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Flutter onset characteristic is an important consideration for transport aircraft design. Previous
work with high fidelity aerostructural optimization has shown a tendency for optimization algorithms
to produce unrealistically high aspect ratio designs, particularly when maximizing range or minimiz-
ing fuel burn, in an effort to maximize aerodynamic efficiency. In this work, we propose an efficient
high fidelity flutter solution method. The flow and the structural dynamics have been modeled with
time-spectral (TS) method. The TS method is designed to capture the dominant modes of periodic
behaviors efficiently. We develop a coupled Newton–Krylov solver to solve this motion-fluid-structure
coupled problem. In the literature, Newton-based TS flutter methods have been proposed in a seg-
regated form. In the current work, the whole coupled system is directly solved. By doing so, one
motion-fluid-structure solution is required instead ofO(NCSD)×O(Niter) CFD solutions where NCSD

is the structural degree-of-freedom for all time instances andNiter is the number of Newton steps. We
demonstrate the method on the classic AGARD 445.6 case.

I. Introduction
High-fidelity computational modeling and optimization of complex engineering systems has the potential to allow

engineers to produce more efficient designs and to reduce the occurrence of unforeseen late stage design modifications.
In particular, for transonic wing design, the simultaneous optimization of both the aerodynamic design and the internal
structural sizing can yield significant fuel burn savings. However, when conducting optimization on an aircraft, all the
relevant physics must be represented in the optimization problem, otherwise the result generated by the optimization
procedure may not be meaningful or physical. Previous optimization results obtained by Kenway et al. [1, 2, 3, 4],
without flutter constraints, produced optimized wings with large aspect ratio as shown in Fig. 1. Such configurations
may be prone to flutter, which calls into question the usefulness of the result. Therefore, flutter and limit cycle
oscillation (LCO) should be modeled and constrained during the optimization.

The goal of this work is to develop an efficient and robust solution methodology for finding the flutter onset.
Although more emphasis is placed on flutter in this work, the proposed method is also capable of computing LCO
conditions. Background on high fidelity CFD based methods modeling flutter is presented in Section II. The proposed
flutter analysis method, presented in Section III, is a preconditioned, Jacobian-free, coupled Newton–Krylov method.
It directly deals with all CFD, CSD, flutter velocity index Vf and flutter frequency variables without any black box
computation. In one coupled Newton solution procedure, the residual of the coupled system is driven to zero and the
flutter velocity index Vf is found. In Section IV the proposed method is demonstrated on the AGARD 445.6 where
the flutter boundary as well as LCO map is computed. Section V concludes the paper.

II. Background
Since flutter is a certification-critical phenomenon, it is important to be able to predict it accurately. Conservative

design approaches may lead to overly-stiff and hence high mass designs, while unconstrained optimization approaches,
such as those shown in Fig. 1 may lead to overly-flexible wings that may cause problems when certifying the aircraft.
Further, it is currently not unusual for flutter issues to be identified only at the final design and flight testing stages, at
which point design changes are extremely costly. Accurate flutter prediction methods will therefore lead directly to

*PhD Student, AIAA student member
†PhD Student, AIAA student member
‡Research Investigator, AIAA Senior Member
§Professor, AIAA Associate Fellow

1 of 18

American Institute of Aeronautics and Astronautics



Figure 1. Aerostructural optimization result [3]: Cp and planform comparison with initial design (upper left); equivalent thickness distri-
bution, stress and buckling KS failure criteria (upper right); comparison of initial and optimized lift distributions, twist distributions and
thickness to chord ratio (t/c) (lower left); four airfoils with corresponding Cp distributions (lower right). (notice the increased span ratio)

significant cost savings. In this section, we give an overview of flutter prediction methods. For more details, we refer
readers to a recent review paper on this topic by Jonsson et al. [5].

The current standard for flutter prediction in industry are methods based on panel codes, doublet-lattice method
(DLM) [6], and linearized transonic small disturbance (TSD) equations [7, 8, 9, 10]. The DLM has gained remarkable
success and is found in commercial software products such as MCS/Nastran and Astros [11, 12] and has become the
aeroelasticians method of choice in industry. Recently, Jonsson et al. [13] developed a flutter constraint, using DLM
aerodynamics, suitable for high fidelity gradient based optimization including wing planform variables. One major
limit of some of those low fidelity linear aerodynamic methods is that they are unable to predict the occurrence of
shock waves in the transonic flow. A consequence of this is that the prediction of the flutter boundaries can become
inaccurate. In the transonic regime, there is a significant reduction in the flutter speed, called the transonic dip (or
flutter bucket). The bottom of the dip defines the minimum velocity at which flutter can occur across the flight envelope.
Corrections using wind tunnel experimental data can however be applied to panel method aerodynamic influence
coefficients (AIC). Unfortunately, for aerostructural design optimization this data is unavailable. Consequently, these
low fidelity method are not applicable for commercial airliner design.

