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Abstract

Aerothermal optimization is a powerful technique for automating the design of turbine
internal cooling passages, where both pressure loss and heat transfer are considered. Ex-
isting optimization studies commonly adopt gradient-free algorithms, which can handle
only a few design variables. However, to enhance heat transfer, internal cooling designs
use complex geometries consisting of ribbed serpentine channels, which need to be pa-
rameterized by using a large number of design variables. To address this need, we develop
herein an approach for aerothermal optimization that uses a gradient-based optimizer in
conjunction with a discrete adjoint method to efficiently compute the required gradients
with respect to numerous design variables. We apply this approach to the design of a
ribbed U-bend channel, which is representative of a section of turbine internal cooling
passages. The objective function combines heat transfer and pressure loss as a weighted
sum. We find the Pareto front for these two objectives by running five optimizations
with different weights. We consider both a rib-free and a ribbed U-bend configuration.
For the rib-free configuration, we use 113 design variables to parameterize the U-bend
shape. We compare our optimization results with those from gradient-free methods and
demonstrate that the proposed method leads to lower pressure loss while enhancing heat
transfer. For the ribbed configuration, we use 146 design variables and allow the ribs
to change their arrangement independently (shape, height, pitch, and angle). Each rib
adopts a requisite arrangement to balance heat transfer and aerodynamics, depending
on the local flow conditions. Optimizing the U-bend shape is shown to be more effective
for improving overall heat transfer than optimizing the rib arrangement. However, opti-
mizing ribs is more effective for improving local heat transfer. The results demonstrate
that the proposed optimization framework has the potential to handle general turbine
heat transfer designs, not only for internal cooling but also for other design problems,
such as film cooling and jet impingement cooling.
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1 Introduction
To maximize thermal efficiency and power output, gas turbine designs typically adopt a
turbine-inlet temperature that is hundreds of degrees higher than the upper limit of the
turbine metal temperature. Therefore, effective cooling of the turbine blades is critical
because it directly impacts the durability and safety of gas turbines. A common way to
reduce the turbine metal temperature is to inject cooling air from the root of turbine
blades. The cooling air first passes through a ribbed serpentine internal cooling passage
and then serves for other cooling activities such as jet impingement and film cooling [1].
The ribbed serpentine passage generates large flow separation and vortices to enhance
turbulence mixing and heat transfer. However, the total pressure loss also increases,
which degrades the effectiveness of jet impingement and film cooling. In the worst-case
scenario, the cooling air has insufficient momentum to mix into the main stream because
of a large loss of total pressure, so the hot main stream is ingested into the turbine blades,
resulting in severe damage. Therefore, we need to balance heat transfer and pressure loss
in the design of turbine internal passages [1]. Aerothermal design optimization provides
an automated way to explore designs and find the optimal combination of these two
objectives.

Owing to the complex flow conditions in ribbed serpentine internal cooling passages,
aerothermal design has relied heavily on experiments [2–10]. Han et al. [1] wrote a
comprehensive review on the topic and summarized how passage shape, rib arrange-
ment, Reynolds number, and rotation affect aerothermal performance. In recent years,
computational fluid dynamics (CFD) has become a useful tool that provides valuable
insights for turbine heat transfer design. This advance is partially due to the increase in
computing power, which has enabled the simulation of a full ribbed serpentine cooling
passage including all details [11–13]. More importantly, heat transfer CFD results have
become more accurate and reliable, as shown by recent comparisons between CFD and
experiments for internal cooling passage heat transfer [13–17].

Numerous studies have used CFD to understand flow and heat transfer character-
istics and to improve the design of internal cooling passages. Early studies first used
ribbed straight channels [18–21] and, later, more complicated configurations were con-
sidered, such as ribbed U-bend channels with rotation [22–24]. These studies focused
on evaluating how various turbulence models, discretizations, and wall functions affect
CFD performance. With more sophisticated CFD models, researchers evaluated the
impact of passage shape and rib arrangement based on numerical results. For instance,
Wang and Chyu [25] numerically investigated the secondary flow structures for three
U-bend turning configurations. Su et al. [26] evaluated how three U-bend aspect ratios
affect aerothermal performance. Saha and Acharya [27] simulated a U-bend channel
and compared the aerothermal performance of nine different bend shapes. Finally, Gao
et al. [28] improved the heat transfer performance by manually exploring eight different
combinations of rib orientation, rib angle, and channel shape.

Although manually exploring design options provides useful insights, it is a time-
consuming process and the improved design can be suboptimal given the limited samples.
To further increase the efficiency of CFD-based design, we can automate the design
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process by using an optimization algorithm. The CFD-based optimization approach
has been demonstrated to effectively reduce the duration of the design process while
achieving the same design quality as sophisticated human-supervised design tools [29].
Given this advantage, the interest in CFD-based optimization has been increasing.

We can divide optimization algorithms into two broad categories: gradient-free and
gradient-based. Gradient-free algorithms use the values of the objective and constraint
functions to navigate the design space, so they can be used when the CFD solver is a black
box. This feature makes gradient-free algorithms easy to use, which is one of the reasons
that they have been widely adopted in internal cooling optimization studies [13, 30–36].
The major limitation of the gradient-free algorithms is that their computational cost
grows exponentially with respect to the number of design variables [37, 38]. Therefore,
the aforementioned studies used only a small number of design variables (between 3 and
26) to parameterize the geometry of internal cooling passages [13, 30–36].

Since the geometry configuration of internal cooling passages is complex, they should
be parameterized by using a large number of design variables to improve the perfor-
mance to the maximum extent possible. In this paper, we address this need by com-
bining a gradient-based optimization algorithm with an efficient method for computing
the required gradients. We use the adjoint method [39, 40] to efficiently compute the
derivatives because its computational cost does not depend on the number of design
variables. The coupled gradient-based optimization and adjoint derivative computation
approach has been widely used in design optimization for aircraft [41–47], cars [48–50],
gas turbines [51–54], wind turbines [55, 56], ships [57, 58], and hydrofoils [59, 60], as
well as in multidisciplinary design optimization [61, 62], such as aerostructural [63–65],
aeropropulsive [66, 67], and hydrostructural [60, 68] optimization.

Given its usefulness and the applications cited above, it is surprising that the ad-
joint method was only recently adopted in a handful of turbine cooling optimization
studies. For example, Zhang et al. [69] developed an adjoint solver to treat aerothermal
design problems for a transonic turbine cascade. Gkaragkounis et al. [70] optimized
the conjugate heat transfer design for a two-dimensional turbine by using their coupled
adjoint solver. Verstraete et al. [71] minimized the pressure loss in a turbine internal
cooling passage by using the adjoint method. Finally, Hayek et al. [72] used the adjoint
method to optimize the eddy viscosity prediction of the k-ω shear stress transport (SST)
turbulence model for an internal cooling passage.

Adjoint methods have not been adopted as fast as expected for turbine cooling appli-
cations because they require the source code for the CFD solver and because a significant
effort is required to develop the adjoint code. Turbine cooling optimization studies com-
monly rely on commercial CFD solvers whose source codes are not publicly available.

Another difficulty arises because of the amount of separated flow that is inherent
in turbine cooling applications. As elaborated in Sec. 3.3, optimization results exhibit
large regions of separated flow to enhance heat transfer. This is not the case for most
of the aircraft optimization studies, where drag minimization naturally eliminates flow
separation. The flow separation and the associated unsteadiness cause CFD to converge
poorly. This violates the assumption in the derivation of the adjoint equation that
the flow residuals are well converged (see Sec. 2.3.1). Consequently, the accuracy of
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the adjoint derivatives is degraded. Moreover, the poorly converged flow results in ill-
conditioned Jacobians, and the adjoint equations become very stiff to solve [53, 73, 74],
which eventually causes the optimization to abort.

In previous work, we applied gradient-based aerothermal optimizations to a rib-
free U-bend cooling channel, which is representative of a simplified turbine internal
cooling configuration [75]. To alleviate the adverse impact of flow separation on the
optimization, we used the first-order discretization scheme to stabilize both flow and
adjoint computations. In the present study, we enhance the robustness of our adjoint
solver by using an improved preconditioning strategy (see details in Sec. 2.3.3), which
allows us to use the second-order scheme for a more accurate flow simulation and adjoint
derivative computation and to consider a more complex internal cooling configuration—
a ribbed U-bend channel. Moreover, we evaluate how CFD configurations (mesh density
and turbulence model) affect the simulations and optimizations and provide detailed
flow analyses to better interpret the optimization results.

