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Abstract

Computational fluid dynamics (CFD) based optimization is becoming increasing popular
in hydrodynamic design of ship hulls because it provides a fully automatic framework
with a shorter design cycle than a human-supervised design tool. Despite the above
advantage, CFD-based optimization requires careful attention to relevant design consid-
erations, such that the final design is useful in practice. These considerations include all
relevant objectives (such as drag and wake distortion) and constraints (such as volume,
thickness, and curvature). Although constraints have been included in previous hull
shape optimization studies, these studies have typically considered only one objective.
To address this shortcoming, we conduct design optimization for self-propulsion by si-
multaneously considering drag and propeller-wake distortion. We use a gradient-based
optimization framework that includes a discrete adjoint method for efficient derivative
computation, which allows us to use a large number of design variables to parameterize
the complex hull shape and thus gain a large amount of freedom for geometric modifica-
tion. We impose appropriate geometric constraints (volume, thickness, and curvature)
on the hull surface to ensure a practical design. In addition, we use a weighted objective
function that includes drag and wake distortion to construct a Pareto front with five
optimizations. We also consider hull-propeller interaction by comparing optimization re-
sults with and without a propeller. We use the Japan bulk carrier (JBC) as the baseline
model and focus on optimizing the stern region. We find that optimizing for only one
objective results in a large penalty on the other objective, whereas a weighted objective
balances the penalty and achieves simultaneous improvement in drag and wake distor-
tion. Moreover, we observe that the suction effect of the propeller suppresses the flow
separation near the bilge tube and smooths out the velocity distortion at the propeller
plane; these are effects that would end up affecting the optimized shapes. Our results
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demonstrate that it is necessary to simultaneously consider drag and wake distortion in
hull-shape-optimization studies, and that constrained shape optimization with a large
number of design variables is possible with the discrete-adjoint method.

Keywords
Hull shape optimization; drag; wake distortion; hull-propeller interaction; discrete ad-
joint; OpenFOAM

1 Introduction
Hull hydrodynamic performance is an important aspect of ship design because it deter-
mines their economic viability. Traditional hull shape designs rely heavily on the design-
ers’ experience. The process typically involves manual geometry modification followed by
performance evaluation. With advances in computing techniques, however, the hull de-
sign process can be automated using the computational fluid dynamics (CFD) method
integrated with an optimization algorithm [1]. The main benefit of using automated
design optimization is that it reduces the length of the design cycle while achieving sat-
isfactory design quality compared with human-supervised design tools. This advantage
has been quantitatively demonstrated for aerospace applications [2], and it is plausible
that the same benefit applies to ship designs.

Owing to this advantage, CFD-based hull shape optimization has received increased
interest in recent years. Optimization algorithms can be divided into two categories:
gradient-free and gradient-based. Gradient-free methods (e.g., genetic algorithm, par-
ticle swarm algorithm, and differential evolution) require only the values of the ob-
jective and constraint functions. Therefore, they can treat the CFD code as a black-
box and are generally easy to implement. In addition, some gradient-free algorithms
perform global exploration of the design space and have a higher chance of finding
a point close to the global minimum compared with gradient-based algorithms; a fa-
vorable feature for handling multimodal problems. Gradient-free methods have been
used in various hull shape optimization studies [3–9]. To further improve optimization
efficiency, hybrid optimization strategies were developed using both global and local
explorations [1, 10, 11], variable-fidelity methods were used that involved high- and low-
fidelity CFD models [1, 10], and Karhunen–Lòeve expansion method was proposed to
reduce the dimension of design space [12, 13].

Gradient-based methods require not only the values but also the derivatives of ob-
jective functions and constraints. Gradient-based methods typically perform local ex-
ploration of design space by starting from the baseline design and using the gradient
(derivative) information to find the most promising direction for improvement. To effi-
ciently compute the derivatives, one can use the adjoint method, the computational cost
of which is independent of the number of design variables [14–16]. This salient feature
allows a gradient-based method to handle complex design problems with a large amount
of freedom for geometric modification. In addition, the derivatives provide extra infor-
mation on the function behavior, which allows an optimizer to converge to the optimum
more efficiently. Although gradient-based methods are only guaranteed to converge to
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local minima, we have found that the design space in aerodynamic shape optimization is
for the most part unimodal [17, 18]. Because unimodality is impossible to prove but easy
to disprove, we assume that the design space is unimodal until we find multiple local
minima. Therefore, we opt to use gradient-based optimization for hull shape design,
because of its ability to handle large-scale complex design problems.

The combination of gradient-based optimization and adjoint derivative computation
has been widely used in aircraft [19–23], ground vehicles [24, 25], hydrofoil [26, 27], and
turbomachinery [28, 29] design optimization, as well as in hydrodynamic optimization of
ship hulls [30–36]. The challenges of adjoint-based hull shape optimization include han-
dling the naturally unsteady nonlinear interaction of ship waves and wave breaking, for-
mulating the optimization problems with the relevant design considerations (e.g., drag,
wake distortion) as well as imposing appropriate geometric and physical constraints [31].
To handle the free surface, early adjoint-based hull optimization focused on potential
flow [30, 32]. Recently, Kröger et al. [35] used the volume-of-fluid method to handle the
free surface in an adjoint-based hull shape optimization framework, and imposed geomet-
ric constraints to maintain the main dimension and displacement of the hull. In terms
of formulating design considerations, drag [30–33] and propeller-wake distortion [34, 37]
have been individually used as the objective function in hull design optimization.

Nelson et al. [38] used a low-fidelity, multidisciplinary design optimization model to
optimize a hull-propeller system, and concluded that simultaneously considering multiple
objectives is critical due to their tight coupling. This is because a low drag design can
cause high wake distortion, which is characterized by alternate low- and high-speed
wake regions in the circumferential direction at the propeller plane. When the propeller
blades pass through the low-speed-wake region, blade loading decreases and cavitation
can occur [37, 39]. Similarly, a low-wake-distortion design can induce a large penalty
in drag. Thus, there is a need to consider both drag and wake distortion in hull design
optimization.

Driven by the above motivation, we conduct a hull-shape optimization in towed and
self-propelled modes using a high-fidelity, gradient-based hydrodynamic shape optimiza-
tion framework. We simultaneously consider drag and wake distortion in the hull shape
designs and use the adjoint method to efficiently compute the derivatives; this allows a
large number of design variables to parameterize the complex hull shape and provides
correspondingly broad freedom in geometric modifications. We use the discrete adjoint
method because its derivatives are fully consistent with flow solutions, as discussed in
our previous studies [25]. We impose geometric constraints on the hull surface (volume,
thickness, and curvature) to ensure that the final designs are practical.

The baseline geometry is the Japan bulk carrier (JBC) [40] at model scale, and we
focus on optimizing the stern region of the hull. This design is a capesize bulk carrier
that has been the focus of propulsive efficiency improvement studies [41–44]. The design
Froude number is relatively low, and our focus is hull-propeller interaction. Free-surface
effects are not included; while the wave field can influence propulsive performance (it
certainly alters the flow near the water surface), our objective is to demonstrate the
ability to consider a large number of design variables for hull-propeller interaction with
the discrete-adjoint method and RANS-based CFD. Another important focus of this
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work is to demonstrate the importance of optimization in self-propulsion configuration,
rather than in the towed condition. To this end, we use the actuator disk method
to mimic the effect of the propeller. This simplification introduces simulation errors
compared to unsteady simulations with dynamic meshes for the propeller. However,
it enables RANS-based optimization and significantly reduces the computational cost
compared with an unsteady adjoint approach.

