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Abstract Multidisciplinary design optimization (MDO) is concerned with solving design problems
involving coupled numerical models of complex engineering systems. While various MDO software
frameworks exist, none of them take full advantage of state-of-the-art algorithms to solve coupled
models efficiently. Furthermore, there is a need to facilitate the computation of the derivatives of these
coupled models for use with gradient-based optimization algorithms to enable design with respect to
large numbers of variables. In this paper, we present the theory and architecture of OpenMDAO,
an open-source MDO framework that uses Newton-type algorithms to solve coupled systems and
exploits problem structure through new hierarchical strategies to achieve high computational efficiency.
OpenMDAO also provides a framework for computing coupled derivatives efficiently and in a way
that exploits problem sparsity. We demonstrate the framework’s efficiency by benchmarking scalable
test problems. We also summarize a number of OpenMDAOQO applications previously reported in the
literature, which include trajectory optimization, wing design, and structural topology optimization,
demonstrating that the framework is effective in both coupling existing models and developing new
multidisciplinary models from the ground up. Given the potential of the OpenMDAO framework, we
expect the number of users and developers to continue growing, enabling even more diverse applications
in engineering analysis and design.

1 Introduction

Numerical simulations of engineering systems have been widely developed and used in industry and
academia. Simulations are often used within an engineering design cycle to inform design choices.
Design optimization—the use of numerical optimization techniques with engineering simulation—has
emerged as a way of incorporating simulation into the design cycle.

Multidisciplinary design optimization (MDO) arose from the need to simulate and design complex
engineering systems involving multiple disciplines. MDO serves this need in two ways. First, it
performs the coupled simulation of the engineering system, taking into account all the interdisciplinary
interactions. Second, it performs the simultaneous optimization of all design variables, taking into
account the coupling and the interdisciplinary design tradeoffs. MDO is sometimes referred to as
MDAO (multidisciplinary analysis and optimization) to emphasize that the coupled analysis is useful
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on its own. MDO was first conceived to solve aircraft design problems, where disciplines such as
aerodynamics, structures, and controls are tightly coupled and require design tradeoffs [39]. Since
then, numerical simulations have advanced in all disciplines, and the power of computer hardware has
increased dramatically. These developments make it possible to advance the state-of-the-art in MDO,
but other more specific developments are needed.

There are two important factors when evaluating MDO strategies: implementation effort and
the computational efficiency. The implementation effort is arguably the most important because if
the work required to implement a multidisciplinary model is too large, the model will simply never
be built. One of the main MDO implementation challenges is that each analysis code consists of a
specialized solver that is typically not designed to be coupled to other codes or to be used for numerical
optimization. Additionally, these solvers are often coded in different programming languages and use
different interfaces. These difficulties motivated much of the early development of MDO frameworks,
which provided simpler and more efficient ways to link discipline analyses together.

While these MDO frameworks introduce important innovations in software design, modular model
construction, and user interface design, they treat each discipline analysis as an explicit function
evaluation; that is, they assume that each discipline is an explicit mapping between inputs and outputs.
This limits the efficiency of the nonlinear solution algorithms that could be used to find a solution to the
coupled multidisciplinary system. Furthermore, these MDO frameworks also present the combined
multidisciplinary model as an explicit function to the optimizer, which limits the efficiency when
computing derivatives for gradient-based optimization of higher-dimensional design spaces. Therefore,
while these first framework developments addressed the most pressing issue by significantly lowering
the implementation effort for multidisciplinary analysis, they did not provide a means for applying
the most efficient MDO techniques.

The computational efficiency of an MDO implementation is governed by the efficiency of the
coupled (multidisciplinary) analysis and the efficiency of the optimization. The coupled analysis
method that is easiest to implement is a fixed-point iteration (also known as nonlinear block Gauss—
Seidel iteration), but for strongly coupled models, Newton-type methods are potentially more ef-
ficient [15, 40, 44, 59]. When it comes to numerical optimization, gradient-based optimization al-
gorithms scale much better with the number of design variables than gradient-free methods. The
computational efficiency of both Newton-type analysis methods and gradient-based optimization is,
in large part, dependent on the cost and accuracy with which the necessary derivatives are computed.

One can always compute derivatives using finite differences, but analytic derivative methods are
much more efficient and accurate. Despite the extensive research into analytic derivatives and their
demonstrated benefits, they have not been widely supported in MDO frameworks because their im-
plementation is complex and requires deeper access to the analysis code than can be achieved through
an approach that treats all analyses as explicit functions. Therefore, users of MDO frameworks that
follow this approach are typically restricted to gradient-free optimization methods, or gradient-based
optimization with derivatives computed via finite differences.

The difficulty of implementing MDO techniques with analytic derivatives creates a significant
barrier to their adoption by the wider engineering community. The OpenMDAO framework aims to
lower this barrier and enable the widespread use of analytic derivatives in MDO applications.

Like other frameworks, OpenMDAO provides a modular environment to more easily integrate
discipline analyses into a larger multidisciplinary model. However, OpenMDAO V2 improves upon
other MDO frameworks by integrating discipline analyses as implicit functions, which enables it to
compute derivatives for the resulting coupled model via the unified derivatives equation [68]. The
computed derivatives are coupled in that they take into account the full interaction between the
disciplines in the system. Furthermore, OpenMDAO is designed to work efficiently in both serial and
parallel computing environments. Thus, OpenMDAO provides a means for users to leverage the most
efficient techniques, regardless of problem size and computing architecture, without having to incur
the significant implementation difficulty typically associated with gradient-based MDO.

This paper presents the design and algorithmic features of OpenMDAO V2 and is structured to
cater to different types of readers. For readers wishing to just get a quick overview of what OpenMDAO
is and what it does, reading this introduction, the overview of applications (Sec. 7, especially Table 13),
and the conclusions (Sec. 8) will suffice. Potential OpenMDAO users should also read Sec. 3, which



explains the basic usage and features through a simple example. The remainder of the paper provides
a background on MDO frameworks and the history of OpenMDAO development (Sec. 2), the theory
behind OpenMDAO (Sec. 4), and the details of the major new contributions in OpenMDAQO V2 in
terms of multidisciplinary solvers (Sec. 5) and coupled derivative computation (Sec. 6).

2 Background

The need for frameworks that facilitate the implementation of MDO problems and their solution
was identified soon after MDO emerged as a field. Various requirements have been identified over
the years. Early on, Salas and Townsend [88] detailed a large number of requirements that they
categorized under software design, problem formulation, problem execution, and data access. Later,
Padula and Gillian [81] more succinctly cited modularity, data handling, parallel processing, and
user interface as the most important requirements. While frameworks that fulfill these requirements
to various degrees have emerged, the issue of computational efficiency and scalability has not been
sufficiently highlighted or addressed.

The development of commercial MDO frameworks dates back to the late 1990s with iSIGHT [29],
which is now owned by Dassault Systémes and renamed Isight/SEE. Various other commercial frame-
works have been developed, such as Phoenix Integration’s ModelCenter/CenterLink, Esteco’s mode-
FRONTIER, TechnoSoft’s AML suite, Noesis Solutions’ Optimus, SORCER [60], and Vanderplaats’
VisualDOC [2]. These frameworks have focused on making it easy for users to couple multiple disci-
plines and to use the optimization algorithms through graphical user interfaces (GUIs). They have
also been providing wrappers to popular commercial engineering tools. While this focus has made it
convenient for users to implement and solve MDO problems, the numerical methods used to converge
the multidisciplinary analysis (MDA) and the optimization problem are usually not state-of-the-art.
For example, these frameworks often use fixed-point iteration to converge the MDA. When derivatives
are needed for a gradient-based optimizer, finite-difference approximations are used rather than more
accurate analytic derivatives.

When solving MDO problems, we have to consider how to organize the discipline analysis models,
the problem formulation, and the optimization algorithm in order to obtain the optimum design with
the lowest computational cost possible. The combination of the problem formulation and organiza-
tional strategy is called the MDO architecture. MDO architectures can be either monolithic (where a
single optimization problem is solved) or distributed (where the problem is partitioned into multiple
optimization subproblems). Martins and Lambe [70] describe this classification in more detail and
present all known MDO architectures.

To facilitate the exploration of the various MDO architectures, Tedford and Martins [93] developed
pyMDO. This was the first object-oriented framework that focused on automating the implementation
of different MDO architectures [74]. In pyMDO, the user defined the general MDO problem once,
and the framework would reformulate the problem in any architecture with no further user effort.
Tedford and Martins [94] used this framework to compare the performance of various MDO archi-
tectures, concluding that monolithic architectures vastly outperform the distributed ones. Marriage
and Martins [67] integrated a semi-analytic method for computing derivatives based on a combination
of finite-differencing and analytic methods, showing that the semi-analytic method outperformed the
traditional black-box finite-difference approach.

The origins of OpenMDAO began in 2008, when Moore et al. [76] identified the need for a new
MDO framework to address aircraft design challenges at NASA. Two years later, Gray et al. [31]
implemented the first version of OpenMDAO (V0.1). An early aircraft design application using
OpenMDAO to implement gradient-free efficient global optimization was presented by Heath and
Gray [43]. Gray et al. [32] later presented benchmarking results for various MDO architectures using
gradient-based optimization with analytic derivatives in OpenMDAO.

As the pyMDO and OpenMDAO frameworks progressed, it became apparent that the computation
of derivatives for MDO presented a previously unforeseen implementation barrier needed to address.

The methods available for computing derivatives are finite-differencing, complex-step, algorithmic
differentiation, and analytic methods. The finite-difference method is popular because it is easy to
implement and can always be used, even without any access to source code, but it is subject to large



inaccuracies. The complex-step method [71, 91] is not subject to these inaccuracies, but it requires
access to the source code to implement. Both finite-difference and complex-step methods become
prohibitively costly as the number of design variables increases because they require rerunning the
simulation for each additional design variable.

Algorithmic differentiation (AD) uses a software tool to parse the code of an analysis tool to
produce new code that computes derivatives of that analysis [38, 77]. Although AD can be efficient,
even for large numbers of design variables, it does not handle iterative simulations efficiently in general.

Analytic methods are the most desirable because they are both accurate and efficient even for
iterative simulations [68]. However, they require significant implementation effort. Analytic methods
can be implemented in two different forms: the direct method and the adjoint method. The choice
between these two methods depends on how the number of functions that we want to differentiate
compares to the number of design variables. In practice, the adjoint method tends to be the more
commonly used method.

Early development of the adjoint derivative computation was undertaken by the optimal control
community in the 1960s and 1970s [11], and the structural optimization community adapted those
developments throughout the '70s and '80s [1]. This was followed by the development of adjoint
methods for computational fluid dynamics [51], and aerodynamic shape optimization became a prime
example of an application where the adjoint method has been particularly successful [12, 16, 84].

When computing the derivatives of coupled systems, the same methods that are used for single
disciplines apply. Sobieszczanski-Sobieski [90] presented the first derivation of the direct method for
coupled systems, and Martins et al. [73] derived the coupled adjoint method. One of the first ap-
plications of the coupled adjoint method was in high-fidelity aerostructural optimization [72]. The
results from the work on coupled derivatives highlighted the promise of dramatic computational cost
reductions, but also showed that existing frameworks were not able to handle these methods. Their
implementation required linear solvers and support for distributed memory parallelism that no frame-
work had at the time.

