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Abstract

With recent advances in high performance computing, computational fluid dynamics (CFD) modeling has become
an integral part in the engineering analysis and even in the design process of marine vessels and propulsors. In
aircraft wing design, CFD has been integrated with numerical optimization and adjoint methods to enable high-fidelity
aerodynamic shape optimization with respect to large numbers of design variables. There is a potential to use some
of these techniques for maritime applications, but there are new challenges that need to be addressed to realize that
potential. This work presents a solution to some of those challenges by developing a CFD-based hydrodynamic shape
optimization tool that considers cavitation and a wide range of operating conditions. A previously developed 3-D
compressible Reynolds-averaged Navier–Stokes (RANS) solver is extended to solve for nearly incompressible flows,
using a low-speed preconditioner. An efficient gradient-based optimizer and the adjoint method are used to carry out
the optimization. The modified CFD solver is validated and verified for a tapered NACA 0009 hydrofoil. The need
for a large number of design variables is demonstrated by comparing the optimized solution obtained using different
number of shape design variables. The results showed that at least 200 design variables are needed to get a converged
optimal solution for the hydrofoil considered. The need for a high-fidelity hydrodynamic optimization tool is also
demonstrated by comparing RANS-based optimization with Euler-based optimization. The results show that at high
lift coefficient (CL) values, the Euler-based optimization leads to a geometry that cannot meet the required lift at the
same angle of attack as the original foil due to inability of the Euler solver to predict viscous effects. Single-point
optimization studies are conducted for various target CL values, and compared with the geometry and performance
of the original NACA 0009 hydrofoil, as well as with the results from a multipoint optimization study. A total of
210 design variables are used in the optimization studies. The optimized foil is found to have a much lower negative
suction peak, and hence delayed cavitation inception, in addition to higher efficiency, compared to the original foil at
the design CL value. The results show significantly different optimal geometry for each CL, which means an active
morphing capability was needed to achieve the best possible performance for all conditions. For the single-point
optimization, using the highest CL as the design point, the optimized foil yielded the best performance at the design
point, but the performance degraded at the off-design CL points compared to the multipoint design. In particular,
the foil optimized for the highest CL showed inferior performance even compared to the original foil at the lowest
CL condition. On the other hand, the multipoint optimized hydrofoil was found to perform better than the original
NACA 0009 hydrofoil over the entire operation profile, where the overall efficiency weighted by the probability of
operation at each CL, is improved by 14.4%. For the multipoint optimized foil, the geometry remains fixed through
out the operation profile and the overall efficiency was only 1.5% lower than the hypothetical actively morphed foil
with the optimal geometry at each CL. The new methodology presented herein has the potential to improve the design
of hydrodynamic lifting surfaces such as propulsors, hydrofoils, as well as hulls.

Keywords: shape optimization, high-fidelity, gradient-based optimization, cavitation, single-point optimization,
multipoint optimization, hydrofoil, propulsor.

Nomenclature

α Angle of attack, [o]

@ Cell volume, [m3]

νf Fluid kinematic viscosity, [m2{s]
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ρf Fluid density, [kg{m3]

σ Cavitation number, σ �
Pref�Pvap

0.5ρfV 2 [�]

τw Local wall shear stress, [N{m2]

A Foil planform area, [m2]

a Speed of sound in the fluid, [m{s]

c Foil chord length, [m]10

CD Drag coefficient, CD � D
0.5ρfV 2A [�]

Cf Skin friction coefficient, Cf � τw
0.5ρfV 2 [�]

CL Lift coefficient, CL � L
0.5ρfV 2A [�]

CL{CD Efficiency or lift to drag ratio, [�]

Cp Coefficient of pressure, Cp �
Plocal�Pref
0.5ρfV 2 [�]

D Drag force, [N ]

L Lift force, [N ]

M Mach number: the ratio between the inflow velocity and the speed of sound, M � V {a [�]

Plocal Local absolute pressure, [Pa]

Pref Absolute hydrostatic pressure upstream, [Pa]20

Pvap Saturated vapor pressure of the fluid, [Pa]

Re Reynolds number: the ratio between the fluid inertial force and fluid viscous force, Re � V c{νf [�]

t Foil thickness, [m]

u1, u2, u3 Velocity along the x, y and z direction, [m{s]

V Inflow velocity, [m{s]

S Vector of state variables in SUMad

CFD Computational fluid dynamics

FFD Free-form deformation

RANS Reynolds-averaged Navier–Stokes

1. Introduction30

In recent years, there has been an increasing interest in developing energy efficient marine propulsors due to in-
creasing fuel prices and desire to reduce the environmental impacts of maritime transportation. The latest amendments
to the International Convention for the Prevention of Pollution from Ships (MARPOL) mandates an increasingly strin-
gent Energy Efficiency Design Index (EEDI) score for majority of new vessels. As per the International Council of
Clean Transportation (ICCT), the amendments require most new ships to be 10% more efficient beginning in 2015,
20% more efficient by 2020, and 30% more efficient by 2025. Since the propulsor plays a significant role in the system
efficiency, there is greater interest in optimization of the propulsor geometry to reduce the net fuel consumption. This
work presents a high-fidelity shape optimization tool for hydrodynamic lifting surfaces, capable of handling a large
number of design variables and a wide range of operating conditions efficiently.
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As noted by Kerwin [1], marine propulsors have complex geometries. Hence, a large number of design variables40

are required to parametrize their shape. The same is true for other lifting surfaces such as planing vessels, sails,
turbines, rudders, hydrofoils, wings, and control surfaces. The hydrodynamic performance of the lifting surfaces is
highly sensitive to changes in the surface geometry, particularly at the leading edge, trailing edge, and tip regions. Care
is needed in the design to prevent or control laminar to turbulent transition, separation, and cavitation. In particular,
cavitation can occur for hydrodynamic lifting surfaces operating at high speeds, near the free surface, or both, which
can lead to undesirable effects such as performance decay, erosion, vibration, and noise. Thus, design optimization
tools must also be able to enforce constraints to avoid, delay, or control cavitation. Most of the studies carried out so far
for hydrofoil or propeller design optimization studies either (1) used potential flow solvers or (2) used Computational
Fluid Dynamics (CFD) techniques with a low number of design variables. Thus, there is a need for a high-fidelity
CFD-based design optimization tool, capable of handling large number of design variables efficiently to accommodate50

the complex 3-D geometry and the complex physics of marine propulsors that cannot be captured using Euler or
potential flow solvers, such as transition, separation, and stall.

A range of maritime design optimization tools exists in literature. However, as explained earlier, they either used
low-fidelity methods, or used high-fidelity methods with low number of design variables. Ching–Yeh Hsin [2] studied
two-dimensional (2-D) foil sections using a panel method assuming potential flow. They later performed RANS-based
optimization for a 2-D hydrofoil using the Lagrange multiplier method for the optimization of the foil section [3].
Only two design variables were considered: the angle of attack and the camber ratio. Cho et al. [4] carried out an
aerodynamic propeller blade shape optimization using a lifting line theory and a 3-D lifting surface theory. They used
the twist angle and the chord length as design variables for the lifting line method, and the panel node points as design
variables for the 3-D lifting surface method. With optimization, they found a slight increase in efficiency for the SR-760

Propfan blade and the SR-3 Propfan blade. Recently, several authors carried out high-fidelity hydrodynamic shape
optimization for naval vehicles and catamarans [5, 6]; they used gradient-free methods, which limited the number of
design variables to less than 15 due to the large number of function evaluations compounded with the computational
cost of high-fidelity solvers.

