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Design problems in aerospace engineering often involve periodic unsteady flow, and un-
derstanding its characteristics provides useful insights for the design. Aerodynamic shape
optimization has been widely used to reduce the design period for steady-flow problems; how-
ever, its application for unsteady flow remains challenging due to its high computational cost
and memory usage. In this paper, an approach is proposed to reduce the cost of aerodynamic
shape optimization for unsteady flow problems. The proposed approach uses the time-spectral
method to simulate flow and compute derivatives. Specifically, it uses a fully-segregated, block
Gauss–Seidel (FSBGS) method to solve the time-spectral flow equations. The FSBGS for-
mulation requires minimal memory overhead and code modification effort, compared with a
fully-coupled time-spectral formulation. A discrete adjoint approach is then used to compute
derivatives for the time-spectral flow solver. The diagonal blocks in the time-spectral Jacobian
are assembled by reusing the steady-state Jacobians from each time instance, while the off-
diagonal blocks are computed analytically. The NACA0012 airfoil is selected as the baseline
geometry, and an oscillating source term is added in the momentum equation to mimic peri-
odic wakes. The time-spectral flow solver is verified by comparing the simulated time-series
of drag and lift with those simulated by the time-accurate method. The performance of the
time-spectral flow and adjoint solvers are evaluated in terms of speed, memory usage, and ac-
curacy. Finally, the implemented solvers are incorporated into a gradient-based optimization
framework to perform aerodynamic shape optimization under periodic wakes. The averaged
drag reduces by 10.5% and the lift constraint is satisfied. The proposed method has the po-
tential to reduce the computational cost for analyzing and designing engineering systems that
involve periodic wakes, e.g., propeller-wing interaction for electric aircraft and stator-rotor
interaction for turbomachinery.

I. Introduction
Design problems in aerospace engineering often require considering periodic unsteady flow, e.g, the wakes generated

by propellers and rotors. Understanding the unsteady flow characteristics is critical because it significantly impacts the
performance of a design. For example, the distributed propulsion design used in electric vertical take-off and landing
(eVTOL) aircraft requires an understanding of the aerodynamic interaction between multiple propeller wakes and the
wing [1, 2]. In addition, multi-stage turbomachinery design needs to consider the wake interaction between rotors and
stators [3, 4]. Fortunately, with the advance in computing power, we can use high-fidelity numerical simulations (i.e.,
computational fluid dynamics; CFD) to predict the unsteady flow behavior. This eventually provides useful insight to
guide the design.

Traditionally, unsteady numerical simulations are performed in the time domain. This is done by marching the
solution in time and repeating the marching process by multiple flow-over times to reach the statistically steady state; this
approach is also known as the time-accurate method. To ensure numerical stability and accuracy, the maximal marching
time step (∆tmax) of the time-accurate method is limited by the Courant–Friedrichs–Lewy (CFL) condition. Although
the time-accurate method is robust and applicable for any complex flow conditions (e.g., large flow separation and
complex vortices structures), its computational cost is typically one or two orders of magnitudes higher than steady-state
simulations, due to the limited ∆tmax.

To alleviate the high cost of the time-accurate method, we can use the time-spectral method [5], also known as the
harmonic-balance method [6], to simulate unsteady flow. In contrast to the time-accurate method, the time-spectral
method assumes the unsteady flow is periodic and uses the Fourier series to represent the unsteady flow variables
based on only a handful of solutions within one time-period. The benefit of using the time-spectral method is that it
effectively reduces the computational cost because the simulation is no longer bounded by ∆tmax [5, 6]. Moreover, the
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time-derivative term computed by the Fourier method is much more accurate than the finite-difference method (e.g.,
second order Euler method) used in the time-accurate method [5, 6]. One drawback of using the time-spectral method is
that the dominant frequency of the flow needs to be prescribed a priori. This is challenging for self-induced unsteady
flow such as the von Kármán vortices because the dominant frequency is usually not known beforehand [5, 7, 8].
Fortunately, many design problems in aerospace engineering use prescribed periodic motions (e.g., rotating rotors and
propellers and oscillating wings), in which the dominant frequency is known. The time-spectral and harmonic balance
methods have been widely used for design problems in aerospace engineering [4–6, 9–17].

To further improve the design efficiency, we can couple an optimization algorithm with the time-spectral simulations,
such that the optimization automatically navigates the design space to find the best design. The optimization algorithm
significantly reduces the design period, compared with the human supervised approach [18]; therefore it has received
increasing interests in recent years.

There are two categories of optimization algorithms: gradient-free and gradient-based. The gradient-free methods
require only the function values to perform optimization. Therefore, they can treat the CFD solver as a black box, and are
relatively easy to implement. Some gradient-free algorithms use global search in the design space; therefore, they have
a better chance to find a point that is closer to the global minimum, compared with gradient-based methods. However,
one drawback of the gradient-free methods is that they reply on using CFD samples for design improvement, and the
computational cost to generate these samples scales exponentially with respect to the number of design variables [19, 20].