In the research community, the standard method for predicting a flutter boundary is to analyze the wing with a
time-accurate coupled CFD-CSD solver similar as proposed by Liu et al. [14]. However, these methods incur a high
computational cost since hundreds if not thousands of time steps are often required to simulate the flutter motion. This
high computational cost makes the full time-accurate method ill-suited to optimization. Recently, various efforts use
time-accurate results to train surrogate models on airfoils or flat plates and use the surrogate models to substitute high
fidelity CFD in flutter simulation to reduce the computational cost [15, 16, 17, 18]. But the surrogate may not be
accurate to predict aerodynamics on a more complex geometry e.g. a swept wing where the 3D effect is no longer
negligible. Like in many periodic problems, much of the computational time is spent resolving the decay of the initial
transients in the unsteady problem [19]. Fortunately, in problems where the periodic steady state is of primary interest,
time periodic simulation methods such as the Harmonic Balance (HB) presented by Hall et al. [20], TS by Gopinath
and Jameson [21] or the non-linear frequency domain method by McMullen [19] can all be used to accelerate the
solution process. The basic idea of time periodic methods is to represent all the state variables in the system with
a Fourier series. This allows the time-dependent problem to be transformed into a series of coupled steady state
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problems. Among the methods, TS method [21] has the advantage of having state variables in time domain and is can
be relatively more easily adapted from a steady state solver.

There also has been significant effort put to prediction of the flutter boundary using spectral methods [22, 23,
24, 25, 26, 27, 28]. Thomas et al. [29, 30] proposed flutter equations including a prescribed motion and a solution
methodology with Newton–Raphson method. With their method, the flutter velocity index is a state variable to be
solved rather than an external parameter used as an input for a general unsteady solver. That gives the method an
advantage of being automatic which is critical in MDO. However, the method is hindered by scalability: O(NCSD ×
Niter) CFD evaluations are required for flutter simulation where NCSD is the number of CSD state variables and Niter
is the number of Newton steps. The root cause of this limitation is that the CFD module is treated as a black box.

To overcome these shortcomings, He et al. [26, 31] propose a Jacobian-free, coupled Newton–Krylov method
which resolves both CSD and CFD equations without any black box limitations for airfoils. Since all the states are di-
rectly resolved, theO(nCSD) CFD evaluations are gone, making the method more efficient. The use of Krylov iterative
methods guarantees fast solution for each linear equation encountered in Newton iterations. While the Jacobian-free
nature of the method further cuts the computational and memory cost of the method by eliminating the need to evaluate
and store the full Jacobian. The current paper is an extension of previous work by the authors to a wing case [26].

III. Time Spectral Flutter Equation
We solve the TS flutter equation in this research [29, 30, 26]. The TS flutter equation is composed of three com-

ponents: a prescribed motion magnitude constraints, CSD equations and CFD equations An aerostructural problem
usually contains CFD and CSD components. The additional prescribed motion constraints in the TS flutter equation
are added to make the choice of speed and frequency unique as indicated by Fig. 2. Without the prescribed motion
constraints, every point on both branches of LCO response satisfy the CSD and CFD equations. In this work, we treat
flutter as a special LCO with small motion amplitude (ε small).

Speed
Flutter point

Limit cycle
amplitude

LCO pointsε

Figure 2. LCO and flutter prediction. The purple line shows a subcritical response and the blue curve shows a supercritical response. The
red point is an unstable LCO point and the blue point is a stable LCO point corresponding with prescribed motion magnitude ε. The black
point is a flutter point where can be obtained by extrapolation of the LCO response with ε = 0.

The time spectral flutter equation written in residual form is given in Eq. (1), for details we refer the readers to our
previous work [26].

R(q) :=


Rmagnitude
Rphase
STS
ATS

 ,q :=


Vf
ω
η̄n

ζn

 , (1)

where Vf is flutter velocity index, ω is the flutter frequency, η̄n is the normalized generalized coordinates and ζn is the
aerodynamic states history for n time instances. Rmagnitude,Rphase are the constraints for prescribed motion magnitude
and phase respectively, STS is the TS structural dynamic constraint and ATS is the TS aerodynamic constraint.

