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Abstract In this study, the effects of discharge rate
and LiMn2O4 cathode properties (thickness, porosity, par-
ticle size, and solid-state diffusivity and conductivity) on
the gravimetric energy and power density of a lithium-ion
battery cell are analyzed simultaneously using a cell-level
model. Surrogate-based analysis tools are applied to simula-
tion data to construct educed-order models, which are in turn
used to perform global sensitivity analysis to compare the
relative importance of cathode properties. Based on these
results, the cell is then optimized for several distinct phys-
ical scenarios using gradient-based methods. The comple-
mentary nature of the gradient- and surrogate-based tools is
demonstrated by establishing proper bounds and constraints
with the surrogate model, and then obtaining accurate op-
timized solutions with the gradient-based optimizer. These
optimal solutions enable the quantification of the tradeoffs
between energy and power density, and the effect of opti-
mizing the electrode thickness and porosity. In conjunction
with known guidelines, the numerical optimization frame-
work developed herein can be applied directly to cell and
pack design.
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1 Introduction

Lithium-ion batteries have attracted significant interest in
recent years due to their high achievable gravimetric and
volumetric energy densities, making them ideal for a wide
range of applications, including portable electronics, electric
vehicles, and aerospace systems such as micro-aerial vehi-
cles [1]. A better understanding of the impact of design pa-
rameters on overall battery performance can provide guide-
lines and benchmarks for tailoring battery design to different
applications. However, due to the disparate length and time
scales over which the physical processes in a lithium-ion bat-
tery occur, as well as the complexity of the entire system,
the overall performance of the battery system depends on a
large number of parameters. Therefore, optimization of a
lithium-ion battery is only possible in an appropriate mathe-
matical framework. A critical step towards the optimization
of a full battery pack can be taken by investigating the ef-
fects of several key parameters on a single cell by mapping
the cell performance over a sufficiently broad design space
to encompass a wide range of physical situations.

Through various experimental and numerical studies,
cell performance has been found to depend strongly on a
large number of operational, morphological, and material-
dependent parameters [2–7]. Lu and Lin [2] have found
experimentally that the capacity and coulomb efficiency of
lithium manganese oxide particles increase substantially as
the particle size is reduced. Similarly, Drezen et al. [3] found
that the size of lithium manganese phosphate particles in a
cathode has a critical influence on the cell performance. Tran
et al. [4] investigated the effect of cycling rate on the mea-
sured capacity of graphite anode particles, concluding that
the rate effect differs considerably for different-sized parti-
cles. Garcia et al. [5] used simulations to investigate the ef-
fects of particle size and diffusivity on cell performance. It
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was demonstrated that performance improves with increas-
ing diffusivity and decreasing particle size, and that the mor-
phology of the particle aggregates also plays an important
role. Darling and Newman [6] also used simulations to ex-
amine the effect of particle size distribution. A uniform size
distribution was found to maximize capacity for different cy-
cling rates. The effect of introducing conductive additives
to alter the electrode material properties was also investi-
gated by Ahn et al. [7]. It was found that metal fibers helped
enhance capacity and high rate capability, while exhibiting
minimal capacity loss. Differences in operating conditions
and modeling parameters in these and other studies suggest a
need for a numerical framework suitable for simultaneously
analyzing a large number of independent parameters.

Much progress has also been made in the development
of modeling tools to analyze the behavior of lithium-ion
batteries, including the development of single-particle mod-
els [8, 9], equivalent circuit models [10, 11], capacity-fade
models [12], microscopic models [13–15], and 3-D mod-
els [16]. Recently developed reformulated models [17, 18]
have facilitated cell design by improving the computational
efficiency of simulations, allowing for the optimization of
porosity to maximize energy density [19]. Other recent ef-
forts have taken a system engineering perspective to account
for a wide range of physical phenomena [20]. However, de-
spite these developments, there remains a critical need to es-
tablish effective methods for systematically examining the
role of key properties such as the cathode composition and
transport properties on overall cell performance. Cell de-
sign is still often based on qualitative principles in practice
(for example, it has been established that thinner electrodes
should be used for high power and thicker electrodes for high
energy [21]), and makes limited use of formal design opti-
mization. This is likely because, despite the possible gains
in performance, optimization is often difficult to implement
in the design process. For example, although various opti-
mization algorithms have been developed, they typically re-
quire a well-defined problem with established bounds and
constraints on the design variables. Additional challenges
include identifying multiple regions of good or poor perfor-
mance, and comparing the relative importance of multiple
variables over large design ranges. Furthermore, a global
perspective of the design space is often required to account
for local optima in the presence of varying operational condi-
tions such as those encountered during the life of real battery
cells. Attempts to mitigate these limitations often include
individual parametric studies [2–7, 22], which become prob-
lematic for problems involving multiple design variables due
to inefficiency.