On the other hand, gradient-based methods do not need to generate a large number of CFD samples. Instead, they
typically perform local searches in the design space by using the gradient information to find the most promising
direction for design improvement. To efficiently compute the gradients, one can use the adjoint method [21] whose
computational cost is independent of the number of design variables. This feature is attractive for design problems in
aerospace engineering, in which we need to use a large number of design variables to parameterize complex design
surfaces such as aircraft wings. Therefore, we opt to use the coupled gradient-based optimization and adjoint derivative
computation approach in this paper.

The adjoint method has been used in steady-state design problems involves aerodynamics [22–31], structures [32, 33],
heat transfer [34, 35], as well as multidisciplinary design problems [36] such as aerostructural [37–40], aerothermal [41,
42], aeropropulsive [43, 44], and hydrostructural [45, 46] optimizations. To handle unsteady flow problems, one
can apply the adjoint method to a time-accurate CFD solver [47–50]. Because the objective function (e.g., drag,
lift, and moment) depends on time, one needs to assemble the unsteady adjoint formulation using state variables
(e.g., velocity, density, pressure) from all the time instances. This requires saving all the intermediate state variables
and repeatedly solving the adjoint equations for each time instance, starting from the last time instance and moving
backward. Practically, saving all the intermediate variables in memory is not feasible for large problems. Although
advanced techniques such as checkpointing can be used to trade speed for memory [51, 52], the computational cost for
time-accurate unsteady adjoint solvers are high [53].

Alternatively, one can apply the adjoint method to a time-spectral CFD solver for unsteady flow. The benefit of
using the time-spectral adjoint approach is that it needs to store only a handful of time instances that construct the
Fourier series. Therefore, the computational and memory cost for the time-spectral adjoint is much lower than that for
the time-accurate adjoint. The time-spectral adjoint approach has been reported in a handful of studies [11, 15, 16].

In this study, we develop a time-spectral solver for periodic unsteady flow problems, based on an open-source
CFD package OpenFOAM. The proposed time-spectral method uses a fully-segregated solution strategy that requires
minimal modification to the original time-accurate solver and incurs low memory overhead. In addition, we apply the
discrete adjoint method to the time-spectral CFD solver to efficiently compute derivatives, based on an open-source,
object-oriented adjoint framework DAFoam ∗. Finally, we incorporate the time-spectral flow and adjoint solvers into an
open-source, high-fidelity gradient-based optimization framework MACH †. We optimize the aerodynamic performance
of the NACA0012 airfoil under periodic wakes originated in the upstream. We mimic the unsteady wakes by adding an
oscillating source term in the momentum equation.

The rest of the paper is organized as follows. In Section II, we introduce the DAFoam framework and detail the
object-oriented adjoint development. The design optimization results are presented and discussed in Section III and we
summarize our findings in Section IV.

∗https://github.com/mdolab/dafoam
†https://github.com/mdolab/mach-aero
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II. Method

A. Flow simulation
The time-spectral solver is based on the OpenFOAM’s time-accurate flow solver pisoFoam. pisoFoam solves

three-dimensional, unsteady turbulent flow, governed by the incompressible Navier–Stokes equations:

∇ · U = 0, (1)

∂U

∂t
+ ∇ · (UU ) +

1
ρ
∇p − νeff∇ · (∇U + ∇UT ) = 0, (2)

where t is the time, p is the pressure, ρ is the density, U is the velocity vector U = [u, v,w], νeff = ν + νt with ν and νt
being the kinematic and turbulent eddy viscosity, respectively.

To connect the turbulent viscosity to the mean flow variables, the Spalart–Allmaras (SA) model is used:

∂ν̃

∂t
+ ∇ · (U ν̃) −

1
σ
{∇ · [(ν + ν̃)∇ν̃] + Cb2 |∇ν̃ |

2} − Cb1 S̃ν̃ + Cw1 fw
(
ν̃

d

)2
= 0. (3)

The turbulent eddy viscosity νt is computed from ν̃ via:

νt = ν̃
χ3

χ3 + C3
v1
, χ =

ν̃

ν
. (4)

Spalart and Allmaras [54] provide a detailed description of the terms and parameters in this model.
To solve the continuity and momentum equations (1) and (2) in time domain, the pressure implicit with splitting of

operators (PISO) algorithm [55] is used, following Jasak [56]. First, the momentum equation is discretized, and an
intermediate velocity field is solved using the pressure field obtained from the previous iteration (pt−∆t ).

aPU
t
P = −

∑
N

aNU
t
N +

U t−∆t
P

∆t
− ∇pt−∆t = H (U ) − ∇pt−∆t, (5)

where a is the coefficient resulting from the finite-volume discretization, subscripts P and N denote the control volume
cell and all of its neighboring cells, respectively, and

H (U ) = −
∑
N

aNU
t
N +

U t−∆t
P

∆t
(6)

represents the influence of velocity from all the neighboring cells and from the previous iteration. A new variable φ
(face flux) is introduced to linearize the convective term:∫

S

UU · dS =
∑
f

U fU f · S f =
∑
f

φU f , (7)

where the subscript f denotes the cell face. φ can be obtained from the previous iteration or from an initial guess.
Solving the momentum equation (5), we obtain an intermediate velocity field that does not yet satisfy the continuity
equation.