The objective of this study is to demonstrate the advantage of using the gradient-
based optimization approach for turbine internal cooling design. We use the U-bend
channel developed at the Von Karman Institute (VKI) for Fluid Dynamics [76] as our
baseline configuration. We parameterize the U-bend by using 113 design variables,
which represents significant freedom for geometry modification. We use the weighted
heat transfer and pressure loss as the objective function and run five optimizations to
construct a Pareto front with different weights. We then evaluate the benefit of gradient-
based optimization by comparing our results with those optimized by the gradient-free
methods. To further demonstrate the power of the proposed optimization framework,
we add nine squared ribs on the top wall of the U-bend and use 146 design variables
to parameterize the rib design. We allow all the ribs to change their arrangement
independently (shape, height, pitch, and angle), as opposed to forcing them to have the
same arrangement (a common treatment adopted in gradient-free optimization studies).

The remainder of this paper is structured as follows: In Sec. 2, we introduce the
proposed optimization framework and the theoretical background of its components.
The aerothermal optimization results and the detailed flow analysis are described in
Sec. 3, followed by our conclusions in Sec. 4.

2 Method
In this section, we first introduce the overall adjoint framework for gradient-based op-
timization (DAFoam) and then briefly discuss the theoretical background of its compo-
nents and their interaction. Finally, we elaborate on the implementation of the most
important module: the adjoint derivative computation. We use the discrete adjoint ap-
proach because its derivatives are consistent with the flow simulations, as shown in our
previous studies [49, 77].
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2.1 DAFoam: A discrete adjoint framework for gradient-based op-
timization

As mentioned in the introduction, we use gradient-based optimization algorithms with
derivatives (df/ dx) computed by using the adjoint method. In these total derivatives,
f is the function of interest; in our case, f can be the total pressure loss, the Nusselt
number, or a weighed combination of both. The design variables x are shape variables
that parameterize the surface geometry and ribs.

In our previous work, we developed an aerodynamic design optimization framework
based on OpenFOAM using the adjoint method [49]. In the present study, we extend this
framework to include heat transfer design. We first introduce the overall optimization
framework and then briefly describe the theoretical background of its modules and their
interaction.

x(0) Graph Coloring

x(∗) 0, 5→1:
pyOptSparse

1 : x

5 : c, dc/dx 1: pyGeo 2 : xs

2: IDWarp 3 : xv 4 : dxv/dx

5 : f 3: flowSolver 4 : w

5 : df/dx 4: adjointSolver

Figure 1: Process and data flow for the DAFoam optimization framework [49]: x is the
vector of design variables, x(0) and x(∗) are the baseline and optimized designs, respectively,
c are the geometric constraints, w are the state variables, f represents the objective and
constraint functions, and xs and xv are the coordinates of the design surface and volume
mesh, respectively.

Figure 1 illustrates the process and data flow for the DAFoam optimization frame-
work using the extended design structure matrix representation developed by Lambe
and Martins [78]. The diagonal and off-diagonal nodes are the modules and data, re-
spectively. The black lines represent the process flow in the optimization, whereas the
data flow is shown by the thick gray lines. The number in each node represents the
execution order.

The DAFoam framework comprises two layers: OpenFOAM and Python [49]. The
OpenFOAM layer contains three solvers: flowSolver, adjointSolver, and coloringSolver.
flowSolver is based on OpenFOAM’s incompressible flow solver simpleFoam. To con-
sider heat transfer, we add a scalar transport equation for temperature.
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Instead of using the OpenFOAM’s built-in continuous adjoint solver [79], we de-
veloped a discrete adjoint solver for aerodynamic design optimization in our previous
work [80]. Recently, we extended the adjoint capability for heat transfer by using an
object-oriented adjoint code structure [77]. It lowers the barrier for time-consuming
adjoint development and enables us to rapidly implement an adjoint solver for any set
of partial differential equations. This salient feature allows DAFoam to handle multi-
disciplinary design optimization, including aerodynamics, hydrodynamics, heat transfer,
and structures. The coloringSolver module uses a parallel, heuristic graph-coloring
scheme to accelerate the partial derivative computation for the adjointSolver module.
The details of these three solvers are presented in Secs. 2.2 and 2.3.

The Python layer controls the three solvers in the OpenFOAM layer and also calls
the external Python modules pyGeo, IDWarp, and pyOptSparse to perform optimization.

pyGeo uses the free-form deformation (FFD) approach to parameterize the surface
geometry and surface mesh [81].1 The surface mesh is first embedded into a tri-variate
B-spline volume and then the surface mesh is manipulated by moving the surface points
of the given volume. The benefit of using the tri-variate B-spline volume is that we can
easily compute the gradient of any FFD point. We also use pyGeo to compute the values
and derivatives of the geometric constraints (c and dc/ dx). Figure 2 shows an example
of a FFD and control points for a U-bend channel.

Figure 2: Example of surface mesh deformation for the U-bend channel obtained by using the
FFD control points (red squares) in pyGeo and the corresponding volume mesh deformation
from IDWarp.

IDWarp uses the analytic inverse distance algorithm proposed by Luke et al. [82] to
deform the volume mesh.2 One advantage of this algorithm is that it supports both
structured and unstructured meshes. It also does a better job of preserving the mesh
orthogonality near the wall compared with methods based on radial basis functions.

1https://github.com/mdolab/pygeo
2https://github.com/mdolab/idwarp
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Figure 2 shows an example of baseline and deformed volume meshes for the U-bend
channel.

pyOptSparse is a Python module for formulating and solving large-scale constrained
optimization problems.3 pyOptSparse is extended from pyOpt [83] and provides APIs
for defining the design variables and constraint and objective functions, as well as an
interface for several optimization packages. We use the SNOPT [84] optimizer in this
study. SNOPT implements the sequential quadratic programming algorithm for the op-
timization, which uses a quasi-Newton method to solve the nonlinear equations resulting
from the Karush–Kuhn–Tucker optimality conditions.

To summarize, the gradient-based optimization starts with an initial design variable
x(0) and a baseline U-bend mesh and passes them to pyGeo. Based on x(0), pyGeo de-
forms the surface mesh and passes the updated surface mesh coordinates xs to IDWarp,
while also computing the value and derivative of the geometric constraints. To avoid
negative volume and preserve mesh quality, IDWarp deforms the volume mesh and passes
the updated volume mesh coordinates xv to flowSolver, which then simulates the flow
field and passes the converged state variables w to adjointSolver. flowSolver also
computes the constraint and objective function f . Based on w, adjointSolver uses
the adjoint approach to efficiently compute the total derivatives df/ dx. To acceler-
ate the computation of the partial derivatives, adjointSolver uses the graph-coloring
information provided by coloringSolver. Finally, pyOptSparse receives the values
and derivatives of the objective and constraint functions (f , df/ dx, c, and dc/ dx),
solves the sequential quadratic programming problem, updates the design variables x,
and passes them to pyGeo again. This process is repeated until the optimization con-
verges. Data exchange between the OpenFOAM and Python layers is done through
input and output files. The most expensive steps are the flow simulation and adjoint
derivative computation; the file-based data exchange accounts for less than 1% of the
total computational time.

2.2 Flow simulation

In this paper, we simulate three-dimensional, steady turbulent flow with heat transfer by
using a modified version of OpenFOAM’s standard solver simpleFoam (primal solver).
The flow is governed by the Navier–Stokes equations and the temperature equation:

∇ ·U = 0, (1)

∇ · (UU ) +∇p−∇ · [(ν + νt)(∇U +∇UT )] = 0, (2)

∇ · (TU)− (α + αt)∆T = 0, (3)

where p is the pressure, T is the temperature, U = [u, v, w] is the velocity vector, ν is
the kinematic viscosity, νt is the turbulent eddy viscosity, α is the thermal diffusivity,
and αt is the turbulent thermal diffusivity. The viscosity and thermal diffusivity are
connected through Pr = ν/α = 0.7, and Prt = νt/αt = 0.7. We ignore body forces and
internal heat sources.

