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Abstract

Aerodynamic design optimization currently lacks robustness with respect to the start-
ing design and requires trial and error in the flow solver and optimization algorithm
settings to get a converged optimal design. We address this need by developing ways to
overcome robustness issues arising from shape parametrization, mesh deformation, and
flow solver convergence. Our approach is demonstrated on the Aerodynamic Design
Optimization Discussion Group (ADODG) airfoil optimization benchmarks to show
the factors that dominate the robustness and efficiency. In the ADODG NACA 0012
benchmark, we address the additional issue of non-unique solutions. In the ADODG
RAE 2822 case, we address solver failure due to shock waves, separation, and gradient
accuracies due to the frozen turbulence model. Finally, we create a new, challenging
aerodynamic shape optimization case that starts with a circle to test the robustness
of our aerodynamic shape optimization framework. We use both fixed and adaptive
parametrization methods to tackle this problem and show how we can exploit the
advantages of adaptive parametrization methods to improve both robustness and effi-
ciency. The combination of flow solver robustness, precision of gradient information,
robust mesh deformation, and adaptive parametrization brings us closer to a “push-
button” solution for airfoil design.

1 Introduction

Continuous advances in high-performance computing hardware and computational
modeling have enabled the design optimization of aircraft with increasing fidelity. How-
ever, major challenges remain in engineering design optimization in general, including
providing the numerical optimizer the flexibility to widely explore the design space and
realizing the gains promised by novel designs. This flexibility in the design space is de-
pendent on the design parametrization, which is usually fixed in an optimization loop.
Adaptive parametrization offers the potential to improve the optimization process’s
efficiency and yield better optimal designs.
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There are two main categories of numerical optimizers: gradient-free methods and
gradient-based methods. For large-scale, high-fidelity aerodynamic optimization prob-
lems based on computational fluid dynamics (CFD), the combination of a gradient-
based optimizer and the adjoint method for computing the required gradients has
proven to be the most efficient method. In fact, this is the only feasible choice when
the number of design variables exceeds 100 or so [1, 2].

The adjoint method is an efficient way of calculating gradients when the number
of design variables is much larger than the number of objectives and constraints [3, 4].
The computational cost of solving the adjoint equations is comparable to one flow
solution and yields derivatives with respect to all design variables, which is much more
efficient than the finite-difference approximations or the complex-step method [5].

Jameson [6] first developed the adjoint method in CFD and applied it to aero-
dynamic optimization. Since then, various researchers have developed increasingly
complex implementations of the adjoint method and have applied them to numerous
aerodynamic design optimization problems [2, 7-11].

Despite this extensive work on aerodynamic shape optimization methods and appli-
cations, robustness issues with the optimization process have not been well documented.
The Aerodynamic Design Optimization Discussion Group (ADODG) proposed a series
of benchmark cases to compare and test aerodynamic optimization methods with a
focus on the optimization results, but so far there has been little emphasis on robust-
ness [12-20].

By “robustness”, we mean the capability of the aerodynamic optimization process
to converge to the actual optimal shape starting from a wide range of shapes and flow
conditions. For a given aerodynamic design problem, a robust framework should be
able to parametrize the shape, deform the mesh while maintaining a high mesh quality,
and produce a well-converged CFD solution in addition to performing an efficient
optimization. Such robustness requires less manual handling and parameter tuning,
leading to a faster turnaround. Troubleshooting issues in any aspect of the optimization
process is time-consuming and costly, so we need to identify the key features needed
for a robust aerodynamic design optimization framework.

Our objective is to identify the key features needed for such a robust aerodynamic
design optimization framework and develop the methods to achieve those features. To
demonstrate the developed methodologies, we analyze the robustness of our optimiza-
tion process for the 2-D ADODG benchmark cases and a new case we developed.

This paper is organized as follows. We briefly introduce the optimization tools
used in this work in Section 2, with an emphasis on the new adaptive parametrization
that we developed. Section 3 describes the key features needed for overall robustness.
In Section 4, we show and discuss the optimization results for all cases: ADODG
NACA 0012 and RAE 2822, as well as the new case that starts with a circle. We end
with conclusions in Section 5.



2 Methodology

In this section, we provide an overview of our aerodynamic shape optimization frame-
work. We start by introducing the adaptive parametrization that we developed. We
then describe the mesh deformation, the CFD solver, and the numerical optimization
algorithm.

2.1 Free Form Deformation (FFD) and Adaptive Parametrization

Among the various parametrization methods, we choose the free-form deformation
(FFD) method [21-23], which is a versatile method for both local and global shape
changes. The main idea of FFD is to embed the object in a flexible solid called the
control frame and construct a mathematical mapping from physical space to parametric
space. The parametric coordinates of the baseline surface points are solved using the
Newton method. By deforming the frame points, changes propagate throughout the
interior of the frame so that the object within the frame is smoothly deformed. The
advantages of FFD include the ability to start with and handle any baseline geometry,
as well as the ability to control the parameterization’s level of complexity, the shape
at both the global and local levels, and the speed of execution.

Conventional parametrization methods like FFD rely on users to choose the number
of design variables. In theory, shape optimization is an infinite-dimensional problem,
but in practice, we parametrize shapes with a finite set of design variables. An issue
here is that there is no theoretical indicator of whether a given parametrization is
good enough for a specific optimization problem. Usually, we set up parametrization
methods based on experience from similar applications, but this may not be an option
for unconventional design problems. A geometry recovery test may help [17], but this
test is limited for known shapes and does not apply to the optimal shapes that are to
be obtained. Alternatively, we can run multiple optimizations, using trial and error to
find the appropriate way to use parametrization methods, but this incurs substantial
designer and computational time. Increasing the number of design variables improves
the geometry representation at the cost of increasing the optimization time, so users
need to balance between these two aspects. Another issue is that increasing the num-
ber of design variables tends to cause more difficulties for the flow solver because of
high-frequency shape variations [24]. We explain these issues in more detail in the fol-
lowing sections and propose dealing with them using an adaptive FFD parametrization
approach.