The challenge of performing shape optimization with respect to large numbers of design variables using CFD
has been tackled in the aircraft wing design through the use of gradient-based algorithms together with efficient
methods for computing the required gradients [7, 8, 9, 10, 11]. As an example, Lyu et al. [12] carried out gradient-
based aerodynamic shape optimizations based on the RANS equations. They used the adjoint method to compute
the gradients and carried out the shape optimization of the Common Research Model (CRM) wing. They minimized
the drag coefficient subject to lift, pitching moment, and geometric constraints. The optimization reduced the drag70

coefficient by 8.5% for a given lift coefficient. They also showed that the 192 design variables provides the best trade-
off between the optimized drag value and the number of iterations required for optimization. While this approach has
been successfully applied in aircraft wing design, maritime applications bring additional challenges such as higher
loading, stronger fluid structure interaction, as well as the potential susceptibility to free-surface, cavitation, and
hydroelastic instabilities.

Traditionally, marine propulsors or hydrofoils are designed to achieve optimal performance at a single or only
at a few design points, such as, the hump speed, the sustained speed, and the maximum speed. However, depending
on the mission objectives, loading conditions, sea states, and wind conditions, a vessel is often required to operate
over a wide range of conditions. It is also well known that the performance of some marine propulsors can decay
rapidly at off-design points. Nevertheless, many designers still only optimize the propulsor geometry for optimal80

performance at one design point, and then evaluate the performance at the other critical operating points to ensure
satisfactory performance. Such procedure is typically taken because of the high computational cost associated with
the multipoint optimization, particularly for complex geometries and with high fidelity methods, but may not yield
the global optimal solution. Motley et al. [13] introduced a probabilistic multipoint method to optimize composite
marine propellers to minimize the lifetime fuel cost (LFC), while avoiding cavitation and material failure. Kramer et
al. [14] used a similar probabilistic multipoint approach to optimize the diameter of a water-jet for maximum overall
system efficiency of a surface effect ship (SES). They found a slight increase in lifetime efficiency for the multipoint
optimized design compared to the single-point design. Various other researchers (e.g. [15, 16, 17]) also showed that
the probabilistic multipoint design can lead to improved performance over the vessel’s entire operation profile, instead
of at a single design point. However, the above mentioned probabilistic multipoint optimization has been done only90

with low-fidelity potential flow solvers, primarily due to the high computational cost with high-fidelity methods for
multipoint optimization. In this work, using the efficient high-fidelity design optimization tool developed in this
paper, the optimal solution from the single-point optimization and the probabilistic multipoint optimization will be
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systematically studied.
To avoid performance decay, erosion, vibration, and noise issue when operating at sea, designers should make

sure that the propulsors does not only have good efficiency, but also has good cavitation characteristics, for a range of
angle of attacks (or lift coefficients). Cavitation is the formation of bubbles in a liquid, which occurs when the local
pressure drops to near the saturated vapor pressure, and is a critical driver in marine propulsor design. Brockett [18]
presented one of the first studies optimizing hydrofoil performance while considering cavitation. He used a potential
theory to determine pressure distribution at an arbitrary lift coefficient for a set incidence angle. He was able to100

find an optimized cavitation-free hydrofoil for a given design lift coefficient, minimum thickness (based on strength
considerations), minimum operation cavitation number (σ), for an expected range of angle of attacks. Eppler and
Shen [19, 20] used a 2-D potential flow-based, inverse wing section design method coupled with turbulent boundary-
layer theory to design a series of symmetrical and asymmetrical hydrofoil sections with improved hydrodynamic
characteristics in terms of delayed cavitation inception and separation. The width and depth of the minimum pressure
cavitation bucket was adapted to practical applications. The depth of the cavitation-bucket, namely, the minimum
value of �Cp, is made as low as necessary to delay the critical cavitation inception speed; the bucket width is made as
large as possible to tolerate the fluctuations in the angle of attack or lift coefficient when operating at sea. Kinnas et
al. [21] developed an efficient, non-linear boundary element method (BEM) to carry out potential analysis of 2-D and
3-D cavitating hydrofoils. Mishima et al. [22] used the low-order potential-based panel method developed in Kinnas et110

al. [23]. Mishima et al. [22] carried out a gradient-free optimization to find the optimized foil geometry that minimizes
the drag for a given lift and cavitation number, with constraint on maximum cavity length and cavity volume. The
influence of viscous effects were considered by applying a constant friction coefficient over the wetted foil surface.
Only five design variables were used in their optimization study, and the method is only valid for cases at low to
moderate angles of attack due to the potential flow assumption. Zeng et al. [24] developed a design technique using a
genetic algorithm to optimize 2-D sections, and used a potential flow-based lifting surface method to incorporate the
2-D section for 3-D propeller blade design.

Given the state-of-the-art just described, most of the previous optimization studies were either based on the poten-
tial flow methods, which are not valid for off-design conditions when transition, separation, or stall develops, or based
on CFD simulations using very few design variables. Thus, there is a need for an efficient, high-fidelity 3-D design120

optimization tool that can handle a large number of design variables, enforce constraints to avoid or delay cavitation,
and resolve complex viscous, and turbulent flows.

1.1. Objectives

The objective of this work is to present an efficient, high-fidelity hydrodynamic shape optimization tool for 3-D
lifting surfaces operating in viscous and nearly incompressible fluids, with consideration for cavitation and over a
range of operating conditions. An unswept, tapered NACA 0009 hydrofoil is presented as a canonical representation
of more complex lifting surfaces like propellers, turbines, rudders, and dynamic positioning devices.

1.2. Organization

This section gives a brief overview of layout for the paper. The optimization algorithm is explained in Section 2,
with emphasis on the implementation of the low-speed (LS) preconditioner (in Section 2.1) and the development of130

cavitation constraint (in Section 2.5). Section 3 defines the detailed model setup (Section 3.1), with the convergence
behavior, the validation of the implemented LS preconditioner with experimental measurements [25], and the grid
convergence study (in Section 3.2, 3.3 and 3.4). Section 3.5 shows the optimization problem setup used to generate
the results shown in Section 4. Section 4.1 investigates the influence of number of design variables on the optimal
solution. Section 4.2 investigates the difference between the optimal solution obtained using the Euler equations and
the RANS equations. Section 4.3 compares the performance of the original NACA 0009 hydrofoil with the single-
point optimized solution at various design CL points with 210 shape design variables. Section 4.4 compares the
performance of the single-point optimized foil with the multipoint optimized foil through a wide range of operating
conditions. Conclusions are presented in Section 5 and recommendations for future work are presented in Section 6.

2. Methodology140

The tool used for optimization is modified from the Multidisciplinary Design Optimization (MDO) of Aircraft
Configurations with High-fidelity (MACH) [26, 27]. The MACH framework has the capability of performing static
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aeroelastic (aerostructural) optimization that consists of aerodynamic shape optimization and structural optimization.
In this work, the MACH framework is extended for hydrodynamic shape optimization of lifting surfaces in viscous and
nearly incompressible flows, with consideration for cavitation. While the structural performance is very important, the
focus of this work is to present state-of-art hydrodynamic shape optimization. The hydrodynamic optimization tool
can be divided into four components: CFD solver, geometric parametrization, mesh perturbation, and optimization
algorithm. The formulation of cavitation constraint is described in Section 2.5.

2.1. CFD Solver

The flow is assumed to be governed by the 3-D compressible Reynolds-averaged Navier–Stokes (RANS) equa-150

tions without body forces, which can be written as,

Bρf
Bt

�
B

Bxj
rρfujs � 0 (1)

Bρfui
Bt

�
B

Bxj
rρfuiuj � pδij � τijs � 0 (2)

BE

Bt
�

B

Bxj
rEuj � puj � qj � uiτijs � 0 (3)

where i, j � 1, 2, 3; u1, u2, and u3 are the velocity along x, y, and z directions, respectively; ρf is the fluid
density; p is the fluid pressure; E is the fluid energy; τij is the fluid shear stress tensor; δij is the Kronecker delta; and
qi is the fluid heat flux vector. The definition of the coordinates are shown in Figure 1.