3https://github.com/mdolab/pyoptsparse
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To connect the turbulent viscosity to the mean flow variables, we adopt the Spalart–
Allmaras model,

∇ · (U ν̃)− 1

σ
∇ · [(ν + ν̃)∇ν̃] +

1

σ
Cb2|∇ν̃|2 − Cb1S̃ν̃ + Cw1fw

(
ν̃

d

)2

= 0. (4)

The turbulent eddy viscosity νt is computed from ν̃ via

νt = ν̃
χ3

χ3 + C3
v1

, χ =
ν̃

ν
. (5)

Spalart and Allmaras [85] provide a detailed description of the terms and parameters in
Eq. (4). We include all the turbulence variables in our adjoint implementation, so we do
not assume frozen turbulence, as is typically done when implementing the continuous
adjoint approach.

The governing equations (1)–(5) are discretized by using the finite-volume method.
More specifically, we use the SIMPLE algorithm (semi-implicit method for pressure-
linked equations) to solve these equations in a segregated manner. We first solve the
momentum and temperature equation based on the old pressure p and surface flux fields,
φ. Next, the pressure is updated by solving a pressure Poisson equation, followed by an
update for φ that uses the Rhie–Chow interpolation scheme. Based on the new p and
φ, we then update U such that it satisfies both the mass and momentum equations.
Finally, we solve the turbulence equation (4) to update ν̃.

2.3 Adjoint derivative computation

An efficient adjoint implementation is critical because it directly impacts the overall
performance of optimization framework. In this subsection, we first derive the discrete
adjoint formulations and then elaborate on the strategies for computing partial deriva-
tives and solving the adjoint equations.

2.3.1 Adjoint equations

As previously mentioned, we use the discrete adjoint method to compute the total deriva-
tive df/ dx. This assumes that a discretized form of the governing equations (1)–(4)
is available through the flow solver, and that, for a given design vector x ∈ Rnx , the
discretized equations are solved for the flow state variable vector w ∈ Rnw such that

R(x,w) = 0, (6)

where R ∈ Rnw is the residual vector. The R and w vectors contain the residuals
and state variables for all mesh cells, respectively. Therefore, Eq. (6) contains nonlinear
equations that involve millions of state variables and require specialized iterative solvers.

The functions of interest are then functions of both the design variables and the flow
variables; namely,

f = f(x,w). (7)
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This computation does not require iteration and is much cheaper than the nonlinear
(primal) solution.

In general, we have multiple functions of interest (the objective and multiple design
constraints), but in the following derivations we consider f to be a scalar without loss
of generality. As shown below, each additional function requires the solution of another
adjoint system.

To obtain the total derivative df/ dx, we apply the chain rule as follows:

df

dx︸︷︷︸
1×nx

=
∂f

∂x︸︷︷︸
1×nx

+
∂f

∂w︸︷︷︸
1×nw

dw

dx︸︷︷︸
nw×nx

, (8)

where the partial derivatives ∂f/∂x and ∂f/∂w are relatively cheap to evaluate because
they only involve explicit computations. The matrix for the total derivative dw/ dx, on
the other hand, is expensive because w and x are implicitly determined by the residual
equations R(w,x) = 0.

To solve for dw/ dx, we can apply the chain rule to R. We then use the fact that the
governing equations should always hold, independently of the values of design variables
x. Therefore, the total derivative dR/ dx must be zero, so

dR

dx
=
∂R

∂x
+
∂R

∂w

dw

dx
= 0. (9)

Rearranging the above equation, we get the linear system

∂R

∂w︸︷︷︸
nw×nw

dw

dx︸︷︷︸
nw×nx

= − ∂R

∂x︸︷︷︸
nw×nx

. (10)

We can solve a column of dw/ dx by using the same column of dR/ dx as the right-
hand-side. We then repeatedly solve the linear equation nx times until all the columns
are computed in the dw/ dx matrix. Finally, we substitute dw/ dx into Eq. (8) to
compute the total derivative df/ dx for any objective function f . This approach is
known as the direct method, and its computational cost is proportional to the number
of design variables.

Alternatively, we can substitute the solution for dw/ dx from Eq. (10) into Eq. (8)
to get

df

dx︸︷︷︸
1×nx

=
∂f

∂x︸︷︷︸
1×nx

−

ψT︷ ︸︸ ︷
∂f

∂w︸︷︷︸
1×nw

∂R

∂w

−1

︸ ︷︷ ︸
nw×nw

∂R

∂x︸︷︷︸
nw×nx

. (11)

Typically, we do not actually find the inverse of the Jacobian ∂R/∂w explicitly. Instead,
we solve the corresponding linear system with the appropriate right-hand-side vector.

The direct method consists in solving with −∂R/∂x as the right-hand side. Alter-
natively, we can transpose the Jacobian and solve with [∂f/∂w]T as the right-hand side,
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which yields the adjoint equations,

∂R

∂w

T

︸ ︷︷ ︸
nw×nw

ψ︸︷︷︸
nw×1

=
∂f

∂w

T

︸ ︷︷ ︸
nw×1

, (12)

where ψ is the adjoint vector. We can then compute the total derivative by substituting
the adjoint vector into Eq. (11):

df

dx
=
∂f

∂x
−ψT ∂R

∂x
. (13)

For each function of interest, we solve the adjoint equations only once because the
design variable is not explicitly present in Eq. (12). Therefore, its computational cost
is independent of the number of design variables. This approach is also known as the
adjoint method and its computational cost is proportional to the number of objective
functions.

For turbine cooling design, the adjoint method is advantageous because we typically
have a few functions of interest but use several hundred design variables.

To summarize, a discrete adjoint method consists of four major steps: First, we
compute the partial derivatives [∂R/∂w]T and [∂f/∂w]T . Next, we solve the linear
equation (12) for the adjoint vector ψ. Finally, we compute ∂R/∂x and ∂f/∂x and use
Eq. (13) to compute the total derivative df/ dx. An effective adjoint implementation
requires efficient computation of these partial derivatives, and an efficient solver for
the adjoint equations. We elaborate the details of these two tasks in the following
subsections.

2.3.2 Partial derivative computation

We use the finite-difference method to compute [∂R/∂w]T and [∂f/∂w]T . However,
naively computing these partial derivatives by using finite differences requires calling
the residual functions nw times—once for each column in [∂R/∂w]T and [∂f/∂w]T .
This becomes computationally prohibitive for three-dimensional problems because nw is
at least a few million for useful problems.

To circumvent this issue, we accelerate the partial derivative computation by using
graph coloring. In this approach, we group all the states (columns) into different colors
such that, for each color, no two states impact the same residual (row). By using the
coloring information, we can simultaneously perturb multiple columns that have the
same colors and compute their partial derivatives by calling the residual function only
once. As an example, consider a five-point-stencil Jacobian matrix obtained from a 5×5
two dimensional mesh, as shown in Fig. 3. If we successively perturb each state (column)
and compute the partial derivatives by using the forward difference method, we need
26 residual function evaluations. With graph coloring, we can simultaneously perturb
columns that have the same color because they affect distinct residuals. Thus, the entire
Jacobian is computed by calling the residual functions only six times.
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Figure 3: Example of graph coloring for a five-point-stencil Jacobian matrix obtained from
a 5 × 5 two-dimensional mesh. Naively computing the Jacobian by using finite differencing
(column by column) would require 26 residual function evaluations. With graph coloring,
we simultaneously perturb columns that have the same color, and we reduce the number of
function evaluations to six.

The actual Jacobian matrices for the three-dimensional Navier–Stokes equations are
much more complex than the five-point-stencil matrix discussed above. We developed
a heuristic graph coloring algorithm to compute such Jacobians [49]. The central idea
of the algorithm is to tentatively assign colors for the local meshes and then resolve
conflicts by exchanging coloring information between the local meshes. Our coloring
algorithm is applicable to structured and unstructured meshes and reduces the number
of residual evaluations to O(1000). This number does not depend on the size of the
meshes or the number of CPU cores [49].

We do not use the coloring scheme for ∂R/∂x and ∂f/∂x. Instead, we compute
dxv/ dx by first perturbing each x and then deforming the surface and volume meshes
by using pyGeo and IDWarp. We then pass dxv/ dx to adjointSolver to compute
∂R/∂x and ∂f/∂x directly, as shown in Fig. 1.