The rest of the paper is organized as follows. In Section 2, we introduce the optimiza-
tion framework and its components. The hull shape optimization results are presented
and discussed in Section 3 and we summarize our findings in Section 4.

2 Methods
In this study, we adapt our aerodynamic optimization framework [25] to perform hydro-
dynamic design of ship hulls. We use the gradient-based optimization approach coupled
with the adjoint method to efficiently compute the total derivative df/ dx, where f is
the function of interest (drag, wake distortion, or a combination of both), and x repre-
sents the design variables that control the design surface geometry. In this section, we
first introduce the overall optimization framework, followed by a description of its mod-
ules: geometry parameterization, mesh deformation, flow simulation, adjoint derivative
computation, and optimization problem formulation; these descriptions are brief be-
cause a detailed description of these modules has been previously published [25]. Then,
we elaborate the flow and optimization configurations for hull shape design. Finally,
we compare our simulation results with experimental data to verify the CFD solver,
followed by evaluation of the performance of adjoint implementation.

2.1 DAFoam: a discrete adjoint framework for gradient-based op-
timization

We use an open-source adjoint framework (DAFoam1) to perform gradient-based opti-
mization. DAFoam consists of two major layers: OpenFOAM and Python. There are
three solvers in the OpenFOAM layer: simpleFoam, adjointSolver, and coloringSolver.
The OpenFOAM’s built-in solver simpleFoam is used to simulate the flow. Instead of
using the OpenFOAM’s built-in continuous adjoint solver, we developed a discrete ad-
joint solver [25]. Based on the converged flow field, we then use adjointSolver to
compute the total derivative df/ dx. The adjointSolver module also uses graph color-
ing information, generated by coloringSolver [25], to accelerate the partial derivative
computation.

The Python layer is a high-level interface to control the module interaction, where
we take the computed objective function and its derivatives and call multiple in-house
Python modules to conduct optimization. These modules are pyGeo, IDWarp, and
pyOptSparse, and they are all open source.

1https://github.com/mdolab/dafoam
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Figure 1: (a) Surface mesh and FFD points for the JBC hull. The blue points move
as design variables while the red points remain fixed during optimization. (b) 2D mesh
structure at the S4 plane (x/Lpp = 0.98428). We refine the propeller region to better
represent the wake distortion metric σ2

U . The red annulus is the propeller space projected
onto the S4 plane, and the green squares are the sampling points for computing σ2

U .

pyGeo uses the free-form deformation (FFD) approach [45] to parameterize the design
surface geometry. 2 This method embeds the design surface into a tri-variate B-spline
volume, as shown in Fig. 1(a). We then manipulate the surface geometry by moving the
FFD points at the surface of that volume. We also use pyGeo to compute the values
and derivatives of the geometric constraints (c and dc/ dx, respectively; see examples
in Sec. 2.4).

IDWarp uses the analytic inverse distance algorithm to deform the volume mesh, 3

similar to that described by Luke et al. [46]. The advantage of this approach is that
it is applicable to both structured and unstructured meshes. Moreover, this approach
better preserves mesh orthogonality in the boundary layer, compared with the methods
based on the radial basis function [46]. The surface parameterization (pyGeo) and mesh-
deformation (IDWarp) operations are fully parallel and typically require less than 0.1%
of the CFD simulation time.

pyOptSparse is an extension of pyOpt [47] and provides a high-level Python in-
terface for setting constrained nonlinear optimization problems. 4 In this paper, the
SNOPT [48] optimizer is used, which adopts the sequential quadratic programming
(SQP) algorithm for optimization. The constraints are handled by formulating them
into the Lagrangian function, and the Hessian of the Lagrangian is approximated by
using a Broyden–Fletcher–Goldfarb–Shanno update [49].

2https://github.com/mdolab/pygeo
3https://github.com/mdolab/idwarp
4https://github.com/mdolab/pyoptsparse
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For a given optimization, we start with an initial design x(0), and input it to pyGeo.
pyGeo then deforms the surface mesh based on x(0), and outputs the updated surface
mesh coordinates xs to IDWarp. pyGeo also computes the geometric constraints (c) and
their derivatives (dc/ dx). To ensure a smooth mesh transition and avoid negative cell
volumes, IDWarp deforms the volume mesh and outputs the updated volume mesh coor-
dinates xv to the flow solver simpleFoam. simpleFoam solves the flow and outputs the
converged state variablesw to adjointSolver. simpleFoam also computes the objective
function f . Based on w, adjointSolver computes the total derivative df/ dx using
the discrete adjoint approach. adjointSolver also uses the graph coloring information
from coloringSolver to accelerate Jacobian assembling [25]. Finally, pyOptSparse re-
ceives c, dc/ dx, f , and df/ dx, solves the SQP problem, updates the design variables
x, and inputs x to pyGeo again. The above process is repeated until the optimization
converges.

Next, we briefly describe two key components in the optimization process: flow
simulation and adjoint derivative computation.

2.2 Flow simulation

In this paper, the OpenFOAM standard solver simpleFoam is used to simulate three-
dimensional, steady turbulent flow. The flow is governed by the incompressible Navier–
Stokes (NS) equations:

∇ ·U = 0, (1)

∇ ·UU +∇p−∇ · [(ν + νt)(∇U +∇UT )] = 0, (2)

where p is the pressure, U is the velocity vector U = [u, v, w], ν is the kinematic
viscosity, and νt is the turbulent eddy viscosity. As mentioned in the introduction, we
do not consider free-surface effects.

To connect the turbulent viscosity to the mean flow variables, the Spalart–Allmaras
(SA) model is used:

∇ · (U ν̃)− 1

σ
∇ · [(ν + ν̃)∇ν̃] +

1

σ
Cb2|∇ν̃|2 − Cb1S̃ν̃ + Cw1fw

(
ν̃

d

)2

= 0. (3)

The turbulent eddy viscosity νt is computed from ν̃ via:

νt = ν̃
χ3

χ3 + C3
v1

, χ =
ν̃

ν
. (4)

Spalart and Allmaras [50] provide a detailed description of the terms and parameters in
this model. Unlike typical continuous adjoint and some discrete adjoint implementations,
we do not assume frozen turbulence, and include all the turbulence variables in our
adjoint implementation.

The governing equations (1)–(3) are discretized using the finite-volume method and
solved using the semi-implicit method for pressure-linked equations (SIMPLE) algo-
rithm [51]. The Rhie–Chow interpolation scheme is used to avoid the oscillatory pressure
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field (checkerboard pattern issue) on a collocated mesh [52]. We choose the second-order
linear-upwind scheme [53] to differentiate the divergence terms, whereas the central dif-
ferential scheme is selected for the diffusion terms.

2.3 Adjoint derivative computation

2.3.1 Adjoint equations

In the discrete adjoint approach, we assume that a discretized form of Eqs. (1)–(3) is
available through the flow solver, and that the design vector x ∈ Rnx and the flow state
variable vector w ∈ Rnw satisfy the discrete residual equations:

R(x,w) = 0, (5)

where R ∈ Rnw is the residual vector.
The functions of interest are then functions of both the design variables and the flow

variables, that is,
f = f(x,w). (6)

In general, we have multiple functions of interest (the objective and multiple design
constraints), but in the following derivations, we consider f to be a scalar without loss of
generality. As we will see later, each additional function requires the solution of another
adjoint system.