The CFD solver used in this paper is SUMad [28]. SUMad is a finite-volume, cell centered multiblock solver for
the compressible flow equations (shown in Eqs.( 1, 2, 3)), and is already coupled with an adjoint solver for optimization
studies [29]. The Jameson–Schmidt–Turkel [30] scheme (JST) augmented with artificial dissipation is used for spatial
discretization. An explicit multi-stage Runge–Kutta method is used for the temporal discretization. The one-equation160

Spalart–Allmaras (SA) [31] turbulence model is included in the adjoint formulation.
The focus of this paper is on incompressible flows. Compressible flow equations can be used to solve incompress-

ible flows, where the Mach number (M � u{a; where u is the fluid speed, and a is the speed of sound in the fluid)
is very close to zero, say less than 0.01. However, there are many numerical issues that arise when trying to solve the
compressible flow equations at low Mach numbers (in order of 0.01). This is because, at low Mach numbers, there is
a large disparity between the acoustic wave speed, i.e., u � a, and the waves convection speed, i.e., u. In this paper,
the low-speed Turkel preconditioner [32] for Euler and RANS equations was implemented, such that the compressible
flow solver can be applied to cases with nearly incompressible flows.

To make the system well-conditioned, the time derivatives of a flow governing equation are pre-multiplied by a
preconditioner matrix, D, which slows down the speed of the acoustic waves towards the fluid speed by changing170

the eigenvalues of the system. The condensed compressible RANS equation (non-conservative form of the equations
presented in Eqs.( 1, 2, 3)), for the 3-D viscous flows with the preconditioner matrix can be written as,

D�1St �ASx �BSy �CSz � 0 (4)

where St is the time derivative of the state variables; Sx (or Sy and Sz) is the x (or y and z)-derivative of the state
variables; and A (or B and C) is the flux Jacobian. To accommodate the compressible formulation in SUMad, the
preconditioner matrix, D, is defined as,

D �
BSc

BS0
D0

BS0

BSc
(5)

where S0=rp, u, v, w,EsT ; Sc=rρf , ρfu, ρfv, ρfw, ρfEsT ; and D0 is defined in Eq. (6).
The main property of this preconditioner matrix, D, is to reduce the stiffness of the eigenvalues. The acoustic

wave speed, u � a, is replaced by a pseudo-wave speed of the same order of magnitude as the fluid speed. To be
efficient, the selected preconditioning should be valid for inviscous computations as well as for viscous computations.

There are various low-speed preconditioner available in literature. Some of the most common ones are Turkel [32],180
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Choi–Merkle [33] and Van leer [34]. A general preconditioner with two free parameters, γ and ζ, can be written as,

D0 �

�
���������

βM2
T

a2 0 0 0 0 �
βM2

T ζ
a2

� γu1

ρfa2
1 0 0 0 γu1ζ

ρfa2

� γu2

ρfa2
0 1 0 0 γu2ζ

ρfa2

� γu3

ρfa2
0 0 1 0 γu3ζ

ρfa2

0 0 0 0 1 0
0 0 0 0 0 1

�
���������

(6)

βM2
T � minrmaxpK1pu

2
1 � u22 � u23q,K2pu

2
1 inf � u22 inf � u23 infq, a

2s (7)

K1 � K3

�
1�

p1 �K1M
2
0 q

K1M4
0

M2

�
(8)

If ζ � 1 and γ � 0, the preconditioner suggested by Choi and Merkle [33] is represented. With ζ � 0 and γ � 0, the
Turkel [32] preconditioner is recovered.

The present method uses γ � 0, ζ � 0. Here, a is the speed of sound; ρf is the density of the fluid; u1inf ,u2inf ,
u3inf are the free-stream velocities along x, y, and z, respectively. M is the free stream Mach number; M0 is a
constant set by the user to decide the specific Mach number to activate the preconditioner; for M ¡ M0, βM2

T � c2.
M0 is fixed as 0.2 in the current solver, such that the preconditioner is active only when the Mach number is below 0.2.
K3 was set as 1.05 and K2 as 0.6, which are within the range suggested by Turkel [32]. Note that the preconditioning190

matrix shown in Eq. (6) becomes singular at M � 0. Thus, this preconditioner will not work for Mach number very
close to 0. The preconditioner was tested for Mach number as low as 0.01. Below that, it runs into some numerical
difficulties depending on the problem. Typically, in marine applications, the Mach number ranges from 0.001 to 0.05.
The higher end of the range can be easily solved using the modified solver, but numerical issues can be encountered
near the lower end. However, in the lower end, the Mach number is so low that there will not be any compressibility
effects, and hence the actual solution would be practically the same as the M � 0.01 case.

2.2. Geometric Parametrization

The free-form deformation (FFD) volume approach was used to parametrize the geometry [26]. To get a more
efficient and compact set of geometric design variables, the FFD volume approach parametrizes the geometric changes
rather than the geometry itself. All the geometric changes are performed on the outer boundary of the FFD volume.200

Any modification of this outer boundary can be used to indirectly modify the embedded objects. Figure 1 displays an
example of the FFD control points used for optimization of the tapered NACA 0009 hydrofoil, which will be explained
in detail in Section 4.

Figure 1: Coordinate system and foil shape design variables using 200 FFD control points (10 spanwise � 10 chordwise � 2
thickness), as indicated by the circles.
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2.3. Mesh Perturbation

As the geometry is modified during the optimization using the FFD volume approach, the mesh must be perturbed
to carry out the CFD analysis for the modified geometry. The mesh perturbation scheme is a hybridization of algebraic
and linear-elasticity methods [26]. In the hybrid warping scheme, a linear-elasticity-based warping scheme is used for
a coarse approximation of the mesh to account for large, low-frequency perturbations; the algebraic warping approach
is used to attenuate small, high-frequency perturbations. For the results shown in this paper, the hybrid scheme is not
required, and only the algebraic scheme is used because only small mesh perturbations were needed to optimize the210

geometry.

2.4. Optimization Algorithm

The evaluation of the CFD solutions are the most expensive component of hydrodynamic shape optimization
algorithms, which can take up to several hours, days or even months. Thus, for large-scale optimization problems,
the challenge is to solve the problem to an acceptable level of accuracy with as few CFD evaluations as possible.
There are two broad categories of optimization, namely, gradient-free methods and gradient-based methods. Gradient-
free methods, such as genetic algorithms (GAs) and particle swarm optimization (PSO), have a higher probability
of getting close to the global minima for problems with the multiple local minima. However, gradient-free methods
can lead to slower convergence and require larger number of function calls, especially with large number of design
variables (of the order of hundreds) [35]. To reduce the number of function evaluations for cases with large number of220

design variables, gradient-based optimization algorithm should be used. Efficient gradient-based optimization requires
accurate and efficient gradient calculations. There are some straight forward algorithms like finite difference; they are
neither accurate nor efficient [36]. The complex-step method yields accurate gradients, but are not efficient for large-
scale optimization [36, 37]. Thus, for gradient calculations, the adjoint method is used in this paper. The adjoint
method is efficient as well as accurate, but is relatively more challenging to implement [29].

The optimization algorithm used in this paper is called SNOPT (sparse nonlinear optimizer) [38]. SNOPT is a
gradient-based optimizer that utilizes a sequential quadratic programming method. It is capable of solving large-scale
nonlinear optimization problems with thousands of constraints and design variables.

