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A surrogate modeling framework is implemented to analyze the performance of a Li-ion cell with respect to four input variables:
cycling rate, particle size, diffusivity, and electrical conductivity. Five different cathode materials (LiMn;O4, LiFePOy4, LiCoO»,
LiVO13, and LiTiS;) are modeled, and ranges for all material properties are selected based on reported data from the literature.
The relative impact of the variables is quantified using global sensitivity analysis, and critical diffusivity and conductivity values
are calculated. Two dimensionless parameters based on relative time and conductivity scales are defined and found to separate
operating conditions into distinct regimes in which the cell performance is limited by diffusion or conduction. Combining the two
dimensionless parameters into a single quantity and non-dimensionalizing the energy performance yields a Pareto-efficient set of
solutions that are described well by the generalized logistic function, which can be considered a reduced-order model of battery

performance with a global analytical solution.
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Lithium-ion batteries have attracted significant interest in recent
years due to their high achievable energy and power density, making
them ideal for a wide range of applications. Improving the design of
batteries to realize maximum energy and power performance requires
an understanding of how variables such as diffusivity, conductivity,
and particle size influence the cell behavior. The problem is compli-
cated by the wide ranges in the data reported for these variables due to
differences in measurement techniques and sample preparation proce-
dures. Additionally, there are a large number of materials suitable for
use in electrodes,' and in most applications a range of C-rates must
be considered to account for different operating conditions. Since
parametric sweeps that sequentially vary one parameter at a time are
inefficient and unable to account for nonlinear interactions between
parameters, a systematic method for simultaneously studying multiple
variables is necessary for complicated multi-physics problems such as
the coupled electrochemical and transport processes in a lithium-ion
cell.

Through various experimental and numerical studies, cell per-
formance has been found to depend strongly on a large number of
operational, morphological, and material-dependent parameters. For
example, the effects of particle size>* and cycling rate* on capacity
have been quantified using various experimental techniques, while
simulations have been used to quantify the impact of particle size
and diffusivity on cell performance.’ Simulations have also been used
to show that a uniform size distribution can maximize capacity un-
der different cycling rates.® Progress has also been made in study-
ing the evolution of material properties, such as that resulting from
the introduction conductive additives.” However, the measurements
and analysis in each of these studies were conducted for a single
cathode material and do not offer a comparison between candidate
materials that accounts for differences in material properties. Studies
comparing multiple materials often focus on specific properties such
as overcharge behavior® or thermal stability,” and not on the overall
cell performance. Howard and Spotnitz'® have conducted a compar-
ison of the cell-level performance of various cathode materials that
does not consider the effects of transport coefficients or particle size.
Dimensional analysis has been applied by Doyle and Newman'! to
derive analytical solutions to characterize battery performance based
on operating parameters. Three solutions based on different limit-
ing phenomena were obtained, but a single global analysis without
simplified physics is still missing.

Despite recent progress in understanding the relevant physical pro-
cesses in lithium-ion cells, there remains a need for a systematic com-
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parison of several candidate materials under a wide range of cycling
conditions, and in the presence of significant uncertainty in material
properties. In particular, a proper analysis of cell performance must
account for both the diffusivity and the conductivity of the materials.'
In order to address this issue, we define two objectives in this work:
to identify critical diffusivity and conductivity levels for achieving
high energy density with several different cathode materials, and to
establish the relationship between the cell performance and material
properties by applying dimensional analysis techniques that combine
multiple physical variables to obtain relevant dimensionless transport
parameters. Realizing these objectives requires a suitable mathemati-
cal framework capable of efficiently relating the outputs of a lithium-
ion cell model to its inputs. A good option is the surrogate modeling
framework, which builds approximate (surrogate) functions from pre-
computed model simulations to significantly reduce the computational
time required for additional function evaluations within the parame-
ter space.'? The surrogate modeling framework has been applied to
various engineering problems, including the study of intercalation-
induced stress on single lithium manganese oxide particles,'> and the
effect of microstructure on the transport and reaction properties of
particle clusters.'*