To obtain the total derivative df/ dx, we apply the chain rule as follows:

df

dx︸︷︷︸
1×nx

=
∂f

∂x︸︷︷︸
1×nx

+
∂f

∂w︸︷︷︸
1×nw

dw

dx︸︷︷︸
nw×nx

, (7)

where the partial derivatives ∂f/∂x and ∂f/∂w are relatively cheap to evaluate because
they only involve explicit computations. The total derivative dw/ dx matrix, on the
other hand, is expensive, because w and x are implicitly determined by the residual
equations R(w,x) = 0.

To solve for dw/ dx, we can apply the chain rule forR. We then use the fact that the
governing equations should always hold, independent of the values of design variables
x. Therefore, the total derivative dR/ dx must be zero:

dR

dx
=
∂R

∂x
+
∂R

∂w

dw

dx
= 0. (8)

Rearranging the above equation, we get the linear system

∂R

∂w︸︷︷︸
nw×nw

dw

dx︸︷︷︸
nw×nx

= − ∂R

∂x︸︷︷︸
nw×nx

. (9)

We can then substitute the solution for dw/ dx from Eq. (9) into Eq. (7) to get

df

dx︸︷︷︸
1×nx

=
∂f

∂x︸︷︷︸
1×nx

−

ψT︷ ︸︸ ︷
∂f

∂w︸︷︷︸
1×nw

∂R

∂w

−1

︸ ︷︷ ︸
nw×nw

∂R

∂x︸︷︷︸
nw×nx

. (10)
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Now we can transpose the Jacobian and solve with [∂f/∂w]T as the right-hand side,
which yields the adjoint equations,

∂R

∂w

T

︸ ︷︷ ︸
nw×nw

ψ︸︷︷︸
nw×1

=
∂f

∂w

T

︸ ︷︷ ︸
nw×1

, (11)

where ψ is the adjoint vector. Then, we can compute the total derivative by substituting
the adjoint vector into Eq. (10):

df

dx
=
∂f

∂x
−ψT ∂R

∂x
. (12)

For each function of interest, we need to solve the adjoint equations only once, because
the design variable is not explicitly present in Eq. (11). Therefore, its computational
cost is independent of the number of design variables, but proportional to the number
of objective functions. This approach is also known as the adjoint method and is advan-
tageous for hull design, because we typically have only a few functions of interest but
may use several hundred design variables.

To summarize, a discrete adjoint consists of four major steps: 1. Compute the partial
derivatives [∂R/∂w]T and [∂f/∂w]T ; 2. Solve the linear equation (11) for the adjoint
vector ψ; 3. Compute the partial derivatives ∂R/∂x and ∂f/∂x; 4. Use Eq. (12) to
compute the total derivative df/ dx. These four steps indicate that an effective adjoint
implementation requires efficient partial derivative computation and efficient and robust
adjoint equation solution. We elaborate on the details of these two tasks in the following
sections.

2.3.2 Partial derivative computation and adjoint equation solution

We use the finite-difference method to compute [∂R/∂w]T and [∂f/∂w]T . However,
naively computing these partial derivatives using finite differences requires calling the
residual and objective computation routines nw times, where nw is the number of columns
in ∂R/∂w and ∂f/∂w. This becomes computationally prohibitive for three-dimensional
problems, because nw is at least a few million for useful problems.

To circumvent the above issue, we accelerate partial derivative computation using
the graph coloring method [54, 55]. Taking the state Jacobian ∂R/∂w as an example,
we group all the states (columns) into different colors such that no two states impact
the same residual (row) in each color. Using this coloring information, we can then
simultaneously perturb multiple columns that have the same color and compute their
partial derivatives by calling the residual function only once. In previous work, we de-
veloped a heuristic graph coloring algorithm that runs in distributed memory systems
in parallel [25]. The central idea of this algorithm is to tentatively assign colors for the
local meshes which are owned by local processors and then resolve conflicts by exchang-
ing coloring information between local meshes through message passing interface (MPI)
communication. Our coloring algorithm is applicable for structured and unstructured
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meshes and assembles the entire state Jacobian matrix by calling the residual computa-
tion routine O(1000) times, instead of nw times. In addition, the number of colors only
weakly depends on the size of the meshes or on the number of CPU cores when running
coloring in parallel [25]. For example, the number of colors for the coarse (2.2 million
cells), medium (6.6 million cells), and fine (19.7 million cells) meshes used in this study
(see Table 3) are 2622, 2350, and 2454, respectively.

We do not use the coloring scheme for ∂R/∂x and ∂f/∂x; we use a brute-force
finite-difference method instead, because it is fast and accurate enough [25]. We compute
dxv/ dx by first perturbing each x and then deforming the surface and volume meshes
using pyGeo and IDWarp. We then pass dxv/ dx to adjointSolver to compute ∂R/∂x
and ∂f/∂x directly. The computational cost for ∂R/∂x and ∂f/∂x scales with the
number of design variables, whereas the cost for [∂R/∂w]T and [∂f/∂w]T scales with
the number of colors. Computing [∂R/∂w]T is the most expensive part of the method,
because we typically have O(100) design variables but O(1000) colors for [∂R/∂w]T [25].

After computing [∂R/∂w]T and [∂f/∂w]T , Portable, Extensible Toolkit for Scientific
Computation (PETSc) software library [56–58] is used to solve the adjoint equations (11).
We choose the generalized minimal residual (GMRES) method as the top-level linear
solver and adopt a nested preconditioning strategy. To be more specific, the additive
Schwartz method with one level of overlap is used as the global preconditioner. The
additive Schwartz method divides the linear system into sub-blocks and allows us to
solve them in parallel. For the local preconditioner in each sub-block, incomplete lower
and upper (ILU) factorization is selected. To improve the effectiveness of ILU, one level
of extra fill-in is used. A segregated algorithm (SIMPLE) is used to solve the nonlinear
Navier–Stokes equations (1)–(3), whereas a fully coupled linear solver (GMRES) is used
for the adjoint equations (11).

2.4 Flow and optimization configurations

The OpenFOAM standard solver simpleFoam is used to conduct the flow simulations
on the JBC hull at model scale, which was tested by National Maritime Research In-
stitute [40]. The simulation domain size is 8Lpp by 2Lpp by 2Lpp in the streamwise (x),
lateral (y), and vertical (z) directions, respectively, where Lpp is the length between
perpendiculars. We generate an unstructured hex-mesh with 6 631 221 cells using the
OpenFOAM built-in snappyHexMesh utility, with an average y+ of 0.93. The surface
mesh for the JBC hull is shown in Fig. 1(a). We refine the mesh near the propeller for
a more accurate computation of wake distortion, as shown in Fig. 1(b). The hull is at
model scale, with a Reynolds number of 7.46×106. The SA turbulence model is used for
all the simulations and optimizations. Although other turbulence models, such as the
k− ω shear stress transport (SST) model, have been shown to have better performance
at predicting the vortex structures [59], we choose the SA model because it provides
the most robust convergence for the adjoint equations, especially for the self-propulsion
case, where the flow is complex.