2.3.3 Adjoint equation solution

After computing [∂R/∂w]T and [∂f/∂w]T , we solve the adjoint equations (12) by using
the PETSc software library (Portable, Extensible Toolkit for Scientific computation) [86–
88]. We use the generalized minimal residual (GMRES) method as the top-level linear
equation solver and adopt a nested preconditioning strategy. The global preconditioner
is based on the additive Schwarz method with one level of overlap. The additive Schwarz
method divides the linear system into sub-blocks so that they can be solved in parallel.
The local preconditioner in each sub-block is based on incomplete lower and upper (ILU)
factorization, where we use one level of extra fill-in to improve its effectiveness.

As mentioned in the introduction, the flow separation in turbine internal cooling
passages makes the adjoint equations very stiff to solve. Therefore, we need an effective
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preconditioner matrix to enhance the eigenvalue clustering for better convergence. The
right-preconditioned adjoint equation can be written as(

∂R

∂w

T [∂R
∂w

T

PC

]−1
)(

∂R

∂w

T

PC
ψ

)
=

∂f

∂w

T

, (14)

where [∂R/∂w]TPC is the preconditioner matrix and ([∂R/∂w]TPC)−1 is the approximated
inverse of [∂R/∂w]T . The preconditioner [∂R/∂w]TPC should be an approximation of
[∂R/∂w]T but easily invertible. To this end, we make approximations to the residuals
and their linearizations for [∂R/∂w]TPC . We compute the convective terms by using
the first-order scheme. This reduces the stiffness of the preconditioner matrix. We
then shrink the residual stencils by reducing the maximum level of connected states
for p and φ residuals from three to two. We also ignore the turbulence-production
term to further decrease the linear system stiffness, especially for the viscous layer near
the wall when using a y+ = 1 mesh. Finally, to ensure a better diagonal dominance
for both [∂R/∂w]TPC and [∂R/∂w]T , we normalize the cell and face residuals by their
volume and face area, respectively. We also normalize each column of state Jacobians by
their reference values at the far field [49]. The above preconditioning strategy reliably
converges the adjoint equations, even in the case of large flow separation regions.

3 Results and Discussion
In this section, we start by describing the flow simulation configurations and verify our
CFD solver by comparing our simulation results with the experimental data reported by
Coletti et al. [89]. Next, we elaborate on the optimization setup and show the results for
rib-free and ribbed optimizations with a range of trade-offs between aerodynamic and
heat transfer performance. In addition, we compare our optimization results with the
results of previous work [33, 90].

3.1 Flow simulation configurations and solver verification

As mentioned in the introduction, we use the Von Karman Institute U-bend channel [76]
as our baseline configuration. As shown in Fig. 4, the U-bend has a square cross section
with a hydraulic diameter Dh = 0.075 m. According to Verstraete [76], the simulation
domain consists of an upstream section going from x = 0 (inlet) to x = 10Dh, a 180◦-
bend section, and a downstream section from x = 10Dh back to x = 0 (outlet). Because
the channel is symmetric with respect to the z = 0 plane, we simulate only half of the
geometry. We generate the structured mesh shown in Fig. 5(a), which has 409 600 cells
for the rib-free case. For the ribbed case, we add nine squared ribs on the top wall, which
are aligned orthogonally to the flow direction and have a height corresponding to 5% of
Dh. The mesh for the ribbed case has 1 339 200 cells and is shown in Fig. 5(b). The
averaged y+ for these two cases is 0.9. We use ANSYS ICEM to construct the U-bend
geometry and generate the meshes. To ensure that these mesh densities are sufficient, we
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Figure 4: Geometry dimensions for the rib-free and ribbed U-bend configurations, which have
a hydraulic diameter of Dh = 0.075 m. For the rib-free case, we confine the U-bend surfaces
within the shaded bounding box and impose the limit −0.6Dh ≤ z ≤ 0.6Dh. For the ribbed
case, we have nine squared ribs on the top wall with rib height Hr/Dh = 0.05.

Figure 5: Structured mesh for the rib-free and ribbed U-bend channels. The red and blue
squares are the FFD points that manipulate the U-bend surfaces. We select only the blue FFD
points as the design variables and keep the red FFD points fixed during the optimizations.
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evaluate how mesh size affects the simulation and optimization results, which is detailed
in the appendix.

To be consistent with Verstraete [76], we impose a velocity profile at the inlet to
reproduce the boundary layer development that occurs in the experiment. The reference
bulk velocity is 8.4 m/s, and the Reynolds number is 4.2× 104, based on Dh. The inlet
temperature is 293.15 K, whereas the wall temperature is fixed at 303.15 K to produce
a 10 K temperature difference to drive the heat transfer. The symmetry boundary
condition is imposed at the z = 0 plane and a zero-gradient boundary condition is
imposed at the outlet. We use the second-order linear upwind scheme for the convective
terms and a central differential scheme for the diffusion terms. Turbine heat transfer
simulations are highly sensitive to the turbulence model. Spalart–Allmaras, k-ε, and
k-ω SST are three popular turbulence models that have been used in recent turbine heat
transfer studies [12, 15, 27, 28, 36, 69, 71, 90, 91]. We evaluated the impact of these
turbulence models on the simulation results and find that the Spalart–Allmaras model
is the best option for our case (see appendix). Therefore, we use the Spalart–Allmaras
model in this work.

We quantify the aerodynamic loss by the total pressure loss coefficient CPL, which
is defined as

CPL =
pup0 − pdown

0

0.5ρU2
0

, (15)

where U0 = 8.4 m/s is the reference velocity and p0 is the averaged total pressure. The
superscripts “up” and “down” denote the upstream and downstream locations where we
compute the total pressure. We follow the experimental configuration of Coletti et al.
[89] and compute the upstream total pressure at x = 6.26Dh and the downstream total
pressure at the outlet surface (see Fig. 4 for reference).

To quantify the heat transfer, we use the Nusselt number, which is defined as

Nu =
qDh

(Tw − TB)k
, (16)

where q is the heat flux, k is the thermal conductivity, and Tw and TB are the wall
temperature and bulk temperature, respectively. To compute the bulk temperature, we
assume a linear increase of the mainstream temperature from the inlet to outlet. Next,
TB is linearly interpolated based on the normalized streamwise location. The Nusselt
number averaged over the U-bend walls is then computed as

Nu =
1

S

N∑
i=1

Nui dSi, (17)

where the subscript i denotes the index of a discrete surface mesh, dS is the area of
surface mesh, and S is the total surface area. The averaging is performed on all the U-
bend and rib walls, starting from the “up” location to the outlet. To normalize, we use
the reference Nusselt number Nu0 computed by using the Dittus–Boelter correlation,
Nu0 = 0.023Re0.8Pr0.4 = 99.6.
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We first validate our CFD solver by comparing the simulated velocity field with the
experimental data measured by Coletti et al. [89], as shown in Fig. 6. Our definition of
z/Dh differs from that of Coletti et al. [89] because of the symmetry boundary condition
that we use. The inner-wall separation bubble is well captured and the velocity distribu-
tions at the symmetry (z/Dh = 0) and upper (z/Dh = 0.47) planes are consistent with
the experiments. In terms of averaged quantities, the simulated CPL (1.20) is 16.5%
higher than the value of 1.03 measured by Coletti et al. [89]. A similar overestimation
also occurred in other U-bend studies [33, 71], which we suspect is partially because we
use a reduced simulation domain such that the three-dimensional velocity distribution
at the inlet is not identical to the distribution in experiments.

We validate the capability of our CFD solver to simulate heat transfer, as shown
in Fig. 7. Overall, the agreement for heat transfer is poorer than for velocity. In the
experiments, there is a high Nu in the downstream section of the U-bend, which is caused
by flow separation and enhanced turbulence mixing. The simulated Nu captures this
trend but overestimates the magnitude of Nu at the top wall. Moreover, the experiments
have a high Nu at the corner between the inner and top walls in the downstream section,
which is not quantitatively captured by our simulation. Overall, the simulated Nu/Nu0
is 1.43, which is 13.3% lower than the experimental value of 1.65. Given that the
measurement uncertainty for Nu ranges from 7% to 11% [89], our CFD prediction is
acceptable.

3.2 Formulation and convergence of optimization problem

As mentioned in Sec. 2.1, we use the FFD points to manipulate the geometries of the
U-bend and its ribs. Figure 5 shows the FFD setup for the rib-free and ribbed cases.
Only the blue FFD points are allowed to move, whereas the red FFD points are fixed
during the optimization process.

