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Lithium-ion batteries are now used in a wide range of applications, and much knowledge has been accumulated in the relevant
physical phenomena. However, the application of this knowledge in battery design still relies on an inefficient manual process, in
large part due to limitations in existing computational models. To address this, a multi-scale model is developed that incorporates
microscopic simulation data for effective ion diffusivity and electronic conductivity, and interfacial electrochemical kinetics, into
a macroscopic homogeneous model at the cell scale. Microscopic physics-based models are applied to 3D microstructures, and
automated simulations are performed for statistically significant averaging of the results. A surrogate model couples the length
scales by precomputing solutions based on a design of experiments. Results for the porosity-tortuosity relationship are compared to
experimental data in the literature, and global sensitivity analysis is performed to quantify the relative impact of ion concentration
and electric potential distribution on the electrochemical kinetics profile. The resulting multi-scale model successfully reproduces the
microscopic solution while retaining the computational efficiency of the macroscopic homogeneous model. These attributes make it
a suitable candidate for implementation in an automated simulation and optimization framework that may lead to a more efficient

design process for high performance batteries.
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Lithium-ion batteries have attracted considerable interest in recent
years due to their high energy and power density compared to other
battery technologies, which make them suitable for high performance
applications such as portable electronic devices.! Their successful de-
ployment in electric vehicles also has significant implications to the
transportation sector, especially in light of environmental concerns
linked to carbon emissions. These considerations, in conjunction with
advances in key areas such as electrochemistry and materials sci-
ence, has fostered substantial progress in understanding the relevant
physical phenomena that occur within battery cells. However, the ap-
plication of this knowledge in the design and manufacture of battery
cells and packs has not been fully realized, primarily due to a limita-
tion in the use of sophisticated modeling and optimization techniques.
In practice, battery design still relies on ad-hoc decisions in areas
where existing models provide inadequate information about battery
behavior and performance, resulting in a lengthy and inefficient design
process that does not necessarily lead to an optimal final design. There-
fore, there exists a critical need to establish advanced computational
models capable of efficiently modeling battery behavior. Such models
would enable a greater degree of automation in the design process,
while also achieving improved energy and power performance.

Much progress has been made in the modeling and analysis of
lithium-ion cells and electrodes, including the use of numerical opti-
mization tools for electrode design optimization.> Specialized mod-
els such as single-particle models,®” capacity fade models,® and
microscopic models,” are very useful for investigating the relevant
physics within battery electrodes. However, they are of limited use to
design, as they focus on localized phenomena without consideration
of cell-level behavior. Three-dimensional models avoid this limitation,
but are prohibitively expensive for sensitivity analysis and optimiza-
tion purposes unless confined to small cross sections with significant
uncertainty in microstructure.'? In contrast, equivalent circuit models
1112 are computationally inexpensive, but their overly simplified treat-
ment of battery physics makes them unsuitable for design purposes,
and their applicability is limited to simple control systems. More
detailed system-level analysis and control, however, requires more
sophisticated models that demand greater computational resources. '
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One of the most successful models for design is the pseudo-2D
model based on porous electrode and concentrated solution theory.'*!
This computationally efficient model has been successfully applied in
a variety of studies, including analysis of stress generation'® and cell
design.'”-!8 Reformulated versions of the pseudo-2D model are espe-
cially well suited for design optimization due to their improved com-
putational efficiency.!®>° However, one shortcoming of these models
is that certain closure terms in the governing equations, such as the
effective transport coefficients and volumetric reaction current den-
sity, are based on homogenization. This means that approximations
are made for these parameters by assuming a homogeneous medium
within the electrodes, and the detailed microstructure is not consid-
ered. Experimental measurements>! and microscopic simulations?>?*
have demonstrated that the effective diffusivity and conductivity can
deviate considerably from their homogenized approximations, under-
scoring the need for higher fidelity models to address this discrepancy.
Similarly, the electrochemical reaction rate at the solid-liquid interface
has been found to vary significantly with the local microstructure.?*
Note that the purpose of pointing out the limitations of previous mod-
eling developments is not to understate their impact, as they have all
made valuable contributions toward the ultimate objective of under-
standing how to design better batteries. Instead, these examples serve
to illustrate the specific attributes that are missing from existing mod-
els, and to highlight the key advantages of the method presented in
this article.

A more accurate treatment of the aforementioned microstructural
properties can be achieved through detailed 3D multiphysics simu-
lations conducted on sample microstructures. The resulting simula-
tion data can then be incorporated into existing cell models, such
as the pseudo-2D model, by coupling the necessary state variables
to produce a multi-scale model. Such an approach allows impor-
tant effects of microstructural geometry on multiphysics phenomena
to be considered in cell-level analysis and design. The concept of
models that couple sub-models to simulate physical processes oc-
curring simultaneously at multiple length scales is not new. These
modeling approaches have been utilized in a variety of engineer-
ing systems, including lithium-ion batteries.”> Some notable exam-
ples include models analyzing the impact of external pressure®® and
intercalation-induced stress on separators’’ and porous electrodes.?®
The latter model has also been incorporated into an adjoint sensitivity
analysis framework for design optimization.”> A common attribute of
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Figure 1. Macroscopic and microscopic scale mod-
els, with multi-scale coupling variables shown.
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such models is that they involve explicit coupling of the governing
equations at multiple length scales, meaning that all sets of equa-
tions are solved simultaneously and bridged via a coupling interface.
While such multi-scale approaches retain high fidelity in the resulting
model, the computational cost can also increase significantly due to
the additional governing equations that must be solved.

An optimization framework for improving the design of batteries
and cells should be capable of systematically handling a large number
of design variables and constraints, given the complexity of the battery
system. It is thus critically important that the computational expense
of each simulation is minimized, in order to accommodate a large
number of optimization iterations. For this reason, we select the sur-
rogate modeling approach to couple the macroscopic (electrode) and
microscopic (particle) length scales. This method differs from those
in other multi-scale models in that the state variables of the length
scales are not coupled explicitly, but rather implicitly via surrogate
functions constructed from pre-computed simulation data based on a
design of experiments. Since they are analytically defined, the compu-
tational cost of evaluating a surrogate function is negligible compared
to the cost of solving the governing equations for the microscopic
scale model.* The resulting multi-scale model has approximately the
same computational cost as the macroscopic homogeneous model,
making it feasible for cell optimization and design. The difficulties of
applying this method include quantifying the error due to uncertainty
in fitting the surrogate model, and the numerical robustness of the
coupling interface.

The macroscopic scale is described by the pseudo-2D homoge-
neous porous electrode model, which accounts for transient diffusion
and conduction of ions and electrons in the multiphase porous elec-
trodes, as well as ion diffusion within spherical particles.'* The mi-
croscopic scale model makes use of the concept of a Representative
Elementary Volume (REV), which represents a part of a 3D electrode
microstructure as a cluster of particles. Here, the REV are sometimes
referred to as “realizations” of the microstructure generation algo-
rithm. In this multi-scale model, we focus our efforts on the cathode,
while recognizing a similar deficiency in accurate modeling of the an-
ode microstructure. Given the need for better computational tools for
designing improved batteries, and the advantages and challenges of
the selected multi-scale modeling approach, we define the following
objectives in this work:

1. Establish a robust process for automating a large number of mi-
croscopic scale 3D multiphysics simulations for the effective

transport coefficients and volumetric reaction current density in
electrode microstructures;

2. Construct surrogate models from the microscopic simulation data
using a design of experiments, and quantify the uncertainty in the
models using cross-validation methods;

3. Perform global sensitivity analysis to compare the relative impact
of multiple parameters and reduce or refine the parameter space
if possible;

4. Incorporate microstructural properties into the multi-scale model
by bridging the two length scales using the surrogate model.