2.5. Design Constraint on Cavitation

As explained earlier in section 1, cavitation is one of the most critical aspects of marine propulsors design. Hence,230

a constraint on the pressure coefficient, Cp (in Eq. (9)), to avoid the local absolute pressure (Plocal) reaching the vapor
pressure (Pvap) on any point on the foil surface, was developed. The cavitation number, σ, is defined in Eq. (10).
Cavitation takes place when Plocal ¤ Pvap, or �Cp ¥ σ, and hence the constraint can be expressed as shown in
Eq. (11). Pref is the absolute hydrostatic pressure upstream, V is the relative advance velocity of the body.

Cp �
Plocal � Pref

0.5ρfV 2
(9)

Cavitation number, σ �
Pref � Pvap

0.5ρfV 2
(10)

Constraint, � Cp � σ   0 (11)

With change in design variables, the constraint function shown in Eq. (11) for a cell on the foil surface will either
be inactive (�Cp � σ   0) or active (�Cp � σ ¥ 0), resulting in a step function, which violates the continuously
differentiable assumption for gradient-based optimization method. To overcome this issue, a Heaviside function, H ,
as shown in Eq. (12), was applied over each cell on the foil surface to make the constraint smooth and continuously240

differentiable.
Hp�Cp � σq �

1

1� e�2kp�Cp�σq
(12)

The smoothing parameter k of 10 is used to generate the results shown in this paper. The Heaviside function helps
in smoothing out the constraint function and also embeds an inherent safety factor in the constraint function.
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3. Validation and Formulation

3.1. Model Setup

For all the results presented in this paper, an unswept, tapered NACA 0009 hydrofoil was studied with an aspect
ratio of 3.33 (a span length of 0.3 m and a mean chord length of 0.09 m, with maximum chord length of 0.12 m at
the root and a minimum chord length of 0.06 m at the tip), Re � 1.0 � 106, and M � 0.05. The mesh used for all
the optimization and validation results is shown in Figure 2. The mesh used is a structured O-grid with 515,520 cells
and a y� of 1.1. There are approximately 20 elements in the normal direction from the foil surface to encapsulate the250

boundary layer. The domain size is 30 chord lengths in all the directions.

Figure 2: Mesh (515,520 cells) used for the RANS optimization of a tapered NACA 0009 hydrofoil at Re � 1 � 106. a) Front
view of the RANS mesh with the boxed in portion showing the location of the foil. b) Side view of the RANS mesh with boxed in
portion showing the location of the foil. c) The zoomed-in view of the foil, showing the mesh near the foil leading edge (LE) and
trailing edge (TE). d) Geometry with the dimensions of the tapered NACA 0009 hydrofoil.

3.2. Convergence Behavior of the Low-Speed Preconditioner Solver

As shown in previous literature [32] , low-speed preconditioners typically reduces the speed of the system sig-
nificantly and thus, the convergence speed also reduces. The slow convergence rate makes it difficult to be used for
analysis, leave aside optimization. To overcome the slow convergence issue, the spectral radius method used to cal-
culate the time step size in the Runge–Kutta 4th order (RK4) solver, was modified to reflect the state variables after
preconditioning. The spectral radius, r, of a matrix can be defined as the maximum absolute value of its eigenvalues
(λi), as shown in Eq. (13). The modified time step size is calculated by finding the spectral radius of the preconditioned
flux Jacobians, A, B, and C, as shown in Eq.(14).

rpAq � max|λi| (13)

260

4t � CFL� @ �
1

rpAq � rpBq � rpCq
(14)

where |λi| are the eigenvalues of the respective matrices. rpAq represents the spectral radius of A, and similarly for
rpBq and rpCq. CFL is the CFL number and @ is the volume of the particular cell.

Table 1 shows the comparison of the time and iterations taken by SUMad at a Mach number of 0.8, and the
Low-Speed SUMad (LS SUMad) at a Mach number of 0.05. All the simulations were carried out for a tapered NACA
0009 hydrofoil (as shown in section 3.1) by solving the RANS equations, at Re � 1 � 106 and angle of attack (α)
of 6o. The CPU time and number of iterations required for convergence for the two cases are compared in Table 1.
Both simulations used a 515,520 cell mesh (shown in Figure 2) with a y� of 1.1. All the solutions were converged
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until the residuals were less than 1�10�6. The simulations were carried out with 64 processors (2.80 GHz Intel Xeon
E5-2680V2 processors) on 4 cores at the University of Michigan High Performance Computing (HPC) flux cluster.
As observed from Table 1, the LS SUMad takes approximately 2.2 times the CPU time taken by the original SUMad,270

which is acceptable to carry out optimization studies.

Table 1: Comparative study of the CPU time and the number of iterations required for convergence for the RANS-simulation results using the
original SUMad (for M � 0.8) and the LS SUMad (for M � 0.05) for a tapered NACA 0009 hydrofoil at Re � 1.0 � 106 and angle of attack
(α) of 6o.

Equations SUMad at M=0.8 LS SUMad at M=0.05
Time (s) 343 743
No. of Iterations 2559 6144

3.3. Accuracy of the LS SUMad

To validate the CFD prediction with the low-speed preconditioner, a 3-D tapered NACA 0009 hydrofoil (as shown
in section 3.1), with Re � 1.0 � 106 and M � 0.05 was studied. The predictions were compared with experimental
measurements conducted at the Cavitation Research Laboratory (CRL) variable pressure water tunnel at the Univer-
sity of Tasmania [25]. The operating velocity and pressure range in the tunnel was of 2 - 12 m/s and 4 - 400 kPa,
respectively. The tunnel test section is 0.6 m square by 2.6 m long. They tested on four foils of similar geometry but
with different materials, namely, SS (stainless steel-316L), Al (Aluminum-6061T6), CFRP-00, and CFRP-30 (CFRP
are composites where the number denotes the alignment of unidirectional fibers). The geometry dimensions were
selected such that confinement effects are negligible. They reported estimated uncertainty of less than 0.5% in the280

force measurement and uncertainty in α of less than 0.001o.
Table 2 shows the comparison of the parameters used in the experiment and in the numerical solution. All the

parameters were matched (including the Reynolds number), except for the Mach number. However, as the compress-
ibility effects are almost negligible for Mach number less than 0.1, this discrepancy in Mach number should not affect
the solution. To get the Mach number of 0.05 for the same Reynolds number, the constants were modified in the
Sutherland’s law to change the speed of sound while maintaining the fluid density as measured in the experiments.

A 515,520 cell mesh, as shown in Figure 2, was used for the RANS solution with a y� of 1.1. To validate the
LS SUMad solver, the results were compared to experimental results of CL and CD for the SS foil from [25] at
Re � 1.0�106. As can be observed from Figure 3, there is a good agreement between the predicted and measured lift
coefficient (CL) and drag coefficient (CD) values for a wide range of angles of attack. The LS SUMad (with the SA290

turbulence model), over predicts the CD value by 14.37%, and under-predicts the CL value by 3.3%, at α � 6o, when
compared with the experimental results [25]. Results were also compared with solution from the commercial CFD
software (ANSYS) with a 21.3 million element mesh at an α � 6o (displayed as an open black diamond in Figure 3),
using the URANS (unsteady RANS) method with the k-omega shear stress transport (k � ω SST) turbulence model.
The difference was 2.9% in CL and 1.7% in CD at α � 6o between the LS SUMad and CFX predictions, in spite of
the different turbulence models. For Re � 1.0 � 106, experiments were only conducted until a maximum angle of
attack of 6o, to avoid excessive forces on the foil.

Table 2: Problem setup for RANS validation of the modified LS SUMad solver for an unswept tapered NACA 0009 hydrofoil with the experimental
results from [25]. The RANS mesh is shown in Figure 2.