Next, the continuity equation is coupled with the momentum equation to construct a pressure Poisson equation, and
a new pressure field is computed. The discretized form of the continuity equation is∫

S

U · dS =
∑
f

U f · S f = 0. (8)

Instead of using a simple linear interpolation, U f in this equation is computed by interpolating the cell-centered velocity
UP—obtained from the discretized momentum equation (5)—onto the cell face as follows:

U f =

(
H (U )

aP

)
f

−

(
1

aP

)
f

(∇p) f . (9)
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Algorithm 1 PISO algorithm to solve the unsteady incompressible NS equations
Input: winitial, ∆t . Initial state variables, time step
Output: wconverged . Converged state variables
1: w ← [U0, p0, φ0, ν̃0] . Assign initial state variables
2: for t ∈ {∆t, 2∆t, . . . ,∞} do .Main loop with time interval ∆t
3: U t ← aPU

t
P +

∑
aNU

t
N = U t−∆t

P /∆t − ∇pt−∆t . Solve momentum equation
4: for m ∈ {1, 2, . . . , M } do . M: number of corrector loops
5: H (U ) ← −

∑
aNU

t
N + U

t−∆t
P /∆t . Compute the H (U ) term

6: pt ← ∇ ·
(

1
aP
∇p

)
= ∇ ·

(
H (U )
aP

)
. Solve pressure Poisson equation

7: φt ←
[(

H (U )
aP

)
f
−

(
1
aP

)
f

(∇pt ) f
]
· S f . Update face flux φ

8: U t ← 1
aP

[H (U ) − ∇pt ] . Correct velocity
9: ν̃t ← turbulence model . Solve turbulence equations
10: if t>tmax then
11: break .Maximal runtime is reach

This idea of momentum interpolation was initially proposed by Rhie and Chow [57] and is effective in mitigating
the oscillating pressure (checkerboard) issue resulting from the collocated mesh configuration. Substituting Eq. (9) into
Eq. (8), we obtain the pressure Poisson equation:

∇ ·

(
1

aP
∇p

)
= ∇ ·

(
H (U )

aP

)
. (10)

Solving Eq. (10), we obtain an updated pressure field pt . Then, the new pressure field pt is used to correct the face
flux

φt = U f · S f =



(
H (U )

aP

)
f

−

(
1

aP

)
f

(∇pt ) f

· S f , (11)

and velocity field

U t =
1

aP
[H (U ) − ∇pt ]. (12)

Note that the H (U ) term depends on U but has not been updated so far. To account for this, one needs to repeatedly
solve the Eq. 6 and Eqs. 10 to 12 (corrector loop), such that the velocity and pressure fields fully satisfy the continuity
and momentum equations at each time step. In this paper, we perform two iterations for the corrector loop.

Once done, we solve for the turbulence equation (3) to obtain an updated turbulence viscosity (νt ). The above
process is repeated for several flow-over times until a statistically steady state is reached. The PISO algorithm is
summarized in Algorithm 1.

B. Time spectral method
As mentioned in the introduction, we use the time-spectral method to solve the unsteady NS equations. The

time-spectral method assumes that the unsteady flow is periodic, such that any variables can be represented by the
discrete Fourier series. Taking the velocity as an example:

U (n∆t) ≈ Un =

N−1
2∑

k= N−1
2

Ũkeik
2π
T n∆t, (13)

where T = N∆t is the time period with ∆t being the time interval and N being the total number of time instances, n is
the nth discrete time instance, and Ũk is the Fourier coefficient. The corresponding inverse Fourier transform is:

Ũk =
1
N

N−1∑
n=0

Une−ik
2π
T n∆t . (14)
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Using Eq. 13, we can compute the time-derivative as:

∂Un

∂t
=

N−1
2∑

k= N−1
2

ik
2π
T

Ũkeik
2π
T n∆t . (15)

Substituting the inverse Fourier transform equation (14) into the time derivative equation (15) and simplify the expression
using a power-sum method, we obtain:

∂Un

∂t
=
π

T

N−1∑
m=0

Um(−1)n−mcsc
(
π(n − m)

N

)
. (16)

Substituting the above equation into the momentum equation (2) and assuming 3 time instances (N = 3), we obtain:

−
π

T
csc(π/3)Un−1 +

π

T
csc(π/3)Un+1 + R

n

U = 0, (17)

where Rn

U is the residual equation for the steady-state problem, i.e., the discretized momentum equation (5) without the
Up/∆t term. Similarly, we can compute the time-derivative term for the turbulence equation (3) as:

−
π

T
csc(π/3) ν̃n−1 +

π

T
csc(π/3) ν̃n+1 + R

n

ν̃ = 0. (18)

Note that for a three-time-instance formulation, the current states depend on the states in the previous (n − 1) and next
(n+ 1) time instances, as well as the steady-state residual R from the current time instance. In contrast, for time-accurate
methods that use a backward differentiation scheme (e.g., the Euler method), the current states depend on only the states
in the previous (n − 1) time instance. Because the states for all the time instances are coupled, the time-spectral method
can use only a handful of time instances and choose a large time interval of ∆t = T/N .