In an effort to unify the theory for the various methods for computing derivatives, Martins and
Hwang [68] derived the unified derivatives equation. This new generalization showed that all the
methods for computing derivatives can be derived from a common equation. It also showed that when
there are both implicitly and explicitly defined disciplines, the adjoint method and chain rule can be
combined in a hybrid approach. Hwang et al. [49] then realized that this theoretical insight provided
a sound and convenient mathematical basis for a new software design paradigm and set of numerical
solver algorithms for MDO frameworks. Using a prototype implementation built around the unified
derivatives equation [69], they solved a large-scale satellite optimization problem with 25,000 design
variables and over 2 million state variables [49]. Later, Gray et al. [33] developed OpenMDAO V1, a
complete rewrite of the OpenMDAOQO framework based on the prototype work of Hwang et al. with the
added ability to exploit sparsity in a coupled multidisciplinary model to further reduce computational
cost.

Collectively, the work cited above represented a significant advancement of the state-of-the-art for
MDO frameworks. The unified derivatives equation, combined with the new algorithms and frame-
work design, enabled the solution of significantly larger and more complex MDO problems than had
been previously attempted. In addition, OpenMDAO had now integrated three different methods
for computing total derivatives into a single framework: finite-difference, analytic, and semi-analytic.
However, this work was all done using serial discipline analyses and run on a serial computing envi-
ronment. The serial computing environment presented a significant limitation, because it precluded
the integration of high-fidelity analyses into the coupled models.

To overcome the serial computing limitation, Hwang and Martins [46] parallelized the data struc-
tures and solver algorithms from their prototype framework, which led to the modular analysis and
unified derivatives (MAUD) architecture. Hwang and Martins [45] used the new MAUD prototype
to solve a coupled aircraft allocation-mission-design optimization problem. OpenMDAOQO V1 was then
modified to incorporate the ideas from the MAUD architecture. Gray et al. [34] presented an aero-
propulsive design optimization problem constructed in OpenMDAO V1 that combined a high fidelity
aerodynamics model with a low fidelity propulsion model, executed in parallel. One of the central
features of the MAUD architecture, enabling the usage of parallel computing and high-fidelity analy-



ses, was the use of hierarchical, matrix-free linear solver design. While advantageous for large parallel
models, this feature was inefficient for smaller serial models. The need to support both serial and
parallel computing architectures led to the development of OpenMDAQO V2, a second rewrite of the
framework, which is presented in this paper.

Recently, the value of analytic derivatives has also motivated the development of another MDO
framework, GEMS, which is designed to implement bi-level distributed MDO architectures that might
be more useful in some industrial settings [27]. This stands in contrast to OpenMDAO, which is focused
mostly on the monolithic MDO architectures for best possible computational efficiency.

3 Overview of OpenMDAQO V2

In this section, we introduce OpenMDAO V2, present its overall approach, and discuss its most
important feature—efficient derivative computation. To help with the explanations, we introduce a
simple model and optimization problem that we use throughout Secs. 3 and 4.

3.1 Basic description

OpenMDAQO is an open-source software framework for multidisciplinary design, analysis, and optimiza-
tion (MDAQ), also known as multidisciplinary design optimization (MDO). It is primarily designed
for gradient-based optimization; its most useful and unique features relate to the efficient and accurate
computation of the model derivatives. We chose the Python programming language to develop Open-
MDAO because it makes scripting convenient, it provides many options for interfacing to compiled
languages (e.g., SWIG and Cython for C and C++, and F2PY for Fortran), and it is an open-source
language. OpenMDAO facilitates the solution of MDO problems using distributed-memory parallelism
and high-performance computing (HPC) resources by leveraging MPI and the PETSc library [3].

3.2 A simple example
This example consists of a model with one scalar input, x, two “disciplines” that define state variables
(y1, y2), and one scalar output, f. The equations for the disciplines are

(Discipline 1) y; = y2 (1)
(Discipline 2)  exp(—y1y2) — xy2 = 0, (2)

where Discipline 1 computes y; explicitly and Discipline 2 computes y, implicitly. The equation for
the model output f is
f=yi —y2+3. (3)

Figure 1 visualizes the variable dependencies in this model using a design structure matrix. We
show components that compute variables on the diagonal and dependencies on the off-diagonals. From
Fig. 1, we can easily see the feedback loop between the two disciplines, as well as the overall sequential
structure with the model input, the coupled disciplines, and the model output. We will refer back to
this model and optimization problem periodically throughout Secs. 3 and 4.

To minimize f with respect to = using gradient-based optimization, we need the total derivative
df/dz. In Sec. 3.4 we use this example to demonstrate how OpenMDAO computes the derivative.

3.3 Approach and nomenclature

OpenMDAO uses an object-oriented programming paradigm and an object composition design pat-
tern. Specific functionality via narrowly focused classes are combined to achieve the desired func-
tionality during execution. In this section, we introduce the four most fundamental types of classes
in OpenMDAOQO: Component, Group, Driver, and Problem. For the Component class, the end user
actually works with one of its two derived classes, FxplicitComponent or ImplicitComponent, which
we describe later in this section.

MDO has traditionally considered multiple “disciplines” as the units that need to be coupled
through coupling variables. In OpenMDAQ, we consider more general components, which can repre-
sent a whole discipline analysis or can perform a smaller sub-set of calculations representing only a
portion of a whole discipline model. Components share a common interface that allows them to be
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Figure 1: Extended design structure matrix (XDSM) [63] for the simple model. Components that
compute variables are on the diagonal, and dependencies are shown on the off-diagonals, where an
entry above the diagonal indicates a forward dependence and vice versa. Blue indicates an independent
variable, green indicates an explicit function, and red indicates an implicit function.

integrated to form a larger model. This modular approach allows OpenMDAO to automate tasks that
are performed repeatedly when building multidisciplinary models. Instances of the Component class
provide the lowest-level functionality representing basic calculations. Each component instance maps
input values to output values via some calculation. A component could be a simple explicit function,
such as y = sin(x); it could involve a long sequence of code; or it could call an external code that is
potentially written in another language. In multidisciplinary models, each component can encapsulate
just a part of one discipline, a whole discipline, or even multiple disciplines. In our simple example,
visualized in Fig. 1, there are four components: Discipline 1 and the model output are components
that compute explicit functions, Discipline 2 is a component that computes an implicit function, and
the model input is a special type of component with only outputs and no inputs.

Another fundamental class in OpenMDAO is Group, which contains components, other groups, or
a mix of both. The containment relationships between groups and components form a hierarchy tree,
where a top-level group contains other groups, which contain other groups, and so on, until we reach
the bottom of the tree, which is composed only of components. Group instances serve three purposes:
(1) they help to package sets of components together, e.g., the components for a given discipline; (2)
they help create better-organized namespaces (since all components and variables are named based on
their ancestors in the tree); and (3) they facilitate the use of hierarchical nonlinear and linear solvers.
In our simple example, the obvious choice is to create a group containing Discipline 1 and Discipline 2,
because these two form a coupled pair that needs to be converged for any given value of the model
input. The hierarchy of groups and components collectively form the model.

Children of the Driver base class define algorithms that iteratively call the model. For example,
a sub-class of Driver might implement an optimization algorithm or execute design of experiments
(DOE). In the case of an optimization algorithm, the design variables are a subset of the model inputs,
and the objective and constraint functions are a subset of the model outputs.

Instances of the Problem class perform as a top-level container, holding all other objects. A
Problem instance contains both the groups and components that constitute the model hierarchy, and
also contains a single Driver instance. In addition to serving as a container, a Problem also provides
the user interface for model setup and execution.

Figure 2 illustrates the relationships between instances of the Component, Group, and Driver
classes, and introduces the nomenclature for derivatives. The Driver repeatedly calls model (i.e., the
top-level instance of Group, which in turn contains groups that contain other groups that contain
the component instances). The derivatives of the model outputs with respect to the model inputs
are considered to be total derivatives, while the derivatives of the component outputs with respect to
the component inputs are considered to be partial derivatives. This is not the only way to define the
difference between partial and total derivatives, but this is a definition that suits the present context
and is consistent with previous work on the computation of coupled derivatives [73]. In the next
section, we provide a brief explanation of how OpenMDAO computes derivatives.
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Figure 2: Relationship between Driver, Group, and Component classes. An instance of Problem
contains a Driver instance, and the Group instance named “model”. The model instance holds a
hierarchy of Group and Component instances. The derivatives of a model are total derivatives, and
the derivatives of a component are partial derivatives.

3.4 Derivative computation

As previously mentioned, one of the major advantages of OpenMDAOQO is that it has the ability
to compute total derivatives for complex multidisciplinary models very efficiently via a number of
different techniques. Total derivatives are derivatives of model outputs with respect to model inputs.
In the example problem from Sec. 3.2, the total derivative needed to minimize the objective function
is just the scalar df/dz. Here, we provide a high-level overview of the process for total derivative
computation because the way it is done in OpenMDAO is unique among computational modeling
frameworks. The mathematical and algorithmic details of total derivative computation are described
in Sec. 4.

Total derivatives are difficult and expensive to compute directly, especially in the context of a
framework that must deal with user-defined models of various types. As mentioned in the introduction,
there are various options for computing derivatives: finite differencing, complex step, algorithmic
differentiation, and analytic methods. The finite-difference method can always be used because it just
requires re-running the model with a perturbation applied to the input. However, the accuracy of
the result depends heavily on the magnitude of the perturbation, and the errors can be large. The
complex-step method yields accurate results, but it requires modifications to the model source code
to work with complex numbers. The computational cost of these methods scales with the number of
input variables, since the model needs to be re-run for a perturbation in each input. OpenMDAO
provides an option to use either of these methods, but their use is only recommended when the ease
of implementation justifies the increase in computational cost and loss of accuracy.

As described in the introduction, analytic methods have the advantage that they are both efficient
and accurate. OpenMDAO facilitates the derivative computation for coupled systems using analytic
methods, including the direct and adjoint variants. To use analytic derivative methods in OpenMDAOQO,
the model must be built such that any internal implicit calculations are exposed to the framework. This
means that the model must be cast as an implicit function of design variables and implicit variables
with associated residuals that must be converged. For explicit calculations, OpenMDAO performs the
implicit transformation automatically, as discussed in Sec. 4.3. When integrating external analysis
tools with built-in solvers, this means exposing the residuals and the corresponding state variable
vector. Then, the total derivatives are computed in a two-step process: (1) compute the partial
derivatives of each component; and (2) solve a linear system of equations that computes the total
derivatives. The linear system in Step 2 can be solved in a forward (direct) or a reverse (adjoint)
form. As mentioned in the introduction, the cost of the forward method scales linearly with the
number of inputs, while the reverse method scales linearly with the number of outputs. Therefore, the
choice of which form to use depends on the ratio of the number of outputs to the number of inputs.
The details of the linear systems are derived and discussed in Sec. 4. For the purposes of this section,
it is sufficient to understand that the total derivatives are computed by solving these linear systems,
and that the terms in these linear systems are partial derivatives that need to be provided.



In the context of OpenMDAO, partial derivatives are defined as the derivatives of the outputs
of each component with respect to the component inputs. For an EzplicitComponent, which is used
when outputs can be computed as an analytic function of the inputs, the partial derivatives are the
derivatives of these outputs with respect to the component inputs. For an ImplicitComponent, which
is used when a component provides OpenMDAO with residual equations that need to be solved, the
partial derivatives are derivatives of these residuals with respect to the component input and output
variables. Partial derivatives can be computed much more simply and with lower computational
cost than total derivatives. OpenMDAO supports three techniques for computing partial derivatives:
full-analytic, semi-analytic, and mixed-analytic.