The remainder of this article is organized as follows. First, we detail
the key steps to the multi-scale modeling methodology: microstructure
generation and meshing, multiphysics simulations at the microscopic
scale, and surrogate modeling. We then present the microscopic simu-
lation results and demonstrate some sample cases using the completed
multi-scale model. Finally, we offer a discussion of the key findings
and some concluding remarks on future research directions.

Methodology

The multi-scale model of the cell is illustrated in Figure 1. During
discharge, a current flows between two current collectors connected
to the negative electrode (anode) and positive electrode (cathode).
In order to balance the flow of electrons, positively charged lithium
ions travel from the anode through a porous separator to the cathode.
The anode is modeled in the same manner as existing macroscopic
homogeneous models, with transient lithium ion concentration calcu-
lated in a single spherical particle at each computational node; this
model is described in further detail in Appendix A. In contrast, micro-
scopic simulations are applied to microstructures in the cathode, and
this multi-scale treatment involves a much larger number of coupling
variables. Although it is possible to isolate the effect of the cathode by
modeling a half-cell (i.e., modeling the anode as lithium foil instead
of a graphite anode), we model a full cell to be consistent with our
objective of creating a model suitable for cell design, and in order
to obtain consistent simulation results with related work on surrogate
modeling and cell optimization. The inclusion of the anode does not
alter the results since it affects the multi-scale model the same as it
does the homogeneous model, but it does modestly increase the over-
all computational cost of the multi-scale model. In this section, we
present the three major aspects of the methodology: microstructure
generation, governing equations for the microscopic models, and the
surrogate modeling approach used to couple the two length scales.
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Figure 2. Numerical implementation of automated multi-scale modeling pro-
cedure.

A diagram illustrating the automated modeling and simulation pro-
cess is shown in Figure 2. Since this methodology involves the use
of two distinct computational environments, we make extensive use
of the MATLAB-COMSOL interface to automate the process. The
automation of the simulation process is essential due to the numerous
importing and exporting steps that would render manual iterations
impractical. Note that the processes in MATLAB are generally much
less computationally expensive than the finite element analysis (FEA)
in COMSOL, so the computational efficiency of the MATLAB en-
vironment is not of critical concern. Also note that while simulation
parameter values are selected to roughly correspond to properties of
lithium manganese oxide, the present methodology is suitable for
various electrode materials whose behavior is well described by di-
mensionless parameters for linear diffusion and conduction.’!

Microstructure generation and meshing.— Sample microstruc-
tures are generated based on the random packing of ellipsoidal par-
ticles. In the cases demonstrated here, a fixed number of monodis-
perse prolate ellipsoidal particles with AR = 2 are packed using an
efficient molecular dynamics (MD) algorithm implemented in For-
tran that contributes very little to the total computational cost of the
overall methodology due to the relatively small number of particles
considered.*> Although the MD model is capable of handling polydis-
perse particles, we consider only monodisperse particles since reliable
size and shape data for polydisperse particles are not available. The as-
pect ratio is selected to minimize intercalation-induced stress.® Three
different REV sizes (10 wm, 20 wm, 40 pm) are considered here, and
the number of particles is scaled with the volume of the REV (thus 10,
80, and 640 particles respectively). This approach allows an equiv-
alent particle size of approximately 5 um to be maintained at each
REV size.

In the MD simulation, particles are randomly initialized and al-
lowed to grow until either a specified packing density is achieved, or
a jamming condition is satisfied. The resulting geometry consists of
a cluster of particles that touch one another but do not overlap. Since
single-phase diffusion and conduction require the solid phase of the
microstructure to consist of a single contiguous object, an overlap
factor of 1.1 is uniformly applied to all particles. Note that the parti-
cle size cannot be controlled exactly with this method; nonetheless, in
practice a size variation of less than 10% is observed when the number
of particles is fixed.

The microscopic model considers a two-phase system, where the
volume occupied by the particles is modeled as active solid, and the
surrounding void is modeled as liquid electrolyte. Consequently, ad-
ditional phases such as binders and conductive additives are ignored,
although the effects of these phases are not ignored. Instead, they
are modeled via the bulk properties of the electrode materials; this is
similar to their treatment in the macroscopic model. Finally, to ensure
a robust method for defining boundary conditions on a large number
of sample microstructures, each REV must be defined in the same
cubic domain. This is accomplished by removing portions of the par-
ticle cluster protruding outside the cube. Readers interested in further
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Figure 3. Packing geometry (left) and voxel mesh (right) for sample REV
realization with 10 particles.

details of the microstructure generation algorithm are encouraged to
consult Refs. 30 and 33.

A Cartesian voxel method is implemented for all simulations, as it
has been found to be suitable for microscopic FEA.?* This method has
also been previously applied to other engineering problems, such as
investigation of biomechanical stress* and seismic ground motion.*
As shown in Figure 3, this method creates uniformly arranged rect-
angular mesh elements. One advantage of the voxel method is that
it is especially well suited for problems requiring a uniform mesh
quality throughout the computational domain. Another important ad-
vantage is robustness, since it is able to avoid highly stretched mesh
elements around sharp edges and corners (which occur frequently in
clusters of ellipsoidal particles) that cause problems for other meshing
techniques. A fixed mesh resolution of 0.5 wm is used for all simu-
lations, which corresponds to a mesh size of 8.0 x 10°, 6.4 x 10*
and 5.1 x 10° mesh elements for the 10 um, 20 wm and 40 um REV
cases, respectively. The same mesh resolution is applied to both solid
and liquid phases, and each voxel mesh element is assigned to the
phase that occupies the largest volume fraction within the voxel ele-
ment. This approach produces a solid-liquid interface that allows easy
implementation of boundary conditions.

