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Flutter methods can be broadly categorized into low and high fidelity methods. Low fidelity methods
in general lack the ability to capture accurately the strong nonlinearities in the transonic flow regime;
researchers have used Harmonic Balance (HB) method (a frequency domain method equivalent with
time-spectral (TS) method modeled in time domain) to capture the flutter onset point. However,
the previous solution method is hindered by scalability: O(NCSD) CFD evaluations needed for each
Newton step, and a lack of robustness due to the nature of Newton–Raphson method. In this paper,
we propose a preconditioned coupled Jacobian-free Newton–Krylov (CNK) method for TS flutter
equations. By resolving the coupled system directly, the O(NCSD) CFD evaluations are avoided. With
a line search method CNK is expected to be more robust. A block-Jacobian preconditioning method
is used in this work. CNK is compared with and validated by time-accurate (TA) flutter boundary
results from both literature and our new implementation.

I. Introduction
High-fidelity computational modeling and optimization of complex engineering systems has the potential to allow

engineers to produce more efficient designs and to reduce the occurrence of unforeseen late stage design modifications.
In particular, for transonic wing design, the simultaneous optimization of both the aerodynamic design and the internal
structural sizing can yield significant fuel burn savings. However, when conducting optimization on an aircraft, all of
the relevant physics must be represented in the optimization problem, otherwise the result generated by the optimiza-
tion procedure may not be meaningful or physical. As an example, previous optimization results obtained by Kenway
et al. [1, 2, 3], without flutter constraints produced optimized wings with large aspect ratio as shown in Fig. 1. Such
configurations are prone to flutter, which calls into question the usefulness of the result. Therefore, in order to generate
more reasonable designs, we seek to compute the flutter characteristics of the aircraft. The main focus of the paper is
to propose an efficient and robust solution methodology for finding the flutter onset. This method is a preconditioned,
Jacobian-free, coupled Newton–Krylov method. It directly deals with all CFD, CSD, flutter velocity index Vf and
flutter frequency variables without black box computation. In one coupled Newton solution procedure, the residual of
the coupled system is driven to zero and the flutter velocity index Vf is found. In order to demonstrate the validity of
the proposed approach, we compare the results of a simple two degree of freedom airfoil case with both time-accurate
computational fluid dynamics (CFD) solutions and experimental results.

II. Background
Since flutter is a certification-critical phenomenon, it is important to be able to predict it accurately. Conservative

design approaches may lead to overly-stiff and hence high mass designs, while unconstrained optimization approaches,
such as those shown in Fig. 1 may lead to overly-flexible wings that may cause problems when certifying the aircraft.
Further, it is currently not unusual for flutter issues to be identified only at the final design and flight testing stages,
at which point design changes are extremly costly. Accurate flutter prediction methods will therefore lead directly to
significant cost savings.

The current standard for flutter prediction in industry are methods based on panel codes, doublet-lattice method
(DLM) [4], and linearized transonic small disturbance (TSD) equations [5, 6]. The CAP-TSD code developed for
analysis of flutter of realistic aircrafts in transonic flow uses a time-accurate approximate factorization (AF) algorithm
for solution of the unsteady transonic small-disturbance potential equation. Batina et al. [7, 5] used the AF method
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Figure 1. Aerostructural optimization result [3]: Cp and planform comparison with initial design (upper left); equivalent thickness distri-
bution, stress and buckling KS failure criteria (upper right); comparison of initial and optimized lift distributions, twist distributions and
thickness to chord ratio (t/c) (lower left); four airfoils with corresponding Cp distributions (lower right). (notice the increased span ratio)

which involves a Newton linearization, coupled with an internal iteration technique. Using this approach a solution is
obtained in several hundred time steps. The DLM has gained remarkable success and is found in commercial software
products [8, 9] and has become the aeroelasticians method of choice in industry.