A. Prescribed Motion Equations
In this section we present derivation of the two equations constraining the magnitude and phase of the natural mode
similar with [26]. States from different time instances are defined as η̄1, η̄2, . . . , η̄N . Defining ω = 2π/T , where T is
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the time period, a harmonic motion for the jth mode can be described by the following expression,

η̄,j(t) ≈ c0,j + c1,je
iωt + c2,je

i2ωt + . . .+ c−2,je
−i2ωt + c−1,je

−iωt, (2)

where η̄j(t) denotes the jth structural mode coefficient. The 1st harmonic in temporal space of the jth structural mode
is given as

η̄1st harmonic,j = c1,je
iωt + c−1,je

−iωt

= [<(c1,j) + <(c−1,j)] cos (ωt) + [=(−c1,j) + =(c−1,j)] sin (ωt) + pure imaginary number
= Cc,j cos (ωt) + Cs,j sin (ωt) + pure imaginary number

(3)

and by dropping the imaginary part and using trigonometric identities we obtain

η̄1st harmonic,j = |η̄1st harmonic,j | sin (ωt+ θ1st harmonic,j) , (4)

where dominant mode magnitude and phase are given as

|η̄1st harmonic,j | =
√
C2
c,j + C2

s,j ,

θ1st harmonic,j = sin−1

 Cc,j√
C2
c,j + C2

s,j

 .
(5)

and the coefficients Cc,j and Cs,j are given as

Cc = <(c1,j) + <(c−1,j),

Cs = −=(c1,j) + =(c−1,j).
(6)

Given ci, the magnitude and the motion can be calculated from the equations above. The ci coefficients are
calculated by fast-Fourier-transform (FFT) with for a given structural mode shape history as the input:

[c0,j , c1,j , c2,j , ..., c−2,j , c−1,j ] =
1

n
FFT(η̄1,j , η̄2,j , ..., η̄n,j). (7)

Finally, the residual of the two constraints are written out as following:

Rmagnitude := |η̄1st harmonic,j | − ε0,j ,
Rphase := θ1st harmonic,j − θ0,j ,

(8)

where ε0,j , θ0,j are prescribed small motion magnitude and its phase, for the jth structural mode. In this work the
prescribed motion is applied to the first natural mode i.e. j = 1.

B. TS CSD Equations with Mode Shapes
The CSD equations are

Mü + Ku = f , (9)

where M is the mass matrix, K is the stiffness matrix, u is the displacement and f is the external load. We construct
the CSD equations using the structural natural mode shapes. At first, we conduct a modal analysis,

ω2
jMφj = Kφj , (10)

where ωj ,φj are the jth natural frequency and mode shape, respectively. We define

Ω := Diag(ω1, · · · , ωr),
φ :=

[
φ1, · · · ,φr

]
.

(11)

where r is the number of modes and mode shapes computed which is typically much smaller than the structural degrees
of freedom. Assuming that displacements can be approximated by u ≈ φη we write the equations of motion as,

φ>Mφη̈ + φ>Kφη − φ>f = 0,

Mrη̈ + Krη − fr = 0,
(12)
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where η is the general coordinate and subscript Mr,Kr, fr denote the reduced or generalized mass, stiffness, and
force matrices. This equation can be further simplified by writing Eq. (10) in matrix form and pre-multiplying φ> to
obtain

Kr = MrΩ
2 (13)

where Ω2 is defined in Eq. (11) with reduced set of natural frequencies. Equation (12) can then be written as,

Mrη̈ + MrΩ
2η − fr = 0. (14)

The TS form of Eq. (12) including the with mode shapes can then be written as,

Mn
r

(
P>Dt,tP

)
ηn + Mr(Ω

n
r )2ηn − fnr = 0, (15)

where
Mn

r := Diag(φ>Mφ, . . . ,φ>Mφ︸ ︷︷ ︸
n

) = Diag(Mr . . . ,Mr︸ ︷︷ ︸
n

),

Ωn := Diag(Ω, · · · ,Ω︸ ︷︷ ︸
n

),

Pi,j =

{
1 if mod(j, r) = di/ne),
0 otherwise,

Dt,t := Diag(D2
t , . . . ,D

2
t︸ ︷︷ ︸

r

) = ω2Diag(D2, . . . ,D2︸ ︷︷ ︸
r

) = ω2D̄2,

fnr :=
[
φ>f1, . . . ,φ>fn

]>
=
[
fr,1, . . . , fr,n

]>
.