To address the limitations of traditional design ap-
proaches, more sophisticated numerical tools are neces-
sary. Both gradient-based [23] and gradient-free optimiza-
tion methods [24, 25] have been shown to be effective at lo-
cating optima for a wide range of well-defined problems. In
particular, gradient-based optimization methods have been

shown to be more efficient and capable of handling a larger
number of design variables than gradient-free methods for
smooth objective functions [26]. In order to fully uti-
lize the capabilities of these algorithms, a numerical mod-
eling framework capable of resolving the aforementioned
difficulties to optimization is required. One option is the
surrogate-based framework, which systematically analyzes
the effects of multiple design variables simultaneously to ef-
ficiently map the design space [27]. The surrogate-based
framework has been applied to a number of engineering
problems [28, 29], including studying intercalation-induced
stress in single LiMn2O4 particles [14], and can also be used
to compare the global sensitivity to a wide range of inputs
and assess the tradeoffs between multiple competing objec-
tives, which can greatly facilitate cell optimization by iden-
tifying key regions of interest in the global design space.
Given the limitations of conventional approaches for per-
forming cell design, we define the following objectives in
this work:

(1) Examine the role of multiple design variables on
cell performance by varying all parameters simultaneously
within the surrogate-based framework to construct reduced-
order models;

(2) Quantify the relative impact of each variable within
the selected design ranges to reduce the problem complex-
ity and establish the necessary bounds required for optimiza-
tion;

(3) Compare the relative merits of the two approaches
for optimizing several distinct design scenarios, and

(4) Quantify the tradeoffs between competing objectives
(energy and power) by constructing Pareto fronts.

Ultimately, in this study we seek to demonstrate the util-
ity of efficient numerical methods for enhancing cell and
battery design. In particular, the relative sensitivities and
tradeoffs between multiple objectives are difficult to quan-
tify without the appropriate computational tools. Here, the
design variables of interest concern the operation (cycling
rate), material properties (diffusion coefficient and electronic
conductivity of active solid in the cathode), and configura-
tion (particle size, porosity, and thickness of the cathode) of
a lithium-ion cell. The objective functions considered in the
optimization are the mass-specific energy and power (also
known as the gravimetric energy and power density, respec-
tively). While the dependence of specific energy on cycling
rate, particle size, diffusivity, and conductivity has been ex-
amined previously [29], the mapping of the design space was
not used to perform any cell design optimization, since the
specific energy showed a monotonic trend with respect to
each of the parameters considered. In contrast, the inclusion
of electrode thickness and porosity contribute additional in-
teractions between design variables and competing effects on
the objective function. For example, the specific energy may
be expected to increase with a greater composition of active
solid in the porous electrode material, which increases the
capacity. However, this increase in active solid comes at the
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cost of reducing the amount of liquid electrolyte, which then
decreases the overall ion transport capability of the cell. Sim-
ilarly, a thick electrode may be favored to increase the capac-
ity of the cell, but at high cycling rates the diffusivity of the
material may be insufficient to utilize the additional material,
resulting in insufficient gains in total energy to compensate
for the additional mass. The design ranges of the cycling rate
and diffusion coefficient have been expanded in this study to
better correspond to electric vehicle requirements.

2 Methodology

2.1 Battery cell model

In this study, the galvanostatic discharge of a cell consisting
of a LiMn2O4 cathode and graphite anode is modeled us-
ing a pseudo-2D model based on porous electrode and con-
centrated solution theory. This model solves the continuum-
scale transport equations for the physiochemical processes
that regulate the cell performance under various discharge
conditions over a 1-D domain across the cell thickness, while
calculating the rate of ion transport through spherical par-
ticles in a second radial dimension. Empirical models are
employed to account for morphology effects on the material
transport, and the Butler–Volmer equation is used to model
the interfacial electrochemical kinetics. Although this for-
mulation can not resolve the detailed microstructure of the
electrode materials due to the homogeneity assumption, it
has the advantage of being relatively computationally inex-
pensive, allowing a large number of simulations to populate
the multidimensional design space considered in this study.
Further details of the porous electrode model can be found
in the original works by Doyle et al. [30, 31] and Fuller et
al. [32].

2.2 Surrogate-based framework

A flow chart schematic of the surrogate modeling framework
is illustrated in Fig. 1. In this study, a toolbox developed
in-house for the MATLAB environment, based on the prin-
ciples detailed in Refs. [33–39], is used. The following is a
brief overview of the key steps to this process; further details
are provided by Du et al. [29] and Queipo et al. [33].

Once the design variables, their respective ranges, and
the objective functions have been defined, the next step re-
quires constructing a design of experiments to select the set
of simulations to be used for building the surrogate models.

2.2.1 Design of experiments

The design of experiments determines the set of design
points for which the battery cell simulations are performed.
The resulting data are then used to construct the surrogate
models. To capture data at the extremities of the design space
while also ensuring an unbiased sampling of the full range of
each design variable, an approach combining face-centered
composite design (FCCD) [34] and Latin hypercube sam-
pling (LHS) [35] points is employed in this study.