One major limit of some of those low-fidelity linear aerodynamic methods is that they are unable to predict the
occurrence of shock waves in the transonic flow. A consequence of this is that the prediction of the flutter boundaries
can become inaccurate. In the transonic region there is a significant reduction in the flutter speed, called the transonic
dip (or flutter bucket). The bottom of the dip defines the minimum velocity at which flutter can occur across the flight
envelope. Corrections using wind tunnel experimental data can however be applied to panel method aerodynamic
influence coefficients (AIC). Unfortunately, for aerostructural design optimization this data is unavailable. Although
other methods such as full potential flow or the Euler equations are able to predict shock waves in the flow, they
still fail to accurately predict the flutter boundary. In order to predict onset of flutter accurately viscous effects are
necessary as shown and summarized by several authors [10, 11, 6].

In the research community, the standard method for predicting a wing’s flutter boundary is to analyze the wing
with a time-accurate coupled CFD-CSD solver similar as proposed by Liu et al. [12]. However, these methods in-
cur a high computational cost since hundreds if not thousands of time steps are often required to simulate the flutter
motion. This high computational cost makes the full time-accurate method ill-suited to optimization. Like in many
periodic problems, much of the computational time is spent resolving the decay of the initial transients in the unsteady
problem [13]. Fortunately, in problems where the periodic steady state is of primary interest, time-periodic simulation
methods such as the Harmonic Balance (HB) presented by Hall et al. [14], Time-Spectral by Gopinath and Jame-
son [15] or the Non-Linear Frequency Domain (NLFD) method by McMullen [13] can all be used to accelerate the
solution process.

The first of these time-periodic methods was the Harmonic Balance method proposed by Hall et al. [14]. It
was originally designed for rotating system, but has been demonstrated by Hall et al. [14] to work efficiently for
computations of a variety of periodic systems. The basic idea of time-periodic methods is to represent all the state
variables in the system with a Fourier series. This allows the time-dependent problem to be transformed into a series
of coupled steady state problems. Several similar methods have been developed, including the nonlinear frequency
domain method by McMullen [16] and the time-spectral method by Gopinath and Jameson [15]. While this class of
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methods was originally developed in the frequency domain, more recent versions of these methods, such as the work
of Gopinath et al. [15] have reformulated the spectral methods completely in the time domain.

Work has also been done to extend these spectral methods to solve aeroelastic problems. For example, Kachra and
Nadarajah [17] extended the NLFD method to simulate a two dimensional model of a swept-wing in a loosely coupled
manner. In this case they solve structure and aerodynamics equations separately and exchange the interface data
for every N cycles. Choi and Datta [18] have also done time-spectral aeroelastic simulation of a three-dimensional
helicopter rotor.

There also has been significant effort put to prediction of the flutter boundary using spectral methods [17, 16, 19].
Based on a physical intuition, Thomas et al. present both equations to capture flutter phenomenon and a solution
methodology with Newton–Raphson method in [20] .With their method, the flutter velocity index is a state variable
to be solved rather than an external parameter used as an input for a general unsteady solver. That gives the method
an advantage of being automatic which is critical in MDO. However, the method is hindered by scalability: O(NCSD)
CFD evaluations are needed for each Newton step. The root cause of this limitation is that the CFD module is treated
as a black box. In addition, the method is also lack of robustness due to the nature of Newton–Raphson method used
to solve for the flutter velocity index.

To overcome these shortcomings, we propose a preconditioned, Jacobian-free, coupled Newton–Krylov method
which resolves both CSD and CFD equations without any black box limitations. Since all the states are directly
resolved, the O(nCSD) CFD evaluations are gone, making the method more efficient. The use of Krylov iterative
methods guarantees fast solution for each linear equation encountered in Newton iterations. W While the Jacobian-
free nature of the method further cuts the computational and memory cost of the method by eliminating the need
to evalutate and store the full Jacobian. The robustness of the solver is further augmented through the use of line
search procedures implemented in PETSc [21]. The proposed method in this work is an extension of the steady
aerostructural solution methodology implemented by Kenway et al. [22]. The main contribution of the paper is this
solution methodology for identifying flutter onset efficiently and robustly.

III. Methodology
There are several techniques and components necessary to enable high-fidelity flutter computations. In the fol-

lowing section we outline the major characteristics of these components. Then we present the theory necessary for
predicting flutter and finally we explain the solution methodology.