As mentioned in the introduction, we perform flow simulations and optimization for
both towed and self-propulsion configurations. To mimic the impact of propellers, we
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use actuator disk theory and add a source term in the momentum equation [60]. This
source term acts to add streamwise (thrust) and circumferential (torque) body forces for
cells inside an annulus space occupied by the propeller. The annulus space centers at
x0/Lpp = 0.98743, y0/Lpp = 0, and z0/Lpp = −0.040414; its width is w/Lpp = 0.0021429
and the inner and outer radii are Rhub/Lpp = 0.0029571 and Rtip/Lpp = 0.014500,
respectively. The radial distribution of the thrust T (R) is,

T (R) = TcR(1−R)0.2, R =
R−Rhub

Rtip −Rhub

, Rhub ≤ R ≤ Rtip, (13)

where R is the normalized radial location, T is the thrust, and Tc is the thrust coefficient.
To obtain Tc, we run a self-propulsion simulation and adjust Tc such that the total
thrust (obtained by integrating Eq. (13) over the propeller volume) is equal to the
drag of the baseline hull. We then fix the value of Tc during the optimization. This
simplification facilitates the Jacobian computation because dynamically adjusting Tc
during the optimization would make the residuals and objective functions depend on
all the cells inside the space occupied by the propeller. As a result of the increased
dependency, [∂R/∂w]T and [∂f/∂w]T become much denser, which would increase the
number of required colors. To compute the corresponding torque distribution Q(R), we
use [60]

Q(R) =
T (R)P/D

πR/Rtip

, (14)

where P/D = 0.75 is the propeller pitch ratio.
The functions of interests are drag coefficient and wake distortion. The drag coeffi-

cient is defined as

CD =
D

0.5ρU2
0S
, (15)

where D is the drag force, ρ is the density, U0 is the free stream velocity (1.179 ms−1),
and S is the wetted surface area. Since the Froude number (0.142) is relatively low, we
ignore wave-making resistance in the drag calculation. That being said, the free surface
is also ignored, and a double-body boundary condition is imposed on the calm-water
plane (z/Lpp = 0).

To quantify wake distortion, we use the variance of streamwise velocity [37],

σ2
U =

1

N

N∑
i=1

(U i
p − Up)

2, (16)

where U i
p is the discrete streamwise velocity at the sampling points and Up is the av-

eraged streamwise velocity for these points. The sampling points are located within
the projected annulus area on the S4 plane, which are shown in Fig. 1(b) as the green
squares.

As mentioned above, we focus on optimizing the stern region of the JBC hull. The
objective function is a weighted function of the drag coefficient and the wake distortion,

f = WCD
(CD/CD

B) +Wσ2
U

(σ2
U/σ

2
U
B

) (17)
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Table 1: Summary of optimization cases. The objective function is defined in Eq. 17.
We run five cases with different weights and physical constraints. In Opt2, WCD

is 0.98
and 0.97 for the towed and self-propulsion configurations, respectively. For all other
cases, WCD

and Wσ2
U

are the same across the towed and self-propulsion configurations.

Cases Weights (WCD
+Wσ2

U
= 1) σ2U constraint Objective function

Opt0 WCD
= 1.00 No Drag

Opt1 WCD
= 0.98 (towed), 0.97 (propulsion) No Weighted objective

Opt2 WCD
= 1.00 Yes Drag

Opt3 WCD
= 0.90 No Weighted objective

Opt4 WCD
= 0.00 No Wake distortion

whereWCD
andWσ2

U
are weights for the drag coefficient and wake distortion, respectively,

and the superscript B denotes the reference values for the baseline design. The objective
function weights must add up to one (WCD

+Wσ2
U

= 1). We conduct five optimizations
with different weights (Opt0 to Opt4), as shown in Table 1.

The optimization configurations are summarized in Table 2. We set 32 FFD control
points to manipulate the hull shape, as shown in Fig. 1(a). We allow the FFD points to
move only in the lateral direction (y) such that the draft of the hull is unchanged. For
the wake distortion constraint, we limit σ2

U in Opt2 to be no larger than its initial value.
For all other optimization cases, we do not impose constraints for σ2

U .

Table 2: Constrained shape optimization problem for the JBC hull.

Function or variable Description Quantity

minimize WCD

CD

CD
B

+Wσ2
U

σ2
U

σ2
U
B

Weighted drag and wake distortion

with respect to ∆y FFD movement in the y direction 32

subject to σ2
U ≤ σ2

U 0 Distortion not larger than its initial value (Opt2 only) 1
∇ = ∇0 Hull displacement volume remains unchanged 1
∆yport = −∆ystarboard Hull shape symmetric constraint 16
t ≤ tbeam Thickness constraint to keep maximum beam 40
t ≥ ttube Thickness constraint for shaft installation 25
κmax ≤ 1.1κmax

0 Maximum mean-curvature relative to baseline 1
−0.5 m < ∆y < 0.5 m Design variable bounds

Total constraints 84

Imposing proper geometric constraints is critical in order to ensure a practical hull
shape. To ensure a symmetric hull shape in the y direction, we set 16 linear constraints
to link the displacements of FFD points between the starboard and port sides. To
maintain the water line, we impose a volume constraint to ensure that hull displacement
volume remains unchanged during the optimization. To this end, we generate a 2D mesh
of 50 streamwise by 25 vertical points and project them to the hull surface mesh to form
a 3D hexahedral domain that represents the displacement volume.

To keep the beam of the hull, we limit the y direction thickness at any location to
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be no larger than the original beam. The thickness constraint is imposed by projecting
sampling points in a 2D mesh to the starboard and port sides, where the projection
distances represent the thickness. The 2D mesh contains 5×8 points within the following
ranges: 0.71 < x/Lpp < 0.89 and −0.059 < z/Lpp < 0. We also impose a thickness
constraint to ensure that there is sufficient space to install the propeller shaft. To
this end, we setup a 5 × 5 mesh covering the propeller shaft near the bilge tube. The
values and derivatives of volume and thickness constraints are computed by pyGeo, as
mentioned in Sec. 2.1.

To consider manufacturing cost, we impose a mean-curvature constraint to avoid
kinks and sharp changes in the design surface, similar to the approach taken in our
previous work [25]. For a parametric surface with the surface coordinates xS = xS(u, v)
and parameterization variables u and v, the mean curvature H is defined as

H =
EN − 2FM +GL

2(EG− F 2)
, (18)

where

E = xu ·xu, F = xu ·xv, G = xv ·xv, L = xuu ·n, M = xuv ·n, N = xvv ·n,
(19)

are the coefficients from the first and second fundamental forms. The vector n is the
surface unit normal and xu is the first-order derivative of x with respect to u. We use
the finite-difference method to compute these derivatives. Given Eqs. (18) and (19), we
derive dH/ dxS analytically and compute its value in a similar manner. We need a special
treatment to facilitate the finite-difference derivative computation in Eq. (19). This is
because the above curvature formulations assume a u-v parametric surface, whereas
we use an unstructured mesh whose surface pattern is irregular. To circumvent this
issue, we generate a new patch of 2D structured mesh for the hull surface, covering only
0.74 < x/Lpp < 0.97 and −0.051 < z/Lpp < 0. We then use pyGeo to compute H and
dH/ dxS based on this patch instead of the unstructured mesh used in CFD. During the
optimization process, pyGeo applies the same morphing for the unstructured mesh and
this patch, such that the computed curvature and its derivatives match the values on
the actual hull surface. Finally, we use pyGeo to map the surface coordinate derivatives
(dH/ dxS) to the design variable derivatives (dH/ dx).

