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In this paper, a gust load alleviation system based on model-predictive control is developed for a very
flexible aircraft. Two main contributions presented in this work are as follows. First, a unified dy-
namics framework is developed to represent the full six-degrees-of-freedom rigid body along with
the structural dynamics. This allows for an integrated control design to account for maneuverabil-
ity (flying qualities) and aeroelasticity simultaneously, leading to a new and improved configuration
for a very flexible aircraft. Second, an improved model-predictive control formulation is proposed
for stabilization and gust load alleviation. The performance of the model-predictive control is fur-
ther improved by introducing an additional feedback loop to increase the prediction accuracy. To
demonstrate the effectiveness of the proposed approach, the integrated formulation is compared with
existing approaches. Further, the load alleviation performance is evaluated for various discrete and
continuous gusts.

I. Introduction
Aircraft structures are required to sustain critical loading conditions during maneuvers or when flying through

atmospheric turbulence. The use of active control has been extensively investigated, for example the alleviation of
the dynamic load [1, 2, 3, 4, 5, 6] and the suppression of aeroelastic effects [7, 8]. The application of active-control
techniques to large-aspect-ratio aircraft has recently become more prevalent [9]. Active structural control techniques
can avoid catastrophic failure by preventing highly flexible aircraft wings from deforming to an unexpected shape, as
happened in the Helios aircraft accident [10].

A wide range of aeroelastic models and control techniques have been considered for active aeroelastic control. In
a seminal paper, Karpel [8] applied a static output feedback controller to a simple wing section to perform gust load
alleviation (GLA) and flutter suppression. The feedback matrix coefficients were solved to move the closed-loop poles
of the system to the desired locations.

Early efforts in aeroservoelasticity were based on flexible aircraft models consisting of rigid-body equations and a
series of second-order differential equations representing the structural modes [11, 12]. McLean and Prasad [11] used
a linear quadratic optimal controller to reduce the wing bending moment of the C-5A Galaxy aircraft. The simulation
results showed that the application of the control system led to less oscillatory motion in the wing bending moment;
this helps to reduce the accumulation of fatigue cycles in the aircraft wing. Aouf et al. [12] employed optimal and
robust control methods to perform GLA on a flexible variant of the B-52 aircraft. The controller took advantage of
ailerons and horizontal canards to reduce the transient peak value of the structural loadings caused by stochastic gust
excitation. To obtain unsteady measurements and a reduced-order model, Silva et al. [13] performed experimental
analysis on the SensorCraft wind-tunnel model at the NASA Langley transonic dynamics tunnel. The model was used
to develop a simple GLA controller using the generalized predictive control method. Simulated open- and closed-loop
results indicated that the controller had significantly lowered the gust response.

The application of adaptive feed-forward controllers for GLA has also been reported [14, 15, 16]. The main
challenge for a feed-forward controller is the availability of a reliable gust-induced angle of attack measurement.
Recently, Dillsaver et al. [17] designed a GLA controller for the highly flexible flying wing X-HALE [18]. A linear
quadratic Gaussian (LQG) controller was designed and applied to the linear reduced-order model representing the
aircraft dynamics. The controller was shown to reduce the peak wing curvatures by an average of 47% and the RMS
curvatures by an average of 83.7%.

The performance of GLA systems also depends on the control surface effectiveness. Moulin and Karpel [2] in-
vestigated the effectiveness of different control surfaces in the GLA of a large transport aircraft. A baseline model
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with aileron control was compared with models equipped with an under-wing control surface and a wing-tip control
surface. The three models were excited with a (1− cos) discrete gust profile. It was shown that the new surfaces were
more effective at relaxing the wing structure. Specifically, ailerons lose their effectiveness at higher speeds, whereas
the other two control surfaces become even more effective.

We develop the nonlinear equations of motion for a highly flexible aircraft using Lagrange’s equations for quasi-
coordinates. The developed equations can effectively integrate large rigid-body motions with structural deflections.
We use a three-dimensional panel method in combination with the eigensystem realization algorithm (ERA) to obtain
a time-domain reduced-order model to represent the unsteady aerodynamics. To capture large, nonlinear structural
deformations, we develop a co-rotational framework based on Euler–Bernoulli beam elements. We introduce a model-
predictive control (MPC) framework to address GLA for very flexible aircraft. Predictive controllers are generally
sensitive to the accuracy of the future output prediction, and their performance can be adversely affected by inaccurate
predictions. We propose a technique to increase the prediction accuracy of the MPC, which improves the overall
controller performance.

The novelty of this framework is twofold. First, we develop a unified dynamics framework to represent the full
six-degrees-of-freedom rigid body along with the structural dynamics. This allows for an integrated control design
to account for rigid-body and aeroelastic control simultaneously, leading to overall improvement for a very flexible
aircraft. The derived formulations make it possible to realize the multidisciplinary synthesis of an actively controlled
aeroservoelastic wing at the conceptual design phase. Secondly, we propose an improved MPC for stabilization and
GLA. The introduction of prediction enhancement (PE) improves the performance of the controller in the presence of
disturbance (gust) and model uncertainties.

We present a comparison study to highlight the significance of inertial interaction in flexible aircraft modeling. A
Bode diagram clearly demonstrates that the exclusion of inertial interaction significantly affects the model accuracy
at both low and high frequencies. To demonstrate the effectiveness of the proposed controller, we evaluate the perfor-
mance of the system for an aircraft passing through various discrete and continuous gusts. The (1−cos) profile is used
to represent discrete gusts, and the Dryden gust model is used to generate continuous gust excitations. We compare
our MPC with PE to the traditional MPC and the linear quadratic (LQ) control approach to show the superiority of our
technique in structural load relaxation problems.