Parameter Experiment [25] LS SUMad
Geometry NACA 0009 NACA 0009
Aspect ratio 3.33 3.33
Reynolds number 1� 106 1 � 106

Mach number 0.008 0.05
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Figure 3: Comparison between the predicted lift coefficient (CL) and drag coefficient (CD) values at various angle of attack (α) obtained using LS
SUMad with the experimental measurements from [25] for a tapered NACA 0009 hydrofoil. The key parameters for the foil are shown in Table 2
and the mesh with 515,520 cells (y� � 1.1) for LS SUMad is shown in Figure 2. The conditions selected corresponds to an unswept Stainless
Steel (SS) tapered NACA 0009 hydrofoil at Re � 1.0 � 106 for M � 0.05, reported in Table 2. The SA turbulence model is used for the LS
SUMad RANS simulations. The open black diamond symbols represent the solution from the commercial CFD solver, ANSYS, with the k-ω SST
model with a 21.3 million cell mesh (y� � 1.0).

3.4. CFD Grid Convergence Study

To ensure that the results are independent of the mesh size, the grid convergence was studied with three different
mesh sizes: 515,520 cells, 4,124,160 cells, and 32,993,280 cells for the 3-D tapered NACA 0009 hydrofoil (as shown300

in section 3.1), with Re � 1.0 � 106, M � 0.05, and α � 6o. As shown in Table 3, there is a difference of 0.19% in
CL values and 2.63% in CD values for the coarsest mesh and the finest mesh. Figure 4 shows the comparison of Cp
variation along the chordwise direction for the three meshes at mid-span position (Z{S � 0.50), and they all seem to
lie on top of each other with only slight difference near the leading edge. Thus, to save on the computational cost, the
mesh size of 515, 520 cells was used for the optimization study shown in the next section.

Table 3: Comparison of y�, CL, and CD values from RANS-simulation for the tapered NACA 0009 hydrofoil at Re � 1.0 � 106, M � 0.05,
and α � 6o using different mesh sizes with the LS SUMad solver.

Mesh Size y� CL CD
515520 1.1 0.4767 0.0234
4124160 0.8 0.4753 0.0233
32993280 0.5 0.4758 0.0228
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Figure 4: Cp variations along the chord for the three different meshes is displayed at mid-span (Z{S � 0.50) location. The RANS-
simulations were carried out using the LS SUMad solver for the tapered NACA 0009 hydrofoil at Re � 1.0� 106, M � 0.05 for
α � 6o. They all lie on top of each other with only slight difference at the leading edge.

3.5. Optimization Problem Formulation
To demonstrate the advantages of hydrodynamic shape optimization, the optimization was carried out for the 3-D

tapered NACA 0009 hydrofoil (as shown in section 3.1), with Re � 1.0 � 106 and M � 0.05. The optimization
problem setup is described in Table 4. The drag coefficient, CD, is minimized for a given CL and a given cavitation
number, σ (as defined in Eq. 10), for the results shown in Section 4. Constraint on the minimum volume and minimum310

thickness are also detailed in Table 4. C�
L is the target CL, @ is the volume of the optimized foil, @base is the volume

of the original foil, tbase is the thickness of the original foil at a given section. The leading edge of the hydrofoil is
also constrained to deform to prevent any random behavior at the leading edge.

Figure 2 shows the mesh used for the RANS based optimization, with an approximately 515,520 cells. Figure 1
depicts the FFD volume used for optimization.

Table 4: Optimization problem for a tapered NACA 0009 hydrofoil.

Function variables Description Qty.
minimize CD Drag coefficient 1

Design variables f FFD control points 200
Twist design variables 10

Constraint CL � C�
L Lift coefficient constraint 1

ti ¥ 0.8� tbase Minimum thickness constraint 400
@ ¥ @base Minimum volume constraint 1

Fixed leading edge constraint 10
�Cp   σ � 1.6 Cavitation number 1

The angle of attack is defined by the original global geometry coordinates with respect to the inflow, which
does not change over the course of optimization, unless the angle of attack is one of the design variables. Table 5
shows the angle of attack (α) required to produce the desired CL of 0.3, 0.5, and 0.75 for the original tapered NACA
0009 hydrofoil. These angle of attacks were used as the reference angle of attacks for the optimization. Thus, the
optimization presented in Section 4 are for fixed α, where the desired CL at each α is achieved by optimizing the FFD320

control points and the twist design variables to minimize CD.
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Table 5: Angle of attack required to produce desired lift coefficient for the tapered NACA 0009 hydrofoil at Re � 1.0� 106 and M � 0.05.

CL α
0.3 3.75o

0.5 6.30o

0.75 9.50o

The influence of the number of design variables will be studied in Section 4.1. For the results shown in Section 4.2
and after, a total of 210 design variables were used with 200 FFD control points (10 spanwise � 10 chordwise � 2
thickness) and 10 spanwise twist design variables.

4. Results

4.1. Effect of Number of Design Variables

Using the adjoint-based optimization algorithm, the effect of the number of design variables on the optimization
is investigated in this section. Presented results are for optimization of a tapered NACA 0009 hydrofoil for a design
CL of 0.75, at Re � 1.0 � 106 and M � 0.05, using the problem setup shown in Section 3.5. Figure 5 depicts
the FFD volume with the 18, 48, 200, and 720 FFD control points. It should be noted that only the FFD control330

points were varied, while the number of twist design variables remained fixed in each case. To be consistent, the twist
design variables were fixed as 3 in this study, to match with the number of spanwise FFD control points in the 18
FFD control points case. The spanwise twist design variables are defined at the root, the mid-span and the tip of the
foil. As explained earlier, the maximum number of design variables used in the previous high-fidelity gradient-free
optimization studies are typically restricted to 15 or less, due to more than quadratic increase in computational cost
with the increase in number of design variables [35]. For the SNOPT adjoint-based algorithm, however, the increase
in CPU time with increase in number of design variables is approximately linear [35], and hence, a larger number
of design variables can be used. A comparison of the total CPU time and optimized CD values for the single-point
optimization atCL � 0.75 for the different number of design variables are shown in Table 6. The CPU time mentioned
in Table 6 is distributed over 192 processors (2.80 GHz Intel Xeon E5-2680V2) on the University of Michigan High340

performance Computing (HPC) flux cluster, operated by Advanced research Computing. The HPC flux cluster uses
QDR Infiniband, which helps in better scaling of the parallel codes by reducing the latency period. As shown in
Figure 6, the optimizations converged to similar geometries in terms of the twist and camber distribution, but with
significant differences in the sectional Cp profile. While the difference in CD values was only 0.7% between the
case with 21 and 723 design variables, there were differences in the optimized geometry and pressure profile, as
observed from Figure 6ii. As noted from Figure 6ii, finer control in the optimization problem is needed to achieve
better optimized design. For the cases with 203 and 723 design variables, the optimal solutions are practically the
same, except the region very close to the root section. The results in Figure 6 suggest that at least 203 design variables
(200 FFD control points and 3 twist variables) are needed for a simple, unswept, tapered hydrofoil to get a properly
converged optimal solution. As the complexity of the problem increases, such as, if the problem of interest is a marine350

propeller instead of a hydrofoil, significantly higher number of design variable will be required to parametrize the
geometry. Thus, the capability to handle a large number of design variables will be very beneficial in case of the actual
marine propellers.

Table 6: Comparison of the total CPU time (distributed over 192 processors (2.80 GHz Intel Xeon E5-2680V2), as the code is fully parallel) and
CD for the optimization problem for the different number of design variables at CL � 0.75. All the results were obtained using RANS solver with
Re � 1.0� 106 and M � 0.05. The spanwise twist design variables are defined at the root, the mid-span and the tip of the foil.