Instead of constraining the averaged H on a design surface, as in our previous
work [25], we limit the maximal H on the hull surface to be no larger than 10% of
baseline maximum H. This is done by aggregating all the local H on the hull surface
using the Kreisselmeier–Steinhauser (KS) function [61, 62],

cH =
1

ρ
ln

(
n∑
i=1

eρHi

)
, (20)

where Hi is the local curvature on the ith discrete surface mesh and ρ=6000. In total,
we have set 84 constraints. The symmetry, volume, and thickness constraints are always
satisfied during the optimization process. The wake distortion and curvature constraints
can become infeasible when the optimizer explores the design space; however, they are
eventually satisfied when the optimizations converge (see Fig. 3).
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2.5 CFD validation and uncertainty analysis

We validate the CFD solver by comparing the numerical simulation results with exper-
imental data measured by National Maritime Research Institute (NMRI) [40]. For the
towed case, the simulated CD is 4.006 × 10−3, which is 6.6% lower than the measured
value of 4.289 × 10−3. This drag underestimation is probably due to the double-body
boundary condition and the exclusion of wave-making resistance in our simulations.
However, for the self-propulsion configuration, no such underestimation is observed, and
the simulated CD (4.810×10−3) agrees well with the measured value 4.811×10−3, an error
of 0.02%. This better agreement does not necessarily indicate that the self-propulsion
simulations are more accurate than the towed case or that wave-making resistance is
negligible, because there are errors in the actuator disk approximation. For optimiza-
tion, the CFD’s ability to correctly predict trends is more important than its ability to
predict absolute values; we elaborate on this in Sec. 3.3.

Figure 2 shows the streamwise velocity contour at the planes corresponding to x/Lpp
values of 0.96250 (S2), 0.98428 (S4), and 1 (S7). Overall, the simulated velocity distri-
bution qualitatively agrees with the measurements. However, the measured low-velocity
region (y/Lpp ≈ −0.175, z/Lpp ≈ −0.04), associated with the longitudinal bilge vortex,
is not quantitatively captured in the simulated velocity field at the S2 plane. We spec-
ulate that this is because the SA turbulence model tends to underestimate the strength
of the longitudinal bilge vortex, as was also observed by Larsson et al. [59]. As shown
in Fig. 2, the velocity measured at the S4 plane is discrete and has many missing data;
therefore, we are not able to compute an accurate experimental σ2

U for comparison.
Because CFD is subject to errors, we evaluate the numerical uncertainty (UN) of the

simulation results, following Stern et al. [63]. For steady-state CFD simulations, UN
includes errors due to poor flow convergence and errors due to spatial discretization. As
we show in Sec. 2.6, our CFD simulations are well converged, and therefore the conver-
gence error is negligible. To evaluate discretization errors, we compare the simulated
CD and σ2

U using meshes with 2.2 (coarse), 6.6 (medium), and 19.7 (fine) million cells.
The numerical uncertainty is then computed as:

UN =
FS|δRE|
Vm

× 100%, (21)

where FS=1.25 is the factor of safety [64], Vm is the value of objective function (CD or
σ2
U) given by the medium mesh, and δRE is the error computed from the Richardson

extrapolation given by

δRE =
Vm − Vf
rp − 1

, p =

ln

(
Vc − Vm
Vm − Vf

)
ln(r)

, (22)

where r is the spacing ratio for mesh refinement, and subscripts c and f represent the
coarse and fine meshes, respectively.

The above formulations are used to compute UN for CD. As shown in Tables 3, 6,
and 7, the σ2

U changes between the meshes is much larger than CD, and mesh convergence
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Figure 2: The simulated velocity contours qualitatively agree with the experimental
data [40]. However, the strength of the longitudinal bilge vortex is underestimated.
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is not always achieved. Therefore, for σ2
U , the uncertainty is computed using half of the

difference between the largest and smallest values in the samples,

UN =
1

2
(VU − VL) , (23)

where the subscripts L and U are the upper and lower bounds of the objective function
values obtained from the three mesh densities, respectively.

As shown in Table 3, the uncertainty in CD is less than 0.3%, indicating that good
mesh convergence is achieved. In contrast, for σ2

U , the simulation results are more
sensitive to the mesh size, resulting in much larger uncertainties. This is expected for
unstructured mesh simulations, because changing the mesh density changes the number
and distribution of σ2

U sampling points at the S4 plane (see Fig. 1b for an example of
sampling points), which increases the uncertainty in σ2

U computation.

Table 3: Impact of mesh sizes on the simulation results. The numerical uncertainty (UN)
for σ2

U is much higher than for CD. Moreover, the uncertainty for the self-propulsion
case is larger than for the towed case.

Mesh Mesh cells CD σ2U
(million)

Towed

Coarse 2.2 0.004220 0.02388
Medium 6.6 0.004006 0.02966
Fine 19.7 0.003984 0.03036
UN 0.1% 10.9%

Self-propulsion

Coarse 2.2 0.005011 0.02540
Medium 6.6 0.004810 0.02880
Fine 19.7 0.004769 0.03390
UN 0.3% 17.8%

Combing numerical and experimental uncertainties, we compute validation uncer-
tainty using UV = (U2

N + U2
D)1/2, where UD = 1% is the experimental uncertainty [40].

For the self-propulsion case, UV in CD (1.0%) is larger than the error (0.02%) and thus
we consider the CFD validated within the uncertainty. However, for the towed case, UV
(1.0%) is smaller than the error (6.6%), and thus validation is not achieved. As discussed
by Campana et al. [1], a validated CFD simulation does not necessarily lead to an im-
proved design in the optimization, and vice versa. Therefore, to verify the optimization
results, it is more appropriate to use trends other than absolute values (see Sec. 3.3).

2.6 Adjoint performance

Each optimization is run using 192 CPU cores on 8 Skylake nodes of the Stampede 2
system [65]. The Skylake nodes are equipped with Intel Xeon Platinum 8160 CPUs
running at 2.1 GHz; each node has 48 CPU cores and 196 GB of memory. The towed
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optimizations take between 11 and 25 iterations to converge, whereas the self-propulsion
cases require 7 to 17 iterations, as shown in Fig. 3. The values of CD and σ2

U converge well
except for Opt4 (towed). As explained in Sec. 3, this optimized shape is not practical
because it has a wavy hull surface and a large penalty to drag. Therefore, we terminate
the optimization at the 25th iteration to avoid wasting computational time.

We run the flow simulations for 3000 steps and the residuals decrease by 10 orders of
magnitude. Each flow simulation takes 403 s and uses 46 GB of memory. For Opt0 and
Opt4, each adjoint derivative computation takes 1961 s, whereas for Opt1 to Opt3, each
adjoint computation takes 2818 s. The longer runtimes for Opt1 to Opt3 are because we
need to solve the adjoint equations twice (once for CD and once for σ2

U). The performance
is broken down in Table 4. We solve the adjoint equations until its residual reduces by
6 orders of magnitude. Overall, the optimizations can be done in an overnight cycle.

As expected, we need a relatively large memory (707 GB) for adjoint computation,
because we store all the partial derivative matrices in memory. However, this is not
a severe limitation for the current paper because modern high-performance computing
systems commonly have more than 128 GB memory per node. We can further reduce
memory usage by using a Jacobian-free adjoint strategy, as elaborated by Kenway et al.
[66].

Table 4: Runtime and memory usage for flow simulation and adjoint derivative compu-
tation for a 6.6 million cell mesh using 192 CPU cores on 8 Skylake nodes. The adjoint
total runtime is broken down into Jacobian assembly and adjoint equation solution.

