a crucial consideration when performing gradient-based op-
timization, because the derivative calculations are often the most costly step within
the optimization cycle. Finite-differencing is not a realistic sensitivity approach for
most MDO formulations, since it requires repeated evaluations of the coupled analy-
sis. This is especially true for the new architecture, where the computational cost
of an MDA evaluation is particularly high, because of the suboptimization routine.
Therefore, it was important to determine a more efficient means of obtaining the mul-
tidisciplinary sensitivities.

Due to the presence of the structural suboptimization, the new architecture seemed
like a logical application of post-optimality sensitivity analysis. Standard post-
optimality analysis allows for the change in the optimum solution with respect to
a change in a previously fixed parameter to be attained, without having to perform
a re-optimization (Braun et al. 1993). Unfortunately this method does not take into
account the coupled nature of the aerostructural system at hand, and it became clear
that an extension of the current theory was needed for this work.

The sensitivities of coupled systems can be computed using semi-analytical meth-
ods, such as the coupled direct sensitivity equations introduced by (Sobieszczanski-
Sobieski 1990), or the coupled adjoint method (Martins et al. 2005). These methods
allow for the system-level derivatives to be computed without having to re-solve the
multidisciplinary analysis, which greatly reduces the cost and inaccuracy of finite-
differencing performed on the entire system analysis. For the aerostructural system
involving the coupled aerodynamic residuals (A) and structural residuals (S), as well
as the aerodynamic state variables (w) and the structural state variables (u), the direct
sensitivity equation can be written as,




∂A
∂w

∂A
∂u

∂S
∂w

∂S
∂u








dw
dx
du
dx



 = −




∂A
∂x
∂S
∂x



 , (11)
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where x are the global design variables of interest. The solution of this equation can
then be substituted into the total sensitivity equation,

dF

dx
= ∂F

∂x
+ ∂F

∂w

dw

dx
+ ∂F

∂u

du

dx
, (12)

to find the total derivative of the system-level objective function, F , with respect to
the system-level design variables.

In this context, partial derivatives do not take into account the implicit dependence
due to the solution of governing equations, while total derivatives do include this
implicit dependence.

4.1 Aerodynamic residuals

For our aerostructural test case, the aerodynamic and structural residuals are easily
identified. Since the aerodynamic analysis involves solving (1) and (2), the aerody-
namic residuals are the system of equations that result from solving those two equa-
tions simultaneously, and can be written as,

A =
[

A −e

eT 0

][
!

α

]

−
[

γ jig + γ $

nW/qb2

]

= 0. (13)

The local incidence for each panel has been replaced by the individual contributions
of jig twist, twist deflection and angle of attack, i.e., v = −(γ jig + γ $ + αe), where
e is a vector of ones. The second row is a scalar equation that represents the lift
constraint of (2), where n is the number of panels, q is the free stream dynamic
pressure, and b is the wing span. The state variables for the aerodynamic residuals
are wT = [!T α], where α is the angle of attack of the aircraft in radians.

4.2 Structural residuals

The structural residuals are given simply by (3), i.e.,

S = Ku − f = 0. (14)

The state variables for the structural residuals are the displacements, u.
The coupled sensitivities of the preceding aerodynamic and structural residuals

can be used in the MDF method to provide system-level gradients. However, for the
asymmetric suboptimization architecture, this is not the case. As shown during the
validation of the new architecture in Sect. 3, the presence of the subspace optimiza-
tion changes the nature of the multidisciplinary analysis and significantly alters the
design space of the system-level optimizer. Therefore, to be able to calculate accu-
rate sensitivity information from the coupled system, it becomes necessary to take
into account the added influence of the suboptimization routine.
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4.3 Structural optimization residuals

The structural optimization is performed in order to maximize the aircraft range by
varying the internal wing thicknesses, for a given load distribution, subject to the
stress and thickness constraints. Since the structural optimization is a constrained,
gradient-based problem, the optimizer is working to satisfy the Karush–Kuhn–Tucker
(KKT) conditions. The KKT conditions are necessarily satisfied at a structural opti-
mum, but they do not entirely define the suboptimization, because an optimum must
also be a structural solution. Therefore, combining the structural residuals (14) with
the KKT conditions completes the picture, and allows us to fully describe the struc-
tural optimization residuals:

O =






Ku − f ≡ OS
dR
dt − λT

σ
dσ
dt + λT

t I = 0 ≡ OL
σ yield − σ − s2

σ = 0 ≡ Oσ

t − tmin − s2
t = 0 ≡ Ot

sσ λσ = 0, stλt = 0 ≡ Osλ,

(15)

where λT = [λT
σ λT

t ] are the Lagrange multipliers for the stress and thickness con-
straints, respectively, and sT = [sT

σ sT
t ] are the slack variables associated with those

constraints. The radius constraints are omitted from the KKT equations because, al-
though they are used to guide the optimizer away from non-physical solutions, they
are not active at the optimum. The complete set of optimization state variables con-
sists of four vectors, and thus yT = [uT tT sT λT ].

The multidisciplinary analysis of the asymmetric suboptimization method can be
viewed as containing two separate disciplines: the aerodynamics and the structural
optimization. Having identified the structural optimization residuals, O, we are now
able to present the corresponding coupled direct sensitivity equation as,




∂A
∂w

∂A
∂y

∂O
∂w

∂O
∂y








dw
dx
dy
dx



 = −




∂A
∂x
∂O
∂x



 , (16)

where the total sensitivity equation is,

dF

dx
= ∂F

∂x
+ ∂F

∂w

dw

dx
+ ∂F

∂y

dy

dx
. (17)

Recall that the system-level design variables (x) for the asymmetric suboptimization
method are the jig twists of each panel, whereas for the MDF approach, they include
the structural thicknesses as well.

We refer to the preceding approach as the coupled post-optimality sensitivity
(CPOS) method, because it relies on post-optimality sensitivity information from the
converged suboptimization. Equations (16) and (17) constitute the direct formula-
tion of the CPOS method. Another valid approach is the adjoint formulation of the
CPOS equations, which offers the advantage of having a computational cost that is
essentially independent of the number of system-level design variables. However, the
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Table 2 Sensitivity analysis
comparison dF/dx Finite-difference CPOS direct

dR/dγ2 −2141.0892 −2141.0912

dR/dγ3 2643.3319 2643.3328

dR/dγ4 6742.0192 6742.0344

dR/dγ5 −1007.6901 −1007.6931

Elapsed time (s) 190.41 6.13

results presented in this paper were obtained using the direct method. The adjoint
version of the CPOS method will be investigated in a later paper. For a complete
derivation of the individual partial derivative terms in (16), please refer to our previ-
ous work (Chittick and Martins 2007).

A disadvantage of the CPOS method is that it requires higher-order sensitivities.
This occurs due to the first KKT condition, denoted as OL in (15). The dσ/dt term
in the suboptimization residuals is explicitly dependent on both ! and t , which leads
to second-order derivatives when evaluating the partial terms of (16). Although costly
to compute, these derivatives do not disqualify the CPOS approach. As we will show
in the following section, the CPOS method offers significant computational savings
over the finite-difference approach.

4.4 CPOS validation

The CPOS equations that we developed for the asymmetric suboptimization method
are verified against the finite-difference approach in Table 2. The results correspond
to an analysis with five jig twist and five thickness design variables, as well as five
panels and five elements. The jig twist of the first panel was held fixed. The partial
derivatives in the CPOS equations are calculated using the complex-step derivative
approximation (Squire and Trapp 1998; Martins et al. 2003), which provides numer-
ically exact values.

As shown in Table 2, the CPOS results agree with finite-differences to at least five
digits. In all likelihood, the CPOS results are more accurate due to subtractive can-
cellation errors in the finite-difference estimates. This means that the CPOS method
accurately models the response of our tightly coupled system, without having to re-
converge the analysis or even once re-optimize the subspace problem. As a result,
the computational time of the CPOS method was only 3% of the time required by
finite-differences.