In addition to the number of design variables, shape parametrization involves a
decision on how to distribute the control points. For example, the position of the FFD
control points along the airfoil chord is particularly important. These decisions are
usually based on the experience of designers and some trial and error. Therefore, we
would like to automate this process as much as possible.

The objectives of this adaptive FFD parametrization are to (1) adaptively increase
the number of design variables and (2) make automatic decisions on the parametriza-
tion, such as the chordwise distribution of control points on an airfoil.

The advantages of the developed adaptive parametrization method are a reduction



in computation time, as well as increased automation and improved robustness. For
a gradient-based optimizer, the number of design variables still has a significant effect
on the optimization efficiency, despite the use of the adjoint method for computing the
gradient. As such, a smaller number of design variables is desirable in the initial stages
of optimization because it saves time.

Another benefit is improved robustness because starting with a smaller number of
design variables helps reduce the dimensionality and stabilize the optimization. There
are some studies on adaptive FFD methods that only focus on redistributing the control
points of the FFD frame without adding more control points [25]. Other adaptive
parametrization methods add new design variables in the adaptation step [24, 26, 27].

2.1.1 B-spline FFD

The original FFD method is based on the Bernstein polynomial basis. However, we
use B-splines in our implementation for their local modification properties, which we
have shown to be advantageous in numerous applications [11, 28-31]. The B-spline
basis function in recurrence form can be written as [32, Ch. 2]
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where we can use j and k for the other two directions in the three-dimensional para-
metric coordinate system, and p represents the degree of the basis function.

Assume that for a given FFD frame there are [, m, n control points in each direction,
respectively, and that p, ¢, and r represent the degree of the basis function in each direc-
tion. The length of the knot vector is [+p+1, m+q+1, n+r+1. The knot vector is con-
structed in the non-decreasing sequence form of T' = (0, 0,0,0,t4,t5,...,tny_1,1,1,1,1)
if p = 3 and the number of control points is N. The equation governing the FFD
method using a B-spline volume can be written as
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where X = (x,y, z) is a point in the global coordinate system, (u,v,w) represents the
corresponding parametric coordinates for X, and P, ;; are the coordinates of every
control point in global coordinate system.

2.1.2 Knot Insertion

The adaptive parametrization method we developed progressively adds more design
variables by adding more control points to the FFD frame. There are two ways to
achieve this goal. The first is to modify the FFD frame directly. Duvigneau [25] used a
metric to modify the baseline FFD frame to embed the baseline shape, which requires
a least-squares fitting to the changed shape.



A second option is to generate an FFD frame around the changed shape and resolve
the parametric coordinates within the new frame. This can be done by adding control
points through a B-spline knot insertion method [26]. It is advantageous to increase the
number of control points in the FFD and keep the embedded shape unchanged when
we add design variables. Since we use a B-spline basis, the knot insertion method can
be adopted here [26, 32]. The idea of knot insertion is to insert a new knot entry into
the knot vector and generate a new FFD frame based on this new knot vector. During
this change, the shape embedded in the FFD frame remains unchanged because it does
not need to be fitted after the insertion. Another advantage of this approach is that
we do not need to resolve for the parametric coordinates, although the time for this
computation is only a small fraction of the whole optimization process.

We use a B-spline curve as example, which is defined by

Clw) = Y Biyw)P 8

where P is the control point vector of length n + 1, and the knot vector is T =
(to, t1,...,ty). After insertion, we use () to represent the new control point vector of
length n+2 and T = (to, t1, oo byt g1,y - - o, by for the new knot vector. Here, t* is
the new knot inserted between ¢; and t;,;. Due to the characteristics of B-spline basis

functions we get
n+1
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which means that after the insertion operation, both the global and parametric coor-
dinates of the curve are unchanged. Solving the equation above, we get a formula for
computing all the control points of new FFD frame:
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Alternatively, we can insert a control point at a specific location P* and calculate the
needed knot value by
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Figure 1 shows the effect of inserting twice in two different locations. More specifically,
we can see how the inserted knot affects neighbor control points.

2.1.3 Adaptation Metric

The knot insertion method serves as a tool to add new design variables, but we still
need to find which knot value or control point we should insert and when to do that.



Figure 1: The first knot is inserted near the leading edge, and the second knot is
inserted at mid-chord. Note that two neighbor control points move after the insertion.

In a two-dimensional FFD frame, we have two knot vectors: one for each of the 7 and j
directions. We only insert knots in the ¢ direction, which is along the chord, but there
are still an infinite number of possibilities.

To determine where to insert the knots, we use an adaptation metric (AM). Our
adaptation metric includes constraint information, and it is similar to the adaptation
metric developed by Anderson and Aftosmis [27], which uses both the first and second
derivative information. Another AM option is the one proposed by Han and Zingg [26],
who used the gradient of the single candidate control point as AM. However, when
knot insertion changes the location of neighbor control points, taking the gradient
information of all the control points into account is more appropriate.

Since we do not have second derivatives readily available, we simplify the metric to
use only first derivatives, yielding
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where NN, is the number of shape design variables, f is the objective function, y; repre-
sents a component of the design variable vector, IV, is the number of active constraints,
and 0g;/0y; is one element from the constraints Jacobian matrix. The constraints Jaco-
bian matrix is computed by taking the sensitivity of each active constraint with respect
to every design variable. The constraints consist of geometric constraints (thickness
and volume), and aerodynamic force coefficient constraints (lift and pitching moment).

