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Abstract

The adjoint method is an efficient approach for computing derivatives that allow gradient-
based optimization to handle systems parameterized with a large number of design vari-
ables. Despite this advantage, implementing the adjoint method for a partial-differential-
equation-based primal solver is a time-consuming task. To lower the barrier for adjoint
implementations, we propose DAFoam1: an object-oriented framework to rapidly im-
plement the discrete adjoint method for any steady-state OpenFOAM primal solver by
adding or modifying only a few hundred lines of source code. In this paper, we introduce
the DAFoam framework and illustrate the proposed object-oriented adjoint development
process. Using this strategy, we implement the adjoint method for eight primal solvers,
five turbulence models, and one radiation model in OpenFOAM. We achieve excellent
adjoint speed and scalability, with up to 10 million cells and 1536 CPU cores, and an
average error in the adjoint derivatives of less than 0.1%. Finally, we integrate the im-
plemented adjoint solvers and models into a gradient-based optimization framework and
showcase four distinct design optimizations: multipoint aerodynamic optimization of a
low-speed UAV wing, aerodynamic optimization of a transonic aircraft configuration,
aerothermal optimization of a turbine internal cooling passage, and aerostructural opti-
mization of a compressor rotor. DAFoam is available under an open-source license and is
a powerful tool for the high-fidelity multidisciplinary design optimization of engineering
systems such as aircraft, ground vehicles, marine vessels, and turbomachinery.
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1 Introduction
Aerospace engineering designs often require using a large number of design variables
to parameterize complex design surfaces, such as aircraft wings. Changing these vari-
ables by hand is time-consuming and is not likely to achieve the best possible design.
Gradient-based optimization is a powerful approach to solve the above problem, because
it automatically finds the set of design variables that maximizes the performance. To
efficiently compute the derivatives, we can use the adjoint method, whose computa-
tional cost is independent of the number of design variables. The combination of adjoint
method and gradient-based optimization thus enables the solution of complex design
problems.

The adjoint method was first introduced in fluid mechanics by Pironneau [1] and then
extended for aerodynamic shape optimization by Jameson [2]. Since then, the adjoint
method has been widely used in gradient-based optimization for applications involving
aerodynamics [3–10], hydrodynamics [11, 12], heat transfer [13, 14], and structures [15,
16].

Many engineering systems are composed of multiple disciplines, requiring multidisci-
plinary design optimization (MDO) techniques [17]. The adjoint method has been gener-
alized to MDO problems [18, 19] and implemented in the OpenMDAO framework [20].
Coupled-adjoint implementations have been used to solve aerostructural [21–24], hy-
drostructural [25], aerothermal [26], aeropropulsive [27, 28], and aeroelastic [29, 30]
MDO problems.

There are two different approaches to formulate the adjoint equations for a partial
differential equation (PDE) based primal solver: continuous and discrete [31–33]. The
continuous approach derives the adjoint formulation from the original governing equa-
tions and then discretizes them for numerical solution. This approach was used in the
early work including Jameson [2], Anderson and Venkatakrishnan [34], as well as the
initial adjoint implementations for OpenFOAM [35, 36] and SU2 [37]. The continuous
adjoint is faster and requires less memory than the discrete adjoint. However, the accu-
racy of the continuous adjoint method suffers on coarse meshes [38] and it is challenging
to implement for complex terms, such as those encountered in turbulence models [31–33].

On the other hand, the discrete approach starts directly from the discretized gov-
erning equations for the adjoint formulation. Therefore, the adjoint derivatives are
consistent with the primal flow solutions, independent of the mesh density; a favorable
feature that makes the optimization process more robust. Given this advantage, we opt
to use the discrete adjoint approach in this paper.