Section II of this paper discusses the aeroservoelastic formulation and the general nonlinear form of the equations
for a deformable aircraft. Sections III and IV present the nonlinear structural modeling and the construction of the
aerodynamic ROM. Section V describes the MPC formulation. Section VI discusses the numerical study, and Section
VII provides concluding remarks.

II. Aeroservoelastic Formulation
Early efforts in aeroservoelasticity were based on flexible aircraft models consisting of traditional rigid-body equa-

tions and a series of second-order differential equations representing the structural modes [11, 12]. Recently, more
detailed mathematical formulations of flexible aircraft flight dynamics have been developed. Schmidt and Raney de-
veloped the equations of motion for a flexible aircraft using the mean-axes method [19]. Some of their assumptions,
including the application of aerodynamic strip theory and small structural deflections, make this approach less appro-
priate for modeling highly flexible aircraft. More rigorous formulations using a body-fixed axis system have also been
developed [20, 21, 22, 23, 24, 25].

The development of a mathematical model that integrates flight dynamics with other disciplines, such as structures
and aerodynamics, is the key to controlling a highly flexible aircraft. In this section, we derive the nonlinear equations
of motion of a highly flexible aircraft using a body-fixed axis system. We begin with Lagrange’s equations for quasi-
coordinates,

d

dt

(
∂L

∂Vc

)
+ ω× ∂L

∂Vc
− Cbi

∂L

∂Rc
= F, (1)

d

dt

(
∂L

∂ω

)
+ Vc

× ∂L

∂Vc
+ ω× ∂L

∂ω
−D−T ∂L

∂θ
= M, (2)

d

dt

(
∂L̂

∂v

)
− ∂T̂

∂d
+
∂F̂
∂v

+ Ld = Û , (3)

where L and T are the Lagrangian and kinetic energy, respectively, of the system. Vectors F and M are the total forces
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and moments acting on the rigid body. F represents Rayleigh’s dissipation term, U represents the distributed forces
acting on the aircraft structure, (̂·) indicates the volume density of the energy terms, and (·)× is the cross-product
operator representing a skew-symmetric matrix with the following form:

ω =
{
ω1 ω2 ω3

}T ⇒ ω× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (4)

The two transformation matrices, Cbi and D, transform the inertial translational velocities and the inertial rotational
velocities, respectively, into the corresponding velocity vectors in the body-fixed coordinate system. Figure 1 shows a
deformable aircraft with the original wing and its deformation, as well as the associated axis systems. FI represents
the inertial frame and FB the body-fixed frame, not necessarily connected to the center of mass. The absolute position
and velocity of an infinitesimal mass element dm on the aircraft are given by

R = Rc + r + d,

V = Ṙ = Vc + ω × (r + d) + v.
(5)

Rc

R

r

d

dm

FB

FI

Figure 1. Schematic drawing of deformed aircraft and position vectors

Figure 1 shows the location vector of the body-axis Rc, the mass-element rigid distribution vector r, and the
displacement of the mass element d. The deformational velocity of the mass element is represented by v. Finally,
Vc is the translational velocity of the body-frame origin, and ω is the rotational velocity of the body-frame FB . The
structural deformations can be expressed in a discrete finite-element formulation or as a linear combination of the mode
shapes. A common choice for these mode shapes is the eigenvectors of the structural system. Although the modal
representation is often applied in dynamic response and stability analysis, static aeroelastic analysis is usually based
on discrete finite-element methods. This is because the modal representation does not adequately capture the effect
of concentrated forces, such as the weight of external stores, unless the structural modes are calculated using large
fictitious masses at the locations of the lumped forces [26]. In our case, no lumped forces are present on the aircraft
wing, and so we use the modal representation for both the static and dynamic analysis. The structural displacement
and velocity can be expressed in the modal form as follows:

d = φrξ ⇒ v = φrη, (6)

where ξ is a vector of modal amplitudes, η is the rate of change of the modal amplitudes, and φr represents the modal
deflection at location r. This modal deflection matrix has the following form:

φr =

xr,1 xr,2 · · · xr,n
yr,1 yr,2 · · · yr,n
zr,1 zr,2 · · · zr,n

 , (7)

where xr,i is the deformation at location r in the x direction due to the ith structural shape function. Note that the
adoption of the modal representation for structural deformations does not impose any restrictions on the modeling
of large nonlinear structural deformations. In Section III we briefly discuss the computation of nonlinear structural
deformations using a co-rotational framework.
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The gravitational force is modeled as a distributed force, and therefore the following terms in Eqs. (1) and (2)
vanish:

∂L

∂Rc
= 0,

∂L

∂θ
= 0. (8)

Using the structural shape functions, we can adapt Eq. (3) to the modal form as follows:

d

dt

(
∂L

∂η

)
− ∂T

∂ξ
+
∂U
∂ξ

+
∂F
∂η

= fe, (9)

where U and F represent the strain energy and Rayleigh’s dissipation for the complete aircraft structure. Also, fe
denotes the generalized modal forces that act on the aircraft structure.

A. Kinetic Energy
The kinetic energy of a deformable aircraft can be formulated as follows:

T =
1

2

∫
v

ρVTVdv =
1

2
mVT

c Vc + VT
c

[∫
v

ρ
(
r× + (φrξ)

×
)T

dv

]
ω + VT

c

[∫
v

ρφrdv

]
η

+ ωT
[∫

v

ρ
(
r× + (φrξ)

×
)
φrdv

]
η +

1

2
ωT

∫
v

ρ
(
r× + (φrξ)

×
)(

r× + (φrξ)
×
)T

dv︸ ︷︷ ︸
J

ω

+
1

2
ηT


∫
v

ρφTr φrdv︸ ︷︷ ︸
Mee

η.
(10)

In the above equation, J represents the aircraft moment of inertia matrix and Mee is the aircraft structure modal mass
matrix. If the origin of FB is placed at the undeformed aircraft center of gravity, the term

∫
v
ρr×

T
dv is zero.