When using the full-analytic technique, OpenMDAO expects each and every component in the
model to provide partial derivatives. These partial derivatives can be computed either by hand
differentiation or via algorithmic differentiation. For the example model in Sec. 3.2, the partial
derivatives can easily be hand-derived. Discipline 1 is an EzplicitComponent defined as y; = y3 (one
input and one output), so we only need the single partial derivative:

Yo )
Discipline 2 is an ImplicitComponent, so it is defined as a residual that needs to be driven to zero,
R = exp(—y1y2) — zy2 = 0. In this case, we need the partial derivatives of this residual function with
respect to all the variables:

OR
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Finally, we also need the partial derivatives of the objective function component:

O gy, oy 0
() y2

When using the semi-analytic technique, OpenMDAQO automatically computes the partial deriva-
tives for each component using either the finite-difference or complex-step methods. This is different
from applying these methods to the whole model because it is done component by component, and
therefore it does not require the re-convergence of the coupled system. For instances of an Implicit-
Component, only partial derivatives of the residual functions are needed (e.g., Egs. (5), (6), and (7)
in the example). Since residual evaluations do not involve any nonlinear solver iterations, approxi-
mating their partial derivatives is much less expensive and more accurate. The technique is called
“semi-analytic” because while the partial derivatives are computed numerically, the total derivatives
are still computed analytically by solving a linear system.

In the mixed-technique, some components provide analytic partial derivatives, while others ap-
proximate the partials with finite-difference or complex step methods. The mixed-technique offers
great flexibility and is a good option for building models that combine less costly analyses without
analytic derivatives and computationally expensive analyses that do provide them. If the complex-
step method is used for some of the partial derivatives, the net result is effectively identical to the
fully-analytic method. If finite differences are used to compute some of the partial derivatives, then
some accuracy is lost, but overall the net result is still better than either the semi-analytic approach
or finite differencing the coupled model to compute the total derivatives.

3.5 Implementation of the Simple Example
We now illustrate the use of the OpenMDAO basic classes by showing the code implementation of the
simple model we presented in Sec. 3.2.



The run script is listed in Fig. 3. In Block 1, we import several classes from the OpenMDAO API,
as well as the components for Discipline 1 and Discipline 2, which we show later in this section. In
Block 2, we instantiate the four components shown in Fig. 1, as well as a group that combines the two
disciplines, called states_group. In this group, we connect the output of Discipline 1 to the input
of Discipline 2 and vice-versa. Since there is coupling within this group, we also assign a Newton
solver to be used when running the model and a direct (LU) solver to be used for the linear solutions
required for the Newton iterations and the total derivative computation. For the model output, we
define a component “inline”, using a convenience class provided by the OpenMDAO standard library.
In Block 3, we create the top-level group, which we appropriately name as model, and we add the
relevant subsystems to it and make the necessary connections between inputs and outputs.

import numpy as np

# Block 1: OpenMDAO and component imports

from openmdao.api import Problem, Group, ScipyOptimizeDriver
from openmdao.api import IndepVarComp, ExecComp

from openmdao.api import NewtonSolver , DirectSolver

from disciplines import Disciplinel, Discipline2

# Block 2: creation of all the components and groups

# except the top-level group

input_comp = IndepVarComp(’x’)

states_group = Group ()
states_group.add_subsystem(’disciplinel_comp’, Disciplinel ())
states_group.add_subsystem(’discipline2_comp’, Discipline2())
states_group.connect (’disciplinel_comp.yl’, ’discipline2_comp.yl’)
states_group.connect (’discipline2_comp.y2’, ’disciplinel_comp.y2’)
states_group.nonlinear_solver = NewtonSolver (iprint=0)
states_group.linear_solver = DirectSolver (iprint=0)

output_comp = ExecComp (’f=yl#**2-y2+3.")
# Block 3: creation of the top-level group
model = Group ()

model.add_subsystem(’input_comp’, input_comp)

model .add_subsystem(’states_group’, states_group)

model . add_subsystem(’output_comp’, output_comp)

model . connect (’input_comp.x’, ’states_group.discipline2_comp.x’)
model . connect (’states_group.disciplinel_comp.yl’, ’output_comp.yl’)
model . connect (’states_group.discipline2_comp.y2’, ’output_comp.y2’)
# Block 4: specification of the model input (design variable)

# and model output (objective)

model .add_design_var (’input_comp.x’)

model.add_objective (’output_comp.f’)

# Block 5: creation of the problem and setup

prob = Problem()

prob.model = model

prob.driver = ScipyOptimizeDriver ()

prob.setup ()

# Block 6: set a model input; run the model; and print a model output
prob[’input_comp.x’] = 1.

prob.run_model ()

print (prob[’output_comp.f’])

# Block 7: solve the optimization problem and print the results
prob.run_driver ()

print (prob[’input_comp.x’], prob[’output_comp.f’])

Figure 3: Run script for the simple example. This script depends on a disciplines file that defines
the components for Disciplines 1 and 2 (see Fig. 4)

In Block 4, we specify the model inputs and model outputs, which in this case correspond to the
design variable and objective function, respectively, since we are setting up the model to solve an
optimization problem. In Block 5, we create the problem, assign the model and driver, and run setup
to signal to OpenMDAO that the problem construction is complete so it can perform the necessary
initialization. In Block 6, we illustrate how to set a model input, run the model, and read the value
of a model output, and in Block 7, we run the optimization algorithm and print the results.

In Fig. 4, we define the actual computations and partial derivatives for the components for the
two disciplines. Both classes inherit from OpenMDAO base classes and implement methods in the
component API, but they are different because Discipline 1 is explicit while Discipline 2 is implicit.
For both, setup is where the component declares its inputs and outputs, as well as information about
the partial derivatives (e.g., sparsity structure and whether to use finite differences to compute them).



In Discipline 1, compute maps inputs to outputs, and compute_partials is responsible for providing
partial derivatives of the outputs with respect to inputs. In Discipline 2, apply nonlinear maps
inputs and outputs to residuals, and linearize computes the partial derivatives of the residuals with
respect to inputs and outputs. More details regarding the API can be found in the documentation on
the OpenMDAO website !.

import numpy as np
from openmdao.api import ExplicitComponent , ImplicitComponent
class Disciplinel (ExplicitComponent ):
def setup(self):
self.add_input(’y2’)
self.add_output(’y1l’)

self.declare_partials(’yl’, ’y2’)

def compute(self, inputs, outputs):
outputs|[’yl’] = inputs[’y2’] %% 2

def compute_partials(self, inputs, partials):
partials[’yl’, ’y2’] = 2 x inputs[’y2’]

class Discipline2(ImplicitComponent ):
def setup(self):
self.add_input (’x’)
self.add_input(’yl’)
self.add_output(’y2’)

self.declare_partials(’y2’, ’x’)
self .declare_partials(’y2’, ’yi1’)
self .declare_partials(’y2’, ’y2’)
def apply_nonlinear (self, inputs, outputs, residuals):
residuals[’y2’] = (np.exp(—inputs[’yl’] % outputs[’y2’]) —
inputs[’x’] * outputs[’y2’])
def linearize(self, inputs, outputs, partials):
partials[’y2’, ’x’] = —outputs[’y2’]
partials[’y2’, ’y1’] = (—outputs|[’y2’] % np.exp(—inputs|[’y1’] =*
outputs[’y2’]))
partials|[’y2’, ’y2’] = (—inputs[’y1’] =*
np.exp(—inputs[’y1’] * outputs[’y2’]) — dinputs[’x’])

Figure 4: Definition of the components for Discipline 1 and Discipline 2 for the simple example,
including the computation of the partial derivatives.

The component that computes the objective function is built using the inline ExecComp. ExecComp
is a helper class in the OpenMDAO standard library that provides a convenient shortcut for imple-
menting an ExplicitComponent for simple and inexpensive calculations. This provides the user a
quick mechanism for adding basic calculations like summing values or subtracting quantities. How-
ever, ExecComp uses the complex-step method to compute the derivatives, so it should not be used
for expensive calculations or where there is a large input array.

Figure 5 shows a visualization of the model generated automatically by OpenMDAO. The hierarchy
structure of the groups and components is shown on the left, and the dependency graph is shown on
the right. This diagram is useful for understanding how data is exchanged between components in the
model. Any connections above the diagonal indicate feed-forward data relationships, and connections
below the diagonal show feedback relationships that require a nonlinear solver.

4 Theory

As previously mentioned, one of the main goals in OpenMDAO is to efficiently compute the total
derivatives of the model outputs (f) with respect to model inputs (z), and we stated that we could do
this using partial derivatives computed with analytic methods. For models consisting purely of explicit
functions, the basic chain rule can be used to achieve this goal. However, when implicit functions
are present in the model (i.e., any functions that require iterative nonlinear solvers), the chain rule
is not sufficient. In this section, we start by deriving these methods and then explain how they are
implemented in OpenMDAO.

Lhttp://www.openmdao.org/docs
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Figure 5: Visualization of the simple model generated automatically by OpenMDAO. In the hierarchy
tree on the left, the darker blue blocks are groups, the lighter blue blocks are components, pink blocks
are component inputs, and grey blocks are component outputs.

4.1 Analytic Methods: Direct and Adjoint
Given a function F(z,y), where x is a vector n inputs, and y is a vector of m variables that depends

implicitly on z, then
df O0F O0Fdy

= 4 ——Z 9

de Ox Oy dx )
where we distinguish the quantity f from the function F' that computes it using lowercase and up-
percase, respectively. Using this notation, total derivatives account for the implicit relation between
variables, while the partial derivatives are just explicit derivatives of a function [46]. The only deriva-
tive in the right-hand side of Eq. (9) that is not partial is dy/dz, which captures the change in the
converged values for y with respect to z. Noting the implicit dependence by R(x,y) = 0, we can
differentiate it with respect to = to obtain

dr  OR  ORdy

o +a_y£_0' (10)

Re-arranging this equation, we get the linear system

222

Jy | dz or
~~ ~——
mxm MXn mxn

Now dy/dx can be computed by solving this linear system, which is constructed using only partial
derivatives. This linear system needs to be solved n times, once for each component of x, with the
column of JR/Ox that corresponds to the element of x as the right-hand side. Then, dy/dx can be
used in Eq. (9) to compute the total derivatives. This approach is known as the direct method.

There is another way to compute the total derivatives based on these equations. If we substitute
the linear system (11) into the total derivative equation (9), we obtain

ar_or ¥ Tor] " [on -
de  dx Oy |0y Ox |’
'LpT

By grouping the terms [0R/dy]~* and OF /0y, we get an m-vector, v, which is the adjoint vector.

Instead of solving for dy/dx with Eq. (11) (the direct method), we can instead solve a linear system
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with [0F /0y]T as the right-hand side to compute ):

oR]" orF"

Oy| ~~ [0y
N——""mx1 N——

mxm mx1

This linear system needs to be solved once for each function of interest f. If f is a vector variable,
then the right-hand side for each solution is the corresponding row of 9F/dy. The transpose of the
adjoint vector, ¥/T, can then be used to compute the total derivative,

S O (14

x Oz ox

This is the adjoint method, and the derivation above shows why the computational cost of this method
is proportional to the number of outputs and independent of the number of inputs. Therefore, if the
number of inputs exceeds the number of outputs, the adjoint method is advantageous, while if the
opposite is true, then the direct method has the advantage. The main idea of these analytic methods
is to compute total derivatives (which account for the solution of the models) using only partial
derivatives (which do not require the solution of the models).