In the present study, the output function of interest is the gravi-
metric energy density, also known as the mass-specific energy den-
sity or simply “specific energy”. The input variables are the cycling
rate, the size of solid particles in the cathode, and the diffusion co-
efficient and electrical conductivity of the solid cathode material.
Five different cathode materials are considered: lithium manganese
oxide (LiMn,0y,), lithium iron phosphate (LiFePOy,), lithium cobalt
oxide (LiCo00,), lithium vanadium oxide (LiV¢O;3), and lithium ti-
tanium sulfide (LiTiS;). Separate model simulations and surrogate-
based analyses are conducted for each material, although the same
design of experiments is used to ensure consistent sampling within
the parameter space. Since the focus of this work is on comparing
cathode materials, the electrolyte (1 M LiPFg in EC:DMC) and anode
material (MCMB graphite) remain the same for each set of analyses.
Ranges for all variables are selected based on values reported in the
literature for the corresponding material.

Methodology

Battery cell model and relevant dimensions— In this study, a
single discharge of a cell consisting of a cathode-electrolyte-anode
system is modeled using the porous electrode formulation with con-
centrated solution theory.'> A schematic of the cell configuration con-
sidered in this model is shown in Figure 1. The computational domain
consists of two separate dimensions, each with a corresponding length
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Figure 1. Configuration of a battery cell showing the cathode thickness L.
and particle radius Ry .

scale. An axial dimension across the thickness of the cell models the
electric potential distribution in the solid and liquid phases via Eqgs. 1
and 2, respectively.

V. (ceffV(pl) —-J =0 (1]
V- (kTVg)+ V- kpV(Ine)+J =0 [2]

The effective transport coefficients o/ and k% are calculated from
bulk properties using a Bruggeman correction to account for electrode
porosity. As indicated in Figure 1, the relevant length scales for the
electron and ion conduction processes are the electrode and separator
thicknesses, denoted L_ for the anode, L, for the cathode, and L, for
the separator. The axial dimension also models lithium ion diffusion
in the liquid phase using Eq. 3.
ac 1—9 -0

sza—: =V (D5'Ver) + oy S

A second radial dimension models the effect of particle size on the
lithium ion distribution within the electrodes by calculating the time-
dependent ion concentration distribution within spherical particles

using Eq. 4.
8(,'1 10 2 8(,’1
ot r2or (DS’ ar ) 4]

The length scale for the radial dimension is the particle radius,
denoted R, , for the anode and Ry, for the cathode. For the dimensional
analysis performed in this study, it is important to use the correct
length scale when deriving dimensionless parameters associated with
conduction and diffusion.

Note that radial diffusion equation is solved at each axial compu-
tational node in the electrodes, but not the electrolyte which contains
no active solid. The axial and radial dimensions are coupled via the
Butler-Volmer equation for electrochemical kinetics at the solid-liquid
interface. Although this formulation cannot resolve the detailed mi-
crostructure of the electrode materials due to homogenization, it has
the advantage of being computationally inexpensive, and has thus
been commonly used as a method for studying cell performance.'®
The computational efficiency allows us to conduct a large number of
simulations to examine the large parameter space. Further details of
the battery cell model have been summarized by Doyle et al.'?

(3]

Surrogate modeling framework— The surrogate modeling pro-
cess is illustrated in Figure 2. The following is a brief overview of
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Figure 2. Schematic of surrogate modeling framework. Processes in red are
part of the MATLAB surrogates toolbox.

the key steps to this process; further details have been provided by
Queipo et al."”

Once the design variables and objective functions have been de-
fined, the next step requires performing a design of experiments to
select the simulations to be used for building the surrogate models.

Design of Experiments—The design of experiments consists of the
set of inputs to the battery cell simulations from which simulation data
will be obtained to train the surrogate models. To capture data at the
extremities of the design space while ensuring an unbiased sampling
of the full range of each design variable, an approach combining face-
centered composite design (FCCD)'® and Latin hypercube sampling
(LHS)" points is employed in this study.

Surrogate Model Construction—The data obtained from the design
of experiments are used to construct surrogate models that make use
of regression and interpolation techniques to approximate the ob-
jective function within the full design space. There are many types
of surrogate modeling strategies available; in this study we consider
polynomial response surface (PRS), kriging (KRG), and radial basis
neural network (RBNN) models. The PRS models consist of a lin-
ear combination of polynomial basis functions, whose coefficients are
determined using a least-squares regression approach. The KRG mod-
els consist of a combination of low-order polynomial regression and
correlation functions based on the distance from training data points
in the design space.’” The RBNN models approximate the objective
function as a linear combination of Gaussian radial basis functions.?!