Total Design Variables FFD Control Points Twist Variables CPU time (in processor hours) CD
21 18 3 448 0.0396
51 48 3 638 0.0394
203 200 3 768 0.0393
723 720 3 1536 0.0393
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Figure 5: Figure depicting the different FFD volumes used to study the effect of number of FFD design variable on the RANS-based optimization.
The circles denotes the FFD control points. Please note that the total number of design variables is equal to the number of FFD control points plus
the three twist variables. The spanwise twist design variables are defined at the root, the mid-span and the tip of the foil, to be consistent with the
18 FFD control points case as shown in lower right hand corner.

Figure 6: Figure depicting the single-point optimization results for tapered NACA 0009 hydrofoil at CL � 0.75. Results show the difference in
optimization with 18, 48, 200, and 720 FFD control points for a simple, unswept, hydrofoil at Re � 1.0 � 106 and M � 0.05. Please note that
the total number of design variables include FFD control points and 3 spanwise twist design variables (defined at the root, the mid-span and the
tip of the foil) in each case. The optimization problem specified was to minimize CD for a given CL of 0.75 and σ of 1.6. i) The difference in
the CD values was found to be very small, with the maximum difference in CD values just less than 0.7%. ii) The optimization results converged
to similar geometries (particularly in terms of the twist and camber distribution), but with significant differences in the sectional pressure profile
noticed for the case with 18 FFD control points and 720 FFD control points. Black horizontal line represents the constraint on cavitation number.
The optimized solution are practically the same for 200 and 720 FFD control points, except the region very close to the root section.
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4.2. Importance of Considering Viscous Effects

In this section, the advantage of using high-fidelity solver (RANS equations) over a lower fidelity solver (Euler
equations), is demonstrated. The Euler solver used for this study is a purely inviscid solver, with no external correction
for viscosity. For cases below stall and with low to moderate loading conditions, viscous effects are negligible, so the
Euler-based and RANS-based optimization will lead to similar optimized geometry and performance. In this section, a
high loading case (CL � 0.75) is presented to illustrate the need for the high-fidelity RANS solver at high CL values,
where impending stall and flow reversal make the effects of viscosity critical. Presented results are for optimization of360

a tapered NACA 0009 hydrofoil atRe � 1.0�106 andM � 0.05, using the problem setup, shown in Section 3.5. The
optimization was carried out for CL � 0.75 using both the Euler and the RANS solver. The problem setup for both
the Euler and the RANS optimization cases is the same, including geometry and mesh size, with the only difference
being the flow solver. 210 shape design variables (200 FFD design variables and 10 spanwise twist variables) were
used in both the cases. Figure 7 i)–iv) depicts the Cp contour plots on the left side and the skin friction coefficient (Cf )
contours on the right side for the Euler-based optimized foil for α � 9.50o and CL � 0.75, the RANS analysis of the
Euler-based optimized foil at α � 9.50o (which yield a CL of 0.66), the RANS analysis of the Euler-based optimized
foil at CL � 0.75 (which required an α of 10.51o), and the RANS-based optimized foil at CL � 0.75 and α � 9.50o.
As observed from Figure 7, the predicted drag coefficient obtained from the Euler optimization at α � 9.50o is less
than that from the RANS optimization, which is expected since the Euler solver assumes inviscid flow. When the370

RANS analysis was carried out on the Euler-optimized foil, the result was significantly different. At α � 9.50o, the
RANS analysis show that Euler-based optimized foil only producesCL of 0.66 andCD of 0.0364. To obtain the desired
CL of 0.75, an α of 10.51o is required for the Euler-based optimized foil, and the resultant CD with RANS analysis of
the Euler-optimized foil was 11.7% higher than the CD from the RANS-based optimized foil. The above mentioned
differences are due to viscous effects, which are not considered in an Euler solver. At α � 9.50o, significant differences
in the sectional optimized geometry and the pressure profile, between the Euler-based optimized foil, the RANS-based
optimized foil, and the RANS analysis of the Euler-optimized, can be noted from Figure 7v). The pressure distribution
on the RANS-based optimized foil and the Euler-based optimized foil are significantly different because the different
solvers result in different converged optimal geometries, as shown in Figure 7v). This demonstration clearly illustrates
the need of high-fidelity solver to carry out hydrodynamic optimization at highCL values, especially for the off-design380

points (where the flow might separate).
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Figure 7: Figure showing the importance of high-fidelity solver in the design optimization tool. Optimization of the NACA 0009 hydrofoil at
Re � 1.0� 106 and M � 0.05 for a given CL of 0.75 was carried out using an Euler and a RANS solver. i)–iv) Cp contour plot on the suction
side of the foil are displayed on the left side and the skin friction coefficient contour is plotted on the right side for the Euler-based optimized foil
for α � 9.50o and CL � 0.75, the RANS analysis of the Euler-based optimized foil at α � 9.50o (which yield a CL of 0.66), the RANS
analysis of the Euler-based optimized foil at CL � 0.75 (which required an α of 10.51o), and the RANS-based optimized foil at CL � 0.75
and α � 9.50o. Please note that the contour scale remains consistent for all the results. i) The predicted drag of the Euler-based optimized foil is
less than the RANS-based optimized foil, as an Euler solver assumes inviscid flow. ii) At α � 9.50o, the RANS-analysis of Euler optimized foil
produces CL of 0.66 with CD � 0.0364. This is due to the fact that Euler solver does not consider viscous effects. iii) To produce CL � 0.75,
the Euler-optimized foil will require an α of 10.51o and the corresponding CD is 0.0439, which is 11.7% higher than the RANS-optimized foil at
CL � 0.75. iv) RANS-optimized results for CL � 0.75 and α � 9.50o. v) Black horizontal line represents the constraint on cavitation number.
Significant differences can be observed in the pressure profile and sectional geometry profile (at Z/S = 0.05 and Z/S = 0.70) between the Euler-based
optimized foil, the RANS-based optimized foil, and the RANS-analysis of the Euler-based optimized foil, at α � 9.50o.

4.3. Single-Point Hydrodynamic Shape Optimization

In this section, the single-point RANS-based hydrodynamic design optimization results are presented for an
unswept, tapered NACA 0009 hydrofoil at Re � 1.0 � 106 and M � 0.05. The foil was optimized to achieve
the minimum drag coefficient (CD) for a target lift coefficient (CL) and a cavitation number (σ) of 1.6. The opti-
mization was carried out with 210 shape design variables (200 FFD design variables and 10 spanwise twist variables).
Note that the NACA 0009 hydrofoil is already a very efficient hydrofoil to begin with, which makes the optimization
problem more challenging. The single-point optimization took 790 processor hours (distributed over 192 processors,
2.80 GHz Intel Xeon E5-2680V2) on the University of Michigan HPC flux cluster.
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To investigate how the optimal geometry changes with the design CL, the single-point optimization were carried390

out for eachCL. To demonstrate the case at the highest designCL, Figure 8 shows a detailed comparison of the tapered
NACA 0009 hydrofoil and the optimized hydrofoil at a CL of 0.75. As shown in Figure 8ii, the spanwise sectional
lift distribution for the optimized foil is much closer to the ideal elliptical distribution. The gradient of the sectional
lift distribution is also reduced near the tip region for the optimized foil, which translates to reduction in the strength
of the tip vortex. The maximum negative pressure coefficient, �Cp, reduces from 3.1 for the NACA 0009 hydrofoil
to 1.2 for the optimized foil, as shown in Figure 8iii, which will help to significantly delay cavitation inception. In
order words, cavitation inception speed for the optimized foil will increase from 8.4 m/s to 13.50 m/s, for an assumed
submergence depth of 1 m. The results indicate that partial leading edge cavitation (as indicated by the white contour
region with �Cp ¥ σ) will develop around the original NACA 0009 hydrofoil at CL � 0.75 and σ � 1.6, but no
cavitation is observed for the optimized foil. As observed from Figure 8iii, the optimized foil has a higher camber400

and a non-zero spanwise twist/pitch distribution compared to the original NACA 0009 hydrofoil, which reduced the
effective angle of attack and shifted the loading more towards the mid-chord of the foil.