As mentioned in Sec. 2, these analytic methods have been extended to MDO applications [68,
73, 90]. All of these methods have been used in MDO applications, but as was discussed in Sec. 2,
the implementations tend to be highly application specific and not easily integrated into an MDO
framework.

To overcome the challenge of application-specific derivative computations, Hwang and Martins
[46] developed the modular analysis and unified derivatives (MAUD) architecture, which provides the
mathematical and algorithmic framework to combine the chain rule, direct, and adjoint methods into a
single implementation that works even when using models that utilize distributed memory parallelism,
such as computational fluid dynamics (CFD) and finite element analysis (FEA) codes.

4.2 Nonlinear Problem Formulation
OpenMDAO V1 and V2 were designed based on the algorithms and data structures of MAUD, but
V2 includes several additions to the theory and algorithms to enable more efficient execution for serial
models. In this section, we summarize the key MAUD concepts and present the new additions in
OpenMDAO V2 that make the framework more efficient for serial models. The core idea of MAUD is
to formulate any model (including multidisciplinary models) as a single nonlinear system of equations.
This means that we concatenate all variables—model inputs and outputs, and both explicit and
implicit component variables—into a single vector of unknowns, u. Thus, in all problems, we can
represent the model as R(u) = 0, where R is a residual function defined in such a way that this
system is equivalent to the original model.

For the simple example from Sec. 3.2, our vector of unknowns would be u = (z,y1,y2, f), and the
correct residual function is

Ty x—a*
2
T Y1 — Y5
Ru)= | %| = =0. 15
) Tys exp(—y1y2) — TY2 (15)
s f=Wi—y2+3)

Although the variable x is not an “unknown” (it has a value that is set explicitly), we reformulate it
into an implicit form by treating it as an unknown and adding a residual that forces it to the expected
value of z*. Using this approach, any computational model can be written as a nonlinear system of
equations such that the solution of the system yields the same outputs and intermediate values as
running the original computational model.

Users do not actually need to re-formulate their problems in this fully implicit form because
OpenMDAO handles the translation automatically via the EzplicitComponent class, as shown in the
code snippet in Fig. 4. However, the framework does rely on the fully implicit formulation for its
internal representation.
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The key benefit of representing the whole model as a single monolithic nonlinear system is that
we can use the unified derivatives equation [46, 68], which generalizes all analytic derivative methods.
The unified derivatives equation can be written as

OR] [du] _ OR]" [dul” 6
LM} {dr]_ _{au] {dr] ’ (16)
where u is a vector containing inputs, implicitly defined variables, and outputs, and R represents the
corresponding residual functions. The matrix du/ dr contains a block with the total derivatives that
we ultimately want (i.e., the derivatives of the model outputs with respect to the inputs, df/dz).
Again, we use lowercase and uppercase to distinguish between quantities and functions, as well as the

convention for total and partial derivatives introduced earlier. For the simple example in Sec. 3.2 the
total derivative matrix is

dz dz dz dz

dr, dry, dry, W 1 0 0 0

dyr  dys dyi  dy dyi  dyrn dyi
du . dry  dry, dry, dry . dx dry, dry, 17
dr| T | de2 dye dys dye | T | dvz dye dyz g 4 (17)

drg dry, dry, dry dz dry, dry,

df df df df df df 1

dry  dry, dry, dry dx dry, dry,

where the middle term shows the expanded total derivative matrix and the right-most term simplifies
these derivatives. The middle term is obtained by inserting u = [z, y1,y2, f]T and r = [y, 7y, 7y, 7¢] 7
The simplification in the right-most term is possible because from Eq. (15), we know that for example,

dx dx
| = 1 —_— =
[ dr, } ’ [ dr, ] 0

In this example, the left equality of the unified derivatives equation (16) corresponds to the forward
form, which is equivalent to the direct method, while the right equality corresponds to the reverse
form, which is equivalent to the adjoint method. Solving the forward form solves for one column of
the total derivative matrix at a time, while the reverse mode solves for one row at a time. Thus, the
forward mode requires a linear solution for each input, while the the reverse mode requires a linear
solution for each output.

Although the full matrix du/dr is shown in Eq. (17), we do not actually need to solve for the
whole matrix; the optimizer only needs the derivatives of the model outputs with respect to model
inputs. The needed derivatives are computed by solving for the appropriate columns (forward mode)
or rows (reverse mode) one at a time using OpenMDAOQO’s linear solver functionality.

4.3 API for Group and Component Classes
To recast the entire model as a single nonlinear system, the Component and Group classes both define
the following five API methods:

e apply_nonlinear(p,u,r): Compute the residuals (r) given the inputs (p) and outputs (u) of the
component or group.

e solve_nonlinear(p,u): Compute the converged values for the outputs given the inputs.

e linearize(p,u): Perform any one-time linearization operations, e.g., computing partial derivatives
of the residuals or approximating them via finite differences.

e apply_linear(du,dr): Compute a Jacobian-vector product, and place the result in the storage
vector. For the forward mode this product is

OR
dr=|—|d 1
r= e au. (19)
and for the reverse mode, it is
oRr1"
= |— . 1
du {&L] dr (19)
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e solve_linear(du,dr): Multiply the inverse of the Jacobian with the provided right-hand side
vector (or solve a linear system to compute the product without explicitly computing the inverse),
and place the result in the storage vector. For the forward mode,

-1
du = [gf] dr, (20)

o= ([ o

Up to this point we have commonly referred to the unknown vector (u) and the residual vector (r),
but the API methods above introduce several new vectors that have not been previously discussed.
The input vector (p) contains values for any variables that are constant relative to a given location
in the model hierarchy. For any given component, the set of inputs is clear. For a group, the inputs
are composed of the set of any variables that do not have an associated output owned by one of the
children of that group. For example, referring back to Fig. 5, the states_group has the variable z in
its input vector, and the output_group has the variables yI and y2 in its input vector. At the top
level of that model, the input vector is empty, and all variables are contained within the unknown
vector. There are also the du and dr vectors, which are used to contain the source and product for
matrix-vector-product methods. For a detailed description of the relationship between the p and u
vectors, and how the API methods as well as the du and dr vectors enable efficient solution of the
unified derivatives equations, see the original MAUD paper [46].

Both Group and Component classes must implement these five methods, but default implemen-
tations are provided in many cases. All five methods are implemented in the Group class in Open-
MDAOQO’s standard library, which is used to construct the model hierarchy. For subclasses of Fxplicit-
Component, such as Disciplinel in Fig. 4, the user does not directly implement any of the five basic
API methods. Instead, the user implements the compute and compute_partials methods that the
EzxplicitComponent base class uses to implement the necessary lower level methods, as shown in Al-
gorithm (1). The negative sign in line 8 of Algorithm (1) indicates that the partial derivatives for the
implicit transformation are the negative of the partial derivatives for the original explicit function. As
shown in Eq. (15), the implicit transformation for the explicit output f is given by

while for the reverse mode,

rp=f—(i—yp+3), (22)

which explains the negative sign.

Algorithm 1 EzplicitComponent API

: function apply_nonlinear(p, u, r)
r + u — compute(p)

return r

: function solve nonlinear(u)

u < compute(p)

return u

: function linearize(p)

[%} <+ —compute_partials(p)

@ DN

return [g—R}
u

©

For subclasses of ImplicitComponent, such as Discipline2 in Fig. 4, only apply nonlinear is
strictly required, and solve nonlinear is optional. (The base class implements a method that does
not perform any operations.) For many models, such as the example in Fig. 3, it is sufficient to rely on
one of the nonlinear solvers in OpenMDAOQO’s standard library to converge the implicit portions of a
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model. Alternatively, a component that wraps a complex discipline analysis can use solve_nonlinear
to call the specialized nonlinear solver built into that analysis code.

In the following section, we discuss the practical matter of using the API methods to accomplish
the nonlinear and linear solutions required to execute OpenMDAQO models. In both the nonlinear
and linear cases, there are two strategies employed, depending on the details of the underlying model
being worked with: monolithic and hierarchical. While in our discussion we recommend using each
strategy for certain types of models, in actual models, the choice does not need to be purely one or
the other. Different strategies can be employed at different levels of the model hierarchy to match the
particular needs of any specific model.

In addition, the usage of one strategy for the nonlinear solution does not prescribe that same
strategy for the linear solution. In fact, it is often the case that a model using the hierarchical nonlinear
strategy would also use the monolithic linear strategy. The converse is also true: Models that use
the monolithic nonlinear strategy will often use the hierarchical linear strategy. This asymmetry of
nonlinear and linear solution strategies is one of the central features in OpenMDAQ that enables
the framework to work efficiently with a range or models that have vastly different structures and
computational needs.

5 Monolithic and Hierarchical Solution Strategies

OpenMDAO uses a hierarchical arrangement of groups and components to organize models, define
execution order, and control data passing. This hierarchical structure can also be used to define
nonlinear and linear solver hierarchies for models. While in some cases it is better to match the solver
hierarchy closely to that of the model structure, in most cases, better performance is achieved when
the solver structure is more monolithic than the associated model. The framework provides options
for both nonlinear and linear solvers, and allows the user to mix them at the various levels of the
model hierarchy to customize the solver strategy for any given model.

The hierarchical model structure and solver structure used in OpenMDAQO were first proposed
as part of the MAUD architecture [46]. In addition, MAUD also included several algorithms that
implement monolithic and hierarchical solvers in the model hierarchy that OpenMDAO also adopted:
monolithic Newton’s method, along with hierarchical versions of nonlinear block Gauss—Seidel, non-
linear block Jacobi, linear block Gauss—Seidel, and linear block Jacobi. In addition to these solvers,
OpenMDAO V2 implements a new hierarchical nonlinear solver that improves performance for very
tightly coupled models (e.g., hierarchical Newton’s method). It also includes a monolithic linear solver
strategy that enables much greater efficiency for serial models.

This section describes the new contributions in OpenMDAOQO, along with a summary of the relevant
strategies and solver algorithms adopted from the MAUD architecture.

5.1 Nonlinear Solution Strategy

Although the user may still implement any explicit analyses in the traditional form using Fxplicit-
Component, OpenMDAOQO internally transforms all models into the implicit form defined by MAUD,
i.e., R(u) = 0. For the simple example problem from Sec. 3.2, this transformation is given by Eq. (15).
While the transformation is what makes it possible to leverage the unified derivatives equation to com-
pute total derivatives, it also yields a much larger implicit system that now represents the complete
multidisciplinary model including all intermediate variables. The larger system is more challenging to
converge, and may not be solvable in monolithic form. OpenMDAO provides a hierarchical nonlinear
strategy that allows individual subsystems in the model to be solved first, which makes the overall
problem more tractable. The hierarchical nonlinear strategy represents a trade-off between solution
robustness and solution efficiency because it is typically more robust and more expensive.

5.1.1 Monolithic Nonlinear Strategy

In some cases, treating the entire model as a single monolithic block provides a simple and efficient
solution strategy. This is accomplished with a pure Newton’s method that iteratively applies updates
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to the full u vector until the residual vector is sufficiently close to zero, via

[gﬂ Au=—r. (23)

In practice, pure Newton’s method is usually used together with a globalization technique, such as
a line search, to improve robustness for a range of initial guesses. OpenMDAQO’s Newton solver uses
these methods in its actual implementation. For simplicity, we omit the globalization techniques
from the following descriptions. Since these techniques do not change the fundamentals of Newton’s
method, we can do this without loss of generality.