For the rib-free case, we use 63 FFD points, as shown in Fig. 5(a). We allow the
top FFD points to move in the z direction and the side FFD points to move in both
the x and y directions. In total, we have 113 degrees of freedom (i.e., design variables)
for this case. According to Verstraete [76], for structural reasons, the U-bend surfaces
should be within the bounding box: 8Dh ≤ x ≤ 11.26Dh, −1.5Dh ≤ y ≤ 1.5Dh, and
−0.6Dh ≤ z ≤ 0.6Dh [see Fig. 4(a) for reference]. This is done by setting proper
lower and upper bounds for each FFD displacement. To ensure a smooth transition,
we impose 29 linear constraints such that the surface slope with respect to z is zero
at the symmetry plane. In addition, we set nine linear constraints to avoid a potential
negative mesh volume caused by the intersection of inner walls. Although there are
other design considerations in internal cooling designs (e.g., curvature constraints to
lower manufacturing cost [49]), they are beyond the scope of this paper are left to future
work. Table 1 summarizes the optimization configuration.

For the ribbed case, we use 108 FFD points to morph the rib geometries, while the
U-bend channel remains unchanged. Table 2 summarizes the formulation of the op-
timization problem. For each rib, we use two FFD points in the streamwise direction,
three FFD points in the spanwise direction, and two FFD points in the vertical direction
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Figure 6: The simulated velocity fields are consistent with the experimental data measured
by Coletti et al. [89].

Figure 7: The simulated Nusselt number distribution is qualitatively consistent with the
experimental data measured by Coletti et al. [89].
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Table 1: Formulation of optimization problem for the rib-free case. The U-bend channel is
parameterized by using 113 design variables, and 38 constraints ensure feasible designs.

Function or variable Description Quantity

Minimize f Weighted CPL and Nu

with respect to ∆x, ∆y, and ∆z Displacement of FFD points 113

subject to gsymz =0 Zero slope at symmetry plane 29
∆yinner1 + ∆yinner2 > tmin Nonoverlapping inner walls 9
bound(∆x, ∆y, ∆z) Design-variable bounds to confine the

design surfaces within the bounding box
Total constraints 38

[see blue FFD points in Fig. 5(b)]. We allow all FFD points to move in the z direction.
However, to ensure that the U-bend geometry is unchanged, we restrict the z displace-
ment to be zero for the upper FFD points (k = 4). For ribs 1 to 3 and 7 to 9, we allow
their FFD points to move in the x direction, whereas for ribs 4 to 6, we allow only the
midspan FFD points (j = 2) to move in the x and y directions.

In total, we have 146 degrees of freedom (i.e., design variables) for this case. The
above FFD setup parameterizes the ribs so that the optimization can change their shape,
height, pitch, and angle. None of the variables are linked among the ribs and each rib
is allowed to change independently. To avoid potential negative mesh volume, we set 46
linear constraints to link the x and y displacements of the FFD points between k = 3
and k = 4; the cross section of the ribs remains rectangular. Moreover, we set bounds for
the FFD displacement to ensure that each rib does not intersect and that the rib height
falls in the range 0.03Dh ≤ Hr ≤ 0.14Dh. Changing only the ribs isolates the impact of
the U-bend shape and the rib design. A combined U-bend shape and rib optimization
can potentially further improve performance, as reported by Gao et al. [28]; however,
this topic is beyond the scope of this paper.

Table 2: Formulation of optimization problem for the ribbed case. The ribs are parameterized
by using 146 design variables, and 46 constraints ensure feasible designs.

Function or variable Description Quantity

Minimize f Weighted CPL and Nu

with respect to ∆x, ∆y, and ∆z Displacement of FFD points 146

subject to ∆xk=3=∆xk=4 Linear constraints to link x 46
∆yk=3=∆yk=4 and y displacements
−0.533 ≤ ∆x/Dh ≤ 0.533 Design-variable bounds to avoid rib
−0.533 ≤ ∆y/Dh ≤ 0.533 intersection and limit rib height
−0.267 ≤ ∆z/Dh ≤ 0.047

To consider both aerodynamics and heat transfer, we use a weighted objective func-
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tion

f = w
CPL

Cb
PL

− (1− w)
Nu

Nu
b
, (18)

where the superscript b denotes the value for the baseline design. We run multiple
optimizations for different values of w (listed in Table 3). Opt0 corresponds to minimum
pressure loss design, whereas Opt4 is the maximum heat transfer design. In Opt4, to
improve the robustness of optimization process, we set a small w for CPL instead of using
w = 0 because, with w = 0, the optimizer tends to choose designs that have excessive
flow separation and unsteadiness such that the flow and adjoint solvers fail to converge.
By using a small w for CPL, we allow the optimizer to maximize heat transfer while
maintaining the flow separation at a manageable level.

Table 3: Weights for aerothermal optimizations.

Opt0 Opt1 Opt2 Opt3 Opt4

w (rib free) 1.0 0.5 0.2 0.1 0.002
w (ribbed) 1.0 0.5 0.3 0.1 0.002

We run all the optimizations on TACC Stampede2. Each job uses 96 CPU cores on
4 Skylake nodes. The Skylake nodes are equipped with Intel Xeon Platinum 8160 CPUs
running at 2.1 GHz. The optimizations are terminated when the objective function
changes less than 0.01% in five steps. The rib-free optimizations take between 25 and
36 iterations to converge, whereas the ribbed cases require 20 to 26 iterations, as shown
in Fig. 8. Each optimization iteration consists of one adjoint derivative computation
and one to three flow simulations. The reason for multiple flow simulations (function
evaluations) is because the optimizer uses a backtracking line search to improve the
design.

For simple cases such as Opt0 (rib-free), the optimizer eliminates the flow separation
to minimize CPL (Fig. 11b) and the optimization converges smoothly. However, when
increasing the weight for Nu, the optimizer enhances heat transfer by increasing flow sep-
aration. As a result, the flow simulation converges poorly, which degrades the accuracy
of adjoint derivatives, as explained in the introduction. Due to the degraded derivative
accuracy, the line search requires more function evaluations to improve a design and
the optimization problem becomes harder to converge. In the worst case scenario, the
optimization aborts because the optimizer fails to further improve a design (e.g., Opt4
rib-free).

For the rib-free case, each adjoint computation takes 310 s and uses 61.6 GB of
memory, and each flow simulation takes 200 s and uses 10.2 GB of memory. Overall,
the optimization converges after 3 to 5 hours, depending on the flow conditions. For the
ribbed case, each adjoint computation takes 1100 s and uses 229.2 GB of memory and
each flow simulation takes 580 s and uses 17.4 GB of memory. Overall, the optimization
converges after 10 to 16 hours. The longer runtime for the ribbed case is due to the
larger mesh size and stronger flow separation.
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Figure 8: The rib-free optimizations take between 25 and 36 iterations to converge, whereas
the ribbed cases require 20 to 26 iterations.

To summarize, the proposed framework can perform aerothermal optimizations with
a large number of design variables in an overnight cycle. Such optimizations are not pos-
sible with gradient-free methods because their computational cost does not scale well
with the number of design variables [38]. As expected, our discrete adjoint implemen-
tation requires a relatively large amount of memory because we explicitly store all the
Jacobian matrices. However, this is not a severe limitation for small problems with a few
million cells because modern high-performance computing systems commonly have more
than 128 GB of memory per node. For larger problems with O(100 million) cells, the
large memory usage becomes a bottleneck, but this memory limitation can be alleviated
by using a Jacobian–free adjoint approach [92].

3.3 Design optimization results

In this section, we report the U-bend optimization results with various weights for aero-
dynamics and heat transfer. We also analyze the flow structures to interpret the opti-
mization results. We start with the rib-free case, followed by the ribbed case.
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3.3.1 Rib-free case

Figure 9 shows the Pareto front based on five optimizations with varying weights. For
the minimum pressure loss case (Opt0), we obtain a 57.5% CPL reduction, similar to
the 58.7% gradient-based optimization reduction reported by Verstraete et al. [71]. Our
gradient-based CPL reduction is greater than the 36% reduction reported by Verstraete
et al. [90], who used a gradient-free method (a metamodel-assisted differential evolution
algorithm). Willeke and Verstraete [93] arrived at a similar conclusion when they com-
pared gradient-based and gradient-free methods for a two-dimensional U-bend channel.
This additional CPL reduction is primarily due to the large number of design variables,
which provides more design freedom. Because the turbulence mixing is suppressed when
minimizing the pressure loss, Nu decreases by 10.7%.