There are two main tasks when implementing the discrete adjoint method for a
PDE-based primal solver, which we elaborate on in Sec. 2.1: 1. Compute the partial
derivatives or the matrix-vector products; 2. Solve the adjoint linear equation. In the
past few decades, researchers have used various options for the above two tasks in discrete
adjoint implementations [32, 33]. The partial derivatives have been computed using
the analytic method, finite differences, the complex-step method [39], and algorithmic
differentiation (AD) [40]. AD has also been used to efficiently compute the matrix-vector
products in a matrix-free manner [33].
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To solve the adjoint equation, both fixed-point iteration and Krylov methods have
been proposed. The combination of these options has been used in a number of discrete
adjoint solvers, such as ADflow [33, 41], Cart3D [42], FUN3D [3], HYDRA [43], Jet-
stream [44–46], NSU3D [5, 47], piggy- and reverseAcc-SimpleFoam [48], STAMPS [49],
SU2 [37, 50], and TAU-Code [51].

Despite the progress cited above, developing a discrete adjoint solver remains a time-
consuming task. This is primarily because of the strong connection between the primal
and adjoint solvers. As a consequence, developers need to have detailed knowledge of
low-level implementations for both primal and adjoint solvers. In addition, to ensure
adjoint consistency, modification and extension in the primal solver require correspond-
ing changes in the adjoint solver. The above two factors cause the adjoint solver to have
the same amount of development and maintenance effort as the primal solver does; a
discrete adjoint solver typically contains thousands of lines of source code, and its devel-
opment may take years. Although the above-mentioned adjoint solvers provide a certain
amount of flexibility for extension, such as adding new terms or boundary conditions,
they do not offer rapid adjoint development options for a new set of PDEs. Having
the capability to rapidly implement the adjoint method for a PDE-based primal solver
from scratch is useful in practice because it allows us to handle a wide range of engi-
neering design problems involving multiple disciplines (e.g., aerodynamics, structures,
and heat transfer), configurations (e.g., wings, wing-body-tail, and airframe-propulsion
integration), and flow conditions (e.g., incompressible, subsonic, and transonic).

One way to address the large adjoint development effort is to use reverse-mode AD
to differentiate the entire primal solver (full-code AD) [48, 52, 53]. The full-code AD
approach treats the primal solver as a black box and thus requires minimal develop-
ment effort. However, the intermediate variables that are used in the primal nonlinear
solution process need to be stored in memory, which is not feasible for large three-
dimensional problems. Although advanced techniques (e.g., checkpointing and local
pre-accumulation) can be used to trade speed for memory [48], the size of problems the
full-code AD can handle is still limited [33].

The objective of this paper is to lower the barrier of adjoint development while main-
taining the efficiency of adjoint computation. To this end, we propose DAFoam2: an
open-source, object-oriented framework to rapidly develop discrete adjoint solvers with
OpenFOAM [54]. OpenFOAM is an open-source, multiphysics package that contains
more than 80 PDE-based primal solvers, involving a wide range of disciplines such as
aerodynamics, hydrodynamics, structures, heat transfer, combustion, and multiphase
flow. Borrowing the idea of object-oriented primal solver development in OpenFOAM,
DAFoam provides a high-level interface that allows us to implement the discrete ad-
joint method for existing or new steady-state OpenFOAM primal solvers by adding
or modifying only a few hundred lines of source code. The central recipe of the pro-
posed framework is to use a generalized framework for partial derivative computation
and adjoint equation solution, and then provide an interface that allows developers to
define solver-specific implementations, such as the residual functions and connectivity

2https://github.com/mdolab/dafoam
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information.
In this paper, we introduce the overall structure of DAFoam and illustrate the object-

oriented adjoint development process for the Navier–Stokes (NS) equations. Using the
proposed recipe, we implement the adjoint method for eight primal solvers, five tur-
bulence models, and one radiation model. We evaluate the performance of the adjoint
implementations in terms of speed, scalability, memory usage, and accuracy. More-
over, we integrate the adjoint solvers into a gradient-based optimization framework and
showcase four distinct design optimizations using DAFoam: multipoint aerodynamic
optimization of a low-speed UAV wing, aerodynamic shape optimization of a transonic
aircraft configuration, aerothermal optimization of a turbine internal cooling passage,
and aerostructural optimization of a compressor rotor. The optimization setup for these
cases, including the meshes, flow and optimization configurations, and DAFoam run
scripts, are publicly available [55]. In sum, the main contribution of this work is the
development of an open-source, object-oriented adjoint framework DAFoam that allows
rapid adjoint solver implementations for a wide range of PDEs.