Algorithm 2 shows the pseudocode for a pure Newton’s method implemented using the Open-
MDAO API. All variables are treated as implicit and updated in line 4, which uses solve_linear to
implement Eq. (23). The solve nonlinear method is never called anywhere in Algorithm 2; only
apply nonlinear is called to compute the residual vector, r. This means that no variables—mnot
even outputs of an FxplicitComponent—have their values directly set by their respective components.
When the pure Newton’s method works, as is the case for the states_group in the example model
shown in Fig. 5, it is a highly efficient algorithm for solving a nonlinear system. The challenge with
pure Newton’s method is that even with added globalization techniques, it still may not converge
for especially complex models with large numbers of states. Pure Newton’s method is particularly
challenging to apply to large multidisciplinary models built from components that wrap disciplinary
analyses with their own highly customized nonlinear solver algorithms. This is because some spe-
cialized disciplinary solvers include customized globalization schemes (e.g., pseudo time continuation)
and linear solver preconditioners that a pure Newton’s method applied at the top level of the model
cannot directly take advantage of.

Algorithm 2 Pure Newton’s Method

1: r < apply_nonlinear(p, u, )
2: while [|r|| > ¢ do

3. [%} < linearize(p, u)

Au + solve_linear(—r)
u < u+ Au
r < apply_nonlinear(p, u, r)

S AN

5.1.2 Hierarchical Nonlinear Strategy

For some models, the monolithic nonlinear strategy may be numerically unstable and fail to converge
on a solution. In those cases, the hierarchical strategy may provide more robust solver behavior.
Consider that each level of the model hierarchy, from the top level model group all the way down to
the individual components, contains a subset of the unknowns vector, ucnig, and the corresponding
residual equations, Renila(Uchila) = 0. For any level of the hierarchy, a given subsystem (which can be a
component or group of components) is a self-contained nonlinear system, where any variables from ex-
ternal components or groups are inputs that are held constant for that subsystem’s solve nonlinear.
Therefore, we can apply a nonlinear solver to any subsystem in the hierarchy to converge that specific
subset of the nonlinear model. The hierarchical nonlinear strategy takes advantage of this subsystem
property to enable more robust top level solvers.

OpenMDAO implements a number of nonlinear solution algorithms that employ a hierarchical
strategy. The most basic two algorithms are the nonlinear block-Gauss—Seidel and nonlinear block-
Jacobi algorithms used by Hwang and Martins [46]. Both of these algorithms use simple iterative
strategies that repetitively call solve nonlinear for all the child subsystems in sequence, until the
residuals are sufficiently converged.

OpenMDAO V2 introduces a new hierarchical Newton’s method solver that extends the use of this
strategy to multidisciplinary models composed of a set of more tightly coupled subsystems. Compared
to the pure Newton’s method of Algorithm (2), the hierarchical Newton algorithm adds an additional
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step that recursively calls solve nonlinear on all child subsystems of the parent system, as shown
in Algorithm 3.

Algorithm 3 Hierarchical Newton’s Methods

: for all child in subsystems do
Uchild < Chﬂd.SOlVG,IlOIlliHeSLI‘(pchi]d7 uchﬂd)

r < apply_nonlinear(p, u, 1)
while ||r|| > ¢ do

[g—ﬂ <+ linearize(p, u)

Au + solve_linear(—r)
U< u—+ Au
for all child in subsystems do
Uchild < Child.solve,nonlinear(pchﬂd, uchﬂd)

—
<

r < apply_nonlinear(p, u, r)

We refer to Algorithm 3 as the hierarchical Newton’s method, because although each child subsys-
tem solves for its own unknowns (uehilq), the parent groups are responsible for those same unknowns
as well. Since each level of the hierarchy sees the set of residuals from all of its children, the size of the
Newton system (the number of state variables it is converging) increases as one moves higher up the
hierarchy, making it increasingly challenging to converge. The recursive solution of subsystems acts
as a form of nonlinear preconditioning or globalization to help stabilize the solver, but fundamentally,
the top level Newton solver is dealing with the complete set of all residual equations from the entire
model.

There is another, arguably more common, formulation for applying Newton’s method to nested
models where the solver at any level of the model hierarchy sees only the sub-set of the implicit
variables that it alone is responsible for. In this formulation, the Newton system at any level is much
smaller because it does not inherit the states and residuals from any child systems. Instead, it treats
any child calculations as if they were purely explicit. We refer to this formulation as the “reduced-
space Newton’s method”. In Appendix B, we prove that the application of the hierarchical Newton’s
method yields the exact same solution path as that of a reduced-space Newton’s method. The proof
demonstrates that exact recursive solutions for ucpig (i-e., Rehild (teniza) = 0) (lines 1, 2, 8, and 9 in
Algorithm 3) reduce the search space for the parent solver to only the subset of the u vector that is
owned exclusively by the current system and not by any of the solvers from its children.

While perfect sub-convergence is necessary to satisfy the conditions of the proof, in practice, it is
not necessary to fully converge the child subsystems for every top level hierarchical Newton iteration.
Once the nonlinear system has reached a sufficient level of convergence, the recursion can be turned
off, reverting the solver to the more efficient monolithic strategy.

A hybrid strategy that switches between monolithic and hierarchical strategies was investigated by
Chauhan et al. [15] in a study where they found that the best performing nonlinear solver algorithm
changes with the strength of the multidisciplinary coupling. Their results underscore the need for
OpenMDAO to support both hierarchical and monolithic nonlinear solver architectures, because they
show that different problems require different treatments. The mixture of the two often yields the
best compromise between stability and performance.

In addition to the hierarchical Newton’s method solver, OpenMDAO also provides a gradient-
free hierarchical Broyden solver that may offer faster convergence than the nonlinear Gauss—Seidel or
nonlinear Jacobi solvers. In Appendix C, we also prove that the Broyden solver exhibits the same
equivalence between the hierarchical and reduced-space formulations.

5.2 Linear Solution Strategy

As discussed above, some nonlinear solvers require their own linear solvers to compute updates for
each iteration. OpenMDAO also uses a linear solver to compute total derivatives via Eq. (16). The
inclusion of linear solvers in the framework, and the manner in which they can be combined, is one of
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the unique features of OpenMDAO.

There are two API methods that are useful for implementing linear solvers: apply_linear and
solve_linear. In an analogous fashion to the nonlinear solvers, the linear solvers can employ either
a monolithic or hierarchical strategy. In this context, a monolithic strategy is one that works with
the entire partial derivatives Jacobian (OR/0u) as a single block in-memory. A hierarchical linear
strategy is one that leverages a matrix-free approach.

5.2.1 Hierarchical Linear Strategy

The hierarchical linear solver strategy is an approach that relies on the use of the apply_linear and
solve_linear methods in the OpenMDAO API. As such, it is a matrix-free strategy. This strategy
was originally proposed by Hwang and Martins [46], and we refer the reader to that work for a more
detailed presentation of these concepts, including an extensive treatment of how parallel data passing
is integrated into this linear strategy. OpenMDAO implements the hierarchical linear solver strategy
proposed by MAUD to support integration with computationally expensive analyses, i.e., parallel
distributed memory analyses such as CFD and FEA. Models that benefit from this strategy tend to
have fewer than ten components that are computationally expensive, with at least one component
having on the order of a hundred thousand unknowns. The linear block-Gauss—Seidel and linear
block-Jacobi solvers are the two solvers in the OpenMDAO standard library that use the hierarchical
strategy. Algorithms (4) and (5) detail the forward (direct) formulation of the two hierarchical linear
solvers. There are also separate reverse (adjoint) formulations for these solvers, which are explained
in more detail by Hwang and Martins [46]. For integration with PDE solvers, the forward and reverse
forms of these algorithms allow OpenMDAO to leverage existing, highly specialized linear solvers
used by discipline analyses as part of a recursive preconditioner for a top-level OpenMDAO Krylov
subspace solver in a coupled multidisciplinary model [46].

Algorithm 4 Linear Block Gauss—Seidel (forward mode)

1: while ||r|| > ¢ do

2 for all child; in subsystems do

3: for all child; in subsystems : ¢ # j do

4 dr; < dr; — child;.applylinear(ducniid j)
5 duchila; < child;.solve linear(dr;)

Algorithm 5 Linear Block Jacobi (forward mode)

1: while ||r|| > € do
for all child; in subsystems do
ducning; < child;.solve_linear(dr;)

for all child; in subsystems do
for all child; in subsystems : i # j do
dr; < dr; — child;.apply_ linear(duchilq, )

AN I

5.2.2 Monolithic Linear Strategy

Although the hierarchical linear solver strategy is an efficient approach for models composed of compu-
tationally expensive analyses, it can introduce significant overhead for models composed of hundreds
or thousands of computationally simple components. The hierarchical linear solver strategy relies on
the use of the apply_linear and solve_linear methods, which only provide linear operators that
must be recursively called on the entire model hierarchy. While recursion is generally expensive in
and of itself, the cost is exacerbated because OpenMDAQO is written in Python, an interpreted lan-
guage where loops are especially costly. For many models, it is feasible to assemble the entire partial
derivative Jacobian matrix in memory, which then allows the use of a direct factorization to solve the
linear system more efficiently. As long as the cost of computing the factorization is reasonable, this
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approach is by far the simplest and most efficient way to implement the solve_linear method. This
represents a significant extension from the previously developed hierarchical formulation [46], and as
we will show in Sec. 5.3, this approach is crucial for good computational performance on models with
many components.

The matrix assembly can be done using either a dense matrix or a sparse matrix. In the sparse
case, OpenMDAO relies on the components to declare the nonzero partial derivatives, as shown in
Fig. 4. Broadly speaking, at the model level, the partial derivative Jacobian is almost always very

sparse, even for simple models. Figure 5, which includes a visualization of [BR/Bu]T, shows that
even a small model has a very sparse partial derivative Jacobian. In the vast majority of cases, the
factorization is more efficient when using a sparse matrix assembly.

The monolithic linear solver strategy is primarily designed to be used with a direct linear solver.
A direct factorization is often the fastest, and certainly the simplest type of linear solver to apply.
However, this strategy can also be used with a Krylov subspace solver, assuming we either do not need
to use a preconditioner or want to use a preconditioner that is also compatible with the monolithic
strategy (e.g., incomplete LU factorization). Krylov subspace solvers are unique because they can be
used with both the hierarchical and monolithic linear solver strategies, depending on what type of
preconditioner is applied.

Monolithic and hierarchical linear solver strategies can be used in conjunction with each other as
part of a larger model. At any level of the model hierarchy, a monolithic strategy can be used, which
causes all components below that level to store their partial derivatives in the assembled Jacobian
matrix. Above that level, however, a hierarchical linear solver strategy can still be used. This
mixed linear solver strategy is crucial for achieving good computational efficiency for larger models.
Aeropropulsive design optimization is good example where this is necessary. Gray et al. [34] coupled
a RANS CFD analysis to a 1-D propulsion model using OpenMDAO with a hierarchical linear solver
strategy to combine the matrix-free Krylov subspace from the CFD with the monolithic direct solver
used for the propulsion analysis.

5.3 Performance Study for Mixed Linear Solver Strategy

The specific combination of hierarchical and monolithic linear solvers that will give the best perfor-
mance is very model-specific, which is why OpenMDAQ’s flexibility to allow different combinations is
valuable.