Microscopic simulations.— In the macroscopic porous electrode
model, the effective diffusivity and conductivity in the liquid phase
are related to bulk values via the Bruggeman equation:

o_eff Keff D;ff

D* = = = — = Sa [1]
bulk bulk bulk
o K D;

where o and k denote the electronic conductivity in the solid and liquid
phase respectively, and D; is the ionic diffusivity in the liquid phase. A
value of a = 1.5, corresponding to an ideal sphere, is most commonly
used. As mentioned previously, a number of studies have confirmed
that the effective diffusivity and conductivity in real electrodes can
vary substantially from this approximation. This is because actual dif-
fusion and conduction depends not only on the porosity ¢, but also
on other parameters such as tortuosity. Accurate models for diffusion
and conduction are especially important for cells containing common
cathode materials like lithium manganese oxide, whose performance
has been shown to be determined by the scaling of dimensionless
parameters derived from electrode diffusivity and conductivity.’! To
develop a multi-scale treatment that more accurately models the ion
and electron transport in electrodes, we conduct microscopic simu-
lations on generated microstructures by solving the steady-state 3D
diffusion equation:

V- (D™V.0)=0 [2]

where the concentration c is the state variable for which the equation
is solved. Since the bulk transport coefficient D®* is independent of
the concentration c, this reduces to the Laplace equation:

Vie=0 [3]

Dirichlet (fixed concentration) boundary conditions are applied to
opposite ends of the REV. For simplicity, the values 0 and 1 are used
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for an REV of dimension L:

Cr=0 = 0 [4]

C=r =1 (3]

Since we only solve Equation 2 in one of the phases, no electro-
chemical reaction or transport is assumed to occur at the solid-liquid
interface. Therefore, the interface is modeled as an insulated wall.
From the computed steady-state solution, the effective diffusivity and
conductivity can be obtained by numerically integrating the concen-
tration gradient over an arbitrary cross-section in the normal direction.
For L = 1, this becomes
eff eff eff
pr= X _ D :/Vc~ﬁdA|z 6]
A

obulk Kbu]k D;ulk

In addition to the effective diffusivity and conductivity in the elec-
trodes, the interfacial electrochemical reaction rate is another quan-
tity with a homogenized treatment based on an idealized spherical
particle in the macroscopic model. The corresponding microscopic
simulations begin by simultaneously solving a set of four transport
equations, one for each state variable (ion concentration ¢ and electric
potential ¢) and in each phase (subscript 1 for solid and 2 for liquid):

V.- (cVe)=0 [7]

RT 3l
V. <—|<V(p2 - KT (1 + 3122;) = tﬁ)vmcz) -0 [8]
V~(—D1VC’1)=0 [9]

i - V0
A\ (—DzVC‘z) + T =0 [10]
Again, Dirichlet boundary conditions are applied at opposite ends of
the REV for all four state equations. The boundary conditions are
linearized based on the local concentration ¢, ; and its spatial gradient
in the axial direction:

1oy = ey, — L0 [11]
1,z=0 — C1,i 2 ox
L 861,'

=L =C1i + = — 12

Clz=L =C1,; T 3 ox [12]

Analogous forms of the boundary conditions are used for the other
state variables c,, ¢, and ¢,. To generate simulation data for con-
structing surrogate models, the boundary conditions in Equations 11
and 12 are selected using a design of experiments for the state vari-
ables; in the completed multi-scale model, they are defined by the
instantaneous, localized state variables from the macroscopic scale.
As in the effective transport simulations, the solid-liquid interface is
modeled as an insulated wall, effectively decoupling the governing
equations in the two phases. Finally, the solution of Equations 7-10
is used to calculate the localized electrochemical reaction flux jg,
along the interface based on Butler—Volmer kinetics:

Jaux = keI (e, — )™ BV(n) [13]

F F
BV(n) = (exp (mﬂ) —exp (‘ﬁﬂ)) [14]

where overpotential 1 is defined as the difference between the local
electric potential drop between the two phases, and the local open-
circuit potential Uyp:

n=¢ —$2— Uocp(cl) [15]
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Figure 4. Summary of governing equations in solid and liquid phase for sam-
ple REV realization with 10 particles.

Finally, the overall reaction current density is obtained by numerically
integrating the flux over the entire interface, and normalizing by the
total interfacial surface area:

F F
J== | (D\Ve)) -idA == jnux AA 16
VfAS(lcl)n V%jjﬂ [16]

Note that all governing equations are steady state, and thus these sim-
ulations represent a quasi-steady analysis. This quasi-steady simpli-
fication is necessary to allow for a large number of REV realizations
at a reasonable computational cost, and is justified given the rela-
tive length scales between the macroscopic and microscopic domains.
Since diffusion and conduction occur over a much smaller distance
in the REV than in the electrode, the transient effects can be reason-
ably ignored for multi-scale simulations at low to moderate cycling
rates. Given that the macroscopic length scale is about ten times larger
than the microscopic scale, the equivalent characteristic time scale for
diffusion and conduction in the microscopic domain is achieved at
one-tenth the cycling rate as that at the macroscopic scale, where we
consider a rate of C/10 to be close to steady-state. Therefore, the max-
imum cycling rate under which the quasi-steady assumption holds is
about 1C. The electrochemical kinetics are assumed to occur faster
than diffusion and conduction, and thus they are also subject to the
quasi-steady formulation. This assumption also implies that we ignore
the formation of surface film and other mechanisms that may influ-
ence electrochemical kinetics. Also note that the same justification
based on relative length scales can be made for the linearization of
the boundary conditions. Compared to transient analysis, quasi-steady
analysis provides a significant reduction in computational expense, as
well as an improvement in numerical stability and robustness, two im-
portant considerations when executing a large number of simulations.
Figure 4 illustrates the two phases and interface for a sample REV
realization, and the corresponding governing equations in each phase.
MATLAB is used as an interface for setting up the simulations, which
are them performed in COMSOL Multiphysics, a commercial FEM
software platform.
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Figure 5. Procedure for surrogate-based modeling and analysis.

Surrogate modeling.— 1It is insufficient to merely compute trans-
port and electrochemical properties for a large number of sample mi-
crostructures. To construct a multi-scale model for predicting the per-
formance of a lithium-ion cell, a systematic method for efficiently in-
corporating the simulation data into existing cell-level (macroscopic)
models is also required. Surrogate modeling, also known as response
surface modeling or metamodeling, is a suitable method for bridg-
ing the gap between the macroscopic and microscopic length scales.
A surrogate model is an approximation of the function being mod-
eled (surrogate function”), and is constructed using simulation data
(’training data”) acquired from a design of experiments.*® It can be
considered a generalized method for curve fitting in a multidimen-
sional parameter space.?’ Engineering applications of surrogate mod-
eling include the study of cativating fluid flow,® aircraft design,*
value-based optimization,*” stress in battery particles,*! and design of
battery electrodes.*>* In this section, we summarize the major com-
ponents of the surrogate modeling methodology, focusing on the areas
most relevant to the multi-scale model formulation.

As shown in Figure 5, the first step of the process is to create a de-
sign of experiments for the selected design or parameter space. Here,
we employ a combined Latin Hypercube Sampling (LHS) and two-
level face-centered composite design (FCCD) method. The FCCD
method is useful for sampling the faces and vertices of the param-
eter space, while the LHS method efficiently fills the interior using
stochastic stratified sampling.*

A set of simulations is then performed based on the design of
experiments, and a surrogate function J is used to approximate the true
function y for a vector of variables x. Two methods for accomplishing
this are considered: polynomial response surface (PRS) and kriging.
A PRS approximates the function as a combination of polynomial
basis functions:

) =D bifix) [17]

where the coefficients b; are computed using a least-squares regression
technique.

In contrast to PRS models, kriging models interpolate between
training data points that the model fits exactly, by introducing an
additional set of correlation basis functions® that act as a systematic
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departure Z(x):
YO0 =Y b fi(x) + Z(x) [18]

The systematic departure components are assumed to be correlated
as a function of the distance between the locations under considera-
tion, and the maximum likelihood estimation is used to determine the
parameter estimates.*® The DACE toolbox used to construct and eval-
uate surrogate models in this study includes a variety of correlation
function classes;*” Gaussian correlation functions are generally found
to offer the best accuracy for the microscopic simulation data and are
selected for the global sensitivity analysis.