The rest of the paper is organized as follows. In Section 2, we introduce the DAFoam
framework and detail the object-oriented adjoint development. The design optimization
results are presented and discussed in Section 3 and we summarize our findings in Sec-
tion 4.

2 Methodology
The central recipe of DAFoam’s object-oriented adjoint framework is to divide the im-
plementation into solver-agnostic and solver-specific parts. In this section, we first derive
the discrete adjoint equations. Then, we elaborate on the solver-agnostic adjoint devel-
opment, followed by the object-oriented interface that allows developers to specify the
solver-specific implementations. To better illustrate the object-oriented adjoint devel-
opment process, we use the adjoint source code for the incompressible NS equations as
an example. Finally, we summarize the implemented adjoint solvers and models, and
evaluate their performance in terms of speed, scalability, memory usage, and accuracy.

2.1 Adjoint equations

As mentioned above, we use the adjoint method to efficiently compute the total deriva-
tives df/ dx, where f is the objective or constraint function (e.g., drag, lift, or torque)
and x is the vector of design variables (e.g., positions of control points that morph the
design surface). In the discrete approach, we assume that a discretized form of govern-
ing equations is available through the primal solver, and that the design variable vector
x ∈ Rnx and the state variable vector w ∈ Rnw satisfy the discrete residual equations
R(x,w) = 0, where R ∈ Rnw is the residual vector.

The functions of interest are then functions of both the design variables and the state
variables: f = f(x,w). In general, we have multiple functions of interest (the objective
and multiple design constraints), but in the following derivations, we consider f to be a
scalar without loss of generality. As we will see later, each additional function requires
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the solution of another adjoint system. To obtain the total derivative df/ dx, we apply
the chain rule as follows:

df

dx︸︷︷︸
1×nx

=
∂f

∂x︸︷︷︸
1×nx

+
∂f

∂w︸︷︷︸
1×nw

dw

dx︸︷︷︸
nw×nx

, (1)

where the partial derivatives ∂f/∂x and ∂f/∂w are relatively cheap to evaluate because
they only involve explicit computations. The total derivative dw/ dx matrix, on the
other hand, is expensive, because w is implicitly determined by the residual equations
R(w,x) = 0.

To obtain dw/ dx, we can apply the chain rule for R. We then use the fact that the
governing equations should always hold, independent of the values of design variables
x. Therefore, the total derivative dR/ dx must be zero:

dR

dx
=
∂R

∂x
+
∂R

∂w

dw

dx
= 0 =⇒ dw

dx︸︷︷︸
nw×nx

= − ∂R
∂w

−1

︸ ︷︷ ︸
nw×nw

∂R

∂x︸︷︷︸
nw×nx

. (2)

Substituting dw/ dx from Eq. (2) into Eq. (1), we get

df

dx︸︷︷︸
1×nx

=
∂f

∂x︸︷︷︸
1×nx

−

ψT

︷ ︸︸ ︷
∂f

∂w︸︷︷︸
1×nw

∂R

∂w

−1

︸ ︷︷ ︸
nw×nw

∂R

∂x︸︷︷︸
nw×nx

. (3)

Now we can transpose the state Jacobian matrix ∂R/∂w and solve with [∂f/∂w]T as
the right-hand side, which yields the adjoint equation,

∂R

∂w

T

︸ ︷︷ ︸
nw×nw

ψ
︸︷︷︸
nw×1

=
∂f

∂w

T

︸ ︷︷ ︸
nw×1

, (4)

where ψ is the adjoint vector. Once we have solved this equation, we can compute the
total derivative by substituting the adjoint vector ψ into Eq. (3), yielding

df

dx
=
∂f

∂x
−ψT ∂R

∂x
. (5)

For each function of interest, we need to solve the adjoint equations only once, because
the design variable is not explicitly present in Eq. (4). Therefore, its computational
cost is independent of the number of design variables, but proportional to the number of
functions of interest. This approach is known as the adjoint method and is advantageous
for many aerospace engineering design problems where we have only a few functions of
interest but may use several hundred design variables.