(16)

Here P is a permutation matrix and ω is the flow frequency as defined Section A. Together with the second order
spectral derivative matrix Dt,t, the second time derivatives of state variables for different modes are obtained,

η̈n =
(
P>Dt,tP

)
ηn. (17)

1. Dimensionless form

Here we present the TS equations of motion in a nondimensional form. The aerodynamic forces are normalized by the
dynamic pressure q∞ = 1/2ρ∞U

2
∞ and a reference are Sref and can be written as

f̄ =
f

1
2ρ∞U

2
∞Sref

. (18)

It follows that the normalized generalized aerodynamic forces are then written as

f̄nr :=
[
φ>f̄1, · · · ,φ>f̄n

]>
=
[
f̄r,1, . . . , f̄r,n

]>
. (19)

To nondimensionalize Eq. (15) we use the wing mass m0, the semi chord b and the first torsion mode, ωα = ω2,
which in this case is the second natural mode. The dimensionless CSD equation can then be written in residual form
as,

STS :=

(
Mn

r

m0

)(
ω2

ω2
α

)(
P>D̄2P

)(ηn

b

)
+

(
Mn

r

m0

)(
Ω2

ω2
α

)(
ηn

b

)
− 1

2

ρ∞U
2
∞Sref

m0ω2
αb

f̄nr ,

=

(
Mn

r

m0

)(
ω2

ω2
α

)(
P>D̄2P

)
η̄n +

(
Mn

r

m0

)(
Ω2

ω2
α

)
η̄n − 1

2

(
Srefb

V0

)
V 2
f f̄nr = 0,

(20)

where the following nondimensional coefficients have been introduced and are defined as,

µ :=
m0

ρ∞V0
,

Vf :=
U∞√
µωαb

,

η̄n :=
ηn

b
.

(21)

Here µ is the mass ratio, V0 is the volume of a conical frustum having root chord as lower base diameter, tip chord as
upper base diameter, and panel span as height and Vf is the flutter speed index.
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C. TS CFD Equations
In this work, we use the open-source CFD solver ADflowa, a parallel, finite-volume, cell-centered, multi-block solver,
which solves the Euler and the Reynolds averaged Navier-Stokes (RANS) equations in either steady, unsteady or TS
modes by Kenway et al. [32]. A robust ANK solver proposed by Yildirim et al. [33] is implemented to reduce the
residual to several orders of magnitude. Subsequently, a Jacobian-free NK solver is used to get the final solution. In
this work, we solve TS Euler equations with ANK and NK solvers. The Euler equations can be written as:

∂ (V ζ)

∂t
+∇ · F = 0, (22)

where

ζ =


ρ
ρu1

ρu2

ρu3

ρet

 ,Fk =


ρuk − ρwk

ρuku1 − ρwku1 + pδk,1
ρuku2 − ρwku2 + pδk,2
ρuku3 − ρwku3 + pδk,3
ρuk(et + p)− ρwket

 , (23)

ζ is the state vector, Fk is the inviscid flux term in kth coordinate, ρ is the density, V is the cell volume, uks is flow
velocity in kth coordinate, wk is the grid velocity in kth coordinate, p is the static pressure and, et is the total energy.

The TS Euler equation is given as
ATS := Dt(V

nζn) + R(ζn), (24)

where n denotes number of time instances, V n = (V1, ..., Vn), Vi denoting the volume of a cell from ith time instance,
ζn = (ζ1, ..., ζn), ζi is the state variable from ith time instance, R(ζn) =

[
(∇ · F)1 , · · · , (∇ · F)n

]>
where

(∇ · F)i is the inviscid flux in ith time instance and Dt is the spectral derivative operator. The spectral derivative
operator maps the state variables to their time derivatives

Dtζ
n = ωDζn = ω

n∑
i=1

Di,jζi (25)

where

Di,j =

{
1
2

(−1)(j−i)

sin[π(j−i)/n] if i 6= j

0 if i = j
. (26)

The grid velocity wnk is computed by spectral differentiation

wnk = Dtx
n
grid, k + U∞,k, (27)

where xngrid, k is the grid kth coordinate for all time instances, U∞,k is the main stream velocity in kth coordinate.

1. Boundary condition

In ADflow, the boundary condition can be set through the triplet (T∞, p∞,M). In this analysis we define the problem
in terms of (M,µ, Vf ) and thus need to compute (T∞, p∞). Here we detail the procedure to compute the boundary
conditions. Flow density can be computed from previously defined nondimesnional coefficients in Eq. (21),

ρ∞ =
m0

µV0
. (28)

Similarly, from Eq. (21) and the dynamic pressure, the static pressure, p∞ is obtained as

U∞ = Vfbωα
√
µ,

q∞ =
1

2
ρ∞U

2
∞,

p∞ =
2q∞
γM2

.

(29)

Finally, the temperature T∞ is found by usind the ideal gas law,:

T∞ =
p∞
ρ∞R

, (30)

ahttps://github.com/mdolab/adflow.git
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where R is the gas constant for air.
Here M and µ are taken as parameters whereas Vf is taken as an independent state variable. Subsequently, we can

define the static pressure and temperatures as a function of the flutter speed index,

T∞ = T∞(Vf ),

p∞ = p∞(Vf ).
(31)

2. Load calculation

The aerodynamic load is computed at each nodes for each time instance i

fi = fi(XS,i, ζi), (32)

where XS,i is the surface mesh for time instance i. The dimensionless aerodynamic load is as previously defined

f̄i =
1

q∞Sref
fi(XS,i, ζi).