B. Potential Energy
The strain energy of an elastic system can be written

U =
1

2
ξTΦTKΦξ =

1

2
ξTKeeξ, (11)

where Kee is the aircraft structure modal stiffness matrix, and Φ is the matrix of the shape functions for all nodes on
the aircraft, i.e., ΦT =

[
φTr1 φTr2 · · · φTrm

]T
.

C. Nonlinear Equations of Motion
If we substitute the kinetic and potential energy into Eqs. (1), (2), and (9) and rearrange them, the equations of motion
of a deformable aircraft becomemI3×3 XT

1 S1

X1 J S2 +X2

ST1 ST2 +XT
2 Mee

V̇c

ω̇
η̇

 =

−

 mω× ω×X1
T 2ω×S1

ω×X1 ω×J + J̇ + Vc
×X1

T ω× (S2 +X2)

−ST1 ω×T ∫
v
ρφr

Tω×r×
T

dv 2
∫
v
ρφr

Tω×φrdv + Cee

Vc

ω
η


−
[O6×6 O6×n

On×6
∫
v
ρφr

Tω×2
φrdv +Kee

]Rc

θ
ξ

+

mCbiX1Cbi
ST1 Cbi

{g}+

F
M
fe

 . (12)

As mentioned before, F and M are the total forces and moments about the origin of the body-frame, including the
propulsive and aerodynamic forces. The matrix Cee represents the modal damping of the aircraft structure, and g is
the vector of gravitational acceleration. The generalized modal force fe acting on the aircraft structure is calculated as

fe =

∫
s

φTr pn̂ds, (13)
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where p is the pressure acting on the surface of the aircraft and n̂ is the surface normal vector. Matrices S1, S2, X1,
and X2 are the rigid-elastic interaction terms and are defined as follows:

S1 =
∫
v
ρφrdv,

S2 =
∫
v
ρr×φrdv,

X1 =
∫
v
ρ (φrξ)

×
dv,

X2 =
∫
v
ρ (φrξ)

×
φrdv,

J̇ =
∫
v
ρ

[
(φrη)

×
(
r× + (φrξ)

×
)T

+
(
r× + (φrξ)

×
)

(φrη)
×T
]

dv.

(14)

Note that the integrals in Eq. (14) are all volumetric integrals whereas the integral in Eq. (13) is a surface integral. As
an aircraft becomes more flexible, the relative magnitudes of the X1, X2, and J̇ terms with respect to the other terms
in Eq. (12) become larger, which results in a stronger interaction between the two types of dynamics.

III. Structural Modeling
In aeroelastic modeling, beam elements have traditionally been used to represent the wing structure. The re-

cently studied high altitude long endurance (HALE) planes have very flexible wing structures that deform beyond
the limits that can be correctly captured by simple linear finite-element representations. In this work, we use linear
three-dimensional Euler–Bernoulli beam elements in a co-rotational framework to model very large wing deforma-
tions. In a co-rotational formulation, the rigid-body motions are separated from the strain-producing deformations
at the local element level. This is accomplished by attaching a local element reference frame to each element; this
rotates and translates with the beam element. A more detailed description can be found in the nonlinear finite-element
literature [27, 28, 29].

IV. Aerodynamic Modeling
We use a three-dimensional unsteady aerodynamic panel code to obtain the aerodynamic loads. The lifting surfaces

are discretized using source and doublet panels, and the wake elements are represented by doublet panels. We compute
the strength of the panels by enforcing the tangential flow condition at each panel. Using the pressure at each panel, we
can compute the rigid-body forces and moments and the elastic generalized aerodynamic forces (GAFs). The efficient
and accurate calculation of GAFs has always been a major challenge in aeroservoelastic analysis and optimization.
Reduced-order models (ROMs) based on the Volterra theory of nonlinear systems have received significant attention
as a way to overcome this challenge. The Volterra theory was first used to model unsteady aerodynamic systems by
Silva [30] and has been developed further by other researchers [31, 32, 33, 34]. Volterra-based ROMs are based on the
creation of linearized and nonlinear unsteady aerodynamic impulse/step responses that are then used in the Volterra
series to provide the linearized and nonlinear responses of the system to arbitrary inputs. We can combine this method
with a system identification technique such as the ERA [35] to construct state-space matrices (Aaero,Baero, andCaero)
that represent the generalized aerodynamic forces. For more detailed information on the application of the Volterra
theory and the ERA to unsteady aerodynamic modeling see [34].

We compute the pulse responses for each mode of an aeroelastic system using the developed 3D panel code. As
reported by Raveh and Mavris [32], the inclusion of the second-order kernel terms does not significantly improve the
accuracy of the results. Therefore, we use only a first-order kernel (the obtained pulse responses), and the Volterra
theory is not applied to compute higher-order kernels. The recorded pulse responses, obtained from the excitations of
the panel code, are the Markov parameters (Yk = CaeroA

k−1
aeroBaero) that the ERA technique uses to reconstruct the

state matrices.