Problem setup
Design variables 
objetive functions

Design
space

refinement

Design of
experiments

Surrogate model

Numerical
simulations

Error assessment

Analysis
Global sensitivity

optimization

Test points

Fig. 1 Schematic of surrogate modeling framework. Processes in
red are part of the MATLAB surrogates toolbox

2.2.2 Surrogate model construction

The data obtained from the design of experiments are used to
construct surrogate models that make use of regression and
interpolation techniques to approximate the objective func-
tion within the full design space. There are many types of
surrogate modeling strategies available. In this study we
consider polynomial response surface (PRS), kriging (KRG),
and radial basis neural network (RBNN) models. The PRS
models consist of a linear combination of polynomial basis
functions, whose coefficients are determined using a least-
squares regression approach. The KRG models consist of a
combination of a low-order polynomial regression and cor-
relation functions based on the distance from training data
points in the design space [36]. The RBNN models approxi-
mate the objective function as a linear combination of Gaus-
sian radial basis functions [37].

2.2.3 Error assessment

Error measures are necessary to assess the accuracy of the
surrogate models. Two error assessment strategies are used
in this study: prediction error sum of squares (S PRESS), and
independent test data. S PRESS is the sum of “leave-one-out”
errors, which are the errors between the true data values and
those predicted from a reconstructed surrogate from all other
data points from the design of experiments. Although S PRESS

values do not require additional data, they can be expen-
sive to compute if the design of experiments contains a large
number of data points, and may not necessarily be represen-
tative of the true error if the number of data points is small,
since the surrogate model is constructed from a different de-
sign of experiments. In addition to S PRESS, prediction errors
at independent test points are also computed. The selection
of these points requires a separate design of experiments and
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simulation data. Additional validation criteria are also avail-
able for regression-based models like PRS, such as the coef-
ficient of determination (R2) and adjusted coefficient of de-
termination (R2

adj).

2.2.4 Further analysis

The relative magnitude of each design variable’s impact on
the objective function can be compared using global sensi-
tivity analysis. An approach similar to Sobol’s method [38]
is implemented in this study. Global sensitivity analysis can
provide insight into the design space by identifying variables
of insignificant effect on the objective function. These vari-
ables can then be eliminated from consideration to reduce the
problem dimensionality. Additionally, when there exist mul-
tiple competing objectives, in this case specific energy and
specific power, a Pareto front can be constructed to assess
the tradeoffs, e.g., how much loss in one objective must be
incurred in order to improve another [39]. The Pareto front
can provide important insight to the design process by iden-
tifying favorable tradeoffs between objectives under specific
conditions.

2.3 Gradient-based optimization

To accurately and quickly converge to optimum design
points, gradient-based optimization schemes make use of
both objective function values and their derivatives. The cell
optimization problem is formulated as a minimization prob-
lem, where the goal is to find the minimum of the objec-
tive function f (x) subject to inequality constraints g(x) and
equality constraints h(x)

minimize f (x), f : �n

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xlower � x � xupper

g(x) � 0, g : �n →�m

h(x) = 0, h : �n →�k

.
(1)

In this case, the objective function f (x) is the gravimetric
energy density obtained from the cell model. For optimiza-
tion of energy density alone, there is no constraint placed on
the problem. However, when two objectives are considered,
such as in the case of energy and power, one of them (in this
case, power) is constrained while the other is optimized.

Both the objective function and constraints specified
above are nonlinear with respect to the design variables, and
hence a suitable optimizer is needed. For this purpose the
Sparse Nonlinear OPTimizer (SNOPT) [40], which employs
a sequential quadratic programming (SQP) method to con-
verge to the optimal solution, is selected. SQP determines
its search directions for the optimal point by solving a se-
ries of quadratic programming (QP) subproblems. Each QP
subproblem minimizes a quadratic approximation of the La-
grangian function subjected to linearized constraints. For the
k-th QP subproblem, the quadratic function to be minimized

is given by

minimize fk + gggT
k (xxx − xxxk) + (xxx − xxxk)THHHk(xxx − xxxk)/2

subject to ccck + JJJk(xxx − xxxk) = 000, (2)

where fk is the objective function, gggk is the gradient vector,
and HHHk is the second-order derivative (Hessian) approxima-
tion of fk, ccck is the vector of equality constraints, and JJJk is
the matrix of first-order derivatives of the constraints. De-
tailed explanation of the SQP method is beyond the scope of
this paper; more information is provided by Gill et al. [40].

2.3.1 Computation of derivatives

One challenge to gradient-based optimization, including the
SQP method used in this study, is the computation of the
derivatives (gradients) of the objective function with respect
to the design variables. In this study, the complex-step
derivative approximation [41] is used. In spite of using com-
plex arithmetic, this method is only applicable to real func-
tions of real variables. To derive the complex-step deriva-
tive approximation formula, a small imaginary component
is added to a real variable and a Taylor series expansion is
applied

f (x + ih) = f (x) + ih f ′(x) − h2 f ′′(x)
2!
+ ih3 f ′′′(x)

3!
+ . . . . (3)

By taking the imaginary parts of both sides of the equation
and dividing by the step size, a second order approximation
of the derivative is obtained

f ′(x) =
Im[ f (x + ih)]

h
+ O(h2). (4)

This concept is similar to finite-difference approximations of
derivatives, but has the important advantage of being not sub-
ject to cancellation errors that limit the numerical precision
in conventional finite-difference methods. In the complex-
step method, derivatives can be computed to machine preci-
sion by using an arbitrarily small step size.