When decreasing w to 0.002 (maximum heat transfer case; Opt4), we obtain a 42.0%
increase in Nu. Again, we obtain a greater increase in Nu than the 16.9% bulk heat
transfer enhancement reported by Verstraete and Li [33]. However, the Opt4 design
generates excessive flow separation and CPL increases by 770.9%.

For the Opt2 case, we obtain a 13.0% increase in Nu and a 11.7% reduction in CPL,
which indicates that the design is appropriate in terms of both aerodynamics and heat
transfer. The other two useful designs are Opt1 and Opt3. For Opt1, we obtain a
slightly smaller CPL reduction (53.4%) than for the minimum pressure loss case (57.5%
in Opt0). However, the penalty in Nu is only 3.4%, which is much lower than the 10.7%
penalty in Opt0. Similarly, for Opt3, Nu improves by 18.2% with only a 55.5% increase
in CPL, as opposed to the 770.9% increase in CPL incurred in the maximum heat transfer
case (Opt4). These results highlight the need to consider both aerodynamics and heat
transfer in internal cooling designs and to make the appropriate design tradeoffs.

The two competing objectives CPL and Nu depend strongly on the velocity distri-
bution in the turbine internal cooling channel [1]. The pressure loss (CPL) is correlated
with the velocity shear generated by flow acceleration and separation. As the velocity
increases or the flow becomes separated, the friction loss increases and so does CPL.
However, the accelerated flow increases the convective heat transfer, and the flow sepa-
ration enhances the turbulence mixing and results in a greater heat flux transferring to
the wall surfaces. Both of these factors contribute to an increased Nu.

We now compare in Fig. 10 the baseline and optimized U-bend shapes. Figure 11
shows the corresponding velocity distribution and streamline at the symmetry plane,
Fig. 12 shows the local Nusselt number distribution on the U-bend walls, and Fig. 13
shows the average Nusselt number distribution along the streamwise direction.

For the minimum pressure loss case (Opt0), the channel expands in both the z
and y directions [Fig. 10(b)], and the magnitude of the velocity decreases [Fig. 11(b)].
A similar trend occurred in previous U-bend-optimization studies [33, 71, 90]. The
optimizer creates a smoother U-bend section to reduce the adverse pressure gradient
[see Fig. 11(b)]. As a result, the inner wall separation bubble in the downstream section
of the baseline design [Fig. 11(a)] is eliminated. These two factors reduce the friction loss,
so CPL decreases. However, the trade-off for reduced velocity and separation suppression
is that the local Nu decreases on all walls [Figs. 12(b) and 13].
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Figure 9: Pareto front for CPL and Nu (rib free). For the minimum pressure loss case (Opt0),
we obtain 57.5% CPL reduction, whereas for the maximum heat transfer case (Opt4), we
increase Nu by 42.0%. Opt2 is a balanced design with simultaneous improvement in aerody-
namics (11.7% reduction in CPL) and heat transfer (13.0% increase in Nu). The reference
values are computed from the baseline design without optimization.

For the maximum heat transfer case (Opt4), the channel shrinks in the z direction
[Fig. 10(f)], forcing the flow to accelerate [Fig. 11(f)]. In addition, the optimization
creates a tongue-like feature at the inner wall, which results in excessive flow separation
downstream. The accelerated flow and large separation increase the heat transfer, es-
pecially for the outer and top walls [Figs. 12(f) and 13]. As expected, this design has a
large CPL due to excessive friction loss.

For Opt2, the optimization creates a shrink-expansion-shrink feature in which the
channel shrinks, expands, and then shrinks in the z direction before, within, and after the
U-bend section, respectively [Fig. 10(d)]. This intriguing feature effectively increases the
velocity magnitude such that the heat transfer is enhanced around the U-bend section
[Figs. 12(d) and 13(a)]. In addition, it creates a smoother U-bend transition to minimize
flow separation, as shown in Fig. 11(d). Eventually, this balanced design leads to the
simultaneous improvement in both aerodynamics and heat transfer.

As mentioned above, the Opt1 and Opt3 designs also balance the aerodynamics and
heat transfer. Similarly to Opt0, the Opt1 design expands the channel in both the y and
z directions [Fig. 10(c)] to reduce friction loss; however, there is a shrink feature in the
bend section, which increases the velocity [Fig. 11(c)] and enhances the heat transfer
[Fig. 12(c)]. For Opt3, there is a large flow separation region in the downstream region
[Fig. 11(e)], which increases the heat transfer [Fig. 12(e)]. In addition, we observe a
shrink-expansion-shrink feature [Fig. 10(e)] similar to Opt2. Compared with Opt4, this
feature reduces the velocity in the bend section [Fig. 11(e)] and reduces the friction loss.
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Figure 10: Comparison between baseline and rib-free optimized shapes. For the minimum
pressure loss case (Opt0), the channel expands in the bend section, whereas the channel shrinks
for the maximum heat transfer case (Opt4). Opt2 exhibits a shrink-expansion-shrink feature.

3.3.2 Ribbed case

Next, we focus on the ribbed U-bend case, where we optimize only the ribs to improve
the aerodynamics and heat transfer, while the U-bend channel remains unchanged. In
previous studies [12, 13] that used a gradient-free optimization algorithm, the optimiza-
tion was limited to a small number of design variables such that all the rib design
variables were linked, thus having the same shape, height, pitch, and angle. Although
these optimization studies led to improved designs, the restricted design freedom limited
the potential improvements in performance. In the present study, we overcome this lim-
itation by using 146 design variables to parameterize the ribs, where each rib can have
a unique shape (see Sec. 3.2). The goal is to further demonstrate the benefit of using
the coupled adjoint derivative computation and gradient-based optimization approach
for turbine internal cooling design.

Figure 14 shows the Pareto front constructed from the five optimizations with varying
weights. Similarly to the rib-free case, optimizing only the aerodynamics incurs a large
penalty for heat transfer (Opt0), and vice versa (Opt4). By setting the proper weights,
we obtain more balanced designs (Opt1 and Opt2) that give simultaneous improvements
in CPL and Nu.

Overall, we obtain less improvement in heat transfer and aerodynamics compared
with the rib-free case. For example, for Opt2, we obtain a 9.7% decrease in CPL and a
6.9% increase in Nu, which are lower than the values for the rib-free case (11.7% and
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Figure 11: Velocity distribution and streamlines at the symmetry plane (rib free). For the
minimum pressure loss case (Opt0), velocity decreases due to the expansion, whereas velocity
increases for the maximum heat transfer case (Opt4), and a large separation region appears in
the downstream section. For Opt2, the velocity increases but no large separation occurs.

13.0% for CPL and Nu, respectively; see Fig. 9). This indicates that, to improve the
overall heat transfer and aerodynamic performance, changing the U-bend shape is more
effective than changing only the ribs. As expected, adding ribs is more effective for
improving the local heat transfer. For example, by comparing the baseline designs in
Figs. 13 and 18, we see that adding ribs increases the local heat transfer, especially on
the top wall in the upstream section.

We now compare the baseline and optimized rib shapes (Fig. 15). Overall, increasing
the weight for Nu results in higher ribs. This is expected, because higher ribs increase
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Figure 12: Comparison of Nu between the baseline and rib-free optimized shapes. For the
minimum pressure loss case (Opt0), Nu decreases due to the reduced velocity in the channel,
whereas for the maximum heat transfer case (Opt4), Nu is large on the top and outer walls
because of the increased velocity and large separation. The shrink-expansion-shrink feature in
Opt2 effectively increases Nu on all walls.

flow separation and generate stronger streamwise vortices, which enhance heat transfer.
However, to balance the pressure loss, every rib adopts a completely different design that
depends on the local flow conditions in the U-bend channel. In other words, the shape,
height, pitch, and angle differ from rib to rib and do not follow any of the patterns
reported in the literature. This result underscores the value of allowing each rib to
change independently.

To analyze the three-dimensional vortex structures in the ribbed channel, we plot
the isosurface of Q, which is a metric to identify the vortex core and is defined as

Q =
1

2
(Ωi,jΩi,j − Si,jSi,j), (19)

where S and Ω are the strain and rotation rates, respectively. Figure 16 compares
Q isosurfaces between the baseline and optimized shapes. Figures 17 and 18 show the
distribution of the corresponding local Nusselt number and the averaged Nusselt number
along the streamwise direction, respectively.