Figure 8: Figure showing single-point optimization result for a tapered NACA 0009 hydrofoil at CL � 0.75, Re � 1.0 � 106, and M � 0.05.
A reduction in CD of 14.4% is noted for the optimized foil. Going from top to bottom and from left to right. i) Cp (pressure coefficient) contours
plot on the suction side are displayed for NACA 0009 hydrofoil and the optimized foil. White lines along the span of the hydrofoil show the section
where the �Cp plots and sectional geometry are compared in the plots shown on the right. White contour region along the leading edge of the
tapered NACA 0009 foil shows the area with �Cp ¥ σ. ii) Comparative study of the normalized sectional lift distribution with the ideal elliptical
lift distribution for the original foil (on the left side) and for the optimized foil (on the right side). There is reduction in the gradient at the tip region
for the optimized foil, which also results in reduced tip vortex strength. iii) Figures show the sectional �Cp plots and the geometry profile of the
foil at 4 sections along the span of the hydrofoil, the section locations are define in i). Grey solid line represents the NACA 0009 hydrofoil and the
black solid line corresponds to the optimized foil. Black horizontal line represents the constraint on cavitation number. As noted, there is significant
decrease in maximum�Cp from the NACA 0009 to the optimized hydrofoil. Difference in the sectional shape between the original and optimized
foil are also shown in the bottom of each subplot.

Figure 9 shows the comparison of efficiency (i.e. CL{CD) at the various design CL values for the NACA 0009
hydrofoil, the single-point optimized foil at each CL value, and the single-point optimized foil at CL � 0.75 only. It
should be noted that the single-point optimized foil at each CL requires a different geometry at each CL (as shown in
Figure 10), thus it can only be achieved if there is a robust active morphing capability. Assuming that there is an active
morphing capability, with the single-point optimization at each CL value, the best possible performance is achieved;
there is a minimum increase in efficiency of 6.4% throughout the operating regime, and the increase in efficiency is
19% at theCL value of 0.75, over the original NACA 009 hydrofoil. With the single-point optimized foil atCL � 0.75
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only, due to fixed geometry; degraded performance was noted when operating away from CL � 0.75; in particular, at410

CL � 0.3, the single-point optimized foil for CL � 0.75 only resulted in a higher CD value than the original NACA
0009 hydrofoil. Thus, the results show that, unless there is a robust active morphing capability available, there is a
need for the multipoint optimization to achieve a globally optimal design using one fixed geometry, as demonstrated
next in Section 4.4.
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Figure 9: Figure showing the comparison of efficiency (i.e. CL{CD) versus CL for the tapered NACA 0009 hydrofoil with the single-point
optimized foil at each CL, and the single-point optimized foil at CL � 0.75 only. All the results were obtained using RANS solver with
Re � 1.0� 106 and M � 0.05.

Figure 10: Figure showing the comparison of 3-D geometry between the original tapered NACA 0009 foil, the single-point optimized foil at
CL � 0.30, the single-point optimized foil at CL � 0.50, and the single-point optimized foil at CL � 0.75. The RANS-based optimization were
carried out at Re � 1.0� 106 and M � 0.05.

4.4. Comparison of multipoint Optimization and Single-point Optimization

As shown in Section 4.3, the single-point optimization does not necessary result in a globally optimal solution
with the best efficiency possible over the entire range of operating conditions. The design optimized for CL � 0.75
lead to a higher CD than the original foil at CL � 0.3. Such a design would lead to low overall efficiency, particularly
if the probability of operating at CL � 0.75 is low. Hence, a probabilistic multipoint optimization study is needed.

17



For the probabilistic multipoint optimization problem, the objective function (Πobj) is adapted as,420

Πobj �
Ķ

m�1

CDmPm (15)

where CDm is the drag coefficient at point m; Pm is the probability of operating at point m; and K is the number of
design CL points.

To compare the difference between a single-point and a probabilistic multipoint optimization, a simple three
point probability distribution, as shown in Table 7, was chosen. The objective function is to minimize the sum of
the drag coefficient at the three target CL values weighted by the probability of operating at the particular CL value,
as shown in Eq. 15. The cavitation number (σ) was fixed at 1.6. The problem setup remains same as shown in
Section 3.5. However, to make sure that the problem is well-posed, the angle of attack (define with respect to the
original undeformed FFD volume) for CL � 0.75 was fixed at 9.50o, and the angle of attacks for the other CL values
in the multipoint problem are allowed to be design variables. The multipoint optimization took 2410 processor hours
(distributed over 192 processors, 2.60 GHz Intel Xeon E5-2680V2) on the University of Michigan HPC flux cluster.430

Table 7: The simple probabilistic multipoint profile used in the current example.

CL Weights/Probability
0.30 0.15
0.50 0.25
0.75 0.60

Figure 11 shows the comparison of 3-D geometry between the original NACA 0009 hydrofoil, the single-point
optimized foil at CL � 0.75, and the probabilistic multipoint optimized foil. Significant difference is observed in the
twist/pitch distribution and in the camber distribution for the three foil geometries.

The bar-chart in Figure 12 shows a comparison of the CD values for the original NACA 0009 hydrofoil, the
single-point optimized foil at CL � 0.75, the multipoint optimized foil, and the single-point optimized foil at each
CL value (which indicates the hypothetical best performance scenarios with active morphing capability, as explained
in Section 4.3). All the results were obtained using the RANS solver. The line in the plot depicts the probability
distribution (as shown in Table 7) used for the multipoint design. As expected, the single-point design for CL � 0.75
performed the best at CL � 0.75; the multi-point design showed the next best performance at CL � 0.75, with only
1.4% reduction in efficiency compared to the single-point optimized design at CL � 0.75. Notice that while the440

performance of single-point optimized foil for CL � 0.75 only is even worse than the original tapered NACA 0009
hydrofoil for CL � 0.3, the probabilistic multipoint design performs better than the original NACA 0009 hydrofoil
for all CL values.

Figure 11: Figure showing comparison of the 3-D geometry between the original tapered NACA 0009, probabilistic multipoint optimized foil and
the single-point optimized foil at CL � 0.75. All the simulations were carried out using the RANS solver, with Re � 1.0� 106 and M � 0.05.
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Figure 12: The comparison of CD at different CL values of 0.3, 0.5, and 0.75 for the original tapered NACA 0009 hydrofoil, single-point
optimized foil at CL � 0.75 only, probabilistic multipoint optimized foil with fixed geometry, and single-point optimized foil at each CL, with
varying geometry at each CL. All the results are obtained using the RANS solver with Re � 1.0 � 106 and M � 0.05. The line depicts the
probability distribution (as shown in Table 7) used for the multipoint optimization problem.