Furthermore, since U∞ = U∞(Vf ), we finally have

f̄i = f̄i(Vf ,XS,i, ζi). (33)

D. CFD–CSD load and displacement transfer
1. Displacement transfer

In general the aerodynamic and structural grids do not have the same topology or match in terms of surface grid point
locations. Thus, an interpolation scheme is needed to transfer both loads and displacements the is suitable for not
matching grids. In this work a relatively simple strategy is adapted. Given the structure mode shapes φ at coordinates
Xmode we fit φ with a fourth order polynomial which we denote as φ̂. The aerodynamic mode shapes can then be
computed from this function by evaluating it using the jig shape i.e. φ̂3(XJ).

CSD mesh

PA

P
′

A

P
′

S

PS

CFD upper surface mesh

CFD lower surface mesh

Figure 3. Transfer illustration. PS is a projection of PA on the structure mode surface. |PAP
′
A| = |PSP

′
S |.

The displacement of the CFD nodes in the ith time instance can be defined in term of the aerodynamic modes
shapes as,

ū3,i = φ̂3(y1, y2)η̄i. (34)

Here we ignore any displacement in u1 and u2 since the magnitude of these two components is much smaller than
compared with u3. The surface deformation of the aerodynamic mesh can then be written as

XS,i = XJ +

 0
0

φ̂3(XJ)

 η̄ib. (35)

where XJ surface coordinates of the undeformed aerodynamic mesh i.e. the jig shape coordinates.

7 of 18

American Institute of Aeronautics and Astronautics



2. Load transfer

The virtual work on the CFD mesh after a small deformation can be written as

δWCFD,i = −
(
f̄3,i(Vf , ζi,XS,i)

)>
δū3,i

= −
(
f̄3,i(Vf , ζi,XS,i)

)>
φ̂3(XJ)δη̄i,

(36)

where Eq. (34) was applied. The virtual work on the CSD mesh is given as

δWCSD,i =
(
f̄r,i(XJ , Vf , ζi,XS,i)

)>
δη̄i. (37)

To make the transfer consistent, we have
δWCFD,i + δWCSD,i = 0, (38)

for all virtual displacement. This gives

f̄r,i(XJ , Vf , ζi,XS,i) = φ̂3(XJ)>
(
f̄3,i(Vf , ζi,XS,i)

)
. (39)

E. Coupled Newton–Krylov Solver for the TS Flutter Equation
Now we present the solution methodology for the TS flutter equation, Eq. (1). The method used is a preconditioned
coupled Jacobian-Free Newton-Krylov method. Equation (1) is solved using Newton’s method, which results in the
following linear system:

J∆q = −R(q(k)),

q(k+1) = q(k) + α∆q,
(40)

where J is the Jacobian, ∂R(q)
∂q |q=q(k) , ∆q is the increment step, q(k) and q(k+1) are the current states and the states

for the next step, and α is a positive step size determined by either line search or trust region methods. Each increment
step, ∆q, is solved iteratively up to a tolerance determined by Eisenstat–Walker algorithm [34]. It is solved with
FGMERES method [35], a Krylov subspace method, by minimizing the residual J∆q +R(q(k)) norm in the span of
{R(q(k)),JR(q(k)), ...,Jm−1R(q(k))}, where m is the Krylov subspace size. The most computational demanding
steps of this process are those related with matrix vector products, i.e. Jv computed when conducting Arnoldi iteration
within FGMRES method. Instead of evaluating all the terms in the Jacobian, saving it explicitly and directly applying
matrix vector product, we apply the following approximation, which is more economic in terms of both computational
time and memory:

Jv ≈ R(q(k) + εv)−R(q(k))

ε
. (41)

The step size ε is determined based on Brown and Saad [36],

ε =

{
erelv

>q(k)/‖v‖22 if
∣∣v>q(k)

∣∣ > umin‖v‖1
erelumin sign

(
vTq(k)

)
‖v‖1/‖v‖22 else,

(42)

where umin and erel are 10−6 and 10−8 respectively. Finally, the step size α is selected with a cubic line search option.
The details for Jacobian-Free Newton Krylov method can be found in [37]. The residual evaluation is described in
Algorithm 1:

We implement the solver through PETSc [38]. A relatively large subspace iteration number of 150 to 300 are used
to enhance the robustness of the solver with a penalty on the solution speed. This solution method is an extension of
Kenway et al. [1] which is a steady state aeroelastic solver.