The block-matrix representation of time-spectral formulation for the PISO algorithm is as follows, assuming three
time instances:



A
n−1

D+ D−

D− A
n

D+

D+ D− A
n+1





wn−1

wn

wn+1



=



bn−1

bn

bn+1



, (19)

where w = [UT , p, φ, ν̃]T ∈ Rnw is the state variable vector with nw being the number of discrete state variables for one
instance, and b ∈ Rnw is the source terms from the discrete governing equations, A

n
∈ Rnw×nw denotes the steady-state

finite-volume discretization matrix for the nth time instance:

A
n
=



A
n

U

A
n

p

A
n

φ

A
n

ν̃



, (20)

where A
n

U ∈ R
nu×nw is steady-state finite-volume discretization matrix for U with nu being the number of discrete U ,

similarly for other block matrices (nw = nu + np + nφ + nν̃). D+ ∈ Rnw×nw and D− ∈ Rnw×nw denote the time-spectral
time-derivative matrices for the next and previous time instances, respectively. For example,

D+ =



D+U
D+p

D+φ
D+ν̃



, (21)
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in which

D+U = −D
−
U =



d̃
. . .

d̃



∈ Rnu×nu (22)

are block matrices containing the contribution of time-spectral derivatives for U , where d̃ = π
T csc( π3 ) is the coefficient

for the time derivatives. Dν̃ has a similar pattern as DU .
The D matrices for U and ν̃ have only diagonal elements because the time-spectral time-derivative contains the

contribution from other time instances at the residual cell (see Eqs. 17 and 18). However, for p and φ, their residuals
depend on variables from other time instances at the residual cell, as well as at its surrounding cells. This is because the
Rhie–Chow interpolation is used in the p and φ equations (10) and (11), such that the velocity at the cell face (U f )
is interpolated from the momentum predictor (9). Therefore, Dp and Dφ matrices contain diagonal and off-diagonal
elements. In contrast to DU and Dν̃ , the elements in Dp and Dφ are not constants (for given T and N) because they
depend on mesh topology.

To solve for Eq. 19, we can assemble the whole left-hand side matrix and use a nonlinear equation solution strategy
(e.g, the Newton method). However, this strategy requires significant modification for the original time-accurate code
structure, and its implementation can be time-consuming.

In this study, we use a fully-segregated, block Gauss–Seidel (FSBGS) method to solve the time-spectral equations.
This approach was originally developed in Luder [12] to simulate unsteady flow for marine propellers, and here we
extend its application for aerospace engineering design problems.

To enable the FSBGS method, we rearrange Eq. 19 as:



A
n−1

0 0
D− A

n
0

D+ D− A
n+1





wn−1

wn

wn+1



=



bn−1

bn

bn+1



−



0 D+ D−

0 0 D+

0 0 0





wn−1

wn

wn+1



. (23)

With this treatment, we can solve for state variables at each time instance, while using the most up-to-date state variables
for all other time instances. In addition, at each time instance, the U , p, φ, and ν̃ equations are solved in a segregated
manner, following a similar PISO solution process detailed in Algorithm 1. The FSBGS algorithm is summarized in
Algorithm 2. Compared with the original PISO algorithm, the FSBGS method has the following major differences:

1) The momentum predictor step uses time-derivative computed based on the time-spectral method, as opposed to
the backward differentiation scheme. As a result, the time-derivative terms differ, as can be seen by comparing
line 5 in Algorithm 1 and line 4 in Algorithm 2. Similarly for the H (U ) term.

2) Because we no longer require the velocity and pressure fully satisfy the continuity and momentum equations at
each time step, the corrector loop in the original PISO algorithm (line 4, Algorithm 1) is performed only once,
instead of M times.

3) We require the residuals for the solution of U , p, and ν̃ linear equations to drop only one order of magnitude
(relative tolerance to be 10−1) at each time step, as opposed to a tight absolute tolerance (10−8) used in the
original PISO algorithm.

4) We use implicit and explicit relaxations (α = 0.05, β = 0.15) to ensure the numerical stability of the FSBGS
method (see lines 4, 7, and 10 in Algorithm 2).

In summary, Algorithms 1 and 2 use the same solution strategy. To apply the time-spectral method for the original
PISO algorithm, the major modification is to add extra terms and under-relaxations, while keeping the original code
structure unchanged. This feature greatly facilitates the implementation of the time-spectral method for the original
CFD solver. Using this strategy, we develop a new flow solver called pisoTSDAFoam that uses the time-spectral method
to compute incompressible unsteady flow with OpenFOAM. This solver can also compute derivatives for gradient-based
optimization, as elaborated on in the next subsection.

One drawback of the FSBGS approach is that we solve for the state variables at each time instance in a segregated
manner, which converges slower than a fully coupled approach. To accelerate the convergence, we can use a fully-coupled
strategy such as the Newton and approximated Newton methods as elaborated on in [58].
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Algorithm 2 Fully-segregated, block Gauss–Seidel algorithm to solve time-spectral incompressible NS equations
Input: T , N , wn

initial for n ∈ {1, 2, . . . , N } . Time period, number of time instances, and initial state variables
Output: wn

converged for n ∈ {1, 2, . . . , N } . Converged state variables
1: wn ← [U0, p0, φ0, ν̃0] for each n ∈ {1, 2, . . . , N } . Assign initial state variables for all time instances
2: ∆t = T/N . Compute time interval
3: for t ∈ {∆t, 2∆t, . . . ,∞} do .Main loop with time interval ∆t
4: U t ←

aP

α U t
P +

∑
aNU

t
N =

1−α
α aPU

t−∆t
P + U t+∆t

P d̃ − U t−∆t
P d̃ − ∇pt−∆t . Solve momentum equation (relaxed)