1. Aerodynamics Model: CFD Solver
The CFD code used for this work is ADflow (extended from SUmb [23]) a parallel, finite-volume, cell-centered,
multi-block solver, which solves the Euler and the Reynolds averaged Navier-Stokes (RANS) equations in either
steady, unsteady or time-spectral (TS) modes. For unsteady applications, the second-order implicit backwards dif-
ference formula (BDF2), time integration scheme is used. For deforming grids, an arbitrary Lagrangian Eulerian
(ALE) formulation satisfying the Geometric Conservation Law (GCL)[24] is also implemented. In this work, we limit
ourselves to Euler equations although present formulation can be directly applied using the RANS equations.

1.1. Time-spectral (TS) method for CFD

As we mentioned above, we use a TS method to accelerate the computation of the flutter boundaries. The TS method
is well-established in CFD [15]. The method converts an unsteady CFD problem into a series of time-coupled steady
state problems. The equations generated by this set of coupled, steady-state problems have two additional parameters:
the largest time period considered T , and the number of time instances, or points n, to be solved within that period.
If we write the time-dependent residual as A(ζ(t)) = 0, the TS form is A(ζn, T ) = 0, where ζn represents the state
variables for all time instances, and so its size is n times that of a steady-state solution. The residual form of TS CFD
equations can be written in the following form, adapted from Gopinath and Jameson [15]:

ATS := D(ω)ζn +R(ζn) = 0, (1.1)

where D(ω) is a n × n matrix. It represents the temporal spectral interpolation of the time derivative term and is a
function of the angular velocity ω. R(ζn) is the spatial residual term and ζn are the states from all time-instances. A
mix of D3ADI and RK, approximate Newton method and Newton-Krylov method are used to drive the residual above
to zero. This mix of solvers allows for robust start up and rapid terminal convergence of the flow solver.
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To capture flutter onset point, we also need the flutter velocity index, Vf , as a variable. This affects the CFD
equations through the boundary condition (or grid velocity: if the air is set to be at rest while the airfoil with the grid is
in motion). For reasons mentioned in the following section, the grid nodal coordinates also affect the results. A more
general form of the CFD equations can thus be written as:

ATS(Vf , ω, ζ
n, Xn

V ) = 0, (1.2)

where Xn
V is the grid volume nodal coordinates for all time-instances.

1.2. Time-spectral method for grid velocity calculation

For a dynamic mesh CFD solution, the relative velocity is needed for flux calculation:

Vx = vx − vx,g, (1.3)
Vy = vy − vy,g, (1.4)
Vz = vz − vz,g, (1.5)

where Vx, Vy and Vz are relative velocities, vx, vy and vz are the absolute velocities and vx,g, vy,g and vz,g are the grid
surface center velocities. We solve for the grid velocity by spectral interpolation. The grid motion can be approximated
by a sum of harmonic functions (Only the x coordinate is shown here, but the y and z coordinates have the same form.):

xg ≈
(n−1)/2∑

k=−(n−1)/2

x̂ke
2πkit
T . (1.6)

Here we assume that n, the total time-instance number, is odd. xg is the x coordinate of some node from the grid. x̂k
are their Fourier series coefficients. Using the approach used for the approximation of the temporal derivative term in
TS CFD [15], we have:

ẋng ≈ D(ω)xng , (1.7)

where ẋng is the true grid nodal velocities for all time-instances and xng are the grid nodal coordinates for all time-
instances. The grid surface center velocities vx,g, vy,g and vz,g , are approximated by averaging of the nodal velocities.
Although the geometric conservative law [24] is not enforced here, the numerical results in IV. Sec.5 validate this
simplification for the flutter boundary calculation.

2. Structural Model: Two-dimensional Wing Section Model
In this work, we use the NACA 64A010 two-dimensional wing section model as described in [25]. A schematic of
the configuration is shown in Fig. 2:

Figure 2. Typical section wing model

The computational structural dynamics (CSD) equation for this model is repeated here for completeness:(
1 xα
xα r2α

)(
ḧ
b
α̈

)
+

((
ωh
ωα

)2
0

0 r2α

)(
h
b
α

)
=
V 2
f

π

(
−Cl
2Cm

)
, (2.1)
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where xα is dimensionless static unbalance; rα is dimensionless section moment of inertia about the elastic axis, or the
radius of gyration; ωh, ωα are uncoupled natural frequencies of typical section in plunge and pitch respectively; h/b
is dimensionless plunging motion and α is the pitching motion; Vf is the flutter velocity index defined as Uf/bωα

√
µ

where µ is airfoil mass ratio and Uf is the speed of main stream. Numerical values used in this study are given in
Table 1. The elastic axis location is a = −2, indicating that it lies ahead of the airfoil.