Once a surrogate model has been constructed, it is important to
assess its accuracy by computing some error estimates. This is nec-
essary for evaluating the suitability of applying the surrogate model
for further analysis, for determining if domain refinement is required,
and for comparing multiple surrogate models. Various procedures for
error assessment have been proposed.*® In this study we consider
three error measures: the standard and adjusted coefficient of deter-
mination and (R? and R2, ; respectively), and the prediction error sum
of squares (PRESS). The coefficients of determination are computed
directly from the training data:

R = 1 = ZimO0) = 30" (1ol
2inix) —3)?

R —1-— R2N'°7_1 [20]
adj — Nr _ Nﬁ

Note that both R* and R;,; are always less than or equal to 1, and

that the equality condition 1s met when the surrogate approximation

¥ matches the true function value y exactly for all sampling points X.

Thus, a value closer to 1 indicates a more accurate surrogate model.

Also note that R?, ; includes a dependency on the number of sampling

points N, and is always less than R?> when the number of degrees of
freedom Ng exceeds 1. The other error measure, PRESS, is defined
as the sum of the "leave-one-out” prediction errors at all training data
points. This is the special k = 1 case of the more general “leave-k-
out” approach, where larger values of k are suitable for problems with
large N,.*> PRESS is computed by evaluating the prediction error at
a single point using a surrogate model constructed from all other data
points, and repeating this procedure over the entire data set:

NS

PRESS = NL > (yi - 9,-(’”)2 21]

¥ =1

One particularly useful application of surrogate modeling is global
sensitivity analysis (GSA), which quantifies the relative sensitivity of a
function to its various input variables.’® GSA is valuable for problems
involving many variables, as it can be used to reduce the problem size
by identifying variables with little impact. This has been demonstrated
for lithium-ion cell analysis using macroscopic models,?!*? and is also
highly relevant for multi-scale model development. Although GSA
can be performed without a surrogate model, the surrogate model
can be evaluated much more quickly than the true objective function,
since surrogate functions are analytically defined. This improvement
in computational efficiency allows GSA results to be computed much
faster, since the number of function evaluations required for GSA
scales exponentially with the number of variables.*® Here, we compute
sensitivity estimates using Sobol’s method of linear decomposition.’’
Further details of the GSA methodology are provided in
Appendix B.

Results and Discussion

Effective transport coefficients.— Using the automated simulation
procedure outlined in Figure 2, a total of 2462 REV realization cases
are simulated, which includes 2300 with 10 particles (10 pm), 130
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Figure 6. Comparison of porosity-tortuosity results for 2462 REV realizations
with Bruggeman equation and experiments.

with 80 particles (20 wm), and 32 with 640 particles (40 pm). This

number of realizations is selected to balance the available computa-

tional resources with the need for a large data set to ensure statistically

meaningful results. To compare the results to the Bruggeman equation

used in the macroscopic model, as well as experimental results in the

literature, the tortuosity t is calculated from the effective diffusivity

D* and porosity ¢:

bulk

Lo« [22]
D* Deft €

This equation is commonly used to study porosity and tortuosity, in

both experimental and numerical studies.>

Figure 6 compares the porosity-tortuosity relationship in the com-
puted results with the Bruggeman equation (t = £~%3) and two pro-
posed corrections based on experimental measurements by Kehrwald
et al.?! (1 = £7%97%) and simulations by Chung et al.?* (t = ¢7%8 for
inhomogeneous spherical particles). The Bruggeman equation under-
predicts the tortuosity, and thus overpredicts the effective diffusivity
and conductivity. The difference between the simulation results and
the Bruggeman equation also becomes greater at low porosity, where
the tortuosity is greatest. This confirms that the Bruggeman equa-
tion tends to overpredict the cell performance when implemented in
the macroscopic model. Although the majority of the REV realiza-
tions fall in a higher porosity range than the experimental samples,
good agreement in tortuosity is found between simulations and exper-
iments at common porosity levels. There is also good agreement in
the porosity-tortuosity relationship between the 80 particle and 640
particle cases, suggesting domain size independence beyond 80 parti-
cles. The microscopic simulation results generally fall between those
from the two aforementioned references; the differences suggest that
particle shape and size distribution, two factors not considered in the
present model, may significantly influence transport within porous
electrodes.

The same simulation results are plotted as effective diffusivity
against porosity in Figure 7. A proposed value of o = 1.681 is shown
to be able to model the normalized diffusivity with a coefficient of
determination of R?> = 0.894.

T T
Micro-scale simulations -

05F — D =¢"%" R?=0.8941
— — — Bruggeman
0.4 N

o
w

Normalized Diffusivity
o
N

0.1

I
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Porosity

Figure 7. Diffusivity-porosity results for 2462 REV realizations with pro-
posed transport model and Bruggeman equation.
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Table 1. Ranges of variables used in design of experiments for
surrogate modeling of reaction current density.

Parameter Minimum Maximum
cl 4.7 x 10° mol/m3 2.1 x 10* mol/m?
¢ 600 mol/m3 1000 mol/m?
o 3.0V 415V
® —10V 0
a1 —8.2 x 107 mol/m* 0
%o —6.5 x 10° mol/m* 0
ua) —40 V/m 0
39 —550 V/m 0

ax

Although this value is lower than is typical in surrogate modeling
studies, significant variation can be expected due to the random na-
ture of the microstructure generation and relatively small number of
particles in each REV. Note that a power law of the same form as the
Bruggeman equation is selected instead of a polynomial or any other
class of function, as it satisfies two important boundary conditions:

eff
D* | = Doy =1 [23]
e=1 Dbulk
D!_,=0 [24]

These two boundary conditions ensure that the results match the bulk
properties of the material, and that no transport occurs when no ma-
terial is available. It is important to note that although the effective
diffusivity and conductivity can vary considerably for a given poros-
ity level due to the orientation and positioning of the particles, these
fluctuations are dissipated over the larger domain of an entire elec-
trode. The statistical averaging of a large number of REV realizations,
and the relative length scales between the macroscopic and micro-
scopic models, allow porosity effects to outweigh local anomalies in
microstructure, and thus this modified treatment of effective transport
coefficients is independent of the cycling rate.

Interfacial electrochemical kinetics.— Recall that the local ion
concentration and electric potential, and their spatial derivatives, are
required as boundary conditions for the two-phase microscopic sim-
ulations. To properly map the output of the microscopic simulations
(the local reaction current density) to the macroscopic state variables,
the surrogate model must account for all four state variables and their
derivatives as inputs. We use a design of experiments that models
these state variables as independent input parameters to ensure that
the surrogate model accounts for the entire parameter space within the
electrode during cell operation. The corresponding ranges considered
in the design of experiments are summarized in Table 1.