Opt0 and Opt4 Opt1 to Opt3

Runtime (s)
Flow 533 533
Adjoint 1961 2818

Jacobian assembly 1046 1070
Adjoint solution 915 1748

Adjoint-flow ratio 3.7 5.3

Peak memory (GB)
Flow 46 46
Adjoint 707 707
Adjoint-flow ratio 15.4 15.4

Finally, we verify the accuracy of adjoint derivatives. We compute the reference total
derivatives by using the finite-difference method. We perform a finite-difference step size
study by adding various perturbation magnitudes to the FFD points and then compare
their total derivative values. We find that 10−4 m is the best step size, and we conduct
similar step size studies for the partial derivatives. For the adjoint computation, we
use a normalized step size of εn = 10−7 to compute the partial derivatives [∂R/∂w]T

and [∂f/∂w]T . The actual finite-difference perturbation for each state variable is εw =
wrefεn. The state variable vector w contains U , p, φ, and ν̃, where φ is the face flux.
The reason to include φ in w was explained in our previous work [25]. For U , p, and ν̃,
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Figure 3: Optimization convergence history for the drag coefficient (CD), wake distortion
(σ2

U), and curvature constraint (H). The towed optimizations take between 11 and 25
iterations to converge, whereas the self-propulsion cases require 7 to 17 iterations.

we use their far-field values as wref , whereas for φ, wref is the face area. We need the
above treatment because the magnitudes of values in the w vector vary significantly,
especially for ν̃ and φ, as elaborated on in He et al. [25]. For computing ∂R/∂x and
∂f/∂x, the step size is 10−4 m. We use the baseline JBC configuration (towed; 6.6
million cells) and compare the derivatives for the first five design variables, as shown in
Table 5. The adjoint derivatives agree well with the reference values, with an average
error of 0.27%.

3 Results and Discussion
In this section, we present the optimization results, in terms of both drag and wake
distortion at the propeller plane. We construct a Pareto front using five optimizations
with different combinations of weights for drag and distortion. We analyze and interpret
the optimization results by comparing shapes and flow structures between the single-
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Table 5: The adjoint derivatives agree well with the reference values, with an average
error of 0.27%. The reference values are computed using the finite-difference method,
with a step size of 10−4. The results are based on the baseline JBC configuration (towed;
6.6 million cells).

Reference Adjoint Error

dCD/dy × 10−4

FFD1 −1.8844968 −1.8856200 0.06%
FFD2 −1.8392580 −1.8441308 0.26%
FFD3 −1.0785991 −1.0870582 0.78%
FFD4 −0.8740341 −0.8823941 0.96%
FFD5 −3.8162678 −3.8166974 0.01%
dσ2U/ dy × 10−2

FFD1 2.7861729 2.7877556 0.06%
FFD2 2.1410451 2.1407703 −0.01%
FFD3 0.2380415 0.2371916 −0.36%
FFD4 0.0821301 0.0819794 −0.18%
FFD5 8.9950908 8.9905096 −0.05%

and multi-objective cases. We use the JBC hull as our baseline geometry, and both
towed and self-propulsion configurations are considered. We also evaluate the impact of
the propeller on the optimization results. To verify our optimization results, we compare
the relative magnitudes for design improvement and numerical uncertainty. Because we
use a model-scale hull, we also discuss the potential impact of the Reynolds number on
the optimization results.

3.1 Optimization for towed configuration

Based on the five cases summarized in Table 1, we construct a Pareto front of drag
coefficient (CD) and wake distortion (σ2

U), as shown in Fig. 4.
For the drag-only case (Opt0), we obtain 4.4% reduction in CD. Comparing the

baseline and optimized hull shapes (Figs. 5a, 5b, and 6a), hull bilge thickness decreases
and a V-shaped hull is formed. It is known that the V-shaped hull generates relatively
weak longitudinal vorticity and therefore is preferable for drag reduction over the U-
shaped hull in the baseline geometry [37]. However, the velocity distribution at the
propeller plane (Fig. 7b) shows that the V-shaped hull generates a thin, V-shaped wake
at the propeller plane. This V-shaped wake induces a large velocity distortion (σ2

U

increases by 208.0%; see Fig. 4), which is undesirable for the propeller.
For the wake-only case (Opt4), σ2

U decreases by 90.6%. However, as shown in
Figs. 5(f) and 6(e), we observe a wavy hull surface even though we impose a curva-
ture constraint in the optimization. More specifically, a large bump appears near the
hull bilge. Since there is no drag penalty for the Opt4 case, the optimizer creates this
bump to smooth out the low-velocity region at the bottom of the propeller annulus re-
gion, as shown in Figs. 7(a) and 7(f). Similar large bumps were also observed in the
wake-only case by Duvigneau et al. [37]. However, this optimized shape is impractical
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Figure 4: Pareto front for CD and σ2
U (towed). Optimizing for only one objective penal-

izes the other objective (Opt0 and Opt4), whereas considering both CD and σ2
U results

in more balanced designs (Opt1, Opt2, and Opt3).

for structural and manufacturing considerations. Although the wake distortion increases
at the propeller plane, as shown in Fig. 7(f), the drag increases by 23.8% (Fig. 4).

The above results (Opt0 and Opt4) confirm that simultaneously considering CD and
σ2
U (Opt1 to Opt3) is important in hydrodynamic design of ship hulls. To be more

specific, in Opt1, we obtain 3.8% drag reduction, 0.6% lower than Opt0. However, σ2
U

increases by only 78.4%; the σ2
U penalty is 2.7 times lower than Opt0. Similarly, in Opt3,

we obtain 63.8% reduction in σ2
U with a penalty of only 2.7% drag increase, compared

with the 23.8% drag increase in Opt4. Opt2 is a special optimization case where we
optimize CD while constraining σ2

U to be no more than its baseline value, as explained
in Sec. 2.4. We obtain simultaneously improvements—CD decreases by 0.7% and σ2

U

decreases by 0.1%—and the hull maintains a U-shape with no wavy surfaces.
Next, we analyze the limiting streamlines (Fig. 8) to interpret the simulation results.

For the baseline hull, we observe a flow bifurcation in the upper hull region, based on the
limiting streamlines in Fig. 8(a). The upper branch of the bifurcation flows upward to
the waterline and the lower branch flows towards the bilge tube. Near the keel, the flow
moves upward and meets with the lower branch of the flow bifurcation, forming a clear
convergence line. There is a flow recirculation zone above the convergence line near the
bilge tube. The simulated flow convergence line and recirculation zone are qualitatively
similar to the experimental measurement for the bulk carrier KVLCC2 [67, Fig. 3(b)].

Figure 9 shows the pressure distribution on the hull. There is a low pressure region
upstream of the flow convergence line near the keel (Fig. 9a). As discussed by Larsson
et al. [59], the location and extent of the flow convergence line and recirculation zone are
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Figure 5: 3D view of the baseline and optimized shapes (towed). The drag-only case
(Opt0) results in a V-shaped hull, whereas the wake-only case (Opt4) has a large bump
near the bilge.
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Figure 6: Comparison between the baseline (black) and optimized (colored) hull profiles
(towed configuration) from x/Lpp = 0.73 to 1 with intervals ∆x/Lpp = 0.03. The drag-
only case (Opt0) results in a V-shaped hull, whereas the wake-only case (Opt4) has a
large bump near the bilge.