Table 1. Airfoil structural properties.

Parameter Value

Static unbalance xα = Sα/mb 1.8
Radius of gyration r2α = Iα/mb

2 3.48
Plunging natural frequency ωh 100.0
Pitching natural frequency ωα 100.0
Frequency ratio ωh/ωα 1.0
Mass ratio µ = m/πρ∞b

2 60

Table 1 equation can be succinctly written as:

Mü+Ku = f, (2.2)

where

M :=

(
1 xα
xα r2α

)
,K :=

((
ωh
ωα

)2
0

0 r2α

)
, u :=

(
h
b
α

)
, f :=

V 2
f

π

(
−Cl
2Cm

)
. (2.3)

2.1. Time-spectral method for structural dynamics

Besides the CFD, the TS method can also be applied to CSD. The key step is to apply the spectral interpolation to
solve for the derivatives and permute the displacement history for the convenience of the spectral interpolation step.
A 3 time-instances example is shown here and it is straight forward to extend to the case with a different number of
time-instances. Consider,M 0 0

0 M 0
0 0 M

ü1ü2
ü3

+

K 0 0
0 K 0
0 0 K

u1u2
u3

 =
V 2
f

π

f̄1f̄2
f̄3

 , (2.4)

where the subscript denotes the time instance (e.g. u2 indicates displacement from the second instance) and f̄i is
defined as (−Cl,i, 2Cm,i)T for the ith time instance. Permute the history vector

Q

u1u2
u3

 = Q



h1

b
α1
h2

b
α2
h3

b
α3

 =



h1

b
h2

b
h3

b
α1

α2

α3

 , Q =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 . (2.5)

With the permutation matrix Q, we conduct spectral interpolation twice to get the second derivative (notice e.g. for
the pitching mode: α̈n ≈ D(ω)(α̇n) ≈ D(ω)2αn), we have:M 0 0

0 M 0
0 0 M

QT
(
D(ω)2 0

0 D(ω)2

)
Q

u1u2
u3

+

K 0 0
0 K 0
0 0 K

u1u2
u3

 =
V 2
f

π

f̄1f̄2
f̄3

 . (2.6)

This is our time-spectral structural dynamics equation. We denote it as:

STS(Vf , ω, u
n, f̄n) := MMMDDDQ(ω)un +KKKun −

V 2
f

π
f̄n = 0 (2.7)
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where V 2
f /πf̄

n denotes the load from CFD for all time instances, un denotes the displacement for all the time instances
and

MMM :=

M 0 0
0 M 0
0 0 M

 , DDDQ(ω) := QT
(
D(ω)2 0

0 D(ω)2

)
Q, KKK :=

K 0 0
0 K 0
0 0 K

 . (2.8)

3. Mesh Deformation
Mesh quality is important in order to provide reliable results. In an aeroelastic computation, the geometry is altered
as the structure deforms and the mesh is required to adjust appropriately. To ensure the quality of the deformed
mesh, we use an analytic inverse distance method similar to the one described by Luke et al. [26]. With this method,
the displacements of the CFD volume mesh are a combination of all surface deformations, weighted by the inverse
of the distance to each surface node. The computational cost of a naive implementation of this method scales with
the number of surface nodes. However, with a suitable fast spatial search algorithm and multipole-like expansion of
the summation, the cost can be reduced to O(logN). A careful implementation of the logN algorithm is fast and
robust enough for use in aerostructural optimization. For a typical aerostructural analysis, the mesh movement scheme
requires only 2-3% of the total solution time. With the mesh deformation algorithm, we have:

XV = G(u) (3.1)

where u is the structural displacement and will affect the surface coordinates XS ; in turn XS will determine the
volume coordinates XV . With this and the spectral interpolated grid velocity, we finally can rewrite the CFD residual
form in terms of the structural displacement:

ATS(Vf , ω, ζ
n, un) = 0. (3.2)

IV. Flutter Analysis
1. Time Spectral Flutter Equation
In flutter onset point prediction, besides CFD and CSD states, there are two additional unknowns: the flutter velocity
index Vf and the frequency ω. In total, we have 2 + NCSD + NCFD where NCSD is the number of CSD states
and NCFD are the number of CFD states. However, we only have NCSD + NCFD equations if we just consider
the CFD and CSD equations, and therefore two more equations are needed to close the system. Now we present TS
flutter equation and its physical interpretation. The TS flutter equation is based on HB flutter equation from Thomas
et al. [20].

Figure 3. LCO curve

Without any additional constraints, all points from Fig. 3 are feasible solutions satisfying both CSD and CFD
equations. By adding a constraint for the magnitude of the motion, the solution is limited to one point on the curve.
This leaves the solution the freedom to shift in phase. Therefore, an equation constraining the phase is added, providing
the required number of equations to fix a unique solution.
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Here we show the derivation of these two equations constraining the magnitude and phase of the first pitching
mode. Suppose the states from different time instances are defined as α1, α2, ..., αN . At first, we define the expansion
of the variable α(t) over a harmonic basis:

α(t) ≈ c0 + c1e
i 2πT t + c2e

i 4πT t + ...+ c−2e
−i 4πT t + c−1e

−i 2πT t. (1.1)

The first pitching mode is given as:

α1st mode = c1e
i 2πT t + c−1e

−i 2πT t

= (c1,r + ic1,i)

(
cos

(
2π

T
t

)
+ i sin

(
2π

T
t

))
+ (c−1,r + ic−1,i)

(
cos

(
−2π

T
t

)
+ i sin

(
−2π

T
t

))
= (c1,r + c−1,r) cos

(
2π

T
t

)
+ (−c1,i + c−1,i) sin

(
2π

T
t

)
+ pure imaginary number

= Cc cos

(
2π

T
t

)
+ Cs sin

(
2π

T
t

)
+ pure imaginary number

(1.2)
Dropping the pure imaginary number, the motion is governed by:

Re(α1st mode) = |α1st mode| sin
(

2π

T
t+ φ

)
, (1.3)

where magnitude and the phase of the 1st pitching mode are defined as:

|α1st mode| :=
√
C2
c + C2

s ,

φ := sin−1

(
Cc√

C2
c + C2

s

)
.

(1.4)

Given ci, the magnitude and the motion can be calculated from the equations above. The ci coefficients are calculated
by fast-Fourier-transform (FFT) with the pitching history as the input:

[c0, c1, c2, ..., c−2, c−1] =
1

n
FFT (α1, α2, ..., αn). (1.5)

Finally the residual of the two constraints are written out as following:

Rmotion, magnitude := |α1st mode| − ε0,
Rmotion, phase := φ− φ0,

(1.6)

where ε0, φ0 are prescribed small motion magnitude and its phase respectively.
Finally, we define TS flutter residual form as the aggregation of the motion equations residual, CSD equation

residual and CFD equation residual:

R(q) :=


Rmotion, magnitude
Rmotion, phase
STS
ATS

 , (1.7)

where the state variables q is defined as:

q :=


Vf
ωf
un

ζn

 . (1.8)

2. Coupled Newton-Krylov Solver for the Time Spectral Flutter Equation
Now we present the solution methodology for the TS flutter equation, Eqn. Eq. (1.7). The method used is a precon-
ditioned coupled Jacobian-Free Newton-Krylov method. Key ideas of the method is explained briefly here. Equa-
tion (1.7) is solved using Newton’s method, which results in the following linear system:

J∆q = −R(qk),

qk+1 = qk + α∆q,
(2.1)
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where J is the Jacobian, ∂R(q)
∂q |q=qk , ∆q is the increment step, qk and qk+1 are the current states and the states from

next step, and α is a positive step size determined by either line search or trust region methods. Each increment step,
∆q, is solved iteratively with a Krylov method, i.e. by minimizing the residual J∆q + R(qk) norm in the span of
{R(qk), JR(qk), ..., Jm−1R(qk)}, wherem is the Krylov subspace size. The most computational demanding steps of
this process are those related with matrix vector products, i.e. Jv. Instead of evaluating all the terms in the Jacobian,
saving it explicitly and directly applying matrix vector product, we apply the following approximation, which is more
economic in terms of both computational time and memory:

Jv ≈ R(qk + εv)−R(qk)

ε
. (2.2)

The details for Jacobian-Free Newton Krylov method can be found in [27]. Solving the TS flutter equation has now
been reduced to residual evaluation. The residual evaluation is described in Algorithm 1:

Algorithm 1 Coupled nonlinear residual computation
1: functionR(Vf , ωf , u

n, ζn)
2: Xn

S ← Tun +XJ . Transfer displacements
3: Xn

V ←W (Xn
S ) . Deform volume mesh to match surface

4: ATS ← ATS (Vf , ωf , ζ
n, Xn

V ) . Evaluate CFD residuals
5: fn

A ← fn
A (ζn, Xn

S ) . Evaluate aerodynamics forces
6: f̄n ← TT fn

A . Transfer forces
7: STS ← STS(Vf , ωf , u

n, f̄n) . Evaluate CSD residuals
8: Rmotion, magnitude ←Rmotion, magnitude(u

n) . Evaluate prescribed motion magnitude residual
9: Rmotion, phase ←Rmotion, phase(u

n) . Evaluate prescribed motion phase residual
10: R← (Rmotion, magnitude,Rmotion, phase,STS,ATS) . Combine residuals
11: returnR
12: end function

We implement the solver through PETSc [21]. We use FGMRES to solve the linear system for each Newton step
and select the cubic line search option. A relatively large subspace iteration number of 150 to 300 are used to enhance
the robustness of the solver with a penalty on the solution speed. This solution method is an extension of Kenway et
al. [22] which is a steady state aeroelastic solver.

2.1. Preconditioner

When solving Eq. (2.1), one critical requirement for good performance of an iterative method is that the eigenvalues
of J be close with each other. To guarantee that, we need to carefully design a preconditioner. Similar to the previous
steady aerostructural work, we use a block-Jacobi preconditioner. We implement a right preconditioner:

(JP−1)∆y = −R(qk),

P−1∆y = ∆q,
(2.3)

where P is the preconditioner. To be more specific, the second equation is expanded as:(
P−1motion,CSD 0

0 P−1CFD

)(
∆yVf ,ω,CSD

∆yCFD

)
=

(
∆qVf ,ω,CSD

∆qCFD

)
. (2.4)

The preconditioner already implemented for CFD solver P−1CFD [1] (solution of CFD with a smaller stencil) was
reused and a new preconditioner for the motion equations and the CSD equations are set up. Denoted as P−1motion,CSD,
a direct inversion of the Jacobian is used as the preconditioner for the motion equations and the CSD equations. With
relatively small size of the 2D case, a direct factorization is reasonable. However, with a larger structure, such as that
required for a full 3D wing box, more careful research should be devoted to the preconditioner design. The resulting
preconditioner is:

P−1motion,CSD =

 0 0 ∂|α1st mode|
∂un

0 0 ∂φ
∂un

− 2Vf
π fn MMM

dDDDQ
dω un MMMDDDQ +KKK


−1

, (2.5)

where all the terms are defined in
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V. Results
1. Mesh convergence study
The mesh in this study has only one cell (plus ghost cells) in the spanwise direction, with symmetry planes on both
sides to simulate two-dimensional flow. The fine mesh is a O-mesh topology with 192 cells around the airfoil and 64
cells from the airfoil to the far field and the flow field radius is about 90 times of the chord length. The coarse mesh
has 96 cells around and 32 cells from airfoil to the far field and it has the same computational domain radius as the
fine mesh. The near field meshes are shown in Fig. 4a and Fig. 4b respectively.

a) Fine mesh (192× 64)

b) Coarse mesh (96× 64)