This 8-parameter space is again populated with a combined FCCD
and LHS approach. An additional constraint on the overpotential v is
applied as a filter:

—01<n<0 [25]

This constraint is necessary to ensure that the exponential terms in
the Butler—Volmer equation do not become unbounded. As shown in
Figure 8, this constraint is not particularly restrictive as it signifi-
cantly exceeds the operational space within the cathode for a sample
discharge cycle at 16 A/m? (equivalent to 1C). The constraint also
serves the secondary purpose of reducing the number of sample simu-
lations required to train the surrogate model, and concentrating more
data points within the relevant part of the parameter space.

A total of 635 sampling points are selected in this design of ex-
periments; this same set of simulations is applied to each REV re-
alization. As in the effective transport simulations, differences in
microstructure can cause significant deviation in the results, so an
averaging of a statistically meaningful number of realizations is nec-
essary. However, since 635 simulations must be applied to each
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Figure 8. Overpotential distribution within anode and cathode during a sam-
ple 16 A/m? cell discharge; constraint space is highlighted in green.

realization, and since four transport equations must be solved simul-
taneously, the number of REV that can be considered at a reasonable
computational cost is much smaller. The surrogate model is trained
using data obtained from the averaging of 18 REV realizations with
porosity between 0.3995 and 0.4005 (although simulations at other
porosity levels are considered for GSA in the following section).
This narrow range is selected to facilitate comparisons between the
macroscopic and microscopic models. A sample result for one REV
realization at one point in the design of experiments is shown in
Figure 9.

A procedure for comparing the length scales is described as fol-
lows. A single cell discharge cycle (in this case, at a rate of 1C =
16 A/m?) is performed using the macroscopic homogeneous model,
and the reaction current density distribution within the cathode is
computed at specified time steps, in addition to the solution for all
other relevant state variables (local Li* ion concentration and electric
potential in both phases, and their spatial derivatives). A set of micro-
scopic simulations is then applied to 18 REV realizations using the
macroscopic state variables as boundary conditions, and the interfa-
cial reaction current density is computed at each sample in time and
space. Figure 10 compares the averaged results from the 18 realiza-
tions with those from the macroscopic mode, at three locations within
the cathode for every 60 seconds in a 3600-second cell discharge.

A clear difference can be observed between the results from the
two length scales, with the microscopic simulations generally exhibit-
ing greater variation than the homogenized equation. Note that the
total reaction current integrated over space and time are not equal,
because the microscopic simulations are sampled independently of
one another, and the coupling with the cell model is unidirectional.
The interfacial surface area is also different, as the homogenized equa-
tion is based on the surface area of an idealized sphere, whereas the
microscopic simulations use the area between the solid and liquid
phases. As a result, it appears that the total charge in the electrode is
not conserved; however, this issue is resolved when the bidirectional
coupling of length scales is completed in the multi-scale model.

Surrogate-based coupling of models.— Since the surrogate model
is used to bridge the scales in the multi-scale model, it is important to
assess the performance of the surrogate model. A kriging surrogate is
found to have the lowest normalized PRESS value of 7.5%, a value
that is sufficiently high that the microstructure information is likely
to be lost due to uncertainty in the surrogate. We thus apply GSA to
reduce the dimensionality of the surrogate.

The main and total sensitivity indexes are calculated by applying
Sobol’s method to the kriging model, and are plotted in Figure 11. It
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Figure 9. Sample simulation result for 10-particle case; colors represent ion
concentration and electric potential relative to maximum (red) and minimum
(blue) in Table 1.

is immediately apparent that the variation in reaction current density
is dominated by the magnitude of the two-phase electric potentials
¢; and ¢, and the solid-phase ion concentration c;. The dominant
effect of the electric potentials can be explained by the functional
form of the Butler—Volmer equation, in which the overpotential is
embedded in the exponential terms, while the ion concentration ap-
pears in the polynomial terms. Note that all four gradient terms are

T . T T ——
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€ 4L —o— Micro-scale (3D)
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Figure 10. Comparison of local reaction current density at 20% (top), 50%
(middle) and 80% (bottom) of cathode thickness, computed using macroscopic
(homogenized Butler-Volmer kinetics) and microscopic (3D simulations)
models.
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Figure 11. Sensitivity indexes calculated from kriging surrogate for reaction
current density (8 input variables).

found to have negligible impact, a result that can be explained by the
bounds in Table I, and by the application of boundary conditions in
Equations 11 and 12. The magnitude of the difference between the
boundary conditions tends to be much lower than the mean value
within the REV, which has dimension L = 10 x 107% = 10~ m. For
example, the variation in c¢; across the REV due to the spatial gradient
is at most 8.2 x 107 x 10~° = 8.2 x 10>mol/m?, which is 5% of the
¢ range considered in the design of experiments.

The global sensitivity indexes allow the surrogate model to be
reduced from 8 to 3 input variables, while simultaneously improving
the accuracy of the surrogate model by reducing the PRESS value from
7.5% to 3.9%. The accuracy of the surrogate model can be assessed
by using it to evaluate the reaction current density at the same points
as in Figure 10, and the results are plotted in Figure 12 along with the
micro-simulation data used to train the surrogate.

The surrogate model matches the microscopic simulations very
well until about = 3100 s, at which point the models start to sharply
deviate at all locations within the electrode. The reason for this devia-
tion is unclear, although it is likely due to one of the spatial gradients
being sampled outside the well defined parameter space. Since numer-
ical robustness is of critical importance in developing a multi-scale
model suitable for design optimization, the kriging model is insuffi-
cient despite its good accuracy prior to failing. Another limitation of
the kriging surrogate is that while it is a smooth function, its gradients

15 T T
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<
2 05 . 6090606 -
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0 | | . . . .
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Figure 12. Comparison of local reaction current density computed using mi-
croscopic simulations and kriging surrogate (3 input variables).
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Table II. Coefficients of 4th-order PRS for reaction current
density.

ko 104 ko —87.4 ko1 478
ko) 89.4 ki —298 k2 580
ko2 149 kia 697 ) -316
ko3 28656 ki3 364 ka1 271
ko4 16256 ) 257 kao 139

are not explicitly defined. Therefore, efficient solvers that require gra-
dients have significant difficulty converging to a solution due to poor
accuracy in gradient estimation. This problem has been documented
for a multi-scale model using non-smooth functions to couple the
length scales.* For these reasons, a PRS surrogate is selected instead,
since it has explicitly defined smooth gradients.

To construct the PRS, we note that the parameter space can be
further reduced by combining the two electric potentials ¢; and ¢,
into a single input to the surrogate as the overpotential . A PRS
function of order N for }'ﬂux with respect to two input variables ¢, and
1 can be written as a summation of basis functions:

N N
T = Z Zki,jCiT]j [26]

i=0 j=0

ki;=0ifi+j>N [27]

where the coefficients k; ; are determined using a least-squares re-
gression method for i + j < N. A fourth-order model (N = 4) is
found to have a coefficient of determination of R? = 0.948, and the
corrresponding coefficients are listed in Table I1.

Although higher order PRS fits are possible, the number of polyno-
mial terms increases dramatically, making the definition of analytical
derivatives a tedious process. An assessment of the surrogate model
accuracy can again be made by comparing the local reaction current
density profiles with those computed using the surrogate.