To summarize, a discrete adjoint implementation requires computing the partial
derivatives and solving the adjoint equations and consists of four major steps:
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1. Compute the partial derivatives [∂R/∂w]T and [∂f/∂w]T ;

2. Solve the linear equation (4) for the adjoint vector ψ;

3. Compute the partial derivatives ∂R/∂x and ∂f/∂x;

4. Use Eq. (5) to compute the total derivative df/ dx.

The above four steps do not assume any specific form of the residual function
R(w,x); therefore, they are applicable for any set of discrete PDEs. In light of this
observation, DAFoam implements the above four steps in a solver-agnostic manner, as
detailed in Sec. 2.2. To account for solver-specific implementations, DAFoam provides
high-level interfaces to specify the detailed residual function form, as elaborated on in
Sec. 2.3

2.2 Solver-agnostic framework for partial derivative computation
and adjoint equation solution

0:xref,wref,Rref 3:xref,wref, fref 6:ψ0 9:
∂R

∂x
,
∂f

∂x

0, 2→1:
FD Partials

1:wi
perturb 6:

∂R

∂w

T

,
∂R

∂w

T

PC

2:Ri
perturb 1:R(x,w)

3, 5→4:
FD Partials

4:wi
perturb 6:

∂f

∂w

T

5: f i
perturb 4: f(x,w)

6, 8→7:
Krylov Solver

7:
∂R

∂w

T

,

[
∂R

∂w

T]n
r0 9:ψ

8:Kn
7:Matrix-vector

Products

9:
df

dx
=

∂f

∂x
−ψT ∂R

∂x

Figure 1: Process and data flow for the solver-agnostic FD Jacobian adjoint approach [33] in
DAFoam.

DAFoam uses the FD Jacobian approach [33] to implement the discrete adjoint,
i.e., the partial derivatives are computed using the coloring-accelerated finite-difference
method and the adjoint equations are solved using a Krylov method. Figure 1 shows the
process and data flow for the FD Jacobian adjoint approach. Here we use the extended
design structure matrix (XDSM) representation developed by Lambe and Martins [56].
The diagonal nodes represent the modules and the off-diagonal nodes represent the data.
The black lines represent the process flow in the adjoint, whereas the thick gray lines
represent the data flow. The number in each node represents the execution order. The
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superscripts i and n are the ith color and nth iteration, respectively, and the subscripts
“ref” and “perturb” are the reference and perturbed values, respectively.

As shown in Fig. 1, we use the finite-difference method to compute the partial deriva-
tives [∂R/∂w]T and [∂f/∂w]T , accelerated by a graph coloring algorithm. We loop the
processes 0−1−2−0 to compute the columns associated with the ith color in ∂R/∂w
and then repeat the loop for all colors. Finally, we output the fully assembled [∂R/∂w]T

to 6. Similarly, we compute [∂f/∂w]T by looping the processes 3−4−5−3 and output
to 6. The use of graph coloring is critical because naively computing [∂R/∂w]T and
[∂f/∂w]T using finite differences requires calling the objective and residual computation
routines nw times, one for each column in ∂R/∂w and ∂f/∂w. This becomes compu-
tationally prohibitive for three-dimensional problems because nw can be more than ten
million.