Error Assessment—Error measures are necessary to validate the sur-
rogate models. Two error assessment strategies are used in this study:
prediction error sum of squares (PRESS), and independent test data.
PRESS is the sum of “leave-one-out” errors, which are the errors be-
tween the true data values and those predicted from a reconstructed
surrogate from all other data points from the design of experiments.
Although PRESS values do not require additional data, they can be
expensive to compute if the design of experiments contains a large
number of data points, and may not necessarily be representative of
the true error if the number of data points is small, since the surrogate
model is constructed from a different design of experiments. In ad-
dition to PRESS, prediction errors at independent test points are also

Downloaded on 2013-05-19 to IP 141.213.172.125 address. Redistribution subject to ECS license or copyright; see ecsdl.org/site/terms_use


http://ecsdl.org/site/terms_use

Journal of The Electrochemical Society, 160 (8) A1187-A1193 (2013) A1189

Table I. Variables and ranges. Table II. Electrode material properties.
Variable Minimum Maximum References Specific capacity Cut-off

Cycling rate /10 10C Material Density (kg/m?) (mAbh/g) voltage (V)
LiMn,04 LiMn, 04 4280 148 3.0

Particle size 5.0 pm 15 wm 25 LiFePOy4 3580 170 3.0

Diffusivity 1.0 x 1075 m?s 1.0 x 10712 m?/s 26-28 LiCoO, 5010 274 3.0

Conductivity 1.0 x 107% S/m 10 S/m 29, 30 LiVeO13 3900 417 1.8
LiFePO4 LiTiS, 2285 225 1.6

Particle size 0.02 pm 8.0 pm 31 LiCe 2260 372 -

Diffusivity 1.0 x 107 m?s 1.0 x 1071 m?/s 32,33

Conductivity 1.0 x 1075 S/m 10 S/m 32,34 L . .
LiCoO, optimize the cell, the electrodes can be unbalanced for consistency in

Particle size 0.03 wm 6.0 um 35 numerical analysis.

Diffusivity 1.6 x 1007 m2/s 1.0 x 10~ m2%/s 36-38 The output function of interest is the energy density, which is

Conductivity 20 S/m 5.0 x 10* S/m 39 computed by time-integrating the cell voltage curve obtained from
LiVO13 solving the governing equations, and multiplying by the discharge

Particle size 1.0 pm 25 pm 40, 41 current and other appropriate constants to obtain the total energy

Diffusivity 50x 1073 m?s 3.5 x 10712 m%/s 42 provided during the discharge simulation. This value is then converted

Conductivity 1.0 x 1073 S/m 1.0 x 1072 S/m 42 to mass-specific energy density by dividing by the combined mass of
LiTiS, the active and inactive solid, liquid, and current collectors.

Particle size 0.1 pm 10 pm

Diffusivity 40 x 1077 m%s 5.6 x 1073 m?/s 43 Global sensitivity analysis— A single design of experiments in di-

Conductivity 5.0 S/m 33.3 S/m 43,44 mensionless variables consisting of 1296 points in a Latin hypercube

computed. The selection of these points requires a separate design
of experiments and simulation data. Additional validation criteria are
also available for regression-based models like PRS, such as the coef-
ficient of determination (R?) and adjusted coefficient of determination
R2.q)-

Global Sensitivity Analysis—The relative magnitudes of impact each
input variable has on the objective function can be compared using
global sensitivity analysis. An approach similar to that developed by
Sobol is implemented in this study.??> A five-point Gauss quadrature
method is applied to the surrogate model to compute measures of the
relative sensitivity of the objective function to each input variable,
known as sensitivity indexes. For simplicity, only the main sensitivity
index, which captures the first-order effects, is considered in this study.

Results

Problem setup— As mentioned previously, the variables serving
as inputs to the surrogate model are the particle size, diffusivity, and
conductivity of each cathode material, as well as the C-rate. The
ranges considered in this study are summarized in Table I, along with
appropriate references. No literature on the size of LiTiS, particles
was available, so bounds were selected to capture a wide range of
scenarios. Since the parameter ranges span several orders of magni-
tude in many cases, a base-10 logarithmic transformation is used to
convert between the dimensionless sampling variables and physical
variables in the design of experiments. An advantage of the surrogate
modeling approach is that interdependencies among the parameters
are automatically captured by mapping the global parameter space,
and the surrogate models are able to separate first-order effects from
higher-order cross-effects. Therefore, there is no need to model the
effects of particle size on volume fractions or transport coefficients.