As shown in Figure 13, some differences between the surrogate
model and the microscopic simulation data can be observed, especially
in the early part of the discharge. However, the surrogate matches the
microscopic simulations much more closely toward the end of the dis-
charge, when the macroscopic and microscopic models diverge con-
siderably. This means that the surrogate model successfully bridges
the microscopic simulation data into the multi-scale model, despite
some of the microstructural information being lost due to limitations
in the surrogate model. Refinement of the parameter space to improve
the accuracy of the surrogate model would enhance the value of the
multi-scale model for cell-level analysis and optimization.

1.5 T T
20% of cathode thickness

T T T T T
—&— Macro (BV) —e— Micro (PRS) —e— Micro (3-D)

0 I I I I I I I
0 500 1000 1500 2000 2500 3000 3500

T T
50% of cathode thickness

Il Il Il Il Il Il
0 500 1000 1500 2000 2500 3000 3500

T T
80% of cathode thickness

I I I I
0 500 1000 1500 2000 2500 3000 3500
Time (s)

Figure 13. Comparison of local reaction current density computed using mi-
croscopic simulations and PRS surrogate (2 input variables).
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Figure 14. Cell voltage comparison of macroscopic and multi-scale models
for a single 16 A/m? discharge.

Finally, the multi-scale model is compared to the macroscopic
model at the cell level by plotting the cell voltage profiles for a single
discharge simulation. As shown in Figure 14, the two models produce
very similar results, with the multi-scale model giving a slightly lower
cell voltage due to the reduction in effective diffusivity and conductiv-
ity. This similarity indicates that the cell level performance depends
much more on the total amount of ions and electrons being transported
than their distribution within the electrodes. Comparable results are
also observed when the discharge rate is adjusted. The similarity of the
macroscopic and multi-scale simulation results may call into question
the value of developing the multi-scale model. However, it is impor-
tant to note that this had not been established prior to completing the
multi-scale model and obtaining the results. Therefore, the documen-
tation of the comparison between the macroscopic, microscopic and
surrogate models, and the quantification of the impact of such differ-
ences on the cell level performance, provide meaningful insights into
the relevant physics of the system. Furthermore, it is known that some
important phenomena, such as phase transition that causes dissolu-
tion of active solid in the electrolyte®* and capacity fade due to growth
of the solid-electrolyte interface (SEI),> are strongly dependent on
local conditions within the electrode. Since the present multi-scale
model does not consider these mechanisms, their influence on cell
performance cannot be assessed. Fortunately, the surrogate modeling
framework employed here can be readily extended to incorporate ad-
ditional microscopic models for these degradation mechanisms into
the multi-scale model, which would greatly expand the benefit of
applying the multi-scale model to cell and battery design.

Conclusions

In this section, we summarize the most significant contributions of
this work. First, we have successfully established a multi-scale model
that utilizes data from physics-based microscopic 3D models while
retaining the computational efficiency of existing macroscopic ho-
mogeneous models. Second, the microscopic simulation data provide
valuable insights into the physical phenomena that govern diffusion,
conduction, and electrochemical kinetics within electrode particles.
Third, we have demonstrated a general computational framework for
studying engineering problems at multiple scales using the surrogate
modeling methodology.

In the microscopic simulations, the effective ion diffusivity and
electronic conductivity in the porous cathode are related to their bulk
values, and the local interfacial reaction current density is modeled by
applying Butler—Volmer electrochemical kinetics locally to the com-
puted ion concentration and electric potential distributions in the two
phases. The electrode microstructure is simulated by randomly pack-
ing ellipsoidal particles to create REV realizations, and a robust voxel
method is employed for meshing. From the effective transport simu-
lation results, a modification to the Bruggeman equation (o = 1.68)
is established based on computed porosity-tortuosity relationships
and incorporated into the multi-scale model. This is accomplished by
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generating a statistically significant number of REV realizations and
averaging the results. The Bruggeman equation used in homogenized
models is found to consistently underpredict tortuosity in the porous
medium, and thus overpredict diffusivity and conductivity. This can
pose an important problem for batteries designed using simplified
models, in which the overpredictions in diffusivity and conductivity
lead to overpredictions in energy and power performance.

To model electrochemical kinetics, a PRS surrogate model with
respect to two variables (solid-phase ion concentration ¢; and overpo-
tential ) is selected as the coupling mechanism for bridging the length
scales to complete the multi-scale model. This method takes advan-
tage of the superior robustness and analytically defined gradients of
the PRS model, to avoid the added computational cost of explicitly
coupling the governing equations of the macroscopic and microscopic
models. The reaction current density is modeled as a quasi-steady so-
lution of diffusion and conduction in the solid and liquid phases with
Butler—Volmer kinetics at the interface. The number of input variables
to the PRS is reduced using GSA results with a kriging model.

It is important to note some promising directions for future ef-
forts. As previously discussed, the present multi-scale model does
not include degradation mechanisms and thus provides an incomplete
picture of the impact of microstructure oncell performance. The in-
clusion of validated models for phase transition and SEI growth in
future iterations of the model is of critical importance since cycle life
is a principal concern in the design of batteries for high-power appli-
cations such as electric vehicles. It is also important that a multi-scale
treatment be extended in both electrodes, since important processes
such as capacity fade are known to occur in the anode.® Another
goal would be to apply the established multi-scale model to assess the
impact of varying the microstructure on the cell-level performance,
especially since only a narrow porosity range is sampled for the elec-
trochemical kinetics simulations.

The surrogate modeling methodology is a well suited numerical
tool for realizing these objectives, each of which represents a ma-
jor step toward achieving higher performance batteries using high-
fidelity, efficient computational models. Finally, the present micro-
scopic modeling methodology aims to generate realistic microstruc-
tures without any attempt to tailor the microstructure for directional
diffusion or interfacial surface area. Recent advances in the design of
piezoelectric ceramic microstructures hold significant promise if sim-
ilar techniques can be extended to battery electrode materials.’’ The
development of accurate modeling capabilities for arbitrary classes of
microstructures (including those with polydisperse or non-ellipsoidal
particles) would represent another critical step toward designing new
high-capacity materials capable of further improving energy and
power density.
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Appendix A
Macroscopic Cell Model

The multi-scale uses a COMSOL Multiphysics implementation of the pseudo-2D
model based on porous electrode theory.!*!> It is called pseudo-2D because it mod-
els lithium ion and electric potential distributions along an axial dimension across the
thickness of the cell, while accounting for the effect of particle size by applying the su-
perposition principle to introduce a radial pseudo-dimension at each computational node
to compute the rate of ion diffusion within a spherical pseudo-particle. Along the axial
dimension, the electric potential distribution in the solid and liquid phases is modeled
using steady transport equations:

V- (Vo) —-J =0 [A1]

V- (V) + V- (kpV(Iney)) + J =0 (A2]
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The axial dimension also models transient lithium ion diffusion in the liquid phase:

. -0 _ - BV
@5 =V (D Vey) + V- [A3]

At the interfaces between electrodes and current collectors, fixed boundary conditions are
applied:

3(‘2

—I;

Vo= —= (A4]
oV, =0 [AS]
Ve, =0 [A6]

Note that all three equations in the axial dimension involve an effective transport coef-
ficient, which is calculated from bulk properties using the Bruggeman equation 1. The
second radial dimension models the time-dependent ion concentration distribution within

spherical particles:
dcy 1 0 ,0c]
— == —|Dir'— A7
at r2 or ( oy ) (A7)