21



Figure 7: Streamwise velocity contour at the propeller plane (S4; towed). The drag-only
case (Opt0) results in a V-shaped wake that increases the wake distortion, whereas the
wake-only case (Opt4) smooths out the velocity field.
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Figure 8: Limiting streamline on the hull surface for the baseline and optimized shapes
(towed). The drag-only case (Opt0) results in a tilted, upward-moving flow convergence
line, whereas the wake-only case (Opt4) pushes the flow convergence line downwards.
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Figure 9: Pressure distribution on the hull surface for the baseline and optimized shapes
(towed). The drag-only case (Opt0) results in a smoother streamwise pressure gradient,
whereas the wake-only case (Opt4) induces a sharp adverse pressure gradient near the
bilge.

strongly related to the onset and evolution of longitudinal bilge vortices, and therefore
related to wake distortion as well. The flow convergence line is an indication of local
flow separation, which eventually impacts the pressure distribution and the associated
drag increase.

We now elaborate on how the near-surface flow structure and pressure distribution
are modified in the optimized shapes. In Opt0, owing to the impact of the V-shaped
hull, we observe a less intense adverse pressure gradient along the streamwise direction,
as seen in Fig. 9(b), and the flow separation is delayed. In addition, the flow convergence
line moves upward, becoming less elongated and more tilted. This upward-moving flow
convergence line contributes to the V-shaped low-speed region and therefore to the large
velocity distortion at the propeller plane as well, as shown in Fig. 7(b).

In Opt4, the large bump near the keel pushes the bilge vortex downwards and reduces
its intensity, as shown in Fig. 8(f). This eventually increases the velocity uniformity at
the propeller plane. However, the wavy bump creates a large adverse pressure gradient,
as shown in Fig. 9(f), which increases the pressure drag.

In contrast, Opt1, Opt2, and Opt3 achieve more balanced designs by not having the
large adverse pressure gradient that increases drag or the intense, upward-moving flow
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jective has large penalty to the other objective (Opt0 and Opt4), whereas considering
both CD and σ2

U results in more balanced designs (Opt1, Opt2, and Opt3).

convergence line that distorts the wake, as shown in Figs. 8(c) to 8(e), and Figs. 9(c) to
9(e).

3.2 Optimization for self-propulsion configuration

In this subsection, we analyze the impact of the propeller on the optimization results.
Figure 10 shows the Pareto front of CD and σ2

U for the self-propulsion configuration.
Similar to the towed configuration (Fig. 4), considering only one objective induces large
penalty to the other objective in the optimization. More specifically, the CD reduction for
Opt0 is 0.4% lower than Opt1; however, its σ2

U increase is 74.8% higher. Moreover, going
from Opt3 to Opt4, we obtain only 9.8% more σ2

U reduction, whereas the drag penalty
is 3.8% higher. One special case is Opt2, where we obtain simultaneously improvement
for CD (1.3% reduction) and σ2

U (6.1% reduction). Again, the above results underscore
the necessity of considering both drag and wake quality in hull-form optimization.

Next, we compare the baseline and optimized shapes, as shown in Figs. 11 and 12.
Similar to the towed configuration, Opt0 forms a V-shaped hull to minimize the drag.
However, a major difference is that, in contrast to the towed configuration, Opt1 and
Opt2 also result in the V-shaped hulls. This is because the suction effect of the propeller
accelerates the flow near the bilge tube. As a result, the flow separation is suppressed
and the velocity distortion is reduced.

More specifically, by comparing Fig. 9(a) and Fig. 13(a), we observe that the pres-
sure near the bilge tube is reduced for the self-propulsion configuration; this lower pres-
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Figure 11: Baseline and optimized shapes (self-propulsion). In contrast to the towed
configuration, Opt1 and Opt2 result in V-shaped hulls, whereas the large bump is absent
in Opt4.
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Figure 12: Comparison between the baseline (black) and optimized (colored) hull profiles
(self-propulsion) from x/Lpp = 0.73 to 1.00 with interval ∆x/Lpp = 0.03. In contrast to
the towed configuration, a V-shaped hull is also observed in Opt1 and Opt2, whereas
the large bump is absent in Opt4.
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Figure 13: Pressure distribution on the hull surface for the baseline and optimized shapes
(self-propulsion). Compared with the towed configuration, the pressure near the bilge
tube decreases due to the suction effect.

sure suppresses the flow separation. We see this more clearly in the surface limiting
streamlines by comparing Fig. 8(a) and Fig. 14(a). Although we observe similar flow
convergence lines near the bilge, the flow circulation zone near the bilge tube is absent
in the self-propulsion configuration, compared with the towed configuration.

By comparing Fig. 7(a) and Fig. 15(a), we observe that the low-velocity region at
the bottom of the propeller annulus region is absent in the self-propulsion configuration,
primarily owing to the acceleration of the flow. This accelerated flow with the resultant
stronger mixing smooths out the wake distortion even for a V-shaped hull, an effect we
can see by comparing Fig. 7(b) and Fig. 15(b).

Another major difference between the towed and self-propulsion configuration is the
Opt4 case. For the self-propulsion configuration, we do not observe a large bump near
the bilge in the optimized shape, compared with the towed configuration. Again, this is
primarily because the low-velocity region at the bottom of the propeller annulus region
is absent, so there is no benefit of using a large bump to smooth the wake distortion in
this region.
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Figure 14: Limiting streamline on the hull surface for the baseline and optimized shapes
(self-propulsion). Compared to the towed configuration, the circulation zone near the
bilge tube is absent due to the suction effect.

3.3 Verification of optimization results

In Sec. 2.5, we evaluated the numerical uncertainty of the CFD simulations. In this
section, we verify the optimization results. To this end, we compare coarse, medium,
and fine mesh simulations based on the optimized shapes, as shown in Tables 6 and 7.
The values in parentheses are the relative changes (design improvement or degradation)
compared with baseline values at the same mesh density. For CD, we achieve good mesh
convergence for all the optimized shapes (Table 6). The numerical uncertainties are
less than the relative changes; therefore, the trends in the optimizations are verified,
according to Campana et al. [1]. Although the numerical uncertainties for σ2

U are much
higher than those for CD, they are generally lower than the relative changes (Table 7),
which verifies the optimization results. Opt2 is an exception, since the uncertainties
are higher than the relative changes. In this case, we optimize CD while constraining
σ2
U to be no larger than its baseline value. Given its high numerical uncertainty, it is

challenging to obtain a verified trend for the constrained σ2
U .
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Figure 15: Streamwise velocity contour at the propeller plane (S4; self-propulsion). In
contrast to the towed configuration, the V-shaped hull (Opt0, Opt1, and Opt2) has less
adverse impact on wake distortion, primarily owing to the suction effect of the propeller.
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Table 6: Verification of optimization results for CD. The values in parentheses are the
relative changes (design improvement or degradation) compared to baseline values at
the same mesh density. The numerical uncertainties are lower than the relative changes,
so that the optimizations are verified to have correct trends.