As explained in the previous section, we build knot vectors for B-spline functions.
There are Ny + 1 knot values in the [0, 1] interval, where the value of Ny is decided
by the number of control points and the degree of the curve. We get Ny intervals,
and we can insert new knot values in the middle point of each interval. Then, we
generate Ny candidate FFD frames by inserting knots at each candidate interval. The
next step is to evaluate the adaptation metric for each candidate frame and choose the



frame that yields the highest adaptation metric value. In this process, we reuse the
adjoint solution because the airfoil shape is not changed, and the FFD frame is the
only changed part in the chain rule for the gradient computation.

2.2 Mesh Deformation

The parametrization generates new shape surfaces, and during optimization, the CFD
surface mesh serves as a representation of the geometry. Each time the optimizer
changes the shape design variables, we need to perform a mesh deformation of the
original mesh and get a new volume mesh by propagating the surface mesh changes.
To accomplish this, we use two different approaches for mesh deformation. The first
approach is based on an algebraic method and is implemented in the pyWarp pack-
age [23]. pyWarp uses normalized arc length along mesh lines to decay the deformation
for the volume mesh points. This approach can only handle small changes, as it usu-
ally runs into difficulties when deforming the tightly-spaced points across the boundary
layer.

The second approach for mesh deformation is based on inverse distance weight
(IDW) interpolation [33] and is implemented in the IDWarp package. IDW considers
surface cell displacement and rotation to preserve cell orthogonality and is able to
handle large shape deformations, even for meshes that include tightly-spaced points.

For airfoil optimizations starting from a circle or random shapes, large shape
changes are required to reach the optimum, which causes a loss in the orthogonal-
ity of the near-wall mesh cells. In those cases, the algebraic scheme is not enough to
maintain good mesh quality during optimization, so we use IDWarp exclusively.

2.3 CFD Solver

The CFD solver used in this work is ADflow, which can solve Euler and Reynolds-
averaged Navier-Stokes (RANS) equations using multiblock or overset meshes [34].
ADflow uses the Jameson—Schmidt—Turkel scheme with artificial dissipation as the
discretization scheme and provides a few turbulence models, including the Spalart—
Allmaras (SA) turbulence model [35]. Explicit multi-stage Runge-Kutta (RK) or di-
agonalized diagonally-dominant alternating direction implicit (D3ADI) [36] methods
can be used to solve the resulting nonlinear systems.

Alternatively, we can use a combination of approximate Newton-Krylov (ANK)
and Newton-Krylov (NK) solvers [37]. There are two main stages when using this
approach. In the initial stage of convergence, we use the ANK solver to reduce the
total residual norm by five orders of magnitude compared to the first iteration, which
is initialized with free-stream conditions. After the initial reduction, we switch to the
NK solver for the terminal stage of convergence. Similarly, we can also use the RK
or D3ADI solvers instead of the ANK solver for the initial five orders of magnitude of
convergence, to obtain a good initial guess for the NK solver.

ADflow includes a discrete adjoint method that efficiently computes the derivatives
of objective and constraint functions with respect to large numbers of design vari-
ables [38, 39]. The adjoint implementation includes the complete linearization of the



turbulence model. The preconditioned GMRES solver from PETSc [40] is used for
solving the adjoint equations.

2.4 Optimization Algorithm

To perform the numerical optimization, we use SNOPT (Sparse Nonlinear OPTimizer),
which utilizes a sequential quadratic programming (SQP) approach and approximates
the Hessian matrix using a quasi-Newton method [41]. Equality and inequality con-
straints are handled by SNOPT using a sequential quadratic approach. A Python
interface to SNOPT is used for convenience and flexibility [42] !.

3 Key Features for Robustness

As mentioned in the introduction, what we mean by robustness is the ability to obtain
optimal shapes successfully for a variety of starting shapes and flow conditions in a
fully automated fashion. There are a few factors that determine the robustness of the
optimization process. Based on our experience, the most frequent reasons for a failed
optimization are flow solver failures (especially due to the cases that exhibit massive
flow separation), inaccurate gradients, mesh deformation failure, and inappropriate
parametrization. In this section, we discuss how these issues affect robustness and
what we have done to mitigate them.

3.1 Flow Solver Robustness

The flow solver’s ability to converge to the solution of the governing equations for a
given mesh is of paramount importance for optimization. The additional challenge for
a flow solver when using numerical optimization is that the optimizer is likely to come
up with designs that a human designer would not even try in the course of a CFD-based
manual aerodynamic design process. Some optimization algorithms provide the option
to process a point that cannot be evaluated without interrupting the optimization, but
numerous failed evaluations add to the computational cost without providing much
information to the optimizer. Besides slowing the optimization process down, these
intermediate cases can even cause the process to completely stall, and prevent the
optimizer from converging to the optimal design.

To avoid these problems, we require a robust flow solver that can always find
a solution to a nonlinear system of equations, even for challenging cases. We have
developed the ANK solver implemented in ADflow with this requirement in mind [37].
We primarily use the ANK solver for the initial stages of convergence, where a pure
NK solver would fail to converge. The simulations are started with the ANK solver
until five orders of magnitude reduction in the total residual norm is achieved.

Both the NK and ANK solvers use Newton’s method to converge the nonlinear
system of equations, and a Krylov subspace method to solve the resulting linear systems
in each nonlinear iteration, hence the name Newton-Krylov. However, compared to
the NK solver, the ANK solver has a number of additional features that are added for
improved robustness.



The ANK solver’s main distinction is the approximate Jacobian it uses, compared
to the exact Jacobian used in the NK solver. The approximate Jacobian is similar to
a first-order accurate Jacobian, and it has a smaller bandwidth compared to the exact
Jacobian we use, which is second order accurate. This improves the conditioning of
the linear systems that we solve during each nonlinear iteration at the cost of lower
accuracy in the nonlinear updates. As a result, we can achieve linear solutions with
less computational effort, and the chance of a linear solver failure is reduced.