Boundary conditions for the temporal and spatial dimensions are applied at the center and
surface of the sphere, respectively:

Gl
- [AS]
at r=0

ac i

ot r=Rr, F

The solid and liquid phases are coupled via the Butler—Volmer equation, applied to the

the surface area a;:
J =ayi F F [A10]
=@\ XP\ Spr ") TP\ TR "

a = [Al1]
Ry
Appendix B

Global Sensitivity Analysis

GSA is a method for quantifying the relative sensitivity of a function to each of its
input variables, which can provide useful insights into the nature of the parameter space
and allow the problem size to be reduced by identifying variables with little impact. Global
sensitivity indexes are computed using Sobol’s method.”! The surrogate function f can
be decomposed as a linear combination of functions of subspaces of the parameter space,
also known as additive functions:

FE = fo+ D fi)+ D fij i X))+ oo fron (61, s X)) [B1]
i i<j

where N, is the number of input variables in X. The total variance V (f) is defined as the

expected value of the square of the summation of all non-zero order additive functions,

and can also be expressed as a sum of partial variances of individual variables and

combinations of variables:

Ny

VH=Y Vit D Vi+.t Vi, [B2]

i=1 i<j
The partial variances are in turn defined in terms of the expected value of the additive

functions:

Vi = V(E(fxi)
Vij = V(E(flxi,xj)) = Vi = V; [B3]

The expected values E of the additive functions and their variances can be expressed as
integrals of the additive functions:

1
E(f1x)i :/0 Sedx; [B4]

1
V(E(f1x) = /0 fldx; [BS]

These integrals are estimated using various numerical approximations; we use a five-point
Gauss quadrature scheme. The partial variances can then be used to compute main and
total sensitivity indexes:
Vi
400

Su.i [B6]
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Zj#i Vij

Spi= Sy +=H Y
TS

[B7]

Note that the main index Sy ; and total index Sr; are always normalized between 0 and 1,
and that S7; > Sy ;. The difference between the two is the effect of cross-terms between
multiple variables.

References
1. M. Armand and J.-M. Tarascon, Nature, 451, 652 (2008).
2. V. Ramadesigan, R. N. Methekar, F. Latinwo, R. D. Braatz, and V. R. Subramanian,

J. Electrochem. Soc., 157, A1328 (2010).
3. S.De, P. W. C. Northrop, V. Ramadesigan, and V. R. Subramanian, J. Power Sources,
227, 161 (2012).
. N. Xue, W. Du, A. Gupta, W. Shyy, A. M. Sastry, and J. R. R. A. Martins, J. Elec-
trochem. Soc., 160, A1071 (2013).
. S. Golmon, K. Maute, and M. L. Dunn, J. Power Sources, 253, 239 (2014).
. X. Zhang, W. Shyy, and A. M. Sastry, J. Electrochem. Soc., 154, A910 (2007).
. W. Luo, C. Lyu, L. Wang, and L. Zhang, J. Power Sources, 241, 295 (2013).
. P. Ramadass, B. Haran, R. White, and B. N. Popov, J. Power Sources, 123, 230
(2003).
9. R.E. Garcia, Y.-M. Chiang, W. C. Carter, P. Limthongkul, and C. M. Bishop, J.
Electrochem. Soc., 152, A255 (2005).
10. C.-W. Wang and A. M. Sastry, J. Electrochem. Soc., 154, A1035 (2007).
11. B.Y.Liaw, G. Nagasubramanian, R. G. Jungst, and D. H. Doughty, Solid State Ionics,
175, 835 (2004).
12. X. Hu, S. Li, and H. Peng, J. Power Sources, 198, 359 (2012).
13. V. Ramadesigan, P. W. C. Northrop, S. De, D. Santhanagopalan, R. D. Braatz, and
V. R. Subramanian, J. Electrochem. Soc., 159, R31 (2012).
14. T. E Fuller, M. Doyle, and J. Newman, J. Electrochem. Soc., 141, 1 (1994).
15. M. Doyle, J. Newman, A. S. Gozdz, C. N. Schmutz, and J.-M. Tarascon, J. Elec-
trochem. Soc., 143, 1890 (1996).
16. Y. Dai, L. Cai, and R. E. White, J. Power Sources, 247, 365 (2014).
17. C. L. Cobb and M. Blanco, J. Power Sources, 249, 357 (2014).
18. N. Xue, W. Du, T. A. Greszler, W. Shyy, and J. R. R. A. Martins, Applied Energy,
115, 591 (2014).
19. V. Ramadesigan, V. Boovaragavan, J. C. Pirkle, and V. R. Subramanian, J. Elec-
trochem. Soc., 157, A854 (2010).
20. P. W. C. Northrop, V. Ramadesigan, S. De, and V. R. Subramanian, J. Electrochem.
Soc., 158, A1461 (2011).
21. D. Kehrwald, P. R. Shearing, N. P. Brandon, P. K. Sinha, and S.J. Harris, J. Elec-
trochem. Soc., 158, A1393 (2011).
22. K. K. Patel, J. M. Paulsen, and J. Desilvestro, J. Power Sources, 122, 144 (2003).
23. A. Vadakkepatt, B. L. Trembacki, S. R. Mathur, and J. Y. Murthy, in ASME 2013
Heat Transfer Summer Conference collocated with the ASME 2013 7th International
Conference on Energy Sustainability the ASME 2013 11th International Conference
on Fuel Cell Science Engineering Technology, p. VO03T21A016-V003T21A016,
American Society of Mechanical Engineers (2013).
24. A. Gupta, J. H. Seo, X. Zhang, W. Du, A. M. Sastry, and W. Shyy, J. Electrochem.
Soc., 158, A487 (2011).
25. A. A. Franco, RSC Adv., 3, 13027 (2013).
26. A. Awarke, S. Lauer, M. Wittler, and S. Pischinger, Comp. Mat. Sci., 50, 871 (2011).
27. X. Xiao, W. Wu, and X. Huang, J. Power Sources, 195, 7649 (2010).
28. S. Golmon, K. Maute, and M. L. Dunn, Comp. & Struct., 87, 1567 (2009).
29. S. Golmon, K. Maute, and M. L. Dunn, Int. J. Num. Meth. Eng., 92, 475 (2012).
30. W. Du, PhD thesis, University of Michigan (2013).
31. W.Du, N. Xue, A. M. Sastry, J. R. R. A. Martins, and W. Shyy, J. Electrochem. Soc.,
160, A1187 (2013).
32. A. Donev, S. Torquato, and F. H. Stillinger, J. Comp. Phys., 202, 765 (2005).
33. A. Donev, S. Torquato, and F. H. Stillinger, J. Comp. Phys., 202, 737 (2005).
34. S.J. Hollister, J. M. Brennan, and N. Kikuchi, J. Biomech., 27, 433 (1994).
35. K. Koketsu, H. Fujiwara, and Y. Ikegami, Pure and Applied Geophysics, 161, 2183
(2004).
36. D. C. Montgomery and R. H. Myers, Response surface methodology: process and
product optimization using designed experiments (1995).
37. W. Shyy, Y.-C. Cho, W. Du, A. Gupta, C.-C. Tseng, and A. M. Sastry, Acta Mech.
Sinica, 27, 845 (2011).
38. C.-C. Tseng and W. Shyy, Int. J. Heat and Mass Transfer, 53, 513 (2010).
39. R.P. Liem, C. A. Mader, E. Lee, and J. R. R. A. Martins, in /3th AIAA Aviation
Technology Integration, Operations Conference (2013).
40. R.Moore, D. A. Romero, and C. J. J. Paredis, in Proceedings of ASME International
Design Engineering Technical Conferences (2011).
41. X.Zhang, A. M. Sastry, and W. Shyy, J. Electrochem. Soc., 155, A542 (2008).
42. W. Du, A. Gupta, X. Zhang, A. M. Sastry, and W. Shyy, Int. J. Heat and Mass
Transfer, 53, 3552 (2010).
43. W.Du, N. Xue, A. Gupta, A. M. Sastry, J. R. R. A. Martins, and W. Shyy, Acta Mech.
Sinica, 29, 335 (2013).
44. M. D. McKay, R. J. Beckman, and W. J. Conover, Technometrics, 21, 239 (1979).
45. D.R.Jones, J. Global Optim., 21, 345 (2001).
46. J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Stat. Sci., 4, 409 (1989).
47. S.N. Lophaven, H. B. Nielsen, and J. Sondergaard, Dace-a matlab kriging toolbox,
version 2.0. Technical report (2002).
48. N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and K. P. Tucker,
Prog. in Aero. Sci., 41, 1 (2005).