5: H (U ) ← 1−α
α aPU

t−∆t
P + U t+∆t

P d̃ − U t−∆t
P d̃ −

∑
aNU

t
N . Compute the H (U ) term

6: pt ← ∇ ·
(

1
aP
∇p

)
= ∇ ·

(
H (U )
aP

)
. . Solve pressure Poisson equation

7: pt ← pt + β(pt − pt−∆t ) . Explicitly relaxing p

8: φt ←
[(

H (U )
aP

)
f
−

(
1
aP

)
f

(∇pt ) f
]
· S f . Update face flux φ

9: U t ← 1
aP

[H (U ) − ∇pt ] . Correct velocity
10: ν̃t ← turbulence model . Solve turbulence equations (relaxed)
11: if t>tmax then
12: break .Maximal runtime is reach

C. Discrete adjoint method for a time-spectral solver
In this subsection, we derive the formulations for the time-spectral discrete adjoint approach. In the discrete adjoint,

we assume that a discretized form of the governing equations is available through the flow solver, and that the design
vector x ∈ Rnx and the flow state variable vector w ∈ RNw satisfy the discrete residual equations:

R(x, w) = 0, (24)

where nx is the number of design variables, R ∈ RNw is the residual vector with Nw = N · nw being the total number of
state variables for all time instances. Note that the state variable and residual vectors contain all the discrete variables at
all time instances. For example:

w =



wn=1

wn=2

. . .

wn=N



, (25)

where wn=1 = [UT
1 , p1, φ1, ν̃1,U

T
2 , p2, φ2, ν̃2, ...,U

T
nc
, pnc , φnc , ν̃nc ]T

n=1 is the state variable at the 1st time instance. The
subscript denotes the cell number with nc being the total number of cells. The size of wn=1 is nw .

The functions of interest are then functions of both the design variables and the flow variables, that is,

f = f (x, w). (26)

f typically depends on the state variables at all time instances (e.g., the averaged drag), therefore, here w also contains
all variables at all time instances.

In general, we have multiple functions of interest (the objective and multiple design constraints), but in the following
derivations, we consider f to be a scalar without loss of generality. As we will see later, each additional function
requires the solution of another adjoint system.

To obtain the total derivative d f / dx, we apply the chain rule as follows:

d f
dx︸︷︷︸

1×nx

=
∂ f
∂x︸︷︷︸

1×nx

+
∂ f
∂w︸︷︷︸

1×Nw

dw
dx︸︷︷︸

Nw×nx

, (27)

where the partial derivatives ∂ f /∂x and ∂ f /∂w are relatively cheap to evaluate because they only involve explicit
computations. The total derivative dw/ dx matrix, on the other hand, is expensive, because w and x are implicitly
determined by the residual equations R(w, x) = 0.
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To solve for dw/ dx, we can apply the chain rule for R. We then use the fact that the governing equations should
always hold, independent of the values of design variables x. Therefore, the total derivative dR/ dx must be zero:

dR
dx
=
∂R

∂x
+
∂R

∂w

dw
dx
= 0. (28)

Rearranging the above equation, we get the linear system

∂R

∂w︸︷︷︸
Nw×Nw

dw
dx︸︷︷︸

Nw×nx

= −
∂R

∂x︸︷︷︸
Nw×nx

. (29)

We can then substitute the solution for dw/ dx from Eq. (29) into Eq. (27) to get

d f
dx︸︷︷︸

1×nx

=
∂ f
∂x︸︷︷︸

1×nx

−

ψT︷          ︸︸          ︷
∂ f
∂w︸︷︷︸

1×Nw

∂R

∂w

−1

︸︷︷︸
Nw×Nw

∂R

∂x︸︷︷︸
Nw×nx

. (30)

Now we can transpose the Jacobian and solve with [∂ f /∂w]T as the right-hand side, which yields the adjoint equations,

∂R

∂w

T

︸︷︷︸
Nw×Nw

ψ︸︷︷︸
Nw×1

=
∂ f
∂w

T

︸︷︷︸
Nw×1

, (31)

where ψ is the adjoint vector. Then, we can compute the total derivative by substituting the adjoint vector into Eq. (30):

d f
dx
=
∂ f
∂x
− ψT ∂R

∂x
. (32)

For each function of interest, we need to solve the adjoint equations only once, because the design variable is not
explicitly present in Eq. (31). Therefore, its computational cost is independent of the number of design variables,
but proportional to the number of objective functions. This approach is also known as the adjoint method and is
advantageous for aerodynamic design, because we typically have only a few functions of interest but may use several
hundred design variables.

The block matrix form of the adjoint linear equations (31) for a three-time-instance system is as follows:



[∂R/∂w]T
n=1 [D−]T [D+]T

[D+]T [∂R/∂w]T
n=2 [D−]T

[D−]T [D+]T [∂R/∂w]T
n=3





ψn=1
ψn=2
ψn=3



=



[∂ f /w]T
n=1

[∂ f /w]T
n=2

[∂ f /w]T
n=3



, (33)

where [∂R/∂w]T
n=1 ∈ R

nw×nw denotes the transpose of state Jacobian for time instance n = 1, and similarly for the
other terms.