Mesh cells Opt0 Opt1 Opt2 Opt3 Opt4
(million)

Towed
2.2 0.004031 (↓4.5%) 0.004058 (↓3.8%) 0.004191 (↓0.7%) 0.004342 (↑2.9%) 0.005172 (↑22.6%)
6.6 0.003832 (↓4.4%) 0.003854 (↓3.8%) 0.003979 (↓0.7%) 0.004113 (↑2.7%) 0.004959 (↑23.8%)

19.7 0.003828 (↓3.9%) 0.003843 (↓3.5%) 0.003954 (↓0.8%) 0.004060 (↑1.9%) 0.004888 (↑22.7%)
UN <0.1% <0.1% 0.1% 0.5% 0.9%

Self-propulsion
2.2 0.004820 (↓3.9%) 0.004810 (↓4.0%) 0.005002 (↓0.2%) 0.005110 (↑2.0%) 0.005970 (↑19.1%)
6.6 0.004610 (↓4.2%) 0.004626 (↓3.8%) 0.004748 (↓1.3%) 0.004864 (↑1.1%) 0.005043 ( ↑4.9%)

19.7 0.004569 (↓4.2%) 0.004579 (↓4.0%) 0.004676 (↓1.9%) 0.004801 (↑0.7%) 0.005002 ( ↑4.9%)
UN 0.3% 0.4% 0.7% 0.6% <0.1%

Table 7: Verification of optimization results for σ2
U . The values in parentheses are the

relative changes (design improvement or degradation) with respect to the baseline values
at the same mesh density. Although the numerical uncertainties are higher than CD,
they are lower than the relative changes, except for Opt2.

Mesh cells Opt0 Opt1 Opt2 Opt3 Opt4
(million)

Towed
2.2 0.08025 (↑236.1%) 0.05415 (↑126.8%) 0.02539 (↑6.3%) 0.00956 (↓59.9%) 0.00521 (↓78.2%)
6.6 0.09133 (↑208.0%) 0.05292 ( ↑78.4%) 0.02963 (↓0.1%) 0.01074 (↓63.8%) 0.00279 (↓90.6%)

19.7 0.13194 (↑334.6%) 0.08568 (↑182.2%) 0.02970 (↓2.2%) 0.01080 (↓64.4%) 0.00426 (↓86.0%)
UN 28.3% 31.0% 7.3% 5.8% 43.3%

Self-propulsion
2.2 0.04505 ( ↑77.4%) 0.03880 (↑52.8%) 0.02571 (↓1.2%) 0.01598 (↓37.1%) 0.00768 (↓69.8%)
6.6 0.05904 (↑105.0%) 0.03745 (↑30.0%) 0.02705 (↓6.1%) 0.01538 (↓46.6%) 0.01255 (↓56.4%)

19.7 0.06655 ( ↑96.0%) 0.05452 (↑60.6%) 0.03531 (↑4.0%) 0.02173 (↓36.0%) 0.01493 (↓56.0%)
UN 18.2% 22.8% 17.7% 20.6% 28.9%

3.4 Impact of Reynolds number

In addition to the numerical uncertainty, the Reynolds number is an important pa-
rameter that affects simulation and optimization results. It has been documented that
drag and vorticity structures computed at model scale can be significantly different from
those of a full-scale hull [59], in which the Reynolds number is two to three orders of
magnitudes higher.

For example, in the KVLCC2 studies, Larsson et al. [59] found that flow separation
is reduced at full scale and that the longitudinal vortex becomes much weaker com-
pared with the model-scale results. Duvigneau et al. [37] quantitatively compared the
optimization results obtained at both model and full scales. They concluded that the
optimized shapes at model and full scales had similar trends; however, the changes in
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drag and wake distortion are quantitatively different. For example, the drag penalty in
wake-only optimization was 3% at model scale but became 13% when evaluated at full
scale.

It is expected that the simulation and optimization results presented in this paper
will quantitatively differ at full scale, for example based on how much the existence of
propellers impacts the optimization results. For practical ship designs, we recommended
running hull shape optimizations at full scale. However, in this paper we use a model-
scale hull, because the experimental data are available for validating our CFD solver.
This does not detract from one of the main messages of this paper: that it is necessary
to simultaneously consider drag and wake distortion in hull shape optimization. The
same proposed methodology could be applied to the full-scale hull.

4 Conclusions
In this paper, we have conducted hydrodynamic design optimization for a model-scale
JBC hull, simultaneously considering drag and wake distortion. We used a gradient-
based optimization framework coupled with an efficient discrete adjoint solver to com-
pute derivatives. We used 32 design variables to parameterize the complex hull surface,
which allowed us to have great freedom for geometric modification. In addition, we im-
posed geometric constraints (volume, thickness, and curvature) to ensure that the final
design would be practical. We used a weighted objective function that included drag and
wake distortion, and constructed a Pareto front by running five optimizations with dif-
ferent weights. Moreover, we considered both towed and self-propulsion configurations
and evaluated the impact on the optimized shapes of adding a propeller.

We observe that optimizing for only one objective results in a large penalty on the
other objective. For example, for the drag-only case (Opt0) in the towed configuration,
we obtain 4.4% reduction in CD, but its σ2

U increases by 208.0%. Similarly, for the
wake-only case (Opt4), σ2

U decreases by 90.6% but at the cost of an increase in CD of
23.8%. In contrast, the weighted objective cases achieve a design with more balance
between drag and wake distortion. For example, by setting a 2% weight on σ2

U , the
Opt1 case achieves a 3.8% drag reduction (0.6% lower than Opt0) while σ2

U increases by
only 78.4% (129.6% less than Opt0). For the drag-and-constraint-wake case (Opt2), we
obtain simultaneous improvement in CD and σ2

U . For example, for the Opt2 case in the
self-propulsion configuration, both CD and σ2

U decrease, by 1.3% and 6.1%, respectively.
When comparing the baseline and optimized shapes for the towed configuration, we

observe that the Opt0 case forms a V-shaped hull to minimize drag. However, it also
generates a V-shaped wake at the propeller plane, with a large velocity distortion. The
Opt4 case creates a large bump near the bilge to reduce the intensity of the longitudinal
bilge vortex, which smooths out the wake velocity field. However, Opt4 has a wavy
hull surface, which is impractical from the structural and manufacturing points of view.
Moreover, it also induces a large adverse pressure gradient near the bilge tube, which
increases the pressure drag. By using a weighted objective function, we obtain a more
balanced design by avoiding large velocity distortions at the propeller plane and sharp
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adverse pressure gradient on the hull surface.
For the self-propulsion configuration, we observe similar behavior, where a single-

objective optimization induces a large penalty to the other objective. The major dif-
ference in the self-propulsion case is that the V-shaped hull has less adverse impact on
wake quality. This is primarily because the propeller accelerates the flow near the bilge
tube; as a result, the pressure decreases near the bilge tube and the adverse pressure
gradient decreases, which eventually reduces the intensity of the longitudinal bilge vor-
tex. Moreover, the accelerated flow results in more mixing, which further smooths out
wake distortion. Another major difference in the self-propulsion configuration is that no
large bump is obtained near the bilge for the Opt4 case. Again, this is primarily due to
the suction effect of the propeller, which is such that there is no benefit in using a large
bump to smooth the low-speed region at the bottom of the propeller annulus region.

The numerical uncertainty study shows that simulated σ2
U is much more sensitive

to mesh size than CD. This is because we use unstructured meshes, so changing mesh
size also changes the number and distribution of sampling points for σ2

U . The numerical
uncertainties associated with mesh sizes are generally lower than the relative change
(design improvement or degradation) in the optimized shapes. Therefore, the optimiza-
tions are verified to have correct trends. There is an exception for σ2

U in Opt2, where
the numerical uncertainty is higher than the relative change. It is challenging to ob-
tain a verified trend for the constrained distortion case because of the high numerical
uncertainty in σ2

U .
Overall, our results demonstrate that it is necessary to simultaneously consider drag

and wake distortion in hull shape optimization. Moreover, the coupled gradient-based
optimization and discrete adjoint framework developed herein open the door to the
integration of other disciplines in hull design optimization, such as structure analyses,
and to performing hydrostructural optimization.
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