This sensitivity of computational performance to solver strategy can be easily demonstrated using
an example model built using the OpenAeroStruct [53] library. OpenAeroStruct is a modular, lower-
fidelity, coupled aerostructural modeling tool which is built on top of OpenMDAQO V2. Consider a
notional model that computes the average drag coefficient for a set of aerostructural wing models at
different angles of attack, as shown in Fig. 6. The derivatives of average drag with respect to the
shape design variables can be computed via a single reverse model linear solution. This reverse mode
solution was tested with two separate solver strategies: (1) pure monolithic with a direct solver at the
top of the model hierarchy; (2) mixed hierarchical/monolithic with a linear block Gauss—Seidel solver
at the top and direct solver angle of attack case.

Figure 7 compares the computational costs of these two linear solver strategies and examines how
the computational cost scales with increasing number of components. For this problem, the scaling
is achieved by increasing the number of angle of attack conditions included in the average. As the
number of angle of attack cases increases, the number of components and number of variables goes
up as well, since each case requires its own aerostructural analysis group. The data in Fig. 7 shows
that both linear solver strategies scale nearly linearly with an increasing number of variables, which
indicates very good scaling for the direct solver. This solver relies on the sparse LU factorization in
SciPy [80]. However, the difference between the purely monolithic and the mixed hierarchical/mono-
lithic linear solver strategies is 1.5 to 2 orders of magnitude in total computation time. This difference
in computational cost is roughly independent of problem size, which demonstrates that the mixed
strategy is fundamentally more efficient than the pure monolithic one.
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6 Efficient Methods for Computing Total Derivatives of Sparse Models

As discussed in Sec. 4, when using the unified derivative equation to analytically compute the total
derivative Jacobian, one linear solution is required for each model input in forward mode; alterna-
tively, in reverse mode, one linear solution is required for each model output. However, when the
model exhibits certain types of sparsity patterns, it is possible to compute the complete total deriva-
tive Jacobian matrix using fewer linear solutions than the number of model inputs or model outputs.
Furthermore, when properly exploited, these sparsity structures can also change the preferred solution
mode (forward or reverse) from what would normally be expected. In this section, we present two
specific types of sparsity structure and discuss how OpenMDAO exploits them to reduce the compu-
tational cost of computing derivatives for models where they are present. The first sparsity pattern
arises from separable model variables and allows for the multiple linear solutions to be computed
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Figure 6: Model hierarchy, data connectivity, and linear solver strategy for an OpenAeroStruct model
with four flight conditions.
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Figure 7: Scaling of computational cost for a single linear solution versus number of components in the
model. Two solver strategies are compared: pure monolithic (orange) and mixed (blue). The average
slope of the two data sets indicates nearly linear scaling for both, but there is a two-order-of-magnitude
difference in actual cost.



simultaneously using a single right-hand-side vector; thus, it requires only one linear solution. The
second sparsity pattern arises from models where one component output provides the input to many
downstream components that do not depend on each other. This enables multiple linear solutions to
be computed in parallel via multiple parallel linear solutions on multiple right-hand sides.

6.1 Combining Multiple Linear Solutions Using Graph Coloring

Typically, a single linear solution corresponds to a single model input (forward/direct mode) or a single
model output (reverse/adjoint mode). When a portion of the total derivative Jacobian has a block-
diagonal structure, a coloring technique can be applied to combine linear solutions for multiple model
inputs or multiple model outputs into a single linear solution. This reduces the cost for computing the
total derivative Jacobian. Consider a notional problem with seven model inputs (a, b, ¢g, ¢1, ¢2, €3, C4)
and six model outputs (go, 91, 92, g3, 94, f) with the total derivative Jacobian structure illustrated in
Fig. 8. Since there are more model inputs than outputs, the reverse mode would normally be faster.

a b € € C2 C3 ¢4 a b c

g | B

a HE
. H S
4 | a HE

(a) Seven individual solutions (b) Two individual solutions and one simultaneous
solution

~

Figure 8: Total derivative Jacobian structure for a notional model where the model outputs are all
separable with respect to the ¢; inputs. The left side shows the full Jacobian structure with coloring
to indicate the potential for simultaneous solutions. The right side shows the collapsed Jacobian
structure that takes advantage of the coloring.

However, as we can infer from Fig. 8, the five ¢; inputs affect the six outputs (go, g1, 92, 93, g4, f)
independently. Therefore, these inputs can share a single color, and the linear system only requires a
single forward solution. Combining multiple linear solutions is accomplished by combining multiple
columns of the identity matrix from the unified derivatives equation (16) into a single right-hand side,
as shown in Fig. 9. Normally, a combined right-hand side would yield sums of total derivatives, but if
we know that certain terms are guaranteed to be zero (e.g., dgo/ dc; = 0, dg1/ deg = 0), we can safely
combine the right-hand side vectors.

In this case, using forward mode would require two separate linear solutions for a and b, and then
a single additional combined linear solution for the set (co,...,cs), as illustrated in Fig. 8(a) and
Fig. 9(b). Since this case is colored in forward mode, the subscripts (i, 7, k) in Fig. 9(b) are associated
with the denominator of the total derivatives, indicating that each solution yields derivatives of all

the outputs with respect to a single input. In Fig. 9(a), [du/ dry) j|k] indicates the need to use three
separate linear solutions. In Fig. 9(b), [du/ dri+]~+k] indicates that the three right-hand sides can be

added as
du du du du
7 | = - —_ 24
[dTi+j+k] |:dTZ:| + [d”f‘j] * |:d7‘k:| ’ ( )

to form a single linear system that can compute all three sets of total derivatives.
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Figure 9: Combining multiple linear solutions.

Using coloring, the complete total derivative Jacobian can be constructed using only three linear
solutions in a colored forward mode. The original uncolored solution method would require six linear
solutions in reverse mode. Therefore, the colored forward mode is faster than using the uncolored
reverse mode.

There is a well known class of optimal control problems that is specifically formulated to create
total derivative Jacobians that can be efficiently colored. Betts and Huffman [7] describe their “sparse
finite-differencing” method, where multiple model inputs are perturbed simultaneously to approximate
total derivatives with respect to more than one input at the same time. Sparse finite-differencing is
applicable only to forward separable problems, but OpenMDAO can leverage coloring in both forward
and reverse directions because analytic derivatives are computed with linear solutions rather than a
numerical approximations of the nonlinear analysis. The ability to leverage both forward and reverse
modes for coloring gives the analytic derivatives approach greater flexibility than the traditional sparse
finite-differencing, and makes it applicable to a wider range of problems.

Although the notional example used in this section provides a very obvious coloring pattern, in
general coloring a total derivative Jacobian is extremely challenging. OpenMDAO uses an algorithm
developed by Coleman and Verma [18] to perform coloring, and it uses a novel approach to computing
the total derivative sparsity. More details are included in Appendix A.

6.1.1 Computational Savings from Combined Linear Solutions

The combined linear solution feature is leveraged by the Dymos optimal control library, which is built
using OpenMDAO. To date, Dymos has been used to solve a range of optimal control problems[24],
including canonical problems such as Bryson’s minimum time to climb problem [10], as well as the
classic brachistochrone problem posed by Bernoulli [6]. It has also been used to solve more complex
optimal trajectory problems for electric aircraft [23, 89).

To demonstrate the computational improvement, we present results showing how the cost of solv-
ing for the total derivatives Jacobian scales with and without the combined linear solutions feature
for Bryson’s minimum time to climb problem implemented in the Dymos example problem library.
Figure 10 shows the variation of the total derivatives computation time as a function of the number
of time steps used in the model. The greater the number of time steps, the greater the number of
constraints in the optimization problem for which we need total derivatives. We can see that the
combined linear solution offers significant reductions in the total derivative computation time, and
more importantly, shows superior computational scaling.

6.2 Sparsity from Quasi-decoupled Parallel Models

Combining multiple linear solutions offers significant computational savings with no requirement for
additional memory allocation; thus, it is a highly efficient technique for reducing the computational
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Figure 10: Comparison of total derivatives computation time computed with (blue) and without
(orange) the combined linear solution feature.

cost of solving for total derivatives, even when running in serial. However, it is not possible to use that
approach for all models. In particular, a common model structure that relies on parallel execution
for computational efficiency, which we refer to as “quasi-decoupled”, prevents the use of combined
linear solutions and demands a different approach to exploit its sparsity. In this section, we present a
method for performing efficient linear solutions for derivatives of quasi-decoupled systems that enables
the efficient use of parallel computing resources for reverse mode linear solutions.

A quasi-decoupled model is one with an inexpensive serial calculation bottleneck at the beginning,
followed by a more computationally costly set of parallel calculations for independent model outputs.
The data passing in this model is such that one set of outputs gets passed to multiple downstream
components that can run in parallel. A typical example of this structure can be found in multipoint
models, where the same analysis is run at several different points, e.g., multiple CFD analyses that are
run for the same geometry, but at different flow conditions [26, 58, 85]. In these cases, the geometric
calculations that translate the model inputs to the computational grid are the serial bottleneck,
and the multiple CFD analyses are the decoupled parallel computations, which can be solved in an
embarrassingly parallel fashion. This model can be run efficiently in the forward direction for nonlinear
solutions—making it practically forward decoupled—but the linear reverse mode solutions to compute
total derivatives can no longer be run in parallel.

One possible solution to address this challenge is to employ a constraint aggregation approach [61,
64]. This approach allows the adjoint method to work efficiently because it collapses many constraint
values into a single scalar, hence recovering the adjoint method efficiency. Though this may work in
some cases, constraint aggregation is not well-suited to problems where the majority of the constraints
being aggregated are active at the optimal solution, as is the case for equality constraints. In these
situations, the conservative nature of the aggregations function is problematic because it prevents
the optimizer from tightly satisfying all the equalities. Kennedy and Hicken [57] developed improved
aggregation methods that offer a less conservative and more numerically stable formulation, but despite
the improvements, aggregation is still not appropriate for all applications. In these cases, an alternate
approach is needed to maintain efficient parallel reverse mode (adjoint) linear solutions.

When aggregation cannot be used, OpenMDAOQO uses a solution technique that retains the parallel
efficiency at the cost of a slight increase in required memory. First, the memory allocated for the serial
bottleneck calculations in the right-hand side and solution vectors is duplicated across all processors.
Only the variables associated with the bottleneck calculation are duplicated, and the variables in
the computationally expensive parallel calculations remain the same. This duplication is acceptable
because the bottleneck calculation requires an insignificant amount of memory compared to the parallel
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Figure 11: Parallel derivative computation for a reverse mode solution [45]. Group 1 contains com-
ponents 2, 3, and 4, and Group 2 contains components 5, 6, and 7. We assume Groups 1 and 2 are
allocated on different processors. Without the ability to solve multiple right-hand sides simultane-
ously, processor 2 would be idling in (a), and processor 1 would be idling in (b). In (c), each processor

can solve for the derivatives of its own group simultaneously.

calculations. The duplication of the memory effectively decouples the portions of the model that
require more memory and computational effort, so OpenMDAO can then perform multiple linear
solutions in parallel across multiple processors. This approach for parallel reverse derivative solutions
was first proposed by Hwang and Martins [45], and has been adapted into the OpenMDAQO framework.
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It is described below for completeness and to provide context for the performance results presented.

Figure 11 compares the reverse mode linear solution between a basic reverse mode solution an a
parallel reverse mode solution. The left-hand side matrices in Fig. 11 are upper triangular because
the reverse mode solutions use [0R/du]T. In this notional model, the first component on the diagonal
is the inexpensive serial bottleneck that all following calculations depend on. Then, there are two
parallel expensive computational groups represented by components (2,3,4) and (5,6,7), each of which
computes a model output. We assume that Group 1 is allocated in processor 1, and Group 2 is
allocated in processor 2.