Additional material properties for the cathode materials are listed
in Table II, and fixed parameter values for the cell simulations in
Table III. Open circuit voltages for LiV¢O,3, LiFePO,, and LiMn,04
are taken from refs. 15, 23, 24, while those for the other materials are
found in the database in version 5.1 of the dualfoil program. In all
cases the electrolyte is 1 molar LiPFs in EC:DMC and the inert filler
is PVDE.

Note that since identical values for the volume fraction of all phases
and thickness of the electrodes are used in all simulations, the total
capacity in the two electrodes is not balanced. Since the objective of
this work is to analyze and compare different materials rather than to

sampling arrangement is used for all five cathode materials. A pro-
cess for identifying critical diffusivity and conductivity values using
global sensitivity analysis is established as follows. The simulation
results are sorted according to diffusivity magnitude, and a succession
of data sub-sets are compiled for an increasingly narrower diffusivity
range by increasing the lower bound. Independent surrogate models
are constructed at each stage, and used to compute global sensitivity
indices. In this manner, the critical value can be identified when the
impact of diffusivity vanishes for a given lower bound. Figure 3 shows
that for all materials besides lithium titanium sulfide, the effect of dif-
fusivity is dwarfed by either conductivity or cycling rate. For lithium
titanium sulfide, however, the effect of diffusivity is significant over
the full range, and gradually decreases until becoming negligible at
about 2.4 x 10715 m?/s. Since diffusivity can be determined as a
function of lithium ion concentration® and voltage,*® quantifying this
critical value establishes a benchmark to aim for when designing or
processing materials with similar chemistry. The global sensitivity

Table III. Fixed parameter values for cell simulations.

Parameter Value

Initial stoichiometric parameter 0.8
for anode (x in LixCg)

Initial stoichiometric parameter 0.1

for cathode (y in LiyMn, Oy, etc.)

Anode thickness 100 pm
Cathode thickness 100 pm
Separator thickness 25 pm
Positive current collector thickness 25 pm
Negative current collector thickness 25 pm

Ambient temperature 298 K

Diffusion coefficient in anode 5.0 x 10713 m?/s
Electrical conductivity in anode 100 S/m

Diffusion coefficient in electrolyte 5.34 x 10'0¢7065¢ m2/s
Ion conductivity in electrolyte 0.091141.91¢-1.05¢240.155¢°

Particle size in anode 10 pm
Volume fraction of inert filler in cathode 0.2
Volume fraction of electrolyte in cathode 0.3
Volume fraction of inert filler in anode 0.1
Volume fraction of electrolyte in anode 0.3

Electrolyte LiPFs in EC:DMC
Initial salt concentration 1000 mol/m?
Density of electrolyte 1324 kg/m?
Density of inert filler 1800 kg/m?
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Figure 3. Main sensitivity indexes for various diffusivity ranges.

analysis results also demonstrate that in most cases, adequate cell en-
ergy performance can be achieved so long as conditions independent
of the diffusivity are satisfied.

A similar analysis is performed for conductivity and the results
are plotted in Figure 4. In the case of lithium cobalt oxide, lithium
vanadium oxide, and lithium titanium sulfide, the lower bound for
conductivity is sufficiently high to not significantly affect the cell per-
formance. However, for lithium manganese oxide and lithium iron
phosphate, conductivity is found to have a strong effect on perfor-
mance, and critical values of about 0.01 S/m and 0.2 S/m are iden-

Conductivity lower bound (S/m)

5.0 6.6 8.6 1.1e1 1.5e1 1.9e1 2.5e1

| I C-Rate [ Particle size [ Diffusivity [l Conductivity|

Figure 4. Main sensitivity indexes for various conductivity ranges.
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Figure 5. Separation of operating regimes based on dimensionless time.

tified, respectively. Again, quantification of these values can provide
guidelines for processing and manufacturing. For instance, these re-
sults, in conjunction with recent progress in modeling the influence
of additives on conductivity,*’ can be used to optimize the amount of
conductive additive to introduce to the undoped cathode material.