The second-order Hessian is not computed directly. In-
stead, an approximation is built using differences of the
first-order derivatives. The Hessian is initialized as an
identity matrix and subsequently updated using the BFGS
method [42], which forces the Hessian to be symmetric and
positive-definite.

2.4 Combining numerical tools

A schematic of the optimization process used in this study
is illustrated in Fig. 2. Two optimization approaches can be
identified: one where the gradient-based optimizer is applied
to the cell model to optimize the objective function directly,
and another where the surrogate framework is used to opti-
mize the approximate surrogate function. Each of these two
approaches has its own relative merits and can provide dif-
ferent information. When the optimizer uses output directly
from the cell model instead of relying on a surrogate ap-
proximation of the objective function, the solution has one
fewer source of error. Consequently, this direct approach
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provides much more accurate solutions. The drawback of
using the cell model directly for optimization is that the com-
putational cost of each function evaluation is orders of mag-
nitude greater (typically several minutes for the cell model,
compared to a tenth of a second or less for the surrogate
model). Preparing the optimization problem with surrogate-
based analysis can significantly reduce the overall computa-
tional requirement by reducing the problem complexity via
global sensitivity analysis. Additionally, in a design space
with a large number of design variables each spanning a
broad range of values, there are often multiple distinct phys-
ical situations of interest with unique constraints on the vari-
ables. A single surrogate model can be used for many such
constrained design problems, further reducing the computa-
tional cost compared to only using the cell model for opti-
mization. Furthermore, combining the two methods can im-
prove the robustness by identifying discontinuities and local
optima in the design space that may cause the gradient-based
optimizer to converge to the incorrect solution.

Gradient-based
optimizer

Global 
sensitivity
analysis

Surrogate 
model

Cell model

Fig. 2 Process for combining analysis and optimization tools

Given the relative advantages of these two optimization
approaches, the optimization strategy adopted in this study is
as follows. The surrogate models are constructed from cell
model simulations. Global sensitivity analysis based on the
surrogates is used to reduce the problem by modifying the
bounds of certain design variables, or even eliminating them
from the design space. Additional surrogate models are then
constructed and refined for the reduced problem, and sam-
ple design cases are chosen for a rough optimization using
the surrogate function. Finally, a few design cases of interest
are selected for the final optimization using the cell model
directly. When the two optimization methods are combined
in this fashion, several highly accurate optimized solutions
corresponding to the design scenarios of greatest interest can
be obtained at a reasonable computational cost. This cannot
be achieved when only one of these methods is employed
independently.

3 Results and discussion

3.1 Problem setup

In the initial problem setup, the objective function of interest
is the specific energy. Since it has been shown that the spe-
cific power is dominated by the effect of the cycling rate [29],

power will be considered in a later section on competing ob-
jectives.

The design variables and corresponding ranges consid-
ered in this study are summarized in Table 1. Note that since
the cycling rate, particle radius, and diffusion coefficient all
span several orders of magnitude, they are normalized via a
log-scale transformation, i.e., the value used to sample the
design range and construct the surrogate models is the loga-
rithm of the physical quantity. This allows the full range of
magnitudes to be sampled and mapped. Also note that the
particle radius, diffusion coefficient, electronic conductivity,
and porosity apply to the cathode only; the corresponding
anode properties are fixed at the values shown in Table 2.
In this study, the electrodes are assumed to have a homoge-
neous composition, and the porosity is defined as the volume
fraction of liquid in the cathode.

Table 1 Design variables and ranges

Design variable Minimum Maximum

Cycling rate* C/10 10C

Particle radius*/µm 0.2 20

Diffusion coefficient*/(m2·s−1) 1 × 10−16 1 × 10−11

Electronic conductivity/(S·m−1) 1 10

Electrode thickness/µm 40 150

Porosity 0.2 0.4

∗ Design variables normalized via logarithmic transformation

It is important to point out the differences in problem
setup between the present study and the one in Ref. [29].
As has already been mentioned, two additional variables,
namely the cell porosity and cell thickness, have been in-
cluded in the design of experiments. Varying these values
alters the cell capacity, which was fixed in the previous
study. To account for varying capacity, the anode thickness
was adjusted to balance the theoretical charge capacities of
the two electrodes. The reference current value used to con-
vert between discharge current and C-rate was computed
separately for each case based on the theoretical capacity
of the solid electrode materials, solid volume fraction, and
electrode thickness. The cells were cycled at a constant cur-
rent specified by the corresponding C-rate and the simulation
was terminated by reaching either a cut-off voltage of 3.0 V,
or a completely discharged state in either electrode (x = 0
or y = 1). Note that this differs from the cut-off voltage of
2.0 V implemented in Ref. [29], which, in addition to being
inconsistent with practical cell utilization, can be responsi-
ble for numerical instabilities in the presence of additional
design variables. The specific energy was computed by inte-
grating the voltage curve obtained from the simulation over
time, and scaled by the discharge current and other appropri-
ate constants. The specific power, although not considered
in the initial design of experiments, is obtained by dividing
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Table 2 Fixed parameter values for cell simulations.