Using the basic reverse mode requires two sequential linear solutions. During the first solution,
illustrated in Fig. 11(a), processor 1 solves for the derivative of the output of Group 1, while proces-
sor 2 idles. Similarly, during the second solution, illustrated in Fig. 11(b), processor 2 solves for the
derivatives of the outputs of Group 2, while processor 1 idles.

Using the parallel reverse mode, both processors independently loop over the two right-hand
sides to compute two linear solutions, as shown in Fig. 11(c). For processor 1, the first right-hand
side computes derivatives of the Group 1 model output, while the second performs no operations.
For processor 2, the first right-hand side does not require any operations, and the second computes
derivatives of the Group 2 model output. Therefore, the parallel reverse mode of Fig. 11(c) takes
advantage of embarrassingly parallel execution. In Fig. 11(c), there are grayed out portions of the
vectors, indicating that memory is not allocated for those variables on that particular processor.
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Figure 12: Comparison of total derivatives computation time calculated with and without parallel
reverse mode.

6.2.1 Computational Savings from Parallel Reverse Mode
We now demonstrate the performance of parallel reverse mode derivatives computation using the
combined allocation-mission-design (AMD) problem developed by Hwang and Martins [45]. In this
problem, an airline with four existing aircraft and one new aircraft design allocates these aircraft
for 128 individual routes to maximize operational profit. This model was executed on a parallel
cluster with 140 cores, ensuring that the mission constraints are handled in parallel. A number of
the constraints exhibit the quasi-decoupled structure because there are separate sets related to each
of the 128 missions which can all be computed in parallel, but they all depend on a single upstream
calculation that creates the reverse mode bottleneck.

In Fig. 12, we show the total derivatives computation time with and without parallel reverse mode
for a range of different model sizes. The models were scaled up by refining the time discretization of the
mission integration, which also created more physical constraints for each mission. The calculation is
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significantly faster with parallel reverse mode, but more importantly, the parallel reverse mode makes
the cost to compute total derivatives nearly independent of the size of the problem.

7 Applications

The usefulness and efficiency of OpenMDAO has already been demonstrated in a variety of applica-
tions. All of these applications have been the subject of previous publications and will not be detailed
here. Instead, we present an overview of these applications to illustrate the wide range of model fideli-
ties, problem structures, and disciplines that can be handled by OpenMDAO. For each application, we
highlight the computational performance and OpenMDAO features that were used. The applications
are listed in Table 13, where we show the extended design structure matrix (XDSM) [63] for each
problem and list the design variables, objective functions, and constraints.

One of the first practical engineering problems, and the first example of an optimal-control prob-
lem, solved with OpenMDAO V2 was a satellite MDO problem that maximized the data downloaded
by varying satellite design parameters (related to solar panels, antenna, and radiators) as well as time
dependent variables (power distribution, trajectory, and solar panel controls) [33]. This problem was
originally implemented using a bare-bones implementation of MAUD [49]. The modeled disciplines
consisted of orbit dynamics, attitude dynamics, cell illumination, temperature, solar power, energy
storage, and communication. The optimization involved over 25,000 design variables and 2.2 million
state variables, and required 100 CPU-hours to converge to the optimum result in a serial computa-
tion [49]. The satellite model is broken down into around 100 different components, which greatly
simplified the task of deriving the analytic partial derivatives by hand. This problem exhibits the
quasi-decoupled structure discussed in Section 6.2, and in OpenMDAOQO V2, the model was able to run
in around 6 hours of wall time, running in on 6 CPUs using parallel derivative computation.

The first integration of a specialized high-fidelity solver in OpenMDAQO was done to perform the
design optimization of an aircraft considering allocation, trajectory optimization, and aerodynamic
performance with the objective of maximizing airline profit [50]. The aerodynamics were modeled using
the ADflow CFD solver [65], which has an adjoint implementation to efficiently compute derivatives of
the aerodynamic force coefficients with respect to hundreds of wing shape variables. In this work, the
ADflow solver was integrated into the overall model in an explicit form, which greatly simplified the
integration and reduced the number of variables that OpenMDAO needed to track. The optimization
problem consisted of over 6,000 design variables and 23,000 constraints, and it was solved in about 10
hours using 128 processors. This work relied heavily on OpenMDAQ’s support for parallel computing
to efficiently evaluate multiple aerodynamic points simultaneously. Related work on this problem
by Roy et al.[86] expanded the problem to a mixed integer optimization that considered the airline
allocation portion of the problem in a more correct discrete form, which demonstrated the flexibility
of the framework to expand beyond purely gradient-based optimization.

The OpenMDAO interface to ADflow, first developed in the work mentioned above, was later re-
worked into an implicit form that exposed the full state vector of the flow solution to the framework.
The new wrapper was then used in a series of propulsion-airframe integration optimization studies
that were the first to demonstrate the framework’s ability to compute high-fidelity coupled deriva-
tives. A CFD model of a tightly integrated fuselage and propulsor was coupled to a one-dimensional
engine cycle model to build an aeropropulsive model, which enabled the detailed study of boundary
layer ingestion (BLI) effects [34] and the simultaneous design of aerodynamic shape and propulsor
sizing for BLI configurations [35, 37]. The thermodynamic cycle analysis tool was developed using
OpenMDAO as a standalone propulsion modeling library based on a chemical-equilibrium analysis
technique [36]. This new modeling library was the first engine cycle analysis capability that included
analytic derivative computation [42]. The development of the cycle analysis tool in OpenMDAO was
ultimately what motivated the addition of the new monolithic linear solver strategy to the framework,
and coupling that model to the high-fidelity aerodynamic solver required the implementation of a
mixed hierarchical-monolithic linear solver strategy in the coupled model.

Jasa et al. [53] developed OpenAeroStruct, a low-order wing aerostructural library whose devel-
opment was motivated by the absence of a tool for fast wing design optimization. OpenAeroStruct
implements a vortex lattice model for the aerodynamic analysis and a beam finite-element model
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for structural analysis. These analyses are coupled, enabling the aerostructural analysis of lifting
surfaces. Each of the models was implemented in OpenMDAO from the ground up, making use of
the hierarchical representation and solvers for the best possible coupled solution efficiency, as demon-
strated in Fig. 7. As a result, OpenAeroStruct efficiently computes aerostructural derivatives through
the coupled-adjoint method, enabling fast aerostructural analysis (solutions in seconds) and opti-
mizations (converged results in minutes). OpenAeroStruct has already been used in a number of
applications [4, 8, 13, 14, 19-21, 25, 62, 82, 83, 96]. Significant computational efficiency was achieved
for OpenAeroStruct by using the sparse-assembled Jacobian matrix feature with a monolithic linear
solver strategy, thanks to the highly sparse nature of many of the underlying calculations.

Chung et al. [17] developed a framework for setting up structural topology optimization prob-
lems and formulations. Using this platform, they implemented three popular topology optimization
approaches. Even though structural topology optimization involves only one discipline, they found
that the framework benefited from the modularity and the more automated derivative computation.
The increased modularity made it easier to restructure and extend the code, allowing the authors to
quickly change the order of operations in the process to demonstrate the importance of correct sequenc-
ing. This structural topology optimization framework is expected to facilitate future developments in
multiscale and multidisciplinary topology optimization. This work, in addition to OpenAeroStruct,
provides an excellent example of using OpenMDAO as a low-level software layer to develop new
disciplinary analysis solvers.

Hwang and Ning [48] developed and integrated low-order propeller, aerodynamic, structural, and
mission analysis models using OpenMDAO for NASA’s X-57 Maxwell research aircraft, which features
distributed electric propulsion. They solved MDO problems with up to 101 design variables and 74
constraints that converged in a few hundred model evaluations. Numerical experiments showed the
scaling of the optimization time with the number of mission points was, at worst, linear. The inclusion
of a fully transient mission analysis model of the aircraft performance was shown to offer significantly
different results from a basic multipoint optimization formulation. The need to include the transient
analysis is an example of why analytic derivatives are needed for these types of problems: They offer
the required computational efficiency and accuracy that could not be achieved using monolithic finite
differencing.

Other work that used OpenMDAO V2 includes a framework for the solution of ordinary differential
equations [47], a conceptual design model for aircraft electric propulsion [9], and a mission planning
tool for the X-57 aircraft [89].

Application-focused work has included the design of a next-generation airliner considering oper-
ations and economics [87], design and trajectory optimization of a morphing wing aircraft [52], and
trajectory optimization of an aircraft with a fuel thermal management system [54]. OpenMDAO is also
being used extensively by the wind energy community for wind turbine design [5, 22, 30, 75, 79, 98, 99]
and wind farm layouts [92, 95].

8 Conclusions

The OpenMDAO framework was developed to facilitate the multidisciplinary analysis and design
optimization of complex engineering systems. While other frameworks exist for the same purpose,
OpenMDAO has evolved in the last few years to incorporate state-of-the-art algorithms that enable
it to address optimization problems of unprecedented scale and complexity.

Two main areas of development made this possible: algorithms for the solution of coupled systems
and methods for the computation of derivatives. The development of efficient derivative computation
was motivated by the fact that gradient-based optimization is our only hope for solving large-scale
problems that involve computationally expensive models; thus, efficient gradient computations that
are scalable are required. Because most models and coupled systems exhibit some degree of spar-
sity in their problem structure, OpenMDAO takes advantage of the sparsity for both storage and
computation.

To achieve the efficient solution of coupled systems, OpenMDAO implements known state-of-the-
art monolithic methods and has developed a flexible hierarchical approach that enables users to group
models according to the problem structure so that computations can be nested, parallelized, or both.
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To compute total coupled derivatives efficiently in a scalable way, OpenMDAOQO uses analytic meth-
ods in two modes: forward and reverse. The forward mode is equivalent to the coupled direct method,
and its cost scales linearly with the number of design variables. The reverse mode is equivalent to
the coupled adjoint method, and its cost scales linearly with the number of functions of interest—but
it is independent of the number of design variables. This last characteristic is particularly desirable
because many problems have a number of design variables that is larger than the number of functions
of interest (objective and constraints). Furthermore, in cases with large numbers of constraints, these
can often be aggregated.

Problem sparsity is also exploited in the coupled derivative computation by a new approach we
developed that uses graph coloring. We also discussed a few other techniques to increase the efficiency
of derivative computations using the hierarchical problem representation.

The algorithms in OpenMDAQO work best if the residuals of the systems involved are available,
but when they are not available, it is possible to formulate the models solely in terms of their inputs
and outputs.

The efficiency and scalability of OpenMDAO was demonstrated in several examples. We also
presented an overview of various previously published applications of OpenMDAO to engineering
design problems, including satellite, wing, and aircraft design. Some of these problems involved tens
of thousands of design variables and similar number of constraints. Other problems involved costly
high-fidelity models, such as CFD and finite element structural analysis with millions of degrees of
freedom. While the solution of the problems in these applications would have been possible with
single purpose implementations, OpenMDAO made it possible to use state-of-the-art methods with a
much lower development effort.

Based on the experience of these applications, we conclude that while OpenMDAQO can handle
traditional disciplinary analysis models effectively, it is most efficient when these models are developed
from the ground up using OpenMDAO with a fine-grained modularity to take full advantage of the
problem sparsity, lower implementation effort, and built-in derivative computation.