Along with the approximations in the Jacobian formulation, we introduce a diagonal
time-stepping term in the linear system we solve at each nonlinear iteration, resulting
in a backward Euler scheme. The time-step is initialized with a relatively small value,
and it is ramped up as the simulations converge, which is commonly known as pseudo-
transient continuation [43]. This technique helps the solver settle the strong transients
that are present during the initial stages of convergence. Furthermore, it provides
favorable nonlinear convergence rates towards the final stages of convergence, where
the algorithm approaches a pure Newton method as the time-step increases.

After obtaining the update vector by solving the resulting linear system, the ANK
solver uses two algorithms to control the step size in the direction of the update. First,
we use a physicality check to ensure that the nonlinear updates do not yield unphys-
ical results such as negative density or pressure values. Secondly, we utilize a simple
backtracking line search algorithm to ensure that the unsteady residual norm reduces
between nonlinear iterations. These two algorithms are fundamental in achieving the
solver’s nonlinear robustness.

Besides the details of the ANK solver algorithm, there is often a trade-off between
performance and robustness when tuning the parameters that control the solver behav-
ior. A good example of this is the relative nonlinear convergence tolerance that we use
to switch from the ANK to the NK solver. Switching to the NK solver earlier would
provide improved performance for most cases. However, in some problematic cases,
prematurely switching to the NK solver causes the solver algorithm to stall, whereas
a lower switch tolerance would avoid these issues by providing a better initial guess
for the NK solver using a tighter convergence with the ANK solver. In this context,
we have selected a lower relative convergence level (107°) for the switch rather than a
level that is sufficient for most cases (10™%). This choice improves the robustness of our
nonlinear solver, although it comes at the cost of sub-optimal performance for easier
cases. All of these factors contribute to the nonlinear robustness of the ANK solver,
and we are using it extensively as a robust startup strategy.

RANS simulations are shown to reliably predict the performance of wings at cruise
conditions where there is little to no separation [44]. On the other hand, for cases where
there is massive separation in the flow-field, the equilibrium-flow assumption that is
used to derive the RANS equations are not valid, and therefore RANS simulations
do not yield accurate results for these cases. However, it is still useful to be able to
converge such off-design cases because they tend to provide the correct performance
trends. If the goal is to minimize the drag (which is the case for the vast majority of
aerodynamic shape optimization problems), the optimizer converges to a smooth shape
with little or no separation for which the RANS model is valid.



For example, Lyu et al. [2] studied the aerodynamic shape optimization of a wing
in transonic conditions, starting from random shapes that contained separation. For
all cases with different starting points, the optimizer converged to smooth wing shapes
with no separation. In this example, even though the RANS model may be inaccurate
for the random initial designs, the model is valid about the optimal design because there
is little to no separation in this part of the design space. Furthermore, the sensitivities
obtained with these initial designs were accurate enough to point the optimizer towards
a region of the design space without separation. This type of robustness is useful when
designers have to start with a rough baseline geometry or a geometry that had been
previously designed for different flight conditions.

To demonstrate the robustness of the ANK solver in ADflow, we test 1172 airfoils
from the UIUC airfoil database in subsonic and transonic conditions, and we show
which cases converged and which did not in Figure 2 [45]. The horizontal and vertical
axes are the thickness and camber calculated from the geometry. The combination
of large thickness and camber leads to separation that caused difficulties for the flow
solver. For M = 0.45, all of the 1172 airfoils converged with a density residual of 10712,
regardless of the time marching method. For M = (.73, nearly half of airfoils failed
to converge using the D3ADI and NK solvers. Failed cases have larger thickness and
camber, which indicates difficulties from combined strong shock and flow separation.
However, the ANK solver converged all cases. We select 20 airfoils from Figure 2c¢ (see
labels) and plot them in more detail in Figure 3. In particular, airfoils number 18, 19,
and 20 have the largest thickness, camber, or both. Being able to converge the flow
solution for these extreme airfoils and all the others demonstrates ADflow’s robustness.

In Section 4, we discuss the flow solver robustness issues in more detail for each case.
Here, we provide just a brief overview of the issues encountered in the optimizations.
In the NACA 0012 case, we had difficulties converging and found non-unique solutions
for the Euler equations. The RAE 2822 case was less problematic when starting from
the RAE 2822 baseline or random initial shapes. In this RANS case, we found no
evidence of non-unique solutions. In the case starting from a circle, the flow solution
is challenging because of the massive flow separation, but ANK was able to converge.
Because ANK converges to a static RANS solution, it does not represent the real
unsteady flow correctly.

3.2 Influence of Parametrization

The FFD parametrization generates new shapes based on the design variables, which
determine the deformed control point positions. The parametrization method affects
the robustness in two ways.

First, the parametrization needs to be able to capture the geometry of the optimal
shape, which is not known a priori. The distribution of control points along the chord
will affect the design space, which means the shape can be parametrized by FFD.

Second, the number of design variables influences not only the speed but also the
robustness of the optimization process. Based on our observations, when the number
of design variables increases, the optimizer is prone to exploring shapes with more
curvature variation that causes difficulties for the flow solver.
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Figure 2: Demonstration of solver robustness when solving for 1172 airfoils, showing
cases that converged (green) and failed (red) at Re = 6.5 x 10%, a = 1.

Figure 4 shows an intermediate airfoil from a failed optimization starting from a
circle. The separation and resulting unsteadiness of the flow around this shape caused
failure in the optimization because of the low accuracy in the gradient.