1. Preconditioner

When solving Eq. (40), one critical requirement for good performance of an iterative method is that the eigenvalues
of J be close with each other. To guarantee that, we need to carefully design a preconditioner. Similar to the previous
steady aerostructural work, we use a block-Jacobi preconditioner. Here we implement a right preconditioner,

(JP−1)∆y = −R(q(k)),

P−1∆y = ∆q,
(43)
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Algorithm 1 Coupled nonlinear residual computation
1: function R(Vf , ωf , η̄n, ζn)
2: Xn

S ← Φ̂η̄nb+ XJ . Transfer displacements
3: Xn

V ←W (Xn
S) . Deform volume mesh to match surface

4: ATS ← ATS (Vf , ωf , ζ
n,Xn

V ) . Evaluate CFD residuals
5: f̄nA ← f̄nA (ζn,Xn

S) . Evaluate aerodynamics forces
6: f̄n ← φ̂

>
f̄nA . Transfer forces

7: STS ← STS(Vf , ωf , η̄
n, f̄n) . Evaluate CSD residuals

8: Rmotion, magnitude ←Rmotion, magnitude(η̄
n) . Evaluate prescribed motion magnitude residual

9: Rmotion, phase ←Rmotion, phase(η̄
n) . Evaluate prescribed motion phase residual

10: R← (Rmotion, magnitude,Rmotion, phase,STS,ATS) . Combine residuals
11: return R
12: end function

where P is the preconditioner. To be more specific, the second equation can be expanded as,(
P−1

motion,CSD 0

0 P−1
CFD

)(
∆yVf ,ω,CSD

∆yCFD

)
=

(
∆qVf ,ω,CSD

∆qCFD

)
. (44)

The preconditioner already implemented by Kenway et al. [1] for CFD solver P−1
CFD (solution of CFD with a smaller

stencil) is reused here. A new preconditioner for the motion equations and the CSD equations needs to be implemented.
Denoted as P−1

motion,CSD, a direct inversion of the Jacobian is used as the preconditioner for the motion equations and
the CSD equations. For relatively small problem size, such as of a 2D case, a direct factorization is reasonable.
However, with a larger structure, such as required for a full 3D wing box, more careful research should be devoted to
the preconditioner design. The resulting preconditioner can then be written as,

P−1
motion,CSD =


0 0

∂|η̄1st harmonic,j |
∂η̄n

0 0
∂θ1st harmonic,j

∂η̄n

−VfSrefb
V0

fnr

(
Mn
r

m0

)(
2 ω
ω2
α

) (
P>D̄2P

)
η̄n

(
Mn
r

m0

)(
ω2

ω2
α

) (
P>D̄2P

)
+
(

Mn
r

m0

)(
Ω2

ω2
α

)

−1

. (45)

IV. Result
A. Model description
1. Structural model

At first, we conduct a conversion of the dimensionless structural mode. In the AGARD 445.6 case, the modes are
given as displacements at points. The generalized mass matrix, φ̃

>
Mφ̃, in the original AGARD report is normalized

to give unit mass in English units (lbf · sec2 · in−1). Here the original matrix can be written in SI units as,

φ̃
>

Mφ̃ =

1lbf sec2 in−1

. . .
1lbf sec2 in−1

 ,

=


1slug ft

sec2 sec2 in−1

. . .
1slug ft

sec2 sec2 in−1

 ,

=

12slug
. . .

12slug

 ,
=

175.127kg
. . .

175.127kg

 .

(46)
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However, in this work we require this to be nondimensional from such that.

φ>
M

m0
φ = I. (47)

We thus seek to find a scaling factor c such that,

(c
√
m0φ̃

>
)
M

m0
(c
√
m0φ̃) = I. (48)

Thus by expanding

(c
√
m0φ̃

>
)
M

m0
(c
√
m0φ̃) = c2φ̃

>
Mφ̃ = c2

175.127kg
. . .

175.127kg

 = I. (49)

we can find the coefficient to be c = 1/
√

175.127 = 0.075565. Thus, to obtain a nondimensional form we use the
following scaling,

φ = 0.075565
√
m0φ̃. (50)

where m0 is the initial weight of the wing.
The first 5 mode shapes φ are shown in Fig. 4. We use scikit-learn [39] to construct a 4th order polynomial

approximation φ̂ for each structural mode. In Figure 4 φ̂ is shown as a gray surfaces which demonstrate acceptable
fit with respect to the structural mode shapes, φ, shown as blue dots. We then use φ̂ to evaluate aerodynamic nodal
displacements as given in Eq. (35).

x y

φ1

a) 1st mode (1st bending mode),
ωr,1 = 60.31 rad/sec

x y

φ2

b) 2nd mode (1st torsion mode),
ωr,2 = 239.80 rad/sec

x y

φ3

c) 3rd mode (2nd bending mode),
ωr,3 = 303.78 rad/sec

x y

φ4

d) 4th mode (2nd torsion mode),
ωr,4 = 575.19 rad/sec

x y

φ5

e) 5th mode (3rd bending mode),
ωr,5 = 742.13 rad/sec

Figure 4. First 5 modes of AGARD 445.6 case weakened mode 3 [40]. The coordinates of the blue points are from AGARD report. The
gray surfaces are a polynomial regression of those blue points.