Parameter Value

Initial stoichiometric parameter for anode (x in LixC6) 0.6

Initial stoichiometric parameter for cathode (y in LiyMn2O4) 0.2

Cut-off voltage/V 3.0

Separator thickness/µm 25

Positive current collector thickness/µm 25

Negative current collector thickness/µm 25

Initial salt concentration/(mol·m−3) 1 000

Ambient temperature/K 298

Diffusion coefficient in anode (solid; bulk)/(m2·s−1) 5.0 × 10−13

Electronic conductivity in anode (solid; bulk)/(S·m−1) 100

Particle radius in anode/µm 10

Volume fraction of inert filler in cathode 0.1

Volume fraction of inert filler in anode 0.05

Anode material (solid) MCMB 2528 graphite

Electrolyte material LiPF6 in EC:DMC

Inert filler material PVDF

the specific energy by the total discharge time. The mass-
specific values of both quantities are obtained by dividing by
the cell mass, which includes the active and inactive solid,
liquid, and current collectors.

3.2 Design of experiments

A design of experiments is required to systematically ana-
lyze the effects of all of the variables listed in Table 1. An
initial design of experiments is performed, consisting of 77
FCCD and 600 LHS points, for a total of 677 total training
data points. For error assessment, 21 test points are chosen
such that the distance between test points and training data
points in the design space is maximized. This is equal to
10% of the number of coefficients in a fourth-order polyno-
mial function in six design variables. The specific energy
values exhibit a wide distribution, ranging from a maximum
of about 170 Wh/kg under ideal conditions (minimum cy-
cling rate and particle size) to nearly zero for the opposite
extreme (maximum cycling rate and minimum diffusivity).
A total of 17 surrogate models (PRS, KRG, and RBNN) are
constructed from these data. Among these, the kriging model
with Gaussian correlation function is found to be the most
accurate, with a normalized RMS S PRESS value of 8.81%
and a normalized RMS prediction error at the test points of
8.70%. Before the surrogate model is applied to perform op-
timization, its predictive capability can be improved by pop-
ulating the design space with more data points to reduce the
prediction error. In order to establish an effective strategy
for refining the design of experiments, it is useful to per-
form global sensitivity analysis to identify design variables

that can be removed, thus reducing the design space size and
allowing a more efficient refinement.

3.3 Global sensitivity analysis and design space refinement

Global sensitivity indices for the aforementioned kriging
model constructed from the initial design of experiments are
shown in Fig. 3 and compared to results from Ref. [29],
where only four design variables were considered. As re-
ported in the previous study, a negligible contribution from
the conductivity is observed. This is also confirmed by com-
paring the cases from the FCCD points where the conduc-
tivity was the only variable whose value is changed; in all
cases varying the conductivity between the considered range
causes a shift in the specific energy by less than 1%. The
range of conductivity values chosen for this study reflects the
conductivity of active materials already doped with carbon-
additives [43], hence rendering the energy density insensi-
tive to variations in conductivity. Figure 3 also shows that
the effects of all other design variables are important. These
results are again consistent with those in Ref. [29], where the
thickness and porosity were not considered. In both cases the
cycling rate is found to have the greatest impact on the per-
formance of the cell, followed by the diffusivity and particle
size. Note that although the main effect of porosity is also
negligible, it has a non-negligible total contribution via the
cross effects, and repeating the exercise by comparing FCCD
points confirmed that in many cases the effect of varying the
porosity over the full design range can be very significant.
Based on these results, we can remove conductivity from
consideration to reduce the problem dimensionality from six
to five variables.
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Fig. 3 Comparison of main and total sensitivity indices for designs
of experiments consisting of six and four design variables

An additional 381 design points were added to the five-
variable design space using an LHS filling strategy, to yield
a total of 1 024 training data points. Note that some of the
FCCD points are removed due to redundancy resulting from
the reduction in dimensionality. Due to the higher order of
polynomials that could be fit with the refined design of ex-
periments, another 81 independent test points are also added,
bringing the total to 102. This corresponds to 10% of the size
of the design of experiments.

Although the design space refinement only resulted in
modest improvement in the S PRESS value, the prediction er-
ror at test points is substantially reduced, with the RMS value
of 6.0% before the refinement reduced to 3.4% after the re-
finement.