V. Control System Design for GLA
A. Linearized State-Space Representation
To obtain a linear plant representation, needed to design a linear control system, we first linearize the equations of
motion. In Eq. (12), terms such as X1, X2, and J are dependent on the structural deformation. Therefore, the
aeroelastic analysis and the control system design should be based on the actual trimmed shape of the aircraft. As
shown by Haghighat et al. [36], the design of a control system based on an undeformed linearized model can lead
to instabilities. For straight rectilinear flight we can perform the linearization by substituting the perturbed flight
parameters into Eq. (12) and ignoring the higher-order terms. For more general cases, the linearization process is not
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tractable and therefore must be performed numerically. The linearized equations of motion for a straight level flight
areδV̇c

δω̇
δη̇

 = M−1


O3×3 mṼc0 O3×n

O3×3 X̃T
10
Vc0 − Ṽc0X10 O3×n

O3×3 ST1 Vc0 −Cee


δVc

δω
δη


+

O3×3 mG O3×n
O3×3 X10G O3×n
O3×3 ST1 G −Kee

δRc

δθ
δξ

+

 δF
δM
δfe


 , (15)

where the M and G matrices are

M =

 m XT
10 S1

XT
10 J0 S2 +X20

ST1 ST2 +XT
20 Mee

 , G =

 0 −g cos(θ0) 0
−g cos(θ0) 0 0

0 g sin(θ0) 0

 . (16)

The linearized inertia matrix (M ) has off-diagonal terms that include the coupling between the two dynamics.
Note that S1 and S2 are constant whereas X10 and X20 are shape-dependent and must be computed based on the
trimmed shape of the aircraft. These equations are driven by the perturbed aerodynamic forces and moments, which
can be represented using the ROM obtained for the aerodynamic forces and moments. Elevator and aileron deflections
are the two major control inputs used here. The left and the right aileron deflect differentially for roll control, but they
can also be controlled independently to perform load alleviation for the left or the right wing. The total control surface
deflection for each aileron is calculated by adding these two components. Eq. (15), when augmented with the obtained
aerodynamic ROM, can be expressed in a state-space form. The state vector and other system matrices are xTac =

{
Vc ω ξ η θ Rc xaero

}
ẋac = Axac +Bu +Bgug
y = Cxac

, (17)

where θ is the vector of Euler angles ([ φ θ ψ ]T ) , and xaero is the state vector from the aerodynamic reduced-
order model. The Bg matrix is used to model the effect of disturbances, such as gusts, on the aircraft dynamics. The
stress levels are calculated based on the modal deflections as follows:

σ = SUΦξ (18)

where SU is a constant matrix that relates the von Mises stress to the nodal displacement; it can be formed when the
structural mesh is generated. As is clear from the above equation, the stress level in the wing is directly proportional
to the amplitude of the structural modes (ξ). Therefore, by ensuring that the modal amplitudes are close to zero we
can maintain the stress at the steady-state level. The state-space representation is used to design a control system that
performs rigid-body tracking and minimizes the structural deformations in order to lower the stress at the critical flight
conditions. In this work, we consider only the longitudinal dynamics of the aircraft, and therefore the ailerons are
applied symmetrically.

B. Gust Profile
As mentioned before, we use both discrete and continuous gust profiles. For discrete gust evaluation, we use a (1 -
cos) gust profile of the following form:

wg =
w̄g
2

(
1− cos

2πt

Lg

)
, (19)

where wg is the vertical gust velocity, w̄g is the gust amplitude, and Lg is the gust length, nondimensionalized with
respect to the time for a point in the aircraft to travel across the gust field. For continuous gust modeling, we use
the Dryden model to create stochastic gust excitations. In this approach, the gust is modeled as a stationary, random
Gaussian process with the prescribed power spectral density. For a continuous gust where the gust vector is generated
using the Dryden gust model, we use a gust filter to generate the numerical values of the gust [37]:

Gw (s) = w̄g

√
L

πV

1 +
√
3L
v s(

1 + L
V s
)2 , Gq (s) =

s
V(

1 +
(

4b
πV

)
s
)Gw (s) (20)

where Gw (s) and Gq (s) are the gust filters representing the vertical and rotational gust velocities. The parameter
L represents the gust scale and V represents the aircraft flying speed. In this work, we set w̄g to 5 m/s for both the
continuous and discrete cases.
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C. Challenges
In aircraft control design, traditionally the rigid-body tracking is performed separately from the structural control, and
the interaction of the structural and rigid-body dynamics is avoided by the introduction of notch filters. Because of
the high flexibility of aircraft wings, there is a strong interaction between the rigid-body dynamics and the structural
dynamics; this makes the design of a control system challenging. We must design a unified controller that considers
both the rigid-body motion and the aircraft flexibility. Furthermore, the high flexibility of the aircraft structure results
in a time delay between the control input deflections and the rigid-body motion of the aircraft. This delay results in
a non-minimum phase system that is challenging to control. Finally, in a very flexible aircraft, the high-frequency
structural modes are very lightly damped. This makes the design of a state observer challenging, because the transient
response of the filter can adversely affect the closed-loop stability and performance. The first and second challenges
above are addressed in the next section. However, the selection of appropriate sensors and the design of an observer
filter are not addressed in this paper.

D. Model-Predictive Control
Model-predictive control (MPC), also known as receding horizon control (RHC), is a discrete method that is well
known in optimal control [38]. Using this technique, we calculate the control signal by performing a constrained
optimization over a finite control horizon (and in some cases a constraint horizon), indicated by the number of future
control steps Nu at each sampling time. The increased capability of computer hardware and the advent of fast and
reliable quadratic programming techniques have made it possible to apply MPC to problems with fast dynamics, such
as path planning and aircraft dynamics [39, 40]. MPC is advantageous when a plant is nonlinear or time-varying and
also when the states or inputs must be constrained [38, 41]. To address the model nonlinearities and the time-varying
behavior arising in a maneuvering flight, we can perform successive linearization at each sampling time. Because
GLA and rigid-body regulation are the main focus of this work, successive linearization is not performed, and we use
the linearized model about the steady trimmed shape for the control design.

Since MPC is a discrete control method, we must use the discretized state-space representation of the plant. The
desired performance is achieved by minimizing the following quadratic performance function below.