In addition, when the spacing between control points is too small relative to the
spacing of the surface CFD mesh points, an excessive number of FFD control points

11
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Figure 3: Pressure coefficient contours for 20 sample airfoils.

may result in multimodal shapes. This issue caused the optimization using 160 design
variables for the RAE 2822 case to fail. Other researchers also encountered similar
issues using other parameterization methods [24]. The issue related to the number of
design variables is discussed in the following sections. The solution to this problem is
to set the spacing of FFD control points to be at least four times larger than that of
CFD mesh points.

To mitigate the flow solution robustness issues, it is possible to tune the flow solver
and optimizer parameters. However, this is time consuming, especially if the designers
are not familiar with the particular solver and problem. To address this issue, we
propose an adaptive parametrization that starts with a few variables to get a rough
approximation of the optimal shape, then increases the number of control points to

12



Figure 4: Anomalous shape encountered during an optimization starting from a circle
with 20 design variables

refine the shape.

3.3 Robust Mesh Deformation

The mesh deformation generates new volume meshes using given a baseline shape and
a new surface shape. The quality of the deformed mesh is a key factor in the robust-
ness and accuracy of the overall shape optimization process. When a case requires a
large shape change, like going from a circle to an airfoil, maintaining the mesh quality
through the deformation is crucial. For small shape changes, the algebraic mesh defor-
mation in pyWarp is fast and adequate. For larger shape changes that cause larger mesh
deformations, however, the inverse distance algorithm in IDWarp is best at preserving
mesh orthogonality and avoiding the generation of negative volume cells, especially in
the off-wall mesh. Of course, there may still be some cases where even IDWarp fails
due to cells with negative volumes. In those cases, we could regenerate the mesh using
pyHyp, a hyperbolic mesh generation tool that, given a surface mesh, automatically
generates volume meshes. Figure 5 compares the results of deforming a mesh from a
circle to an airfoil with pyWarp and IDWarp, as well as the mesh regeneration with
pyHyp. Since this is a large mesh deformation, pyWarp yields low-quality off-wall cells,
but IDWarp performs much better. Regenerating the mesh with pyHyp yielded the
best mesh quality but is more costly: While pyWarp takes 0.02s and IDWarp takes
0.15s, pyHyp requires 15s to regenerate the mesh.

13
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Figure 5: Comparison of the initial mesh for the circle and corresponding meshes
deformed using pyWarp, IDWarp, and pyHyp.

4 Results

This section shows results for three cases, each with the goal of demonstrating different
aspects of the aerodynamic shape optimization robustness. In the NACA 0012 and
RAE 2822 cases, we show key parameters that affect the robustness the most and
show how the adaptive FFD improves the optimization process robustness. The circle
case is used as the ultimate test for the robustness of our optimization framework and
the adaptive FF'D approach.
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4.1 Inviscid Airfoil Case

In this section, we solve the ADODG 2-D NACA 0012 case, which is an inviscid airfoil
optimization problem. The baseline shape is a modified sharp trailing edge NACA 0012
airfoil defined as

y = 0.6 (0.2969v/z — 0.1260z — 0.35162> 4 0.2843z" — 0.10362") (8)

where x € [0,1]. First, we perform a mesh convergence study, where we generate a
family of meshes with different sizes using pyHyp. Since this case is symmetric with
an angle of attack of zero, we use only the upper half mesh with a symmetry boundary
condition at y = 0. The off-wall spacing is 4 x 1074, and the far-field is 150 chords
away. The mesh sizes and drag coefficients for all meshes are listed in Table 1. The
meshes range from 8000 cells (L3) to 2 million cells (L00). The drag values in this table
are multiplied by two to get drag for the whole airfoil. The drag difference between
LO and LOO mesh is 0.04 counts. We chose the L.L1 mesh for optimization for a good
compromise between accuracy and computational cost. Figure 6 shows the L1 mesh
mirrored about the chord line.

We generate a few FFD frames with different numbers of control points. A 52-
control-point example is shown in Figure 7, which we reduce to 26 design variables by
enforcing symmetry. The frame is important in the FFD because it is directly related
to how the airfoil is parametrized. The FFD frame is fitted close to the airfoil surface
to allow for better control. Based on our experience, setting up control points close to
the surface with approximately the same distance is beneficial for faster optimization
convergence. The control points are offset by a small distance from the surface (1%
chord) and are uniformly distributed along the chord. Non-uniformly distributed con-
trol points along chord, such as denser control points near the leading edge, usually
lead to better optimization results. Here we consider uniform distributed control points
for the sake of generality.
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Figure 6: L1 grid. Figure 7: Example FFD frame with 52
control points.
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Table 1: Mesh convergence for the NACA 0012 and the optimized airfoil using 50
design variables.

Drag counts
NACA 0012 Optimized

Mesh Number of cells

LOO 2,097,152 470.55 73.14
LO 524,288 470.59 69.28
L1 131,072 470.36 72.46
L2 32,768 469.88 70.38
L3 8,192 468.76 77.40

Table 2: ADODG NACA 0012 case problem statement

Category Name Quantity Lower Upper
Objective Cy 1 - -
Variables Yy 14/18/22/26/50  —0.5 0.5
Constraints  t/c 25 1 -

Ylower = —Yupper 14/18/22/26/50 0 0

4.1.1 Problem Statement

The mathematical formulation of the NACA 0012 optimization is shown in Table 2.
The Mach number is 0.85, and the design variables are the FFD frame control point
movements in the vertical direction, y. The number of control point design variables,
N,, ranges from 14 to 50. Relative thickness (¢/c) constraints are enforced at 25
positions along the chord to ensure that the airfoil thickness is larger than or equal to

that of the baseline.

4.1.2 Optimization Results

For this NACA 0012 inviscid optimization, we converge the flow solution residuals to
1071°, and the optimality in SNOPT is set to 107¢. This optimization case is challeng-
ing to converge because it is sensitive to solver and optimization settings, especially
for the larger numbers of variables. To address this issue, we found it helpful to use
the “major step limit” in SNOPT, which sets the maximum possible step size in the
line search, thus limiting the change of design variables during a line search. This was
particularly helpful to deal with the non-uniqueness issue of this case.