3.4 Optimization of surrogate model parameters

Although the design space reduction and refinement are able
to successfully improve the surrogate model’s predictive ca-
pability, the errors can be reduced further by optimizing the

kriging model parameters, without requiring additional train-
ing data. The Gaussian correlation function can be written as

R(x) =
n∏

j=1

exp(−θ jd
2
j ). (5)

Typically a constant value of the correlation coefficient θ j is
used for all j

θ j = N−1/Nv
p . (6)

However, it has already been observed that the sensitivity of
the objective function is quite different with respect to the
various design variables, suggesting a different value of each
θ j parameter for optimal model fit. The MATLAB optimizer
fmincon, an implementation of an SQP method in conjunc-
tion with the BFGS method for estimating the Hessian [42],
is applied to find optimal values for the coefficients by mini-
mizing the prediction error measure E defined as

E(θ1, θ2, . . . , θNv) ≡ max(ε)

√√√

1
Nt

Nt∑

i=1

ε2
i . (7)

Note that this measure is simply a product of the RMS and
maximum prediction errors ε at the t independent test points.
This measurement is selected to reduce both the RMS and
maximum prediction errors, as these are the two best indi-
cators for surrogate model accuracy. A comparison of error
measures highlighting the effects of the optimization, as well
as the design space reduction and refinement, is shown in
Table 3.

Table 3 Comparison of error measures for kriging models from different designs of experiments

Design of experiments/Model Initial Reduced Refined Optimized

Number of design variables 6 5 5 5

Refinement level Unrefined Unrefined Refined Refined

Optimization None None None Optimized

Number of data points 677 643 1024 1024

S PRESS (RMS) 0.0881 0.0655 0.0423 0.0375

RMS test prediction error 0.0870 0.0637 0.0364 0.0311

Maximum test prediction error 0.2002 0.1646 0.1057 0.0681

Table 3 shows a significant reduction in all three error
measures with each iteration of the surrogate model. Al-
though no additional points were added to the training data
set from the initial design of experiments to the reduced one,
decreasing the number of degrees of freedom available to the
surrogate models can filter noise in the objective function.

3.5 Optimization of electrode thickness and porosity

The optimized surrogate model can be used to evaluate the
effects of the design variables on the specific energy, and

to identify optimal design conditions. It has been estab-
lished that specific energy improves with lower cycling rate,
smaller particle size, and greater diffusivity due to improved
material utilization and reduced impedance. However, the
effects of electrode thickness and porosity are more compli-
cated, since they involve competing phenomena. In addi-
tion to finding the maximum value of the objective function,
the surrogate model is also used to explore the dependence
of optimal values of certain design variables with respect to
other variables. For instance, we are interested in not only
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the optimal electrode thickness and porosity under a specific
given scenario, but also the dependence of this optimum on
the other design variables.

Examples of the objective function plotted over 1-D
sweeps of the design space are shown in Fig. 4. The spe-
cific energy predicted by the surrogate model over the range
of electrode thicknesses is plotted for different discrete val-
ues of each design variable. The plots in Fig. 4 show that
not only does the functional dependence of the specific en-
ergy on electrode thickness vary with the values of the other

variables, but the optimal thickness varies as well. Note that
the plots shown in Fig. 4 are only a few examples plotted
over selected sweeps of the design space and are not repre-
sentative of the overall multidimensional space. This illus-
trates the difficulty of optimizing an electrode’s thickness,
since the operating conditions (e.g., discharge rate) vary dur-
ing the cell’s life and the material properties (e.g., particle
size and diffusivity) are non-homogeneous and vary within
the electrode.
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Fig. 4 Dependence of optimal thickness on a cycling rate; b particle radius; c diffusion coefficient; d porosity

Table 4 Fixed design conditions for optimization cases

Case number C-rate
Particle

radius/µm
Diffusion

coefficient/(m2·s−1)

1 C/10 0.2 1 × 10−12

2 2C 2 1 × 10−14

3 10C 2 1 × 10−14

To examine the effect of cycling rate, particle size, and
diffusivity on the optimal thickness and porosity of the elec-
trode in greater detail, we consider three cases summarized
in Table 4. Since bounds on the design variables have been
specified, the optimization is conducted with both gradient-
based (using direct data from the cell model) and surrogate-
based methods. For the surrogate model, the optimum is
again found using fmincon. This is a similar approach to
the method used by the gradient-based optimizer, applied

to the surrogate model instead of the cell data. These three
cases correspond to significantly different design scenarios,
and are selected to demonstrate the capabilities of the opti-
mization methods and to compare their performance.

Case 1 is a situation in which the characteristic diffusion
time, as defined in Ref. [29], is much smaller than the dis-
charge time due to the small particle size and high diffusion
coefficient, so the cell is not limited by the diffusion rate. In
Cases 2 and 3, the diffusion coefficient is much smaller and
the particle size is much larger, so diffusion becomes a lim-
iting factor in the cell performance. Case 2 models a high
cycling rate corresponding to a high performance situation
for a vehicle. Case 3 models the maximum discharge rate
scenario.