V (xk,U, Nu, Np) =
Np−1∑
i=1

(
(xk+i − xref,k+i)

T
Q (xk+i − xref,k+i)

)
+
Nu−1∑
i=0

(
uTk+iRuk+i

)
+
(
xk+Np − xref,k+Np

)T
Qf
(
xk+Np − xref,k+Np

)
,

(21)

where xk, xref,k, and uk are the state, the reference state, and the control input vectors, respectively, at time-step k.
The vector U is the control signal sequence over the control horizon Nu. The variable Np represents the prediction
horizon, which can be longer than the control horizon. The matrices Q and R are the state and input weighting
matrices, respectively. Finally, Qf is the terminal weighting matrix. The predicted state sequence X can be expressed,
in a compact form, as a function of the future input sequence U and the current state xk, i.e.,

X = HU +Gxk, where H =



CdBd
CdAdBd CdBd

...
. . .

CdA
Nu−1
d Bd CdA

Nu−2
d Bd . . . CdBd

CdA
Nu

d Bd CdA
Nu−1
d Bd . . . CdAdBd

...
. . .

...
CdA

Np−1
d Bd CdA

Np−2
d Bd . . .

∑Np−Nu

i=0 CdA
i
dBd


, G =


Ad
A2
d

...
A
Np

d

 (22)

where HU represents the forced output, and Gxk is the free output due to the initial condition xk. In the absence of
complete state information, the estimated values of the current state (x̂k) must be used. In this work, as explained in
Section C, we assume that the exact values of the current state vector are available for feedback. To avoid unrealistic
control actions, we consider saturation of the control surface deflections and their rates. Therefore, the optimization
problem becomes a constrained optimization problem, i.e.,

min V (xk,U, Nu, Np)
w.r.t. U,
s.t. umin ≤ ui ≤ umax,

∆umin ≤ ∆ui ≤ ∆umax.

(23)
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The above constraints can also be expressed in a compact form as FU ≤ c where the matrix F and the vector c
are formed as follows:

F =


INu.m

−INu.m

M
−M

 , c =


Umax

−Umin

∆Umax + b
−∆Umax − b

 , with M =


I
−I I

. . . . . .
−I I

 , and b =


uk−1

0
...

 . (24)

Using the compact formulation for the future output prediction and the constraints, we can write the problem as
follows:

min V (x̂k,U, Nu, Np) = UT
(
HT Q̂H + R̂

)
U + 2

(
x̂TkG

T −XT
ref

)
Q̂HU,

w.r.t. U,
s.t. F ·U ≤ c,

(25)

where Xref is the reference state sequence over the prediction horizon. Since GLA is the goal of this work, the
reference input is constant over time. The matrices Q̂ and R̂ are block diagonal and can be written

Q̂ = diag
[
Q Q · · · Qf

]
, R̂ = diag

[
R R · · · R

]
. (26)

The above problem is a quadratic programming (QP) problem. For a positive definite weighting matrix Q, we can
show that HT Q̂H is also positive definite, and the optimization problem becomes a convex quadratic programming
(CQP) problem for which the solution for the future input sequence U is unique. Such problems can be solved
efficiently using fast cone programming algorithms [42]. Figure 2 shows a schematic representation of the control
system.

Plant
ref

x̂k

ukxk+1 = Adxk +Bduk

⇓
X = HU+Gx̂k

min V (x̂0,U, Nu, Np)
w.r.t U
s.t. F.U ≤ c

yk
Linear/Nonlinear

Future state prediction Future input
optimization

Figure 2. Block diagram of model-predictive control system

1. Stability of Model-Predictive Controller

It is well known that if a system is stabilizable and detectable, then a standard linear quadratic infinite-horizon opti-
mal control problem yields an optimal stabilizing controller [43]. However, a linear finite-horizon model-predictive
controller with a quadratic performance index is not asymptotically stabilizing in general. The use of a finite hori-
zon, which is required to make the numerical optimization tractable, may destabilize the closed-loop system. The
stability of finite-horizon MPC problems has been extensively studied, and techniques to ensure the stability of
these systems have been developed [41, 38, 44]. It can be shown that an LQ model-predictive controller is stable
if and only if the pair (A,B) is stabilizable, the pair

(
A,Q1/2

)
is observable, and the cost monotonicity condition,

V (xk,U
∗, N + 1) ≤ V (xk,U

∗, N), is satisfied.
The cost monotonicity of a constrained MPC is guaranteed if any of the following terminal conditions is applied:

(1) terminal equality constraints, (2) terminal set constraints, and (3) terminal penalty function. The first two ap-
proaches are restrictive, and in particular the terminal equality constraint may reduce the feasibility region. Richards
and How [45] developed an analytical method for the performance prediction of a constrained MPC. They use a ter-
minal inequality constraint along with a recursive tightening scheme that guarantees the stability of the system in the
presence of disturbance. The application of the recursive terminal-constraint tightening allows the control designer
to choose an initially wide terminal constraint, which improves the feasibility of the design. We use the terminal
penalty approach. The cost monotonicity condition can be guaranteed under the application of terminal weighting if
the terminal penalty function satisfies the following condition:

Qf ≥ Q+KTRK + (Ad −BdK)
T
Qf (Ad −BdK)

for some K ∈ Rm×n.
(27)
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For the proof of the above theorem see [38]. We choose the K matrix as the gain of an LQR controller with the same
Q and R weighting matrices.