In addition, we found it useful to set the “Hessian updates” to a value larger than
the default (from 10 to 50). This determines the number of updates before resetting
the quasi-Newton Hessian approximation, and the larger the value, the better the
approximate Hessian.

Figure 8 shows the objective function history for a few cases, where each column
corresponds to a different number of design variables. The data corresponding to the
given number of variables is shown in color, while the gray lines show the data for the
other cases for reference. We can see that the optimum drag value decreases when the
design variable number increases and it gets harder to converge. The cases that are
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harder to converge need adjustments to the flow and optimizer parameters. When the
number of design variables reaches 50, there is still a trend towards lower drag with
increasing number of design variables.

This trend is mainly caused by the need to form blunt shapes at the leading and
trailing edges in this non-physical inviscid case. Figure 8 also shows the feasibility
history, where the constraint violation is within 107¢. All cases with different numbers
of design variables converged well.

Table 3 shows our minimum Cj, results and compares them with other published
results; our result with 50 variables is the lowest. We list the drag result from the finest
mesh in each paper. Note that the drag results of the baseline shape differ greatly from
paper to paper. The optimized airfoils show a even larger difference for drag. The first
reason for this is that the flow solvers and mesh types used in each paper are different.
Even if we take zero-spacing drag results from each paper, the difference will still
be larger than five counts. The second reason is that these papers are using different
parametrization methods. These papers gave different optima because the design space
is determined by parametrization.

In this table, our Cy is multiplied by two to obtain the drag coefficient of the whole
airfoil, since we solved only the half mesh. All optimized airfoils share the same trend:
increasing suction peak and shock moving toward the trailing edge. All optimized
airfoils tend to exhibit a larger leading edge radius and an abrupt trailing edge after
optimization. There are fluctuations in the C), distribution near the trailing edge, which
may be related to how FFD points are arranged since we used uniformly distributed
control points.

Table 3: Comparison of the drag for NACA 0012 Euler optimization, including results
reported in the literature; a zero is added in the second decimal place when only one
decimal place was reported.

Result N, NACA 0012 Cjy (counts)
Present work 50 470.36 7.60
Present work 26 470.36 15.54
Present work 22 470.36 23.53
Masters et al. [20] 16 469.60 25.00
Bisson and Nadarajah [16] 32 464.20 26.20
Present work 18 470.36 34.33
Carrier et al. [12] 96 471.20 36.70
Anderson et al. [15] 31 471.30 41.30
Lee et al. [46] 9 457.33 42.24
Present work 14 470.36 50.49
Zhang et al. [19] 17 481.28 73.08
Poole et al. [47] 15 469.42 83.80
LeDoux et al. [14] 513 471.30 84.50
Gariepy et al. [48] 11 481.60 141.70
Fabiano and Mavriplis [18] 11 466.96 297.02
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Figure 8: Merit function, feasibility, optimality history, optimized shape, and pressure
distribution for the NACA 0012 case. The gray lines show the results from the other
cases for comparison.

To examine the issue of non-uniqueness in the solution that was previously reported
for this case [14, 20], we re-analyze the flow equations for some intermediate optimiza-
tion steps. When performing aerodynamic shape optimization, the flow solution of the
previous optimization iteration is used as the starting point for solving the governing
equations. For the re-analysis, the flow solution is always started from a uniform flow
field. Figure 9a compares the drag coefficient history from optimization and re-analysis
values, which reveals the non-uniqueness problem of the Euler equations solution. Fig-
ure 9b shows that starting from uniform inflow yields different C), distributions that
mainly differ in the shock shape. This difference in C), partially explains why solving
the flow equations from the uniform flow and from the previous solution yields different
drag values. Given this result, we can see that in this case, the optimization result is
clearly affected by the non-uniqueness issue.

We first performed these optimizations using the L1 mesh. Then, we generated
a mesh family for the optimized airfoil by performing the same deformation on the
baseline airfoil mesh family. In the mesh convergence study, we initialized the flow
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Figure 9: Re-analysis for optimization intermediate steps shows non-unique flow solu-
tions.

Table 4: Mesh convergence study for the RAE 2822 at M = 0.734, Re = 6.5 x 106,
C;=0.824

Cy (counts)

Mesh « Number of cells RAE 2822 Optimized
01 2.785806 131,072 194.40 108.91
02 2.817267 32,768 198.41 109.89
03 2.915244 8,192 214.66 119.01
C1 2.757314 2,240,000 191.00 109.51
C2 2.743502 560,000 192.15 110.53
C3 2.773300 130,000 199.15 115.60
C4 2.800754 35,000 205.53 118.28

solution from uniform flow.

4.2 \Viscous Airfoil Case

We now consider the ADODG RANS airfoil optimization problem, which starts from
the RAE 2822 airfoil 2. We also performed a mesh convergence study for the RAE 2822
with two families of meshes generated using pyHyp. The number of cells and drag
coefficients for all the meshes is listed in Table 4. The optimization used 40 design
variables for the O2 mesh and 52 design variables for the C4 mesh. An O-type mesh
family was used for the drag comparison along with the result from the circle case
to keep the mesh type consistent. The O2 mesh, which has 32,768 cells, is shown in
Figure 10. The nominal flow condition is M = 0.734 and Re = 6.5 x 10°, where the
lift coefficient is constrained to 0.824.

19



T

Figure 10: O2 mesh.