Figure 4. NACA 64A010 mesh

In this benchmark case, we apply the same set up as Davis [28] for a 2D picthing NACA 640A10 airfoil. The
CFD governing equation is the Euler equations. Figure 5 shows computed Cl and Cm hysteresis compared to the
experimental results.
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−1.0 1.0
Pitching angle α (deg)

−0.1

0.1

C
l

TS coarse grid
(96× 32)

TS fine grid
(192× 64)

Davis

a) Cl vs. Pitching angle

−1.0 1.0
Pitching angle α (deg)

−0.012

0.012

C
m

TS coarse grid (96× 32)
TS fine grid (192× 4)

Davis

b) Cm vs. Pitching angle

Figure 5. NACA 64A010 mesh convergences study compared to results of Davis [28]

It can be seen that the results for the fine and coarse meshes are almost on top of each other. Numerical results
match well with the experimental results as well. It also has a similar trend with McMullen’s NLFD method [13].

2. Spectral interpolated grid velocity validation
In this benchmark case, we test our TS solver with warped mesh and spectral interpolated grid velocity. The spectral
interpolated results are compared with results whose grid velocity is calculated analytically. We also consider the
effect of number of time instances on the results. 3 and 5 time-instances are considered. Again, we apply the same
setting as [28]. The results are shown in Fig.6.
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Figure 6. NACA 64A010 time instance number convergence results and spectral interpolation results

It can be seen that the Cl and Cm hysteresis which are calculated from spectral interpolating the grid velocity and
applying the analytical grid velocity are similar under the same time instance numbers. There is also some visible
discrepancy between the Cm hysteresis between the results with 3 and 5 instances. While the Cl hysteresis results
are similar for simulations with difference time instance numbers. That may be attributed to the fact that Cm contains
some higher frequency signal which can be resolved only if more time instances added. But in general all the results
match well and a similar trend can be found from McMullen’s thesis [13].

With the close match and for convenience, if not specified, all the results from the following sections are with
spectral interpolated grid velocity, 3 time instances and coarse mesh.

3. LCO prediction
We apply our TS flutter method to predict multiple LCOs under different motion magnitude. The |α1st mode| vs. Vf
relation and ω vs. Vf relations are studied here.
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Figure 7. LCO responses under various Vf at M = 0.85 (the states q from the tails of the gray arrows are used to initialized the states q
of the heads of the gray arrows)

From the Vf -|α1st mode| relation, shown in Fig. 7a, it is observed that the airfoil undergoes a subcritical response
– a decrease of Vf will give a increase in the LCO magnitude but subsequently an increment in Vf will result in yet
another increase in LCO motion magnitude. Since the change of Vf is relatively small (less than 0.01 about 2% of Vf ),
the response is almost a supercritical one. A more severe subcritical response may cause so-called “hard flutter” where
the structure will jump to a LCO with large magnitude from a steady-state. The frequency remains almost the same in
the whole process as shown in Fig. 7b. So by solving the flutter equations with different prescribed pitching motion
|α1st mode|, a |α1st mode| vs. |Vf | curve is obtained. With that curve,the supercritical/subcritical responses, which are
critical for aircraft design, could be captured by the new proposed method.

4. Time accurate (TA) and TS verification
We validate our time-spectral flutter analysis result by comparing them to a time-accurate analysis. Here we use a
partitioned loosely coupled scheme. The CFD solver’s time-accurate analysis uses BDF2 time-integration, an im-
plicit second order accurate scheme. The structural equations are integrated in time using the second order accurate
Newmark-β [29] time-integration scheme. To ensure a second-order time-accurate analysis of the coupled aeroelastic
system we apply corrector/predictor schemes [30, 31]. Multiple time step sizes are used in order to ensure a refined
enough time step is used. The parameters are shown in Table 2. One aeroelastic response with N = 9000 per period
at M = 0.85 and Vf = 0.5331 is shown in Fig. 8. A detailed TA vs TS comparison with different time step sizes is
presented in Fig. 9.