2. Model-Predictive Controller with PE

The performance of a model-predictive controller is highly dependent on its ability to predict the future state values.
Poor state prediction may result in performance degradation and system instability. The discrepancies between the
predicted values and the actual state values stem from unmodeled dynamics, system nonlinearities, parameter mis-
matches, and disturbances. We propose the addition of a feedback loop to the traditional formulation to improve
the prediction accuracy of the predictive controller. We update the prediction at each sampling time, based on the
difference between the previous step prediction and the estimated value of the state vector, as follows:

xpk+1 = Adx̂k +Bduk + L (x̂k − xpk)︸ ︷︷ ︸
ek

,

xpk+2 = A2
dx̂k +AdBduk +Bduk+1 + Lek,

...,

(28)

where L is a transition matrix that represents the effect of the previous step error ek on the future output prediction.
The above series of equations can be expressed in the following compact form:

Xp = HU +Gx̂k +GoLek, where Go =


I
Ad
Ad

2

...

. (29)

With this equation for predicting the future states, the cost function becomes

V (x̂k,U, Nu, Np) = UT
(
HT Q̂H + R̂

)
U + 2

(
x̂TkG

T + eTk L
TGTo −Xref

)
Q̂HU. (30)

If L is set to zero, then the cost function is the same as the cost function in the traditional formulation. In the ab-
sence of detailed information about the disturbance and the unmodeled dynamics, an identity matrix of the appropriate
size can be used for L. If the variation of the plant matrices from the nominal values is known, a better transition
matrix can be constructed using the available information. Figure 3 shows this model-predictive controller with PE.
A similar approach was used by Richards and How [46] to improve performance and guarantee controller stability in
the absence of perfect measurement. They use the estimation error to modify the prediction performance to improve
the closed-loop stability and performance. We assume the availability of perfect state information, and we use the
proposed approach to improve the performance of the controller when stabilizing a damaged aircraft.

Plant
ref

x̂k

uk
xk+1 = Adxk +Bduk + L (x̂k − xp

k)
⇓

X = HU+Gx̂k +GoLek

min V (x̂0,U, Nu, Np)
w.r.t U
s.t. F.U ≤ c

yk
Linear/Nonlinear

Future state prediction

xpk

Future input
optimization

Figure 3. Block diagram of model-predictive control system

3. Model-Predictive Controller Applied to Non-Minimum Phase System

One of the difficulties in controlling a non-minimum phase system is the internal instability problem. This problem
arises when the desired high performance level forces the controller to contain an implicit approximate inverse of the
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system model. When the controller dynamics contains the inverse of a system model with unstable zeros, the can-
cellation of unstable poles and zeros causes internal instability. Garcia–Gabin et al. [47] showed how the application
of a multivariable model-predictive controller to a non-minimum phase plant can lead to internal instabilities. It can
be shown that if no control and state constraints are considered, the optimal control sequence can be calculated as
follows:

U∗ =
(
HT Q̂H + R̂

)−1
HT Q̂ (Gx̂k −Xref) . (31)

If the control effort is not penalized (R = O) and the prediction and control horizons are equal (H is a square matrix)
then the optimal control sequence becomes

U∗ = H−1 (Gx̂k −Xref) . (32)

If we substitute the optimal control sequence into Eq. (22), there is a cancellation of the unstable poles with unstable
zeros that causes the internal instability. Penalizing the control effort and using a prediction horizon longer than the
control horizon (tall H matrix) have been reported to avoid the internal instability [48]. We use control penalization
to avoid internal instabilities.

VI. Numerical Results
We now apply our controller to a very flexible UAV undergoing discrete and continuous gusts. Figure 4 shows

the geometry of the generic high aspect ratio UAV used in this work, and Table 1 lists its properties. More detailed
information on the geometry can be found in [22, 49]. The wing structure consists of a hollow tubular spar, which is
located at 45% of the chord. The spar diameter is determined by the local chord. The spar thickness varies linearly
from the root value of 0.1 m to the tip thickness of 0.01 m. The cruise speed of the aircraft is set to 70 m/s. The
longitudinal GLA is the focus of this study. Therefore, the state-space model consists of the horizontal velocity u, the
vertical velocity w, the pitch rate q, the pitch angle θ, and the first thirty structural modal deformations and their rates.
The right and left ailerons are deflected equally.

X

0

10

20
Y

­30

­20

­10

0

10

20

Z

0

2

Figure 4. 3D geometry of generic UAV with large aspect ratio

Table 1. Aircraft geometric properties

Property Value
Fuselage length 26.4 m
Wing span 58.6 m
Wing area 196 m2

Wing taper 0.48
HT span 18 m
HT area 53.5 m2

HT taper 0.7
VT span 4 m
VT area 8.9 m2

VT taper 0.81

A. Model Comparison
Our unified dynamics framework allows for integrated design and control because it reveals strong inertial interac-
tions, which are especially critical for very flexible aircraft. To illustrate this point, we give a frequency analysis by
comparing the frequency characteristics of three models: 1) a statically deformed aircraft model (deformed model);
2) the statically deformed aircraft model augmented by a series of elastic modes (augmented model); and 3) the fully
developed model under a unified framework (unified model).

Figure 5 shows the Bode diagrams that represent the transfer functions relating the vertical gust excitation to the
load factor. The short period dynamics of the statically deformed aircraft is captured by two stable real poles at
8.9222 rad/s and 17.1779 rad/s. Figure 5 shows that: 1) The statically deformed model and the simplified model have
similar DC-gain values whereas the DC-gain value of the proposed model is considerably lower. 2) The first dominant
dynamics at 6.1 rad/s is dominated by the first structural mode that has a natural frequency of 4.849 rad/s; this dynamics
is not captured by the statically deformed model. 3) At higher frequencies, the gain and the phase diagram for the
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Figure 5. Bode diagrams for three aircraft models

augmented model show similar behavior to the rigid-body dynamics captured by the statically deformed model. The
two spikes at 139.44 rad/s and 320.49 rad/s correspond to two modes that are heavily dominated by the first and
second torsional dynamics. Because of the aerodynamic interaction, the torsional modes can significantly affect the
rigid-body dynamics even when the inertial interaction is not considered. In contrast, the unified model is significantly
different from the other two models, and at frequencies higher than the short period frequency, the transfer function
gain is not attenuated. The Bode diagram clearly demonstrates that the exclusion of the inertial interaction makes a
significant difference to the model accuracy at both low and high frequencies. Therefore, for the successful control of
a very flexible aircraft the control design should be based on Eq. (15) that captures both the inertial and aerodynamic
interactions.