4.2.1 Problem Statement

The optimization problem statement for the RAE 2822 case is shown in Table 5. As
before, the design variables are the vertical movements of the FFD control points, y.
The number of control point design variables ranges from 8 to 52 (one half parametriz-
ing the top and the other half parametrizing the bottom). The area of the airfoil, A,
is constrained from exceeding the area of the baseline airfoil.

4.2.2 Optimization Results

The flow solver was set to converge to a density residual of 1071°, and the convergence
tolerance for the optimality in SNOPT was set to 107%. The step limit was set to 1073,
and the Hessian update option was set to 50 in SNOPT. We tried different numbers of
design variable, but only the more interesting results are shown here for conciseness.
Adjoint solutions with frozen turbulence are often used in the literature because it is
difficult to implement the computation of turbulence model partial derivatives; how-
ever, this results in lower accuracy gradients. We have the option to either solve the
adjoint with frozen turbulence or solve the full adjoint. In this case, with a frozen tur-
bulence adjoint, the optimizer stopped prematurely because of the inaccurate gradient
information, so this option was turned off in the subsequent results.

Figure 11 shows the optimization results using the O-type mesh. Each column
shows results for a given number of design variables in color, and all the other cases
with different numbers of design variable are shown in gray for comparison. The change
in the merit function is not visible in this linear plot above about 120 iterations.
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Table 5: ADODG RAE 2822 case problem statement.

Category Name Quantity  Lower Upper
Objective Cy 1 — _
Variables Y N, —0.5 0.5
« 1 1.0 5.0
Constraints A 1 Aiitial -
C 1 0.824 0.824
Cm 1 —0.092 -
YLE, lower = —YLE, upper 1 0.0 0.0
YTE, lower = —YTE, upper 1 0.0 0.0
t/c 400 1074 —
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Figure 11: Merit function, feasibility, optimality history, optimized shape, and pressure
distribution for the RAE 2822 case. The gray lines show the results from the other
cases for comparison.

The constraint violation is within the 107 tolerance, which indicates optimization
is well converged for all cases. Table 6 lists the optimal drag coefficient values for the
various numbers of design variables, and shows that as the number of design variables
increases, the drag values monotonically decrease, as also shown in Figure 12. This is

21



a desirable feature that is not necessarily observed for all parameterizations [20]. This
trend can help us find the number of design variables that is adequate for a specific
problem. In this case, with the O2 mesh, we achieved good results with 20 design
variables. Increasing the number of design variables from 20 to 40 only reduced the
drag by 1.16 counts.

In Table 7, we compare our results to those reported in other papers. Similarly to
the NACA 0012 case, the results from various sources differ significantly. Again, we
believe that the main reasons for these differences are the different flow solvers and
meshes. Similarly to the results from the viscous transonic airfoil (VTA) workshop
held in 1988 [49], the differences in the two-dimensional airfoil drag values show even
larger variance than the three-dimensional Drag Prediction Workshop cases [44]. Note
that when we increase the number of design variables to 160 using a C-type mesh, the
optimization failed because the ratio of the number of control points to the number of
surface mesh points is too large. This causes difficulties because the design variables
get to control details in the shape that are not adequately resolved by the RANS flow
solver. As a rule of thumb, we found that there should be at least four mesh points
for every shape control point; otherwise, there is a risk that the optimizer will stop
prematurely due to numerical difficulties.

Table 6: The drag decreases monotonically as the number of design variables increases.

N, Mesh Cy (counts)

10 02 112.13
20 02 110.91
30 02 110.09
40 02 109.75
8§ (4 119.91
10 (4 119.72
12 C4 119.33
16 C4 118.92
20 C4 118.70
28 (4 118.48
36 C4 118.37
44  C4 118.31
52 C4 118.28
60 C4 118.27
68 C4 118.23
% C4 118.19
100 C4 118.11
160 C4 (Failed)

Figure 11 compares the baseline and optimized airfoil shapes and pressure distri-
butions. We can see that the shock is eliminated and that, when there are more than
20 control point design variables, the difference among the results is small. The mesh
convergence on the optimized airfoil for 40 design variables is shown in Table 4.
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Figure 12: The optimum drag value decreases monotonically as number of design
variables increases.

Table 7: Comparison of the drag for the RAE 2822 RANS optimization with results
reported in the literature; a zero is added in the second decimal place when only one
decimal place was reported.

Result Mesh type Cells Npy RAE 2822  Optimized Change
Present work Structured 131,072 40 194.40 108.91 —85.49
Anderson et al. [15] Cartesian (Not reported) 14 196.00 124.00 —72.00
Bisson and Nadarajah [16]  Structured 3,264 16 177.80 102.30 —175.50
Carrier et al. [12] Structured 7,894,172 10 189.20 103.90 —85.30
Gariepy et al. [48] Structured 211,968 24 187.30 104.30 —83.00
Lee et al. [46] Structured 47,824 17 234.44 131.81 —102.63
Poole et al. [47] Structured 98,304 6 174.30 90.40 —83.90
Zhang et al. [19] Structured 165,888 18 194.09 103.62 —90.47

4.2.3 Starting from Random Airfoils

We now explore how the optimizer performs when starting from different baseline
airfoils. The problem formulations are the same as for the ADODG RAE 2822 case,
except the initial airfoils are different.

Our hypothesis is that the design space for viscous airfoil design is unimodal and
therefore, the final optimal airfoil should not depend on the initial design. Our previ-
ous studies on RANS-based, 3-D wing aerodynamic optimization with fixed planform
showed that gradient-based optimization converged to essentially the same design when
starting from different shapes, including some random shapes [2, 11]. While it is not
possible to prove that the design space is unimodal in this complex case, one need
only find two different optima to disprove the hypothesis. Although some researchers
have argued that aerodynamic optimization problems may be multimodal [50, 51], no
credible multiple optima have been presented. Here, we use our optimization tools on
the ADODG airfoil to see if we can find multiple minima to disprove our hypothesis
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for the 2-D case.