Replication of Results

Most of the codes required to replicate the results in this paper are available under open source li-
censes and are maintained in version control repositories. The OpenMDAOQO framework is available from
GitHub (github.com/0OpenMDAO). The OpenMDAO website (openmdao.org) provides installation in-
structions and a number of examples. The code for the simple example of Sec. 3 is listed in Figs. 3
and 4 and can be run once OpenMDAQO is installed as is. The scripts used to produce the scaling plots
in Figs. 7 and 10 are available as supplemental material in this paper. In addition to requiring Open-
MDAO to be installed, these scripts require OpenAeroStruct (github.com/mdolab/OpenAeroStruct)
and Dymos (github.com/OpenMDAO/dymos). The scaling plots for the AMD problem (Fig. 12) in-
volve a complex framework that includes code that is not open source, and therefore, we are not
able to provide scripts for these results. Finally, although no results are shown in the applications
mentioned in Sec. 7, the code for two of these applications—OpenAeroStruct (github.com/mdolab/
OpenAeroStruct) and the satellite MDO (github.com/OpenMDAO/CADRE)—is also available.
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A Coloring of Total Derivative Jacobians

A.1 Determining Total Derivative Coloring

In the simple problem illustrated in Fig. 8, the forward coloring of the model inputs is obvious.
However, for a large problem with an unordered total Jacobian matrix, it is not easy to identify
coloring. There are a wide variety of serial coloring algorithms [18, 28, 55, 56, 97], originally developed
for coloring partial derivative Jacobians. There are also a set of parallel coloring algorithms that have
been developed for parallel distributed memory applications, such as CFD [41, 55, 65, 66, 78]. What
we propose here is that these coloring algorithms are now also applicable for coloring total derivative
Jacobian calculations based on the unified derivatives equations (16).

To apply a coloring algorithm, we need to know the total derivative Jacobian sparsity pattern
a priori, but this information is not easily available. However, the sparsity pattern of the partial
derivative Jacobian matrix, dR/0u, is known to OpenMDAO a priori from the combination of user-
declared partial derivatives and the connections made during model construction. Therefore, we
developed a method in OpenMDAO that computes the total derivative sparsity given the partial
derivative Jacobian sparsity.

To determine the total Jacobian sparsity pattern for a given state, OpenMDAO computes a ran-
domized partial derivative matrix using linear solutions of the unified derivatives equation (16) with
randomized values for OR/0u. Intuitively, one can understand how using randomized partial deriva-
tives would yield a relatively robust estimate of the total derivative sparsity pattern, but we provide a
more detailed logical argument for why this approach is appropriate here. A single randomized total
derivative Jacobian is likely to give the correct sparsity pattern, but we can reduce the likelihood of
errors in the sparsity by summing the absolute value of multiple randomly generated total derivative
Jacobians.

Once we have the total derivative sparsity pattern, OpenMDAQO applies a coloring algorithm
based on the work of Coleman and Verma [18] to identify the reduced set of linear solutions needed
to compute the total derivative Jacobian. As we demonstrate in Sec. 5.3, coloring can offer significant
performance improvements for problems that have sparse total derivative Jacobians.

A.2 Justification for Coloring with Randomized Total Derivative Jacobians

In theory, it would be possible to color the total derivative Jacobian based on the actual Jacobian
computed around the initial condition of the model. There is a risk, however, that the initial condition
of the model will happen to be at a point where some of the total derivatives in the model are inciden-
tally zero, although they will take nonzero values elsewhere in the design space. The incidental zero
would potentially result in an incorrect coloring, and so it is to be avoided if possible. Instead of using
the actual Jacobian values, we generate a randomized total derivative Jacobian that is statistically
highly unlikely to create any incidental zero values.

From the unified derivatives equations (16), we know that the total derivative Jacobian matrix,
du/ dr, is equal to the inverse of the partial derivative Jacobian matrix, OR/0u. Our task reduces
to the general mathematical problem of determining the sparsity structure of a matrix inverse given
the sparsity structure of the matrix itself, assuming that the matrix is large. We do not need the
sparsity structure of all of du/ dr; we only need the rows and columns corresponding to df/ dx, which
is almost always a much smaller matrix because du/dr contains all the intermediate model variables
as well as the model inputs and model outputs. From Cramer’s rule, we know that

aj—l
ou

~ det(OR/0u) ’ (25)

which is to say that the (i,7)th entry of the inverse of the Jacobian is the quotient of the (7, j)th
entry of the adjugate of the Jacobian and the determinant of the Jacobian. The Jacobian is invertible
for well-posed models, so the determinant is always nonzero. Thus, only the numerator in Cramer’s
rule (25) determines if a particular term is nonzero. If the matrix is n x n, where n is large, each term
in the adjugate and, thus, the inverse is the sum of a large number of terms that are products of n —1
partial derivatives.
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If we produce a partial derivative Jacobian matrix with random values for all nonzero terms, it
would be highly improbable that this sum of a large number of terms would be incidentally zero.
Therefore, we assume that each entry of the inverse of the random partial derivative Jacobian that is
zero is actually a zero in the sparsity structure of the true total derivative Jacobian.

B Equivalence between Hierarchical and Reduced-Space Newton’s Methods
OpenMDAO introduces a new hierarchical Newton’s method formulation for the sake of improved
numerical flexibility; however, this proof shows that the new full-space method can be made math-
ematically identical to the more traditional reduced-space Newton’s method if one always fully con-
verges the internal nonlinear system associated with R,. Consider the residual of an arbitrary implicit
function, R, (x) = r,, at some non-converged value of x. If r, is actually a function of the nonlinear
system Ry(z,y) = 0, converged for a specific value of x:

=

§

B
Il

Cla,y) =1y (26)
Ry(y) = D(zvy) =0, (27)

then we call R, the reduced-space residual function, with the full space composed of the vectors z
and y of lengths n and m, respectively.

Our ultimate goal is to solve for = such that R, (x) = 0, using Newton’s method. The traditional
Newton’s method iteration consists in computing Az by solving a linear system of size n:

OR,
ox

| as=-r. (28)

Expanding OR, /0x to account for the intermediate calculation of y gives

[ac aC dy

5+ ﬁ’ydz] Az = —r,. (29)

By differentiating Eq. (27) with respect to x, we find that

dR, OR, n OR, dy

de  Ox oy dr 0 (30)
dy  [oD] ' oD
= [ay} Ers (31)

Combining Egs. (29) and (31) gives a formula for the Newton update of the reduced-space function
as

(32)

dr Oy |dy] Ox

oC  aC {ap}‘l GD]
Az = —r,

Now, instead of the reduced-space form of Eq. (26), consider a full-space form that deals with both
z and y simultaneously as one vector:

R = Rz = | GO0 [ =ri= | 77 |. (33)

This full-space form is the mathematical representation used by OpenMDAO for any system—or
subsystem, as demonstrated in Eq. (15). The Newton update for the flattened system must be solved
for via a linear system of size (n + m):

{8Ru

- } Au = —r,. (34)

If we apply the hierarchical Newton algorithm to the full-space formulation, then we can assume that
any time Eq. (34) is solved, y has first been found such that that r, = 0. Expanding 0R,,/0u and
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setting ry, = 0 in Eq. (34) yields

ree;

0. 15}

ob  bb
dy

Ax T
{Ay]__{ﬂ}' %)
Solving Eq. (35) for Ay and back substituting yields

(36)

aC  aC {ap}l 8D]
— - | = — | Az = —r,
dr Oy | Oy or

Egs. (32) and (36) are identical, and therefore applying the hierarchical Newton algorithm to the
full-space model (size n+m) gives the exact same Az as the reduced-space Newton algorithm applied
to the smaller, reduced-space model (size n). Since the updates to Ax are the same, then assuming
complete convergence of all child subsystems, the path that the hierarchical Newton’s method takes
on the size (n+m) formulation will be identical to the path the reduced-space Newton’s method takes
on the smaller size n formulation.

C Equivalence between Recursive and Hierarchical Broyden’s Methods
Broyden’s Second Method computes an approximate update of the inverse Jacobian via

T
AT Ar;. (37)

Then, the Newton update is applied using the approximate inverse Jacobian via

o | = =L

n

{aRm] ! Az, — J7 1 Ar,

Ax = —J, r,. (38)

C.1 Reduced-space Broyden

Consider the same composite model structure given in Egs. (26) and (27). From Eq. (32), we know
that

IR, — @ _ %82_162 (39)
or |, |0x Oyoy ox|
To simplify the algebra, we now define a new variable, (3, as
-1
y_[om]™ _[oc _acopiop w0
Oz, |0z Sy oy Ox|

Now we can substitute this into Eq. (37) to calculate the Broyden update to the inverse Jacobian as

Ax = fAry 1 (41)

Tt =B+ = A
127>

Finally, if we substitute this into Eq. (38), we get the update to the state value:

<B+Ax—,8Arm

Az, = — Arf) Tg- (42)
|A7 |2

C.2 Full-space Broyden
To apply Broyden’s method to the full-space formulation, we start from Eq. (35) for the Newton
update of the full-space system, but now instead of an exact inverse Jacobian, we use the approximate
inverse Jacobian, J, 1, i.e.,

A = { n ] S { s ] = T ). (43)



The full-space Broyden’s method gives

Au,, — J;_llArn
—r Tno TR AT 44
Tar, e 2 (44)

-1
[853} =J =gt

We use the closed form solution for the block inverse of a 2 x 2 matrix to obtain

ac  oc 17!
J—l — 6:5 8 _—
n—1=| oD 9D =

ox Jy
[ac_@@ 18D] 1 _ac— 1@[@_@@ 130] 1
ox dy Oy oz Bz dy | Oy ox Ox oy (45)
_op-lop [oc _scop—1op]™* oD _ ap oc—lac] ™!
By oz [81 Oy Oy oz ] [ dy dxr Ox By }
We can simplify this by substituting Eq. (40) into Eq. (45), which yields
3 _ac— 160[@_@@ 180] 1
J—l _ Bz dy | 9y oz Ox oy (46)
n—1= | 5p- 18D5 [@_@@ 16C]
By oy Oz Oz Ay
To further simplify, we define one more new variable, ~ :
_|op apac—tec| )
oy Ox 0x Oy
and then,
ac—lac
1 B —o o
Jui1 = 9D~ IBDB ’ Y : (48)
By v
Now, returning to Eq. (44) we can compute each of the terms:
_ _ Ar BATr,
JnfllATn - Jnjl [ OI] - l ap 1 BDBA (49)
n Dy
Since the residual 7, is zero,
[Ary[| = [|Are . (50)
Putting it all together, we get
_oc~lac
J71 _ 6 o Oy v 4
n — |_ap—1 aD D
Oy v
[Am] l par,
Ay =52 2Lp|ar,?
Oy z T
+ [Ar : 0} . 51
AP . oy
Performing the outer product and reducing yields
Az—BAry ac—lac
AJ-L = e NN ) Ary b oy (52)
n — |ap-— 15)D Az—9P~ 6D5ATIA T
oy eaP—lanir A g
Now we substitute this into Eq. (23) to get the update to the state value:
Az— BA'rl ac—1ac
[Aﬂ = o aD 1Aa7;3 ow [”] (53)
Sl A e i M
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<5+ Az—BAry Arg) .

{Aﬂ Are(2 ) (54)
—_ oD —1 8D

A - oD -1 9D Ay—5y = PATz :

T <6y Er R v-on e K

Finally, we can solve for the Broyden updated Az to obtain:

— BA
Az — 3 T'IAT)T;D

A (55)

Amn:_<ﬁ+

This matches the result from recursive Broyden in Eq. (42). We also end up with an update to y, but
since we have assumed that a sub-solver will always drive R, to zero, this update to y does not affect
the path taken by the top level full-space solver.
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