Note that in the AGARD report [40], a sixth mode is also included but is ignored here. This is because the sixth
mode is a lateral motion (in-plane) mode and its z direction displacement is no longer the dominant motion, which is
in contrary with our transfer class assumptions. Further, other work has indicated that the sixth mode is insignificant
to flutter boundary prediction [28].

2. Aerodynamic model

We generate the geometry based on AGARD report [40] using the open-source package pyLayoutb which is an inhouse
built geometry engine. The wing planform is shown in Fig. 5 and the detailed geometry parameters are given in Table 1.
The wing airfoil cross section is a NACA 65A004.

bhttps://github.com/mdolab/pylayout.git
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Λcr/4 = 45 deg

cr = 0.559 m

ct = 0.369 m

b/2 = 0.762 m

Figure 5. Geometry of AGARD 445.6 case

Table 1. AGARD 445.6 wing geometric properties

Description Symbol Value Unit

Sweep Λcr/4 45 deg
Aspect ratio AR 1.65 -
Taper ratio λ 0.66 -
Semi span b/2 0.762 m
Root chord cr 0.559 m
Tip chord ct 0.369 m
Area A 0.353 m2

The surface mesh is generated by ICEM [41]. We then apply the open-source package pyHypc, an inhouse hyper-
bolic mesh generator, to generate the volume mesh from the surface mesh. The mesh we use for the work is a “O”
mesh as shown in Fig. 6. In this work a relatively coarse mesh of 11428 elements is used. The tip of the wing is
rounded which makes it easier for the solver to reduce the residual.

chttps://github.com/mdolab/pyhyp.git
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Figure 6. CFD mesh used in this study

B. Flutter boundary results
In this section we compute the flutter boundary of the proposed method and compare it to experimental and other
CFD results. The M chosen here to compute the flutter boundary are the same as used in the AGARD report. At
first, we compute the flutter onset velocity at M = 0.499. We then use this result to initialize the neighboring states
for M = 0.654 as we expect the solution to be close. We continue with this initialization strategy and then obtain
the whole flutter boundary shown in Fig. 7. The transonic dip due to the nonlinear dynamics around M = 0.95 is
captured.

In the figure, we compare current result using different number of mode shapes with experimental results from
Yates [40] and numerical results from Thomas et al. [30] who solved the Euler equations with a harmonic balance
approach. The current results with 5 structural modes match better with Thomas et al. CFD results [30] than the
experimental results of Yates [40]. This may be caused by the missing viscosity effects in Euler equations. Also, we
find that as the number of modes considered increases, in the subsonic regime (M < 0.7) the flutter onset velocity
is not significantly affected. For high transonic and especially supersonic Mach numbers when more modes are
considered, the flutter onset velocity is increases.

0.5 0.6 0.7 0.8 0.9 1.0 1.1
M

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

V
f

CNK - 2 modes
CNK - 3 modes
CNK - 4 modes
CNK - 5 modes
Yates experiment
Thomas

Figure 7. AGARD 445.6 flutter boundary with different structural modes considered. Current results match better with numerical results
by Thomas et al. [30] than with experimental results by Yates [40]
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The flutter onset frequency is shown in Fig. 8 under different M with the first 5 natural frequencies shown as well.
Similar to the transonic dip for flutter velocity, we also observe a flutter frequency decrease around M = 0.95. In
general the flutter onset frequency is between the 1st bending and 1st torsion structural natural frequencies under all
M considered.

0.5 0.6 0.7 0.8 0.9 1.0 1.1
M

100

200

300

400

500

600

700

ω
(r

ad
/s

)

CNK 5 modes
1mode
2mode
3mode
4mode
5mode

Figure 8. AGARD 445.6 flutter frequency shown as a function of Mach number. The frequency follows a similar trend with the Vf flutter
velocity index. There is a dip around M = 0.95. For reference the natural frequencies are also shown as red lines.