~

002N W

Downloaded on 2014-04-11 to IP 141.213.169.232 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).


http://dx.doi.org/10.1038/451652a
http://dx.doi.org/10.1149/1.3495992
http://dx.doi.org/10.1016/j.jpowsour.2012.11.035
http://dx.doi.org/10.1149/2.036308jes
http://dx.doi.org/10.1149/2.036308jes
http://dx.doi.org/10.1016/j.jpowsour.2013.12.025
http://dx.doi.org/10.1149/1.2759840
http://dx.doi.org/10.1016/j.jpowsour.2013.04.129
http://dx.doi.org/10.1016/S0378-7753(03)00531-7
http://dx.doi.org/10.1149/1.1836132
http://dx.doi.org/10.1149/1.1836132
http://dx.doi.org/10.1149/1.2778285
http://dx.doi.org/10.1016/j.ssi.2004.09.049
http://dx.doi.org/10.1016/j.jpowsour.2011.10.013
http://dx.doi.org/10.1149/2.018203jes
http://dx.doi.org/10.1149/1.2054684
http://dx.doi.org/10.1149/1.1836921
http://dx.doi.org/10.1149/1.1836921
http://dx.doi.org/10.1016/j.jpowsour.2013.08.113
http://dx.doi.org/10.1016/j.jpowsour.2013.10.084
http://dx.doi.org/10.1016/j.apenergy.2013.10.044
http://dx.doi.org/10.1149/1.3425622
http://dx.doi.org/10.1149/1.3425622
http://dx.doi.org/10.1149/2.058112jes
http://dx.doi.org/10.1149/2.058112jes
http://dx.doi.org/10.1149/2.079112jes
http://dx.doi.org/10.1149/2.079112jes
http://dx.doi.org/10.1016/S0378-7753(03)00399-9
http://dx.doi.org/10.1149/1.3560441
http://dx.doi.org/10.1149/1.3560441
http://dx.doi.org/10.1039/c3ra23502e
http://dx.doi.org/10.1016/j.commatsci.2010.10.024
http://dx.doi.org/10.1016/j.jpowsour.2010.06.020
http://dx.doi.org/10.1016/j.compstruc.2009.08.005
http://dx.doi.org/10.1002/nme.4347
http://dx.doi.org/10.1149/2.069308jes
http://dx.doi.org/10.1016/j.jcp.2004.08.025
http://dx.doi.org/10.1016/j.jcp.2004.08.014
http://dx.doi.org/10.1016/0021-9290(94)90019-1
http://dx.doi.org/10.1007/s00024-004-2557-7
http://dx.doi.org/10.1007/s10409-011-0522-0
http://dx.doi.org/10.1007/s10409-011-0522-0
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.09.005
http://dx.doi.org/10.1149/1.2926617
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.04.017
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.04.017
http://dx.doi.org/10.1007/s10409-013-0039-x
http://dx.doi.org/10.1007/s10409-013-0039-x
http://dx.doi.org/10.1080/00401706.1979.10489755
http://dx.doi.org/10.1023/A:1012771025575
http://dx.doi.org/10.1214/ss/1177012413
http://dx.doi.org/10.1016/j.paerosci.2005.02.001
http://ecsdl.org/site/terms_use
http://ecsdl.org/site/terms_use

E3096

. M. Meckesheimer, A. J. Booker, R. R. Barton, and T. W. Simpson, AIAA J., 40, 2053
(2002).

. A. Saltelli, S. Tarantola, and K. P.-S. Chan, Technometrics, 41, 39 (1999).

. L. M. Sobol, Math. Comp. Sim., 55, 271 (2001).

. B. Vijayaraghavan, D. R. Ely, Y.-M. Chiang, R. Garcia-Garcia, and R. E. Garcia, J.
Electrochem. Soc., 159, A548 (2012).

. D.-W. Chung, M. Ebner, D. R. Ely, V. Wood, and R. E. Garcia, Model. Sim. Mat. Sci.
Eng., 21, 074009 (2013).

54.

55.

Journal of The Electrochemical Society, 161 (8) E3086-E3096 (2014)

J. Vetter, P. Novak, M. R. Wagner, C. Veit, K.-C. Moller, J. O. Besenhard, M. Winter,
M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche, J. Power Sources, 147, 269
(2005).
A. Awarke, S. Pischinger, and J. Ogrzewalla, J. Electrochem. Soc., 160, A172
(2013).

. R. Spotnitz, J. Power Sources, 113, 72 (2003).
. S.-B. Lee, T. S. Key, Z. Liang, R. E. Garcia, S. Wang, X. Tricoche, G. S. Rohrer,

Y. Saito, C. Ito, and T. Tani, J. Euro. Ceramic Soc., 33, 313 (2012).

Downloaded on 2014-04-11 to IP 141.213.169.232 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).


http://dx.doi.org/10.2514/2.1538
http://dx.doi.org/10.1080/00401706.1999.10485594
http://dx.doi.org/10.1016/S0378-4754(00)00270-6
http://dx.doi.org/10.1149/2.jes113224
http://dx.doi.org/10.1149/2.jes113224
http://dx.doi.org/10.1088/0965-0393/21/7/074009
http://dx.doi.org/10.1088/0965-0393/21/7/074009
http://dx.doi.org/10.1016/j.jpowsour.2005.01.006
http://dx.doi.org/10.1149/2.022302jes
http://dx.doi.org/10.1016/S0378-7753(02)00490-1
http://dx.doi.org/10.1016/j.jeurceramsoc.2012.08.015
http://ecsdl.org/site/terms_use
http://ecsdl.org/site/terms_use