Contour plots of the objective function over the full elec-
trode thickness and porosity ranges for Cases 1–3 are shown
in Figs. 5–7, along with the location of the optimum de-
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sign for maximizing the specific energy. To assess the ac-
curacy of the surrogate model and compare the accuracy of
the two methods, contour plots of the relative difference be-
tween the actual cell data and predicted output from the sur-
rogate model are also shown. In Case 1, both optimization
methods found the optimum at the lower right corner, i.e.,
at the upper bound of the thickness and lower bound of the
porosity. This indicates that the thickest electrode with min-
imum porosity (and thus maximum solid volume fraction) is
preferred. Since the diffusion rate is not a limiting factor in
this case, greater energy can be extracted by increasing the
amount of active solid material in the electrode. Although
the two methods converge to the same solution in the design
space, they yield different objective function values. Since
the gradient-based method uses data directly from the cell
model, its final solution is also the true optimum. In this
case, the surrogate model overestimates the specific energy
by 6.4%. Case 1 demonstrates that even when the surrogate
model can be used to predict the correct optimum, the func-
tion value still contains uncertainty due to prediction error in
the surrogate model.
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Fig. 5 Contour plot of specific energy (Wh/kg) against electrode
thickness and porosity for Case 1 (high diffusion, low C-rate).
Normalized difference between surrogate-based (δ = 150.0 µm,
ε = 0.200, E = 181.4 Wh/kg) and gradient-based optimum (δ =
150.0 µm, ε = 0.200, E = 170.4 Wh/kg) is 6.4%
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Fig. 6 Contour plot of specific energy (Wh/kg) against electrode
thickness and porosity for Case 2 (low diffusion, high C-rate).
Normalized difference between surrogate-based (δ = 147.3 µm,
ε = 0.386, E = 138.9 Wh/kg) and gradient-based optimum (δ =
149.0 µm, ε = 0.338, E = 143.2 Wh/kg) is 2.5%

In contrast to Case 1, the diffusion rate is a limiting fac-
tor in Case 2, and the optimal design region from Case 1
shows poor performance in Case 2. In this scenario, the char-
acteristic diffusion time is not significantly shorter than the
discharge time, and much of the active material of a thick,
dense electrode cannot be utilized. Instead, the optimum is
located near the top right corner, indicating that a thick elec-
trode is still favored, but a much higher porosity is needed
to ensure proper utilization of the thick electrode under these
conditions. Unlike in the previous case, the two methods
converge to different solutions in the design space. How-
ever, despite this difference, the final energy density values
differ by only 2.5%, suggesting that the optimum lies in a
flat region of the design space where the objective function
is not sensitive to the design variables. This is supported by
the contour plot in Fig. 6, which shows a large region where
over 90% of the maximum energy density can be achieved.
The shape of contours in Fig. 6 also show that to achieve
good performance, some the electrode must be made either
thinner or more porous, suggesting that the diffusion rate is
a performance limitation in this case. We also note that the
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energy density values are much lower than in Case 1, which
is consistent with results in Ref. [29].
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Fig. 7 Contour plot of specific energy (Wh/kg) against electrode
thickness and porosity for Case 3 (low diffusion, maximum C-rate).
Difference between surrogate-based (δ = 71.2 µm, ε = 0.371,
E = 80.6 Wh/kg) and gradient-based optimum (δ = 81.5 µm,
ε = 0.400, E = 94.1 Wh/kg) is 7.9%

Case 3 shows that for very high cycling rates, a much
thinner electrode is required, and porosity is the limiting fac-
tor. The specific energy values are also significantly lower
than those in Case 2, indicating a further loss of capacity
utilization as the cycling rate is increased. The locations of
the optima found by the two methods agree well with each
other, with a difference of 7.9% in the solutions. The shape
of the contour lines suggests that the region near the solu-
tion is more sensitive to the design variables in this case, and
thus a great penalty is incurred for sub-optimal design. We
also note that Figs. 5–7 show that in all three cases, the spe-
cific energy appears to vary much more with changes in the
electrode thickness than with changes in the porosity. This
is an indication of greater sensitivity to the thickness, and is
consistent with the results shown in Fig. 3.

These results are consistent with the established practice
of using thick electrodes in high energy applications and thin
electrodes in high power applications. However, although

only three cases are shown here, the surrogate model maps
the entire design space and is therefore able to optimize the
design variables under consideration for any combination of
other inputs (i.e. for any number of “intermediate” situa-
tions). The relative error contours in Figs. 5–7 show that the
prediction error of the surrogate model is less than 5% in the
majority of the design space, but can be 10% or greater in a
few isolated pockets. This demonstrates that the two meth-
ods each have their own advantages, and are ultimately com-
plementary: the surrogate model provides computationally
cheap approximations of the objective function, allowing for
an efficient analysis of the full design space and a rough opti-
mization. However, the gradient-based optimizer is required
to refine the optimization solution to machine precision. In
turn, a global mapping of the design space provided by the
surrogate model complements the accuracy of the gradient-
based optimizer to provide better insight into the physical
phenomena being modeled.