Dimensionless parameterization— Although the input variables
are treated as being independent in the design of experiments, their
effects within the battery cell are coupled. It is reasonable, then, to
seek a way to combine the variables in a more efficient manner in order
to reduce the problem dimensionality. This can be done by performing
dimensional analysis, in which the output is modeled not as a func-
tion of independent input variables, but as a function of newly defined
dimensionless parameters that combine multiple physical variables.
Dimensional analysis has been used previously to compare charac-
teristic diffusion and discharge time scales for lithium manganese
oxide,*® and is also widely used in fields such as fluid mechanics and
heat transfer for characterization and scaling analysis.*’

The diffusivity D;, has dimensions of length squared divided by
time, and appears as a coefficient in Eq. 4, whose corresponding length
scale is the particle radius Ry ,. These two variables can be combined
to yield a characteristic time scale for the diffusion equation.

Ry
D

(3]

Laiffusion =
s.p

Another important time scale is the time required to discharge the
cell, which is estimated from the definition of cycling rate.

£ (6]
C

The constant k£ = 3600 seconds/hour ensures that the two length
scales have consistent units. We can thus define a dimensionless time
parameter t" as the ratio of the two time scales.

Idis('harge =

= tdischarge _ sz,p
12 diffusion CR 52, P

(7]

Physically, T° represents the relative speed of the diffusion and
discharge processes. When the magnitude of t" is very large, ions
travel much faster through the particle via diffusion than they are
transferred across the cell. Conversely, when the magnitude of t*
is very small, the cell utilization is limited by the diffusion rate. A
log-scale plot of the computed specific energy against T is shown in
Figure 5.

Aside from significant scatter in the data, two distinct regions can
be identified in Figure 5: the maximum achievable specific energy
increases monotonically in the low- t* range up to some critical point,
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beyond which it remains roughly constant. Performance in the low- t*
region is limited by poor ion transport via diffusion causing a depletion
of saltin the electrolyte. This can be observed for three of the materials
(LiMn, Oy, LiC00,, and LiTiS,), although the maximum energy levels
differ. The boundary between these two operating regimes can be
considered a critical point that must be satisfied when conducting
cell design. In order to quantify this critical point, we consider the
Pareto front, or the set of Pareto-efficient solutions for each variable.
A solution is considered Pareto-efficient if it is not dominated by any
other solution in the data set; that is, if there is no other point in the
data set that is better in all objective functions.’® By defining the two
objectives as maximizing specific energy and minimizing t*, the data
are divided into the Pareto front consisting of solutions forming the
clear maximum-energy curves in Figure 5, and the remainder which
form the scatter in the data.

The critical point can be defined as the minimum value of t* such
that the (log-scale) slope of the Pareto front becomes less than some
tolerance 3.

d
t},;, = min (t¥) ldijl <3 [8]
y = 1Ogl() E('ell [9]
x; =log, t* [10]

Using the definitions for transforming the specific energy e and
the dimensionless time parameter T° in Eqs. 9 and 10, respectively,
the slope of the Pareto front is estimated using the central-difference
scheme.

Ayl Yl = Ya
dx1 Xn

(11]

X1,n+1 — X1,n—1

The critical values of T* calculated using Eqs. 8-11 are plotted as
vertical lines in Figure 5. A tolerance value of 8 = 0.1 is used for all
materials.

The dimensionless parameter that we defined in Eq. 7 combines
three of the four variables into a single parameter that can be used
to predict cell performance without needing to conduct a full cell
simulation. However, two materials (LiV¢O;3 and LiFePO,) did not
demonstrate a clear separation of operating regimes based on 1. We
note that one final input variable has been excluded from this defini-
tion, the conductivity. Since conductivity is the inverse of resistivity,
by Ohm’s law it has dimensions of electrical current per unit voltage,
per unit length. Therefore, a dimensionless conductivity parameter
can be defined as in Eq. 12, where the reference voltage V., is the cell
potential at the end of discharge, the reference current /; is the dis-
charge current, and the characteristic length scale L, is the electrode
thickness.