Based on the airfoil optimized from the RAE 2822 airfoil, we generate 10 airfoils us-
ing Latin hypercube sampling. Then, starting from these random airfoils and using 20
design variables, we perform airfoil optimizations with the same problem formulation.
Figure 13 shows the 10 random airfoil shapes and the corresponding optimization histo-
ries. Every optimization converges to the same drag value as the reference optimization
starting from the RAE 2822, which adds evidence that supports our hypothesis. The
drag coefficient results from each optimization differ by only 107%, and the maximum
difference between results for all design variables is lower than 2 x 1077,

4.3 Optimization Starting From a Circle

In the optimizations above, we started from the RAE 2822—as well as from random
perturbations of the RAE 2822—to demonstrate the robustness of our aerodynamic
shape optimization framework.

We now tackle an even bigger challenge: obtaining an optimal airfoil starting from
a circle. This challenge might not be of interest for industrial applications because in
practice, we know to start with at least a basic airfoil shape. However, we decided to
tackle this challenge to demonstrate the software’s ability to converge to the optimal
airfoil starting from a drastically different shape—a “blank slate” of sorts. This not
only demonstrates robustness in the numerical methods but also shows the effectiveness
of the adaptive FFD parametrization approach. We use the same flow conditions and
constraints as for the RAE 2822 case.

Because of the massive separation downstream of the circle, it is challenging to solve
the flow in transonic conditions, but ANK is able to converge without much difficulty.
We tackle these optimization problems with and without the adaptive FFD technique
to show the effect of the adaptation. We generate a 32,768-cell O-mesh using pyHyp
and construct a fixed FFD frame with 20 control points, as shown in Figure 14.

Figure 15 shows the evolution of FFD frame during the adaptive parametrization
process. In the first step, we start with three control points along the chord. These
three points accomplish a large thickness reduction in a few iterations. After the first
adaption operation, three control points are added for a total of six to refine the shape
near the leading and trailing edges. The optimization for this stage manages to achieve
a supercritical airfoil shape. The second adaption operation adds more control points
in the mid-chord position where the shock occurs, and the optimization refines the
shape.

The optimization histories for the fixed and adaptive FFD are compared in Fig-
ure 16a. The optimization using ANK and the adaptive FFD converged successfully,
requiring 184 iterations. The fixed FFD approach failed to converge in this case be-
cause of inaccurate gradients for the anomalous intermediate shape shown in Figure 4.
In Figure 16b, we can see that the optimized shapes using fixed FFD and adaptive
FFD are similar to each other, except for slight differences. The drag coefficient of
optimized shapes starting from a circle with adaptive FFD and from the RAE 2822
with fixed FFD differ only by 0.51 counts.
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Figure 13: Optimization results when starting from random airfoils.

5 Conclusions

In this paper, we developed ways to address robustness issues in airfoil aerodynamic
shape optimization and demonstrated their effectiveness by benchmarking our ap-
proach for the ADODG NACA 0012 and RAE 2822 optimization cases. We address
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Figure 15: Evolution of the adaptive FFD for the optimization starting from a circle.

and discuss robustness from the point of view of the flow solver, the mesh deformation,
and the design variable parametrization. For both ADODG airfoil cases, we obtain
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Figure 16: The optimized shape using the adaptive FFD technique starting from a
circle is close to the one starting from the RAE 2822, while the fixed FFD failed to
converge.

well-converged results that are comparable to the results from previous work.

For the NACA 0012 Euler case, we obtained 7.6 counts for the optimum shape,
which is the lowest reported in the literature so far. The difference in the optimal
drag for the NACA 0012 is up to 23 counts, and the optimal airfoils show a much
larger difference, ranging from 25 counts to 297.02 counts. Factors such as the flow
solver, mesh size and type, parametrization, and design constraint handling can cause
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the observed differences. We analyzed the non-unique solution issue due to the use
of the Euler equations and found that the solution depends on how the flow field is
initialized. However, the optimum shape based on Euler is not practical because it is
not physically representative.

In the RAE 2822 case, we obtained a reduction of 88.66 drag counts, which is compa-
rable to the drag reductions reported in previously published results. When compared
with the finest mesh results from papers, the results show less scatter. The RAE 2822
case exposed issues related to gradient accuracy and flow solver failure caused by shock
and separation interaction. We believe that the inclusion of the turbulence model in
the adjoint-based gradient computation is necessary for well-converged optimization
results. As for the complex flow phenomena that we may encounter during optimiza-
tion, we rely on a robust flow solver to solve the governing equations. The robustness
of the flow solver is one of the most important requirements for efficient and effective
optimization. As for the effects of the number of design variables, we found that the
FFD method yields a monotonic decrease in the minimum drag as the number of design
variables increases, which is a good property.

We started optimizations from various initial shapes, including random perturba-
tions of the baseline RAE 2822 shape, and all optimizations converged to the reference
result that started from the RAE 2822 airfoil. This adds evidence towards the hy-
pothesis that airfoil aerodynamic shape optimization problems based on the RANS
equations are unimodal.

Not all the problems cited above could be solved by tuning the parameters of the
flow solver and optimizer. To address some of the issues in these cases, we proposed
an adaptive FFD for greater robustness in exploratory optimization.

As a final demonstration of the robustness and flexibility of our aerodynamic shape
optimization framework and the adaptive FFD approach, we performed an optimization
starting from a circle. The resulting airfoil was very similar to the reference case, and
the differences were attributed to differences in the discretization.

These results indicate that the adaptive FFD approach enhances the robustness of
the aerodynamic shape optimization and could be particularly useful in exploratory
design optimization. Although the results presented herein still required a high level
of expertise, we are closer than ever to a “push-button” solution for airfoil design
optimization problems.
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