5 Results and discussion

The CPOS method was applied in a performance study comparing the asymmet-
ric suboptimization method against the traditional MDF approach. For both archi-
tectures, a fixed-point iteration scheme was used to converge the MDA, and the
optimization tolerance was set at 10−6. The corresponding coupled sensitivity for-
mulations were used to provide the system-level gradients. The MDO trials were
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Table 3 Trials of variable dimensionality comparing the MDF method and the asymmetric suboptimiza-
tion architecture; times are measured in seconds

performed based on four separate parameters: the number of aerodynamic design
variables (Nγ ), the number of structural design variables (Nt ), the number of aero-
dynamic panels (Npanel), and the number of structural elements (Nelem). These four
parameters were varied independently in order to determine the effect that each one
had on the architectures being compared. The computations were run on a 1.5 GHz
Itanium 2 processor in an SGI Altix with 32 GB RAM, and the results are presented
in Table 3.

5.1 Reference trial

Trial 1, with five aerodynamic and five structural design variables, 30 panels and 30
elements, was selected as the reference case. Table 3 shows that for this trial, the
MDF architecture required over three times as many system-level iterations as the
new architecture. As discussed during our preliminary study, by redistributing the
design variables and constraints, the asymmetric suboptimization method simplifies
the system-level problem, thus needing fewer MDA evaluations to find the optimum.
Trial 1 also shows the new architecture requiring on average eight fewer iterations
than the MDF method to converge the MDA. This occurs because the presence of the
structural optimization in the MDA module makes the wing stiffer than it would be
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otherwise (because the stress constraints need to be satisfied). The stiffer wing lim-
its the structural displacements, resulting in better convergence of the aerostructural
cycle.

The timings of the first trial, listed in Table 3, do not show the true potential of the
new architecture. For the reference trial, the new architecture takes almost 700 sec-
onds longer overall than the MDF method. This is largely due to the total time spent
performing structural analysis and optimization, which is the consequence of hav-
ing an optimizer in the MDA module. In addition, the time required to calculate
the system-level sensitivities after each MDA solution is greater for the new archi-
tecture, due to the aforementioned second-order derivatives. However, with fewer
MDA iterations, the asymmetric suboptimization succeeds in reducing the amount of
time performing aerodynamics analysis, accomplishing its intended purpose. Unfor-
tunately, due to the linear aerodynamics model being used in our analysis, this does
not translate into an advantage. Therefore, we now derive the performance metric
used to evaluate the new approach: the ratio of the aerodynamic solver time to struc-
tural solver time required to make the asymmetric suboptimization and MDF cost the
same overall.

The total time required by MDF can be broken down as follows,

Ttotal = N(TA + TS) + TO, (18)

where N is the total number of aerostructural iterations, TA is the time for an aero-
dynamic analysis, TS is the time for a structural analysis, and TO represents the over-
head, which is the rest of the time and is composed primarily of the time spent com-
puting the MDA sensitivities. Similarly, the total time of the new method can be
broken down as,

T ′
total = N ′(TA + TSO) + T ′

O, (19)

where TSO is the time required for a single structural suboptimization. Equating the
two total times and solving for the ratio yields,

TA

TS
= 1

N ′ − N

[
TO − T ′

O

TS
+ N − N ′ TSO

TS

]
. (20)

This equation expresses the ratio of computational cost between the aerodynamic and
structural solvers that is needed for the new method to break even with the MDF ap-
proach. A ratio greater than the one calculated using this formula indicates a situation
where the new method is the more efficient approach.

For Trial 1, the computed ratio is 4.12, and is shown as the last column in Ta-
ble 3. Since higher-fidelity scenarios involve an aerodynamic solution time at least
an order of magnitude greater than the structural solution, a time ratio less than ten
is a favorable result for the new architecture. Certain high-fidelity frameworks might
even encounter aerodynamic-to-structural time ratios of up to 103, depending on the
particular solvers being used.
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5.2 Increasing the number of structural design variables

Trials 2 and 3 in Table 3 show the effect of increasing the number of structural de-
sign variables. For the MDF method, the added design variables result in a few ad-
ditional optimization iterations, which translates into proportional increases in the
structural, aerodynamic, and sensitivity analysis times. For the asymmetric subopti-
mization method, the additional structural variables do not change the system-level
problem.

The extra structural variables complicate the subspace optimization of the new
architecture, causing longer structural times. The constraint gradients are the main
cause for this delay, because they are computed using the complex-step method,
which scales with the number of design variables. Increasing Nt also slows down
the CPOS calculations. The thickness variables act as state variables of the structural
optimization residuals, so increasing Nt increases the size of the sensitivity matrices.
Consequently, increasing Nt exhibits an unfavorable trend for the asymmetric sub-
optimization method, and the required aerodynamic-to-structural time ratio increases
significantly.