We present the motion magnitude for different structural modes under all M on the flutter boundary in Fig. 9. The
first mode, which is the 1st bending mode, is fixed to 0.01 as expected due to its prescribed motion. Further this mode
has the largest amplitude. The second most significant with is the second mode or the 1st torsion mode. This indicates
that the wing flutter mode is the classic torsion–bending mode. The 1st torsion mode relative to the 1st bending mode
is the weakest around the transonic dip indicating the bending mode is dominant mode at the transonic dip for this case.
This is consistent with the fact that at the transonic dip, the flutter onset frequency is closer to the natural frequency of
the 1st bending mode than that of the 1st torsion mode.
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Figure 9. AGARD 445.6 mode amplitudes shown as a function of Mach number. Mode one, or the 1st bending mode, is shown as a constant
mode due to its prescribed motion. Mode two is with greater amplitude compared with the other modes.

C. LCO results
The proposed method can also be used to predict LCO behavior using larger prescribed motion amplitudes. We
present one case under M = 1.072, which is one of the experimental Mach numbers, in Fig. 10. Here the first mode
is given a prescribed motion as indicated by the amplitude in the figure and then the flutter speed is solved for. With
the LCO points computed, we conduct a linear regression to estimate the flutter onset point. The nature of the LCO
bifurcation is very important, where it is preferable to have a supercritical LCO behavior i.e. as the speed is increased
the motion magnitude is gradually increased. A subcritical behavior should be avoided as the system responds with a
large amplitude LCO when it is perturbed beyond the flutter point. This sub- and supercritial bifurcations are depicted
in Fig. 2. In this study Figure 10 demonstrates the preferable supercritical behavior.
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Figure 10. LCO behavior for AGARD 445.6 at M = 1.072

V. Conclusion
In this paper, we extend our previous work on airfoil flutter onset prediction to a wing case. The wing structure is

described with modal shapes and we propose a nondimensional TS formulation for it. We present a CNK method to
compute the flutter onset and LCO behavior of a wing. The proposed method has the adavantage of its better scalability
with respect to structural degree of freedom than classic harmonic balance method in literature. The proposed method
requires one solution of the coupled system instead of O(NCSD × Niter) CFD simulations from the classic harmonic
balance method. We predict the flutter boundary of the classic AGARD 445.6 case. The transonic dip of the flutter
boundary is captured. We benchmark our results using experimental and numerical results from literature. We also
conduct prediction of LCO behaviour and show that the proposed method is able to predict a LCO behaviour is
subcritical or supercritical which is an important information for designers. The method is demonstrated on the classic
AGARD 445.6 where the flutter boundary is obtained.
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Appendix
A. Example for TS CSD equation
In order to aid the understanding of how the modal TS CSD system of equations is formed we present here an example using 3 time
instances and 2 modes, i.e. n = 3 and r = 2. The state variables are

η̄n =
1

b



η1,1

η1,2

η2,1

η2,2

η3,1

η3,2

 . (51)

The permutation matrix P and the time derivative matrix D for this case is given as

P =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 ,

D =

 0 − 1√
3

1√
3

1√
3

0 − 1√
3

− 1√
3

1√
3

0

 .
(52)

The structural dimensionless load is given as 
f̄r,1,1
f̄r,1,2
f̄r,2,1
f̄r,2,2
f̄r,3,1
f̄r,3,2

 =
1

1
2
ρ∞U2

∞Sref

φ>f1
φ>f2
φ>f3

 , (53)

where
φ =

[
φ1 φ2

]
. (54)
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The resultant TS CSD equations are given as

STS =

φ
> M
m0

φ

φ> M
m0

φ

φ> M
m0

φ

(ω2

ω2
α

)(
P>

[
D2

D2

]
P

)
1

b



η1,1

η1,2

η2,1

η2,2

η3,1

η3,2



+

φ
> M
m0

φ

φ> M
m0

φ

φ> M
m0

φ




Ωr
ω2
α

Ωr
ω2
α

Ωr
ω2
α

 1

b



η1,1

η1,2

η2,1

η2,2

η3,1

η3,2



− 1

2

(
Srefb

V0

)
V 2
f


f̄r,1,1
f̄r,1,2
f̄r,2,1
f̄r,2,2
f̄r,3,1
f̄r,3,2



. (55)

As discussed in Section IV, Section A the mode shapes φ are normalized such that

φ> M

m0
φ = I, (56)

so the TS CSD equations can be further reduced to

STS =

(
ω2

ω2
α

)(
P>

[
D2

D2

]
P

)
1

b



η1,1

η1,2

η2,1

η2,2

η3,1

η3,2

+


Ωr
ω2
α

Ωr
ω2
α

Ωr
ω2
α

 1

b



η1,1

η1,2

η2,1

η2,2

η3,1

η3,2

−
1

2

(
Srefb

V0

)
V 2
f


f̄r,1,1
f̄r,1,2
f̄r,2,1
f̄r,2,2
f̄r,3,1
f̄r,3,2

 . (57)
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