A comparison of the detailed performance of the original tapered NACA 0009 hydrofoil, the single-point opti-
mization at CL = 0.75, and the probabilistic multipoint optimization is shown in Figure 13. Columns 2–4 in Figure 13
shows the predicted Cp contours for the foils at the CL values specified in the first column. The last column in Fig-
ure 13 shows the difference in geometry for the original NACA 0009 hydrofoil, the single-point optimized foil, and
the multipoint optimized foil at Z{S � 0.5. The maximum negative pressure coefficient, �Cp, reduces from 2.9
and 3.1 for the NACA 0009 hydrofoil to 1.3 and 1.5 for the multipoint optimized foil, at CL � 0.5 and CL � 0.75,
respectively. As noted from Figure 13 Column 2–4, partial leading edge cavitation will develop around the NACA450

0009 hydrofoil for CL ¥ 0.5 and σ � 1.6, but no cavitation is observed for both the optimized foils (the single-
point optimized foil and the multipoint optimized foil). Notice that the single-point optimized foil at CL=0.75 has a
much higher camber and a more negative pitch/twist compared to the original foil and the multipoint design; hence
the single-point optimized foil at CL � 0.75 behaves poorly at the lower CL values. As CL = 0.75 has the highest
probability/weight in the probabilistic multipoint optimization, the performance of the multipoint optimized foil and
single-point optimized foil at design CL of 0.75 is almost same with respect to CD values. However, at other CL
points in the multipoint optimization, the multipoint design showed better performance, which is expected.

The results show, while the single-point optimization can achieve the best efficiency at the design CL, the single-
point optimized foil showed reduced performance at the off-design conditions, namely, CL � 0.3 andCL � 0.5. If the
overall efficiency is calculated as the sum of the efficiency at each CL value multiplied by the probability of operating460

at each CL, the probabilistic multipoint optimized foil will result in overall increase in the efficiency by around 14.4%
over the original NACA 0009 hydrofoil. It should be noted that the overall efficiency of the multipoint design (with a
fixed geometry) is only 1.5% less than the best possible solution from the hypothetical morphing foil (i.e. with varying
geometry at each CL). The increase in the cavitation inception speed compared to the original NACA 0009 foil, is
49% at CL � 0.50, and 39% at CL � 0.75, for an assumed submergence depth of 1 m. This improvement in overall
efficiency would be even more obvious if the probability of operating at the highest CL is lower, which is often the
case for many marine propulsors as they seldom operate at the highest loading condition. Thus, it is necessary to carry
out the probabilistic multipoint optimization, using realistic mission/operation profiles at an intermediate design stage
to achieve a design that performs well throughout the entire range of operating conditions.
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5. Conclusions470

In the present work, a low-speed (LS) preconditioner was implemented in an existing compressible CFD solver,
SUMad, to solve problems involving nearly incompressible flows for Mach numbers as low as 0.01. The LS SUMad
RANS solver was validated against experimental data [25] and verified against commercial CFD software results for
the case of a tapered stainless steel NACA 0009 hydrofoil. The LS SUMad, over predicts theCD values by 14.37% and
CL values are under-predicted by 3.3%, when compared with experimental results [25]. However, when LS SUMad
results were compared with commercial CFD software (ANSYS CFX), the average difference was 2.9% in CL and
1.7% in CD values, inspite of the different turbulent models.

A design constraint on the cavitation number was developed to optimize the foil to avoid or delay cavitation. The
development of this cavitation constraint coupled with the adjoint-based optimization algorithm resulted in an efficient
and high-fidelity hydrodynamic shape optimization tool for the 3-D lifting surfaces operating under water. To provide480

a canonical representation of a general hydrodynamic lifting surface, the RANS-based optimization results using the
adjoint method were presented for an unswept, tapered NACA 0009 hydrofoil at Re � 1.0� 106 and M � 0.05.

The effect of the number of shape design variables was studied in detail. It was found that while the change in CD
values was not significant, the pressure distribution and geometry varied significantly with the number of shape design
variables. For the hydrofoil considered in this study, a minimum of 203 design variables (200 FFD control points and
3 twist variables) was needed to achieve an acceptable optimal solution.

The need for RANS-based design optimization as opposed to Euler-based design optimization was demonstrated.
This was evidenced by the fact that 1) the RANS-based and Euler-based design optimizations for the same CL lead
to significantly different geometry, and 2) the RANS analysis of the Euler-based optimized foil showed that it cannot
deliver the required lift unless the angle of attack is increased; moreover, to deliver the same CL, RANS-analysis of490

the Euler-based optimized foil will lead to a 11.7% higher drag coefficient, compared to the RANS-optimized foil.
To demonstrate the power of the RANS-based shape optimization methodology, a series of optimizations were

performed for the tapered hydrofoil. A single-point optimization was conducted at each CL value with 210 design
variables, where the optimized geometry was significantly different for each CL, and hence a robust active morphing
method would be needed to realize this design. Nevertheless, such an actively morphed foil would lead to at least
an increase in efficiency of 6.4% throughout the operating profile, and the increase in efficiency would increase to
19% for CL � 0.75. The optimized foil at CL � 0.75, would also lead to an increase in the cavitation inception
speed by 60%, compared to the original NACA 0009 hydrofoil. However, performance of single-point optimized
foil degraded when operated away from the design CL value. In particular, the foil optimized for the highest lift
coefficient (CL � 0.75) showed inferior performance even when compared to the original foil at the lowest lift500

coefficient (CL � 0.3) condition.
To overcome the issue of degraded performance of the single-point optimized design at the off-design conditions,

a multipoint optimization was carried out. The multipoint optimization was found to perform better than the original
NACA 0009 hydrofoil over the entire operation profile, where the overall efficiency weighted by the probability of
operation at eachCL, was improved by 14.4% compared to the original NACA 0009 foil. The increase in the cavitation
inception speed compared to the original NACA 0009 foil, was 49% at CL � 0.50 and 39% at CL � 0.75, for an
assumed submergence depth of 1 m. For the multipoint optimized foil, the geometry remains fixed through out the
operation range and the overall efficiency was only 1.5% less than the hypothetical actively morphed foil with the
optimal geometry at each CL. The results show that the proposed high-fidelity optimization tool can be used to
carry out the probabilistic multipoint optimization, using realistic operation profiles at an intermediate design stage to510

achieve a design that performs well throughout the entire range of operating conditions.
Thus, a thorough study of the design space of marine propulsors using the presented high-fidelity multipoint

optimization methodology has the potential to dramatically improve fuel efficiency, agility, and performance over a
wide range of operating conditions, including extreme off-design conditions (such as crash-stop maneuvers, hard turns,
and maneuvering), while at the same time delaying cavitation inception.

6. Future work

The purpose of this paper is to introduce an efficient high-fidelity hydrodynamic shape design optimization tool,
capable of handling a large number of design variables over a wide range of operating conditions. In this paper, a
tapered NACA 0009 hydrofoil is presented as a canonical representation of more complex geometries such as marine
propellers. The capability of handling large number of design variables should be highly beneficial when designing520
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much more complex geometries and different material configurations, such as those of composite marine propellers
and hulls. An efficient high-fidelity solver will also give the freedom to carry out probabilistic multipoint optimization
studies. Such high-fidelity tool is needed at extreme off-design conditions (e.g., crash-stop maneuvers), where the
solution is governed by separated flow and the large scale vortices. Using the current tool, the optimal design over
the entire range of operating conditions can help designers to achieve the ever increasing minimum energy efficiency
level per capacity mile, as required by Energy Efficiency Design Index (EEDI), and also to reduce the operating
costs of the marine vessels. Future work should also include hydrostructural optimization, which would optimize
not only the shape, but also the material configuration of the marine propulsors, hydrofoils or hulls, similarly to
what has already been done for aircraft wings [39, 40, 27]. With hydrostructural design optimization, designer can
control and tailor the fluid structure interaction response and reduce the structural weight while ensuring structural530

integrity. Potential examples where hydrostructural optimization can be critical include composite propulsors and
turbines, where the load-dependent transformations can be tailored to reduce dynamic load variations, delay cavitation
inception, and improve fuel efficiency by adjusting the blade or foil shape in off-design conditions or in spatially
varying flow [41, 42].
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