5.3 Increasing the number of aerodynamic design variables

Trials 4 and 5 in Table 3 show the effect of increasing the number of aerodynamic
design variables. Increasing the number of jig twists has a considerable effect on the
number of MDF iterations required. The number of system-level iterations of the new
architecture increases as well, but not as drastically, due to the absence of constraints.

For both architectures the structural, aerodynamic, and MDA sensitivity times in-
crease relative to the reference trial. However, this increase is directly proportional to
the increase in MDA evaluations, and as a result the trend favors the asymmetric sub-
optimization approach. The required aerodynamic-to-structural time ratio decreases,
and a further increase in Nγ would result in the new formulation being more compu-
tationally efficient than the MDF approach.

5.4 Increasing the structural model fidelity

Trials 6 and 7 demonstrate what happens with a larger number of structural elements.
This increases both the fidelity of the structural analysis and the number of stress con-
straints. The MDF method experiences a slight increase in MDA evaluations due to
the extra constraints, while the system-level problem of the new architecture remains
unchanged.

As Nelem increases, the number of structural degrees-of-freedom multiplies. These
additional states affect the structural suboptimization, increasing the time required
to solve the structural residuals and to compute the constraints and their sensitivi-
ties. However, the increase in time needed to evaluate the MDA sensitivities is the
dominating factor. Since the MDF method takes roughly four times as many MDA
evaluations as the new architecture, the total time dedicated to calculating the MDF
sensitivities is much greater. As a result, the asymmetric suboptimization method be-
comes the more computational efficient approach for both trials. The aerodynamic-to-
structural time ratio of less than one indicates that even with an aerodynamic solver
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that is less costly than the structures, the asymmetric suboptimization method can
still be the superior approach.

5.5 Increasing the aerodynamic model fidelity

Finally, Trials 8 and 9 reveal the effect of an increased number of panels, and conse-
quently, an increased number of aerodynamic states. This leads to a more costly aero-
dynamic analysis, and Trial 9 is the first MDF trial where the aerodynamic analysis
is more expensive to compute than the structural analysis.

The larger aerodynamic state vector also increases the MDA sensitivity times of
both architectures. Similar to the previous case, the total MDF sensitivity time in-
creases more rapidly due to the higher number of MDA evaluations. Thus the re-
quired aerodynamic-to-structural time ratio decreases with increasing panels, and
once again, the asymmetric suboptimization method proves to be the faster approach
for both trials.

6 Conclusions

We presented an asymmetric suboptimization approach to aerostructural optimiza-
tion, motivated by the unequal load balance between the disciplinary solvers. We
demonstrated that the proposed method converges along a series of structural optima,
and in the process, is able to achieve the true aerostructural optimum. Compared to
the traditional MDF method, the new approach possesses a simplified system-level
problem, resulting in fewer calls to the MDA module, fewer total iterations, and fewer
evaluations of the aerodynamic analysis.

We introduced the coupled post-optimality sensitivity method, which expands the
standard coupled sensitivity equations to include the structural optimization residuals.
The resulting method allows the coupled sensitivities to be computed without having
to re-converge the analysis, making the asymmetric suboptimization method a viable
approach.

A performance comparison was made between the asymmetric suboptimization
method and the MDF method. The study showed that the new method exhibits an
unfavorable trend when the number of structural design variables are increased, and
a favorable trend when either the number of aerodynamic design variables or the fi-
delity of the analyses are increased. This indicates that the asymmetric suboptimiza-
tion method becomes the more efficient approach either when it adequately reduces
the number of MDA evaluations, or when there is a large enough discrepancy between
disciplinary solution times.

The results confirm the authors’ prediction that the asymmetric suboptimization
method becomes more advantageous as the computational expense of the aerody-
namic analysis is increased. Future work will incorporate a more complex aerody-
namics solver, coupled with a composite wing-box structure involving both stress
and buckling analysis. The eventual goal is a high-fidelity implementation of the ar-
chitecture and sensitivity method.
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