_ GVL'O
T IL,

0_*

[12]

The parameter ¢* can be interpreted as a ratio of the material’s
conductivity to the required conductivity for transporting electrons
at the rate dictated by the discharge current. When the magnitude of
this ratio is very small, the cell performance can be expected to be
limited by conductivity. A plot of specific energy with respect to ¢ in
Figure 6 shows that two distinct operating regimes can again be iden-
tified for some materials, including LiV¢O,3 and LiFePO,. Referring
to the variable bounds listed in Table I, we note that the diffusivity
lower bounds for these two materials are much higher than for the
others. This suggests that within the selected parameter space, the
performance of LiV¢O,; and LiFePO, is limited by conduction but
not diffusion. Similarly, Figure 6 shows that the relatively high con-
ductivity range for LiCoO, and LiTiS, results in little variation in cell
performance as o~ is varied.

Critical values are also plotted in Figure 5, based on the definition
in Egs. 13 and 14 applied to the set of points in the Pareto front.

*
Ocrit

= min (c*) |:—jz <3 [13]
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Figure 6. Separation of operating regimes based on dimensionless
conductivity.

x; = log,, 0" [14]

The same central-difference scheme is used to estimate the deriva-
tive, and the same tolerance of § = 0.1 is used.

dy | Yl = Y

15
dx; 20 )

X2 n41 — X2,n—1

Dimensionless energy function— We have identified two dimen-
sionless parameters that characterize the conditions under which cell
performance is limited by diffusivity and conductivity. It is reason-
able, therefore, to combine them in a way that accounts for the limiting
effects of both processes. We begin by defining in Eq. 16 a new param-
eter x” as the base-10 logarithm of the lesser of the two dimensionless
parameters for each data point.

x* = log, (min [6*, T*]) [16]

Physically, this corresponds to the numerical value correspond-
ing to the most limiting dimensionless transport parameter. We then
consider the Pareto front discussed in the previous section, which rep-
resents the maximum achievable energy performance of a cell for the
specified dimensionless diffusivity and conductivity range. We have
noted in Figures 5 and 6 a distinctive shape for the Pareto front, so
it makes sense to attempt to define this shape using a mathemati-
cal curve fit. First, we non-dimensionalize the energy density using
Eq. 17 in order to obtain a curve fit that is entirely free of dimensional
units.

® E cell mhattery

= (17]
Q VOmacti ve
In this case, the energy density of the cell is normalized by the
limiting capacity Q, initial cell voltage Vj, and the mass ratio of
active to total materials in the cell. The limiting capacity is defined
as the lesser of the two electrode capacities based on the electrode
thicknesses and values listed in Table II, and the active mass includes
both electrodes. The curve fit can be obtained using the surrogate
modeling techniques described in the methodology, but in this case we
desire a more specific class of functions that have asymptotic bounds at
their infinite limits. To characterize the dimensionless energy function
in Eq. 17 with respect to the parameter x*, we use the generalized
logistic function given in Eq. 18.

- 1+ szikV*

Ak

+ ks [18]
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This class of functions has been used in growth modeling,’! as its
constants govern the shape of the curve in easily identifiable ways. It
is readily applicable here as the energy curves shown in Figs. 5 and
6 share similar characteristics. In the limit as x* approaches negative
infinity, the exponential term in the denominator becomes unbounded,
and thus the lower asymptote is equal to k,. In our case, this corre-
sponds to the limit of zero diffusivity and zero conductivity, so for
physical consistency we require k;, = 0, and consider a form of the
generalized logistic function with only three constants.

IR

Ak

[19]

In the infinite limit in the opposite direction, the exponential term
vanishes and the function value reaches the upper limit value k;. The
remaining constants k, and k; govern the growth rate and location
of growth, respectively. The three constants are determined by min-
imizing the curve fit prediction error, defined in Eq. 20 as the sum
of the differences between the exact and approximate dimensionless
energy function values given in Eqgs. 17 and 19, respectively. This is
implemented using the MATLAB function minimizer fminunc.

,‘c;
error = Z |£,* - é,*|
i=1

Plots of the fitted generalized logistic functions along with the
Pareto-efficient set for each material are shown in Fig. 7, and the
constants governing their shapes are given in Table IV, along with
mean prediction errors. Note that LiFePO, is not considered in this
analysis, as its Pareto-efficient set contains an insufficient number of
points to conduct a meaningful curve fit or error analysis. However,
we notice that for the remaining materials, the generalized logistic
function provides an excellent description of the maximum achievable

(20]

Table IV. Generalized logistic functions and their mean prediction

errors.