To summarize, a discrete adjoint consists of the following four major steps:
1) Compute [∂R/∂w]T and [∂ f /∂w]T .
2) Solve the adjoint equation [∂R/∂w]Tψ = [∂ f /∂w]T to obtain ψ.
3) Compute ∂R/∂x and ∂ f /∂x.
4) Compute the total derivative d f / dx = ∂ f /∂x − ψT [∂R/∂x].
In this study, we build the time-spectral adjoint solver pisoTSDAFoam based on an open-source, object-oriented

adjoint framework DAFoam ‡. DAFoam provides high-level interfaces that allow developers to implement the discrete
adjoint method for any steady-state primal solvers in OpenFOAM [59, 60]. In this work, we extend DAFoam’s capability
to implement the discrete adjoint method for time-spectral flow solvers.

According to Eq. 33, the left-hand side matrix consists of the steady-state Jacobians for the diagonal blocks and
the time-spectral derivative matrices for the off-diagonal blocks. In light of this observation, we reuse the DAFoam’s
existing partial derivative computational functions to compute [∂R/∂w]T and [∂ f /∂w]T for each time instance. This

‡https://github.com/mdolab/dafoam
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Fig. 1 Structural mesh for the NACA0012 airfoil. The blue squares are the FFD control points to morph the airfoil shape.
The red hollow squares are the oscillating box to generate wakes and the solid red square denotes the initial position and the
transparent squares represent the extreme positions of its oscillation.

is done through the coloring-accelerated finite difference Jacobian (FD Jacobian) approach detailed in [53, 59, 60].
For the off-diagonal D matrices, we manually assign the values for DU and Dν̃ (Eq. 22). To facilitate the adjoint
implementation, we ignore the Dp and Dφ blocks in this paper.

Finally, we use the PETSc [61] library to solve the time-spectral adjoint equations (33). We use the generalized
minimal residual (GMRES) iterative linear equation solver. We use a nested preconditioning strategy with the additive
Schwartz method as the global preconditioner and the incomplete lower and upper (ILU) factorization approach with
zero fill-in for the local preconditioning. To improve convergence, we construct the preconditioner matrix [∂R/∂w]TPC
by approximating the residuals and their linearizations [53, 59]. [∂R/∂w]TPC has the exact same block matrix structure
as in Eq. 33. This strategy is effective for solving the adjoint equation, as reported in He et al. [59, 62].

D. MACH: A high-fidelity gradient-based optimization framework
In this paper, we use MACH §, an open-source, high-fidelity gradient-based optimization framework, to perform

aerodynamic shape optimization. The MACH framework consists of the following modules:
• Flow simulation. MACH supports multiple flow solvers (ADflow [53, 58] and OpenFOAM) for simulating
turbulent flows. In this study, the time-spectral flow solver pisoTSDAFoam, described in Secs. II.A and II.B is
used to simulate unsteady, incompressible turbulent flow.

• Adjoint derivative computation. MACH supports multiple adjoint solvers (ADflow [53, 58] and DAFoam [59,
60]) for efficient derivative computation. The time-spectral adjoint solver pisoTSDAFoam described in Sec. II.C
is used.

• Geometry parameterization. MACH uses the free-form deformation (FFD) approach [63] to parameterize the
design surface geometry through the pyGeo package. ¶ This method embeds the design surface into a tri-variate
B-spline volume. We then manipulate the surface geometry by moving the FFD points at the surface of that
volume. We also use pyGeo to compute the values and derivatives of the geometric constraints (c and dc/ dx,
respectively). An example of FFD control points can be seen in Fig. 1.

• Volume mesh deformation. MACH uses the analytic inverse distance algorithm, similar to that described by
Luke et al. [64], to deform the volume mesh through the IDWarp package. ‖ The advantage of this approach
is that it applied to both structured and unstructured meshes. Moreover, this approach better preserves mesh

§https://github.com/mdolab/mach-aero
¶https://github.com/mdolab/pygeo
‖https://github.com/mdolab/idwarp
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Table 1 Unsteady aerodynamic optimization setup for the NACA0012 airfoil, which has 21 design variables and 23
constraints.

Function or variable Description Quantity
minimize CD Averaged Drag coefficient

with respect to ∆y Displacement of FFD points in the vertical direction 20
α Angle of attack 1

Total design variables 21

subject to CL=0.5 Averaged lift-coefficient constraint 1
t ≥ 0.8tbaseline Minimum-thickness constraint 20
∆zupperLE = −∆zlowerLE Fixed leading-edge constraint 1
∆zupperTE = −∆zlowerTE Fixed trailing-edge constraint 1
−0.1 m < ∆z < 0.1 m Design variable bounds

Total constraints 23

orthogonality in the boundary layer, compared with the methods based on the radial basis function [64].
• Optimizer. We use pyOptSparse ∗∗, an extension of pyOpt [65], for setting constrained nonlinear optimization
problems. The SNOPT [66] optimizer is used, which adopts the sequential quadratic programming (SQP)
algorithm for optimization. The constraints are handled by formulating them into the Lagrangian function, and
the Hessian of the Lagrangian is approximated by using a Broyden–Fletcher–Goldfarb–Shanno update [67].