The baseline design leads to rib-generated secondary flows and the corresponding
strong vorticity near all the ribs [Fig. 16(a)]. For ribs 1 to 4, these secondary flows do
not interact with each other because of a relatively large pitch-to-height ratio (13.4). In
addition, a strong vortex core originates at the inner wall in the bend section and propa-
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Figure 13: Averaged Nusselt number along the streamwise direction (rib free).

gates further downstream. This vortex core is attributed to the interaction between the
inner wall separation bubble and the secondary flow from the ribs. In Opt0, the opti-
mizer reduces the rib heights so that this interaction becomes weaker, and the size of the
inner wall vortex core decreases slightly. Moreover, Opt0 uses a positive angle (rotated
counterclockwise with respect to the streamwise direction) for ribs 7–9, which has the
effect of further reducing the interaction between the rib-generated secondary flows and
the inner wall vortex in the downstream section, as observed in the experimental study
by Mochizuki et al. [6]. As a result, Nu decreases, especially on the top and outer walls
(Figs. 17 and 18).

Increasing the weight for Nu (from Opt1 to Opt4) leads to a clear interaction of
secondary flows between the ribs, which is primarily due to the increase in rib height.
For example, starting from Opt2, a second strong vortex core originates from rib 3
and propagates downstream (Fig. 16). This second vortex also interacts with the inner
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Figure 14: Pareto front for CPL and Nu (ribbed). For the minimum pressure loss case (Opt0),
CPL is reduced by 22.7%, whereas Nu increases by 17.1% for the maximum heat transfer case
(Opt4). Opt1 and Opt2 are more balanced designs that give simultaneous improvement in
aerodynamics (18.6% and 9.7% reduction in CPL, respectively) and heat transfer (2.1% and
6.9% increase in Nu, respectively). The reference values correspond to the baseline design
without optimization.

wall separation bubble and strengthens its intensity. In addition, the optimizer uses
a negative angle (rotated clockwise with respect to the streamwise direction) for ribs
7–9 to further strengthen the rib-generated secondary flow. The stronger interaction
between the inner wall separation bubble and the rib secondary flows leads to a larger
inner wall vortex core. The enhanced vorticity increases the local Nu, especially on the
top wall, as shown in Figs. 17 and 18.

To summarize, the ribs and U-bend channel generate complex vortex structures.
The optimizations exploit this by adjusting the rib arrangements to control the vortex
interaction and thereby balance the aerodynamics and heat transfer.

4 Conclusions
We discuss herein the use of the adjoint method for aerothermal optimizations for a
ribbed U-bend channel. To allow a large design freedom, we use more than 100 de-
sign variables to parameterize the rib and channel geometries. We develop an improved
preconditioning strategy that involves scaling the Jacobians and reducing the precon-
ditioner stencil, which allows us to reliably converge the adjoint equations, even under
conditions of large flow separation.

We find that optimizing only for heat transfer incurs a large penalty on pressure
loss, and vice versa. For example, in the rib-free case, Nu increases by 42.0% when
optimizing only heat transfer, whereas CPL increases by 770.9%. Similarly, for the
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Figure 15: Comparison between baseline and optimized rib shapes. The channel geometry
remains unchanged. Overall, the rib heights increases with increasing weight for Nu. However,
depending on the local flow condition, each rib adopts a different design (shape, height, pitch,
and angle) to balance aerodynamics and heat transfer.

minimum pressure loss case (Opt0), CPL decreases by 57.5%, whereas Nu decreases by
10.7%. In contrast, setting appropriate weights in the objective function leads to designs
in which aerodynamics and heat transfer are more balanced. For example, setting an
80% weight for Nu simultaneously improves both aerodynamics and heat transfer in
Opt2. These results highlight the need to consider both aerodynamics and heat transfer
when optimizing the design of turbine internal cooling.

In terms of performance improvement, the proposed method provides a greater re-
duction in CPL and a greater enhancement of Nu compared with previous studies that
use gradient-free methods.

For the minimum pressure loss case (rib-free), the 57.5% CPL reduction obtained
by using the proposed method exceeds the 36.0% CPL reduction reported by Verstraete
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Figure 16: Comparison between baseline and optimized vortex structures. The isosurface is
based on the Q criterion (Q = 1 × 104) and the contour is based on the velocity magnitude.
Overall, the velocity increases with increasing weight for Nu, which increases the heat transfer
in the channel.

et al. [90]. Moreover, for the maximum heat transfer case, Nu increases by 42.0%, which
is also higher than the previously reported bulk heat transfer enhancement of 16.9% [33].
The greater improvement in CPL and Nu in our study is attributed primarily to the large
design freedom enabled by the proposed optimization framework.

To further demonstrate the proposed optimization framework, we add nine squared
ribs on the top wall of the U-bend and allow all independent changes in rib arrangement.
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Figure 17: Comparison between baseline and optimized Nu distribution. For the minimum
pressure loss case (Opt0), both the rib height and Nu decrease. For the maximum heat transfer
case (Opt4), both the rib height and Nu increase, especially on the top walls.

We find that, depending on the local flow conditions, each rib adopts a different
arrangement (shape, height, pitch, and angle) to balance heat transfer and aerodynamics.
Generally, when adding more weight to Nu, the optimization increases the rib height
to enhance the rib secondary flow. The rib secondary flow then interacts with the inner
wall separation bubble, which enhances heat transfer, especially on the top wall. The
results indicate that, to improve the overall heat transfer and aerodynamic performance,
optimizing the U-bend shape is more effective than optimizing only the ribs. However, to
improve the local heat transfer, adding ribs is more effective, especially in the upstream
section.

We have developed and demonstrated powerful methods for designing internal cool-
ing passages that can optimize designs parameterized using a large number of design
variables to parameterize complex cooling configurations, thanks to gradient-based opti-
mization and with coupled adjoint derivative computation. The proposed optimization
framework has the potential to optimize general turbine heat transfer designs, such as
the coupled design of channel shape and ribs and the design of film cooling and jet
impingement cooling processes.
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Figure 18: Averaged Nusselt number along the streamwise direction (ribbed).
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“Internal cooling channels design investigations: Aerothermal optimisation of
ribbed U-bends,” ASME Turbo Expo 2013: Turbine Technical Conference and
Exposition, American Society of Mechanical Engineers, 2013, pp. V03AT12A046–
V03AT12A046.

[13] Xi, L., Gao, J., Xu, L., Zhao, Z., and Li, Y., “Study on heat transfer performance
of steam-cooled ribbed channel using neural networks and genetic algorithms,” In-
ternational Journal of Heat and Mass Transfer, Vol. 127, 2018, pp. 1110–1123.

[14] Xie, G., Liu, X., and Yan, H., “Film cooling performance and flow characteristics
of internal cooling channels with continuous/truncated ribs,” International Journal
of Heat and Mass Transfer, Vol. 105, 2017, pp. 67–75.

31



[15] Wang, L., Wang, S., Wen, F., Zhou, X., and Wang, Z., “Heat transfer and flow
characteristics of U-shaped cooling channels with novel wavy ribs under stationary
and rotating conditions,” International Journal of Heat and Mass Transfer, Vol.
126, 2018, pp. 312–333.

[16] Ruck, S., and Arbeiter, F., “Detached eddy simulation of turbulent flow and heat
transfer in cooling channels roughened by variously shaped ribs on one wall,” In-
ternational Journal of Heat and Mass Transfer, Vol. 118, 2018, pp. 388–401.

[17] Baek, S., Lee, S., Hwang, W., and Park, J. S., “Experimental and Numerical Inves-
tigation of the Flow in a Trailing Edge Ribbed Internal Cooling Passage,” Journal
of Turbomachinery, Vol. 141, No. 1, 2019, p. 011012.

[18] Prakash, C., and Zerkle, R., “Prediction of Turbulent Flow and Heat Transfer in a
Ribbed Rectangular Duct With and Without Rotation,” Journal of Turbomachin-
ery, Vol. 117, No. 2, 1995, pp. 255–264.

[19] Stephens, M., Shih, T., and Civinskas, K., “Computation of flow and heat transfer
in a rectangular channel with ribs,” 33rd Aerospace Sciences Meeting and Exhibit,
1995, p. 180.