B. Simulation Results
Table 2 lists the controller parameters used in the numerical analysis. The performance of MPC depends on the
weighting matrices and the length of the control and prediction horizons. In this work the control and prediction
horizons have the same length. The control horizon is selected through a trial-and-error process. The longer the
control horizon, the better the results, but a very long horizon slows down the control signal calculation. The weighting

Table 2. Controller settings

Parameter Symbol Value
Sampling time ∆t 2.5e-4 s
Control horizon Nu 20
Prediction horizon Np 20
Max surface deflection max(δe) or max(δa) 10 deg
Min surface deflection min(δe) or min(δa) −10 deg
Max surface deflection rate max(∆δe/∆t) or max(∆δa/∆t) 60 deg/s

matrices can be chosen using performance optimization. The focus of this work is to use the proposed MPC framework
to perform GLA and to compare its performance to a traditional MPC and an LQR controller. Therefore, we find the
weighting matrices by trial and error. To find appropriate matrices, we first choose the R matrix. The R matrix is
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diag
[
10 10

]
. The Q matrix is diagonal. We first choose the diagonal entries corresponding to rigid-body dynamics

and then select the structural weightings. We use the following structure for the Q matrix:

Q = diag

[
qu qw qq qξ . . . qξ︸ ︷︷ ︸

n

qξ̇ . . . qξ̇︸ ︷︷ ︸
n

qθ
]

(33)

where n is the number of structural modes used to construct the plant model.

Figures 6–14 show the results of a linear simulation with discrete gust excitations and gust lengths of 1 s, 0.5 s and
0.25 s. The results compare the rigid-body regulation and the GLA performance of our MPC, a traditional MPC, and
an LQR control. The simulation results for a case without a GLA system are given as a reference. The maximum
gust-induced stress levels at the wing root and mid-span locations are significantly reduced by the application of GLA.
Moreover, GLA significantly reduces the maximum deviation of the rigid-body parameters from their steady-state
values.

Table 3 gives the reduction percentage for the maximum gust-induced stress using the three controllers. Our MPC
outperforms the traditional MPC and the LQR controller in terms of reducing the induced stress. When the aircraft
is flying through a wide gust (Lg=1 s), all three controllers offer similar stress reduction capabilities. The rigid-body
regulation performance of our MPC controller, shown in Fig. 6, is also comparable to that of the other controllers
for a wide gust with Lg=1 s. As the gust becomes sharper, the GLA performance is reduced. While the performance
of our controller is reduced by only 2.5%, that of the traditional MPC and LQR controllers is significantly reduced.
This performance degradation can also be seen when we compare the rigid-body time-history of the three controllers
(Figs. 10 and 13).

Table 3. Stress-level reduction for different controllers

Lg (s) 1.0 0.5 0.25
MPC with PE 45.4% 43.9% 42.9%
MPC 41.6% 37.7% 29.3%
LQR 44.5% 37.9% 26.7%

Table 4 shows the results when the controllers are applied to the aircraft while it flies through continuous gusts
generated using the Dryden gust filter. We use the gust filter to generate ten gust profiles, each 10 s long. The stochastic
simulation is first performed without GLA. The three controllers are then used to stabilize the aircraft and perform
load alleviation. Table 4 presents the average RMS values and the average peak values of the gust-induced parameters
such as load factor and maximum stress for the ten cases. Fig. 15 shows the time response of the three controllers to
the applied stochastic excitations. In contrast to the discrete gust study, the traditional MPC and LQR controllers do
not offer any improvement over the no-GLA case. Surprisingly, the exclusion of GLA resulted in lower average RMS
and average peak values for both the rigid-body parameters and the stress levels. However, when the GLA system
is excluded, the average RMS and peak values for the elevator deflection are considerably higher than those for the
traditional MPC and LQR controllers. This makes the aircraft prone to control saturation when more severe gusts are
considered.

The results for our MPC with PE have significantly lower RMS and peak values for both the rigid-body and
structural parameters. The average RMS value of the load factor is reduced by 5.2% compared to the no-GLA results,
and the average peak value of the load factor is reduced by 9.5%. The greatest improvement can be seen in the stress-
level reduction: the average RMS value of the root maximum stress is reduced by 45.4% and the average peak value
by 52.1%. Moreover, the average RMS and peak values for the elevator deflection are reduced.

When a system is inherently unstable, inaccuracies in the control effectiveness matrix (B) or the loss of control
surface effectiveness can adversely affect the closed-loop performance. We consider the inaccuracies of the control
surface effectiveness for both ailerons and elevators. The three controllers are applied to the same aircraft with 50%
loss of control surface effectiveness. The simulation results for the crippled aircraft flying through two discrete gust ex-
citations, Lg=0.25 and Lg=0.5, are presented in Figs. 17–22. Note that in the absence of GLA the aircraft experienced
control surface saturation, and the controller failed to stabilize the plant when it was flying through a discrete gust
with Lg=0.5. The traditional MPC and LQR controllers both suffered from the loss of control surface effectiveness.
When the aircraft is flying through a sharp discrete gust (Lg = 0.25 s) the maximum stresses at both root and tip have
high-frequency oscillations that can cause premature structural fatigue. The rigid-body tracking performance of these
controllers is also degraded. In contrast, our MPC controlled the damaged aircraft effectively without experiencing
high-frequency oscillations. The modified predictive controller damped out the excitation, but other controllers failed
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Table 4. Average RMS and peak values of rigid-body and structural parameters in response to Dryden gust