III. Results and Discussion

A. Flow and adjoint configurations
We use the NACA0012 airfoil as our benchmark geometry. The chord (c) is set to be 1 m, and the span is set to be

0.1 m with one cell in the spanwise (z) direction. The flow condition is incompressible with Reynolds number 106 and
Mach number 0.03 (U∞=10 m s−1). We generate a coarse structured mesh with 5 280 cells using the pyHyp†† package
and the computational domain extends 20 chords from the surface (Fig. 1). The averaged y+ is 80.5, so the wall function
is used.

To generate periodic wakes, we set a box oscillating in the vertical (y) direction. The box is located at 0.5c upstream
of the airfoil (Fig. 1). This is done by adding an oscillating source term S in the x (streamwise) component of the
momentum equation (2). To ensure numerical stability, we smooth the source term using the hyperbolic tangent function:

S =
1
8

AxSxSySz, with Sx = F (x − xC, Lx/2), Sy = F (y − yC, Ly/2), Sz = F (z − zC, Lz/2), (34)

where Ax is the magnitude of the source term, x, y, and z are the cell-center coordinate of a finite volume cell, Lx = 0.1c,
Ly = 0.1c, Lz = 0.1c are the sizes of the box, and xC = −0.5c, yC = 0, zC = 0.05c are the initial centers of the box.
The shape function F is defined as:

F (d, l) = tanh[β(d + l)] − tanh[β(d − l)], (35)

where β = 10 is a coefficient that controls the smoothness of the S term. As mentioned before, the center of the box is
oscillating in the y direction yC = Bsin(2π f t) with a time period (T = 1/ f = 0.5c/U∞ = 0.05 s) half of the flow-over
time and and an amplitude B = 0.2c. The choice of Ax determines the strength of the wake, in this study, we set
Ax = 1.0 such that the wake has a velocity magnitude that is 10% higher than the mainstream velocity.

All the simulations are run on a desktop workstation with one Intel i7-4770 CPU core (3.4 GHz) in serial. We
run the time-accurate simulations using the OpenFOAM’s built-in flow solver pisoFoam. The time step is set to be
1 × 10−4 s such that the CFL number is kept less than 1.0. The second order backward differentiation scheme is used for
the time-derivative term. The second-order linear-upwind scheme [68] is used to differentiate the divergence terms,

∗∗https://github.com/mdolab/pyoptsparse
††https://github.com/mdolab/pyhyp
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Fig. 2 The time-series of CD and CL predicted by the time-spectral method reasonably matches the ones simulated by the
time-accurate method.

whereas the central differential scheme is selected for the diffusion terms. The simulations are run for 5 s (physical time)
in total. For time-spectral simulations, we use five time instances and the time step is ∆t = T/N = 1 × 10−2 s. The
simulations are run for 400 s (physical time) in total. For the adjoint computation, we require the residual of the adjoint
linear equations to drop five orders of magnitudes.

The optimization configuration is summarized in Table 1, the objective function is the averaged drag coefficient
(CD) and the nominal flight condition is at averaged lift coefficient (CL) of 0.5. The design variables are the angle of
attack (α) and 20 FFD points moving in the vertical (y) direction (Fig. 1). The angle of attack is changed by pitching the
airfoil with respect to its quarter chord, as opposed to changing the direction of free stream velocity typically used in
steady-flow optimization. This strategy ensures the free stream is parallel to the wakes (x direction).

To ensure a practical design, we require the airfoil thickness to be no less than 80% of its baseline value. This is
done by monitoring the airfoil thickness at 20 sampling points along the chord. In addition, we use two linear constraints
to fix the leading the trailing edges. The averaged lift coefficient is constrained to be equal to 0.5.

B. Flow and adjoint performance
To evaluate the performance of time-spectral flow solver, we first compare the time-series of CD and CL computed

from the time-accurate and time-spectral solvers, as shown in Fig. 2. In the time-series of CL computed by the
time-accurate method, we observe a dominant frequency with a time period of 0.05 s, which is correlated to the
prescribed frequency of the oscillating wake. The amplitude of the CL oscillation is about 10% of its mean value. For
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Fig. 3 The velocity contours predicted by the time-spectral method reasonably matches the ones simulated by the time-
accurate method.

CD , we observe a similar dominant frequency; however, in contrast to CL , there are two amplitudes. The larger and
smaller amplitudes are of 10% and 3% of the mean CD value, respectively, and their phase has a shift of about 0.025 s
(half time-period).

Generally, the CD and CL values predicted by the time-spectral method agree with the time-series computed with
time-accurate simulations. To further confirm this, we compare the velocity contours between the time-accurate and
time-spectral methods, as shown in Fig. 3. Again, the time-spectral simulations qualitatively capture the velocity
distribution at each time instance. Since the time-spectral method provides more accurate time derivatives than the
backward differentiation used in the time-accurate method, we expect the time-spectral simulation results are more
accurate.

Table 2 shows the run time and peak memory usage for the time-accurate and time-spectral flow simulations, as well
as the time-spectral adjoint computation. The time-spectral flow simulation is 40% faster than the time-accurate flow
simulation. In addition, the time-spectral adjoint computation is faster than the flow simulation with an adjoint-flow run
time ratio of 0.8. In terms of memory usage, the time-spectral flow simulation takes only 30% more memory than the
time-accurate one. However, for the time-spectral adjoint, we need 8.32 GB memory, primarily because we assemble
the whole Jacobian containing all the time instances (Eq. 19).