LiMn;04 LiCoO, LiVeO13 LiTiS,
ki 1.080 0.563 0.578 0.826
ko 0.0864 0.0045 0.0028 0.0398
k3 2.737 3.585 5.535 2.887
Mean error 0.0056 0.0084 0.0107 0.0081

logomin(7*,0%)]

energy performance, with mean prediction errors typically about 1%
of the normalized function value or less.

Finally, it is useful to convert the maximum dimensionless energy
(i.e., the k; value for each material) to physical quantities to compare
these results with theoretical predictions and experimental measure-
ments. Our energy density values are generally lower than expected;
for example, the values of 195.6 Wh/kg for LiCoO, and 136.3 Wh/kg
for LiMn, O, obtained in this study are much lower than the respec-
tive theoretical limits of 272.1 Wh/kg and 223.2 Wh/kg for jellyroll
format batteries.'® Similarly, the maximum value of 109.8 Wh/kg for
LiV¢O;3 is much lower than the 200-300 Wh/kg estimate for a thin
film battery reported by Munshi and Owens.>? For LiTiS,, the energy
density value of 66.2 Wh/kg is within 11% of the 73 Wh/kg reported
by Brandt.?

There are two main reasons for these discrepancies. First, as shown
in Table III, the full state-of-charge (SOC) window is not utilized in
these simulations. This was done for numerical reasons, as good data
for the open circuit potential are not available at very high and very
low SOC for some materials, and a consistent SOC window is nec-
essary to ensure a consistent comparison of the materials. Second,
the simulations use fixed anode properties instead of scaling them
with the cathode properties to match capacity, and no optimization is
performed. Again, this was done to ensure a consistent comparison,
resulting in some loss in cell performance. Despite these simplifi-
cations, the relative cell-level energy density values are found to be
consistent with the materials’ electric potential and capacity.

Conclusions

In this study we applied a surrogate modeling framework to per-
form global sensitivity analysis with respect to diffusivity and con-
ductivity for several different Li-ion cathode materials, and identified
two dimensionless parameters that characterize the cell performance
by combining multiple input variables and fixed quantities. Critical
values for both the physical and dimensionless parameters were quan-
tified, yielding benchmark numbers that may aid in cell design. For
example, insight into the effect of diffusivity under a wide range
of cycling rates established in this study can provide guidelines for
material processing to achieve the desired particle size distribution.
Similarly, the quantification of critical conductivity levels can help
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determine the optimal amount of conductive additives to introduce in
the manufacturing process.*’

In addition, dimensional analysis was applied to identify two di-
mensionless parameters to characterize the energy performance of the
cell. Despite significant differences in capacity and transport proper-
ties, all electrode materials showed a similar performance dependence
on the two dimensionless parameters. Since these two parameters can
be interpreted as ratios of transport rates (diffusivity and conductiv-
ity) to cell operating conditions (cycling rate and discharge current),
these results suggest that for all cathode materials considered, ion
transport via diffusion and electron transport via conduction are the
two most critical limitations to cell performance. The critical points
where cell performance becomes independent of the dimensionless
parameters were also quantified, and found to be close to unity for
all materials. This is again consistent with our physical interpretation
that unity represents the point at which all transport rates are balanced
with the cell operation. By combining the two dimensionless trans-
port parameters into a single quantity, and non-dimensionalizing the
energy density as well, a generalized logistic function was shown to
describe the Pareto front well for all materials except LiFePO4, which
had a Pareto-efficient set of insufficient size. The generalized logistic
function obtained in this study can be considered a type of reduced-
order model, in which the maximum energy performance of a cell can
be readily estimated with an analytical equation based on the mate-
rial properties and composition of the electrodes, and the operational
parameters of the cell.

Although maximum energy density values in this study are gener-
ally lower than theoretical limits, they are consistent with the relative
voltage and capacity of the materials. Since they are valid for all of
the materials considered in this study, the dimensionless relationships
established here can also provide guidelines for designing new mate-
rials with tunable properties. It should also be noted that all analysis
performed in this study was based on a macroscopic homogeneous
cell model and thus does not account for electrode morphology, which
has been found to significantly affect effective transport properties.>
Current efforts are being made toward implementing a multi-scale
model that can more accurately capture the physical phenomena in
a cell, while remaining feasible for conducting a large number of
simulations for surrogate modeling.
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