Load factor w (m/s) σroot (MPa) σmid (MPa) δe (deg) δa (deg)

A
ve

ra
ge

R
M

S MPC with PE 0.4162 1.2222 2.5867e+06 2.3782e+05 2.00002 0.5254
MPC 0.5724 2.3311 5.0891e+06 4.5781e+05 1.2768 0.9227
LQR 0.5658 2.2951 4.9946e+06 4.5038e+05 1.2852 0.9128
No GLA 0.4394 1.6595 4.7404e+06 4.4014e+05 2.6167 –

A
ve

ra
ge

pe
ak MPC with PE 1.0426 2.3748 5.1686e+06 5.1574e+05 4.3849 1.36003

MPC 1.5687 4.5455 1.0166e+07 1.0208e+06 2.9316 2.3634
LQR 1.5317 4.4586 9.9287e+06 9.9498e+05 2.9467 2.3456
No GLA 1.1521 3.1054 1.0802e+07 1.0826e+06 5.9604 –

to reject the excitation during the simulation.
We also consider stochastic continuous gusts to analyze the controller performance in the presence of control ef-

Table 5. Average RMS and peak values of rigid-body and structural parameters in response to Dryden gust

Load factor w (m/s) σroot (MPa) σmid (MPa) δe (deg) δa (deg)

A
ve

ra
ge

R
M

S MPC with PE 0.7128 2.0928 4.9537e+06 4.3503e+05 3.4353 1.4580

LQR 0.9821 3.7354 8.9246e+06 7.4617e+05 2.5772 3.3027

A
ve

ra
ge

pe
ak MPC with PE 1.9363 4.2413 1.0473e+07 9.8308e+05 7.6642 3.6368

LQR 2.6036 7.9605 2.0225e+07 1.7985e+06 6.1842 7.6825

fectiveness inaccuracies. Table 5 presents these results. In the no-GLA case and when a traditional MPC was used,
control input saturation destabilized the system. On the other hand, our MPC method and the LQR controller success-
fully stabilized the aircraft. Figure 16 shows the responses of these two controllers to the excitations. The results in
Table 5 show that the average RMS and peak values corresponding to our MPC are significantly lower than those for
the LQR.

VII. Conclusions
In this work, the nonlinear equations of motion of a highly flexible aircraft were derived. A three-dimensional

panel-code was developed and modified to obtain the aerodynamic responses to pulse excitations. These were used
to construct a linearized state-space representation of the unsteady aerodynamics. A model-predictive controller was
developed to perform gust load alleviation for an aircraft encountering discrete and continuous atmospheric distur-
bances. To improve the performance and robustness of the traditional model-predictive formulation, a feedback loop
was introduced to improve the prediction performance of the controller. The predictive framework was applied to a
highly flexible aircraft to demonstrate the load alleviation effectiveness of the controller. The feedback loop improved
the controller performance in terms of the rigid-body dynamics while maintaining the same level of structural relax-
ation for different gust scales. It also made the controller less sensitive to the loss of control surface effectiveness. The
proposed predictive controller performed better than a linear quadratic controller at regulating the maximum stress and
the rigid-body parameters. The proposed framework integrates aerostructural design with active control, which fully
exploits the potential of an active aeroservoelastic wing, making it possible to consider a higher aspect ratio and more
flexible structures when designing aircraft.
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Figure 6. Load factor and rigid-body parameters (Lg = 1.0 s)
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Figure 7. Structural modes and wing root and mid stresses (Lg = 1.0 s)
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Figure 8. Control surface deflections (Lg = 1.0 s)
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Figure 9. Load factor and rigid-body parameters (Lg = 0.5 s)

17 of 24

American Institute of Aeronautics and Astronautics



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.67.8
8.0
8.2
8.4
8.6
8.8

1s
t
 b

en
di

ng

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.064
0.066
0.068
0.070

1s
t
 to

rs
io

n

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6125
130
135
140
145

σ
ro
ot
 (M

Pa
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time (s)

77.0
77.5
78.0
78.5
79.0
79.5

σ
m
id
 (M

Pa
)

MPC with PE
MPC
LQR
Without GLA

Figure 10. Structural modes and wing root and mid stresses (Lg = 0.5 s)
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Figure 11. Control surface deflections (Lg = 0.5 s)
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Figure 12. Load factor and rigid-body parameters (Lg = 0.25 s)
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Figure 13. Structural modes and wing root and mid stresses (Lg = 0.25 s)
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Figure 14. Control surface deflections (Lg = 0.25 s)
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Figure 15. Response of aircraft GLA system to continuous stochastic gusts
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Figure 16. Response of crippled-aircraft GLA system to continuous stochastic gusts
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Figure 17. Load factor and rigid-body parameters for crippled aircraft (Lg = 0.25 s)
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Figure 18. Structural modes and wing root and mid stresses for crippled aircraft (Lg = 0.25 s)

0.0 0.5 1.0 1.5 2.0 2.5

8

4

0

4

El
ev

at
or

 d
ef

le
ct

io
n 

(d
eg

)

MPC with PE
MPC
LQR
Without GLA

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

6

3

0

3

Ai
le

ro
n 

de
fle

ct
io

n 
(d

eg
)

Figure 19. Control surface deflections for crippled aircraft (Lg = 0.25 s)
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Figure 20. Load factor and rigid-body parameters for crippled aircraft (Lg = 0.5 s)
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Figure 21. Structural modes and wing root and mid stresses for crippled aircraft (Lg = 0.5 s)
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Figure 22. Control surface deflections for crippled aircraft (Lg = 0.5 s)
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