To verify the time-spectral adjoint accuracy, we compare the derivatives computed from the adjoint solver with the
reference values computed directly from finite differencing. We use the derivatives from the top ten FFD points, as
shown in Tables 3 and 4. Generally, the adjoint derivatives match the reference values. The value-weighted averaged
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Table 2 Run time andmemory usage comparison between the time-accurate flow simulation, time-spectral flow simulation,
and time-spectral adjoint computation.

Time-accurate flow Time-spectral flow Time-spectral adjoint
Run time 1975 s 1195 s 911 s
Peak memory 0.10 GB 0.13 GB 8.32 GB

Table 3 The total derivatives computed by the time-spectral adjoint method match the references with the value-weighted
averaged errors being 3.5%.

FFD # Reference Adjoint
1 0.01393287 0.01406124
2 0.00921630 0.00864564
3 0.00321114 0.00277542
4 0.00605408 0.00587909
5 0.00685826 0.00674317
6 0.00789065 0.00773631
7 0.01299993 0.01264514
8 0.02067202 0.02000364
9 0.02699674 0.02604181
10 −0.06752914 −0.06501389

Table 4 The total derivatives computed by the time-spectral adjoint method match the references with the value-weighted
averaged errors being 0.8%.

FFD # Reference Adjoint
1 −0.01639367 −0.01739969
2 0.20743961 0.21038701
3 0.30894715 0.31176138
4 0.34930939 0.35117792
5 0.37164342 0.37430646
6 0.50600053 0.51016325
7 0.95271738 0.96006269
8 1.63748314 1.65024483
9 2.21544151 2.23413826
10 −6.98295271 −7.03555221

errors are 3.5% and 0.8% for CD and CL , respectively. The errors in the time-spectral adjoint are primarily caused by
ignoring the off-diagonal blocks of p and φ in the adjoint equations, as mentioned in Sec. II.C.

C. Aerodynamic optimization of NACA0012 under periodic wakes
The convergence history of CD and optimality is shown in Fig. 4. The optimization converges in 20 iterations, and

CD is reduced by 10.5%. Figure 5 compares the baseline and optimized airfoil profiles. Compared with the baseline
NACA0012 profile, the airfoil thickness is reduced. Moreover, the optimized design uses a camber and a smaller angle
of attack to reduce the aerodynamic drag.

A comparison of pressure profiles between the baseline and optimized designs is shown in Fig. 6. The pressure
profiles show a smoother loading in the optimized design, as opposed to the high-loading near the leading edges
observed in the baseline design. This is achieved by reducing the angle of attack and changing the airfoil profiles. This
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Fig. 4 Optimization history for CD and optimality; both of them converge well.

Fig. 5 Comparison of airfoil profile between the baseline and optimized designs, both of which are rotated to zero angle
of attack.

feature is also observed in the velocity contour comparison in Fig. 7, where a smoother flow acceleration is observed in
the optimized design.

Finally, we verify our optimization results by re-running the baseline and optimized designs using the time-accurate
method, as shown in Fig. 8. The time-accurate simulations reproduce the drag reduction predicted by the time-spectral
optimization. In addition, the lift constraint is satisfied.

IV. Conclusion
In this paper, we develop an efficient time-spectral method for aerodynamic analysis and design under periodic

wakes. We propose a fully-segregated, block Gauss–Siedel method to solve the time-spectral flow equations, which
requires low memory overhead and minimal modification to the original code structure. We then implement the discrete
adjoint method to the time-spectral solver, and the diagonal block matrices in the adjoint linear equations are assembled
by using an object-oriented adjoint framework DAFoam.

We use the NACA0012 airfoil as our baseline geometry. We add an oscillating source term in the momentum
equation to mimic the periodic wake, originated from the upstream of the airfoil. The simulated time-series and
velocity contours from the time-spectral method reasonably match the ones simulated by the time-accurate method.
The time-spectral flow simulation is faster than the time-accurate simulation. In addition, the time-spectral adjoint
computation is faster than the time-spectral flow simulation. However, the time-spectral adjoint computation requires a
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Fig. 6 Comparison of pressure profiles between the baseline and optimized design..

large memory overhead, because we explicitly assemble and store the Jacobian matrices for all the time instances.
Finally, we incorporate the implemented time-spectral flow and adjoint solvers into a gradient-based optimization

framework MACH. We then perform an aerodynamic shape optimization under periodic wakes. We obtain a 10.5% drag
reduction, which is primarily achieved by using a cambered airfoil shape and a smaller angle of attack. The optimization
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Fig. 7 Comparison of velocity contours between the baseline and optimized design. Drag reduces by 10.5% and the lift
constraint is satisfied.

results are verified by re-running the baseline and optimized designs using the time-accurate method.
The proposed method has the potential to reduce the computational cost for analyzing and designing engineering

systems that involve unsteady wakes, e.g., propeller-wing interaction for electric aircraft, blade-tower interaction for
wind turbines, and hull-propeller interaction for marine vessels.
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