To reduce the computational cost, we use graph coloring [57] to exploit the sparsity
of the Jacobians. To be more specific, we partition all the columns of a Jacobian matrix
into different structurally orthogonal subgroups (colors), such that, in one structurally
orthogonal subgroup, no two columns have a nonzero entry in a common row. With this
treatment, we can simultaneously perturb multiple columns that have the same colors
because no two columns (states) impact the same row (residual). We then compute their
partial derivatives by calling the residual and objective computation routines only once.

Using coloring to accelerate Jacobian computation for adjoint solvers was proposed
by Burdyshaw and Anderson [58], Nielsen and Kleb [59], and Lyu et al. [7], where the
complex step [39] and algorithmic differentiation [40] methods were used to compute par-
tial derivatives. Although these two methods provide accurate derivative computation,
in this paper we opt to use the finite-difference method because it requires minimal mod-
ification to the primal codes, which ultimately facilitates the adjoint implementations.
Moreover, its accuracy is well within the acceptable range for practical optimization
problems (see the adjoint accuracy evaluation in Sec. 2.4.2).

The graph coloring for [∂R/∂w]T is challenging because [∂R/∂w]T is a nw × nw
matrix and because OpenFOAM uses unstructured meshes, which results in an irregular
sparsity pattern for [∂R/∂w]T . In our previous work, we developed a heuristic graph
coloring algorithm that runs on distributed memory systems in parallel [60]. This color-
ing algorithm is applicable for any mesh topology and allows us to compute [∂R/∂w]T

by calling the residual routines between 1000 and 3000 times, independent of the mesh
size and the number of CPU cores.

Using the coloring scheme to compute [∂f/∂w]T requires special attention because
f is typically computed based on the integration of discrete state variables over the
design surface (e.g., drag and lift); therefore, [∂f/∂w]T is a dense vector. To enable
coloring for [∂f/∂w]T , we divide f into nd discrete mesh faces on the design surface:
∂f/∂w =

∑nd

i=1 ∂fi/∂w, where fi denotes the discrete f based on the ith mesh face on
the design surface. With this treatment, we obtain a set of ∂fi/∂w vectors that are
much sparser than ∂f/∂w. Next, we form a nd × nw matrix by using ∂fi/∂w as its
ith row. We then use the coloring scheme to compute all the nonzero elements in this
matrix. Finally, we sum all the rows of this matrix (i.e., ∂fi/∂w) to obtain ∂f/∂w. He
et al. [60] provides more details on this approach. The number of colors for [∂f/∂w]T
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is at least one order of magnitude less than that for [∂R/∂w]T .
After computing [∂R/∂w]T and [∂f/∂w]T , we use the PETSc library [61] to solve

the adjoint equations (4) for the adjoint vector ψ (loop 6−7−8−6, output 9). We
use the generalized minimal residual (GMRES) iterative linear equation solver. The
GMRES method uses the Krylov subspace Ki = span(r0, Ar0, A

2r0, . . . , A
i−1r0), where

A = [∂R/∂w]T is the transpose of the state Jacobian, and the initial residual is r0 =
[∂f/∂w]T−[∂R/∂w]Tψ0. We assemble and store a full [∂R/∂w]T matrix in memory and
then explicit pass it to PETSc for computing the matrix-vector products r0, Ar0, A

2r0,
etc. We use a nested preconditioning strategy with the additive Schwartz method as the
global preconditioner and the incomplete lower and upper (ILU) factorization approach
with one or two levels of fill-in for the local preconditioning. To improve convergence,
we construct the preconditioner matrix [∂R/∂w]TPC by approximating the residuals and
their linearizations [33, 60]. This strategy is effective for solving the adjoint equation,
as reported in He et al. [26, 60].

No coloring scheme is needed for ∂R/∂x and ∂f/∂x. Instead, we use a brute-force
finite-difference approach by successively perturbing the design variables and computing
the perturbed residuals and objective function [33, 60]. After computing ∂R/∂x, ∂f/∂x,
and ψ, we compute the total derivative df/ dx in step 9.