3.6 Power-energy tradeoff

The analysis presented so far has focused on the specific
energy. However, in real applications, a cell must be de-
signed to provide not only adequate energy, but also adequate
power. To provide a proper context for our results concern-
ing specific energy, we consider the tradeoff between spe-
cific energy and specific power. Rather than considering a
sequence of individual optimization problems with varying
power constraints, the entire spectrum of power and energy
ranges can be modeled at once by constructing separate sur-
rogate models for the specific power.

Previous work [29] studying the power-energy trade
within a surrogate modeling framework considered four de-
sign variables corresponding to the cathode. It was found
that the Pareto front quantifying the tradeoff between max-
imum achievable specific power and energy allowed large
gains in power for small sacrifices in energy. However, the
maximum C-rate considered was 4, thus limiting the max-
imum power level. A comparison of the Pareto fronts for
the data from the current study with those from Ref. [29] is
shown in Fig. 8.
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The specific energy values shown for the 4-variable case
in Fig. 8 are adjusted to account for the different state-of-
charge (SOC) windows modeled in the two sets of simula-
tions. The inclusion of two additional design variables al-
lowed significant gains (up to 40% in low-power regions) in
energy. This is consistent with the results in Figs. 5–7 high-
lighting the importance of matching the electrode thickness
to the physical situation being modeled.

Naturally, increasing the maximum cycling rate also al-
lows much higher power levels to be realized, although at
a heavy penalty in specific energy due to poor utilization.
In fact, the results at high power levels are in direct con-
trast to those from Ref. [29], which found a steep Pareto
front that shows high achievable power with minimal loss
in energy. The new results with 6 design variables suggest
a critical point corresponding to power and energy levels
of approximately 1000 W/kg and 100 Wh/kg, respectively,
above which additional gains in power are accompanied by
an unavoidable losses in energy. The C-rate corresponding
to this critical power level depends on the values of the elec-
trode thickness and porosity, but is typically between 6C and
8C. The quantification of the relationship between achiev-
able power and energy is necessary for scaling the cell opti-
mization to a pack-level optimization, as it provides guide-
lines for distributing the required current load among multi-
ple cells.

4 Conclusions

In this study, we have successfully developed a gradient- and
surrogate-based framework to analyze and optimize battery
cells using a cell-level model. In this framework, surrogate
models capable of predicting the specific energy provided by
a cell during discharge for given operational, morphological,
and material-dependent parameters have been constructed
and utilized to observe the competing effects of different de-
sign variables. Based on the global perspective provided by
the surrogate model, key operating scenarios were identified,
and optimal designs were identified under these operating
conditions using multiple optimization techniques. The rela-
tive impact of the design variables has also been established,
and comparing the competing objectives of specific energy
and specific power has identified distinct regions of the de-
sign space where different objectives are favored.

Generally, the specific energy was found to decrease for
higher cycling rates, larger particle size, and lower diffusivity
as expected. The effect of electrode thickness is much more
complicated, with an optimal thickness that varies greatly
depending on the values of the other design variables. The
porosity was found to have a lesser but non-negligible in-
fluence on the specific energy, and its optimal value also
strongly depends on the values of the other parameters.
These complicated interactions between design variables il-
lustrate the difficulty of cell optimization, and can help ex-
plain why even optimized cells may perform poorly under
different operating conditions. The electrode thickness and

porosity were optimized simultaneously using a gradient-
based optimization method for three distinct physical situ-
ations, and it was found that the optimal thickness decreases
substantially as the characteristic diffusion time (defined in
Ref. [29]) and the cycling rate are increased.

A comparison between the optimization results obtained
using surrogate-based and gradient-based methods shows
that optimizing a surrogate function in lieu of the true ob-
jective function yields optimization solutions to within a 5%
error margin. Although this is insufficient for many design
problems, the ability to perform approximate optimization
for a large number of design cases and multiple objectives,
as well as constrain the design space via global sensitivity
analysis, makes the surrogate method a valuable intermedi-
ate step between problem formulation and the final design
optimization. Once the most important design cases have
been identified, the gradient-based optimizer can be applied
directly to the physical model to obtain a much more accu-
rate solution by using exact function and gradient informa-
tion at each iteration, bypassing surrogate model prediction
errors. Within the current modeling framework, the two op-
timization methods are complementary and can provide ac-
curate optimized solutions for multiple distinct physical sce-
narios for a reasonable computational cost.

One simplification in this work is the inclusion of only
the cell components in calculating the battery mass used to
normalize the total energy and power output. An actual bat-
tery system will require packaging and other components
which may contribute significantly to the total mass of the
system. Another limitation to the current methodology is
the assumption of homogeneous electrode composition in
the porous electrode model, which prevents us from incor-
porating the effects of a detailed microstructure. The analy-
sis is also limited to uniformly sized, spherical particles, and
although Zhang et al. [13] have shown that particle shape
has an insignificant effect on stress for the range of materi-
als considered, the present model does not capture the effects
of polydisperse particle size distributions. However, the sur-
rogate modeling framework is more general and can be ap-
plied to any physical model. Efforts are currently underway
to improve the existing cell model by incorporating physics-
based models for the effective material properties based on
non-homogeneous microstructures [15].
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