[20] Rigby, D. L., Steinthorsson, E., and Ameri, A., “Numerical prediction of heat trans-
fer in a channel with ribs and bleed,” ASME 1997 International Gas Turbine and
Aeroengine Congress and Exhibition, American Society of Mechanical Engineers,
1997, pp. V003T09A078–V003T09A078.

[21] Iacovides, H., “Computation of flow and heat transfer through rotating ribbed
passages,” International Journal of Heat and Fluid Flow, Vol. 19, No. 5, 1998, pp.
393–400.

[22] Bonhoff, B., Tomm, U., Johnson, B. V., and Jennions, I., “Heat transfer predictions
for rotating U-shaped coolant channels with skewed ribs and with smooth walls,”
ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition,
American Society of Mechanical Engineers, 1997, pp. V003T09A027–V003T09A027.

[23] Iacovides, H., and Raisee, M., “Recent progress in the computation of flow and
heat transfer in internal cooling passages of turbine blades,” International Journal
of Heat and Fluid Flow, Vol. 20, No. 3, 1999, pp. 320–328.

[24] Jang, Y.-J., Chen, H.-C., and Han, J.-C., “Computation of flow and heat transfer
in two-pass channels with 60 deg ribs,” Journal of Heat Transfer, Vol. 123, No. 3,
2001, pp. 563–575.

[25] Wang, T.-S., and Chyu, M. K., “Heat convection in a 180-deg turning duct with
different turn configurations,” Journal of Thermophysics and Heat Transfer, Vol. 8,
No. 3, 1994, pp. 595–601.

32



[26] Su, G., Chen, H.-C., Han, J.-C., and Heidmann, J. D., “Computation of flow and
heat transfer in rotating two-pass rectangular channels (AR= 1:1, 1:2, and 1:4)
with smooth walls by a Reynolds stress turbulence model,” International Journal
of Heat and Mass Transfer, Vol. 47, No. 26, 2004, pp. 5665–5683.

[27] Saha, K., and Acharya, S., “Effect of bend geometry on heat transfer and pressure
drop in a two-pass coolant square channel for a turbine,” Journal of Turbomachin-
ery, Vol. 135, No. 2, 2013, p. 021035.

[28] Gao, T., Zhu, J., Li, J., Gong, J., and Xia, Q., “Improving heat transfer perfor-
mance in two-pass ribbed channel by the optimized secondary flow via bend shape
modification,” International Communications in Heat and Mass Transfer, Vol. 103,
2019, pp. 43–53.

[29] Puente, R., Corral, R., and Parra, J., “Comparison between aerodynamic designs
obtained by human driven and automatic procedures,” Aerospace Science and Tech-
nology, Vol. 72, 2018, pp. 443–454.

[30] Kim, H.-M., and Kim, K.-Y., “Design optimization of rib-roughened channel to
enhance turbulent heat transfer,” International Journal of Heat and Mass Transfer,
Vol. 47, No. 23, 2004, pp. 5159–5168.

[31] Kim, H.-M., and Kim, K.-Y., “Shape optimization of three-dimensional channel
roughened by angled ribs with RANS analysis of turbulent heat transfer,” Interna-
tional Journal of heat and mass transfer, Vol. 49, No. 21-22, 2006, pp. 4013–4022.

[32] Kim, K.-Y., and Lee, Y.-M., “Design optimization of internal cooling passage with
V-shaped ribs,” Numerical Heat Transfer, Part A: Applications, Vol. 51, No. 11,
2007, pp. 1103–1118.

[33] Verstraete, T., and Li, J., “Multi-objective optimization of a U-bend for minimal
pressure loss and maximal heat transfer performance in internal cooling channels,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, American
Society of Mechanical Engineers, 2013.

[34] Mazaheri, K., Zeinalpour, M., and Bokaei, H., “Turbine blade cooling passages
optimization using reduced conjugate heat transfer methodology,” Applied Thermal
Engineering, Vol. 103, 2016, pp. 1228–1236.

[35] Yang, Y.-T., Tang, H.-W., and Wong, C.-J., “Numerical simulation and optimiza-
tion of turbulent fluids in a three-dimensional angled ribbed channel,” Numerical
Heat Transfer, Part A: Applications, Vol. 70, No. 5, 2016, pp. 532–545.

[36] Seo, J.-W., Afzal, A., and Kim, K.-Y., “Efficient multi-objective optimization of a
boot-shaped rib in a cooling channel,” International Journal of Thermal Sciences,
Vol. 106, 2016, pp. 122–133.

33



[37] Martins, J. R. R. A., and Hwang, J. T., “Multidisciplinary Design Optimization
of Aircraft Configurations—Part 1: A modular coupled adjoint approach,” Lecture
series, Von Karman Institute for Fluid Dynamics, Rode Saint Genèse, Belgium,
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A Dependence of simulation and optimization results on
configuration of computational fluid dynamics

As mentioned in the introduction, flow separation is commonly present in turbine inter-
nal cooling channels. The complex flow conditions require that we evaluate how various
CFD configurations affect the simulation and optimization results. In this appendix, we
compare the simulation results obtained from three turbulence models and three mesh
densities. We also run fine-mesh simulations of the optimized geometries to verify the
optimization results.

We first compare the simulated velocity fields by using three turbulence models
(Spalart–Allmaras, Launder–Sharma low Reynolds number k-ε, and k-ω SST), as shown
in Figs. 19 and 20. We use the same mesh (409 600 cells) for these three simulations.
In terms of averaged quantities, the Spalart–Allmaras model gives the best agreement,
although all three turbulence models overestimate the total pressure loss. For flow
details, the Spalart–Allmaras model most accurately captures the velocity magnitude
and separation bubble.

Figures 21 and 22 compare the distribution of Nusselt number for the three tur-
bulence models. The Launder–Sharma k-ε model overestimates the average Nusselt
number, whereas the Spalart–Allmaras and k-ω SST models underestimate it. All three
turbulence models fail to quantitatively capture the distribution of the Nusselt number,
although the Spalart–Allmaras model gives the best agreement. Overall, we conclude
that the Spalart–Allmaras model is the best option for this case.

Table 4 shows how mesh density affects the simulated pressure loss and Nusselt
number when using the Spalart–Allmaras turbulence model. Refining the meshes from
medium to fine results in a 4.5% increase in CPL for the rib-free case, whereas the
variation is less than 2.0% for all other cases. This amount of variation is expected,
especially given the large separation in the flow. As mentioned in Sec. 3.1, we use the
medium mesh for optimizations to save computation time.

To further confirm the validity of the improved results obtained from the optimiza-
tions with the medium-mesh, we ran fine-mesh simulations for the optimized geometries
and compare the corresponding Pareto fronts in Fig. 23. For both rib-free and ribbed
cases, the Pareto front obtained when using a medium mesh is similar to that obtained
when using using a fine mesh. This result indicates that the derivatives computed by
using the medium mesh follow the same trend as those computed by using the fine mesh.
Therefore, the medium mesh is adequate for design optimization studies.

39



Figure 19: The velocity fields (z/Dh = 0) obtained by using the Spalart–Allmaras turbulence
model are the closest to the experimental data acquired by Coletti et al. [89].

Table 4: Impact of mesh size on pressure loss and Nusselt number when using the Spalart–
Allmaras turbulence model.

Case Mesh size Mesh cells CPL Nu/Nu0
Rib-free Coarse 51 200 1.196 1.489

Medium 409 600 1.202 1.432
Fine 3 276 800 1.257 1.404

Ribbed Coarse 167 400 2.018 1.468
Medium 1 339 200 1.984 1.422

Fine 10 713 600 2.020 1.409
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Figure 20: The velocity fields (z/Dh = 0.47) obtained by using the Spalart–Allmaras turbu-
lence model are the closest to the experimental data acquired by Coletti et al. [89].

Figure 21: The Nusselt numbers obtained by using the Spalart–Allmaras turbulence model
are the closest to the experimental data acquired by Coletti et al. [89].
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Figure 22: The Nusselt numbers obtained by using the Spalart–Allmaras turbulence model
are the closest to the experimental data acquired by Coletti et al. [89].
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Figure 23: When verifying the performance of optimized geometries obtained by using fine
meshes, we obtain Pareto fronts similar to those obtained when using medium meshes. There-
fore, medium meshes are adequate for optimizations.
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