Table 2. Parameters for TA simulation under M = 0.85 Vf = 0.5331

Steps per period Step size, ∆t, (sec) Total step Total time, T , (sec)

90 8.727e−4 720 0.628

450 1.745e−4 3600 0.628

4500 1.745e−5 36000 0.628

9000 8.727e−6 72000 0.628
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Figure 8. Displacement history of TA with N = 9000 per period

It can be seen that the transient response has been damped out and finally the periodic response is observed.
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Figure 9. Comparison between time-accurate and time-spectral method at M = 0.85, Vf = 0.5331 (N = 90 indicates about 90 steps per
period)
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The time-spectral and the time-accurate match reasonably well – about 5% for the magnitude in plunging and
pitching between TA N = 9000 and TS cases. It is worth mentioning how we got the TS flutter velocity here.
After initializing with an almost zero displacement history, un (with small disturbance in case of division by zero in
Eq. (1.2))) and an initial guess of Vf = 0.51, we are able to obtain the solution shown Fig. 9 in about 15 min. By
contrast, for the TA result with 450 steps per period, with 3600 iterations to damp the transient response and get a
convergent result, it took about 43 min to run. Thus, TS flutter solution method is almost 3 times faster than one TA
analysis, not including the fact that several TA analysis are needed to fully determine the flutter boundary.

5. Flutter prediction benchmark case: Two-dimensional airfoil NACA 64A010
In this test, the flutter boundary for TS method is sequentially determined starting from M = 0.75. Each higher Mach
number solution is solved with the neighboring lower Mach number solution as an initial guess. There are jumps
of Vf about 25%, but the solver is still able converge the result which is partly attributed to the line search methods
used in solving Eq. (2.1). In numerical tests, it is also found that a larger size of Krylov space also helps to converge
difficult transonic case but with a price on solution time. More careful study on the robustness and efficiency trade-off
is recommended. In order to verify the TA flutter boundary, a bracketing approach using a series of time-accurate
analysis is performed by varying the flutter velocity index, Vf under the same Mach number, M , until the damping
of the convergent results is within ±0.05. Damping values of the non-linear time-accurate history is computed using
an Autoregressive Moving Average method (ARMA) [32, 33]. The results from the proposed method as well as the
time-accurate validation results are shown in Fig. 10. The four sets of results match well for lower Mach number, but
there is a larger difference as Mach number getting close to 0.9 between the two methods found in literature and the
TS and TA results. The agreement between the TS and TA results is however excellent. The trends are similar for all
four methods and they all predicted some flutter dip. The difference may be caused by the different meshes used in
those studies and the limited number of time-instances used with TS method.
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Figure 10. NACA 64A010 flutter onset boundary (the states q from the tails of the gray arrows are used to initialized the states q of the
heads of the gray arrows; the flutter boundary here is approximated by a LCO with 0.148◦ pitching magnitude.)

5.1. Convergence study

In Fig. 11, we show the convergence history from solving for the flutter boundary at M = 0.825 initialized with states
from the flutter boundary at M = 0.8.

As Fig. 11a shows, the residual drops slowly at the beginning. Towards the end, the reduction is faster which is a
typical behavior for Newton’s method – although in this study we did not observe quadratic convergence. In Fig. 11b,
the history of relative error of Vf and ω is presented. Here we pick the Vf and ω from the last iteration as the “true”
results. The trend is similar with that of the residual history. It is observed that despite of a 25% difference between
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Figure 11. Convergence history of solving M = 0.825 flutter boundary with an initialization of M = 0.8 solution

the initial and true Vf , the CNK method is able to reduce the residual by over 7 orders in 18 Newton steps, validating
the robustness and efficiency of the method.

VI. Conclusion
In this work, we present a high-fidelity flutter onset prediction methodology. A derivation of the time-spectral (TS)

flutter equations which characterize the flutter onset point are shown. A coupled Jacobian Free Newton-Krylov method
has been proposed and has been shown to be both robust and efficient. By implementing the method in the PETSc
environment and leveraging the line search module, the method is more robust than previously used Newton-Raphson
methods. By solving the coupled system together and removing all black box operations, the computationally expen-
sive O(NCSD) CFD evaluations for each Newton step are avoided, improving efficincy. Finally, the newly proposed
method has been compared with and validated by the time-accurate (TA) method. The method has applications in
flutter boundary prediction and can also be used to capture the subcritical/supercritical LCO responses.
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