2.3 Solver-specific adjoint implementation

The FD Jacobian adjoint approach described in Sec. 2.2 is applicable to any primal
solver. In this section, we elaborate on the DAFoam’s object-oriented adjoint frame-
work that allows developers to rapidly implement solver-specific adjoints. The DAFoam
framework builds on the observation that, for different primal solvers, their adjoint im-
plementations differ in three major aspects:

1. Elements in the residual R and state variable w vectors;

2. Stencils of Jacobians;

3. Form of residual computation routine R = R(w,x).

In DAFoam, we provide high-level interfaces that allow developers to easily specify
the above three variations, as shown in Fig. 2. This is done by adding child classes for
each primal solver and providing solver-specific implementations. To be more specific,
the elements in the states and residuals are set in the AdjointSolverRegistry child
classes, the stencils of Jacobians are specified in the AdjointJacobianConnectivity

child classes, and the residual function computation is given in the AdjointDerivative

child classes. OpenFOAM’s primal solvers support selecting various turbulence models
at runtime. To enable a similar feature for the adjoint solvers, we treat the turbulence
state variable separately. The turbulence-model-related adjoint implementations are
provided in the AdjointRASModel child classes. Once all the child classes are properly
added and compiled, we can compute adjoint derivatives for any specified primal solver
and model at runtime.
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AdjointIndexing

AdjointIO

AdjointObjectiveFunction

AdjointJacobianConnectivity

ChildClassSolver1

ChildClassSolver2

….................

AdjointSolverRegistry

ChildClassSolver1

ChildClassSolver2

….................

AdjointDerivative

ChildClassSolver1

ChildClassSolver2

….................

AdjointRASModel

ChildClassModel1

ChildClassModel2

….................

Figure 2: Object-oriented code structure for rapid discrete adjoint implementation in
DAFoam. For a new adjoint solver, we need to add child classes for registering states, specifying
residual connectivity, and computing residuals.

In the following, we use one of OpenFOAM’s built in primal solvers (simpleFoam)
as an example to illustrate the object-oriented adjoint implementation process. The
governing equations for simpleFoam are the incompressible NS equations.

∇ ·U = 0, (6)

∇ · (UU ) +∇p− νeff∇ · (∇U +∇UT ) = 0, (7)

where U is the velocity vector, p is the pressure, and νeff = ν + νt is the effective
kinematic viscosity with ν and νt being the molecular and turbulent kinematic viscosity,
respectively. simpleFoam supports multiple turbulence models; however, here we use
the one-equation Spalart–Allmaras (SA) turbulence model as an example:

∇ · (U ν̃)− 1

σ
{∇ · [(ν + ν̃)∇ν̃] + Cb2|∇ν̃|2} − Cb1S̃ν̃ + Cw1fw

(
ν̃

d

)2

= 0, (8)

where ν̃ is related to the turbulent viscosity νt via νt = ν̃χ3/(χ3 +C3
v1), χ = ν̃/ν. Spalart

and Allmaras [62] includes more details on the terms and parameters in Eq. (8).
The continuity (6) and momentum (7) equations are coupled by using the semi-

implicit method for pressure-linked equations (SIMPLE) algorithm [63], along with the
Rhie–Chow interpolation [64]. The turbulence equation (8) is solved in a segregated
manner. The finite-volume method is used to discretize the above equations on collocated
meshes such that we obtain a discrete form of residual function R(w,x). To implement
the discrete adjoint method in DAFoam, we follow three steps:

1. Create a child class AdjointSolverRegistrySimpleFoam to specify the elements
in R and w. According to the governing equations (6)–(8), simpleFoam has six
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Listing 1: Sample code to register residuals and states for simpleDAFoam.

1 volScalarStates.append("p"); // Register scalar volume field p

2 volVectorStates.append("U"); // Register vector volume field U

3 surfaceScalarStates.append("phi");// Register scalar surface field

phi

4 this ->setDerivedInfo (); // Create derived names (e.g., residuals)

residuals (Ru, Rv, Rw, Rp, Rνt , and Rφ) and six state variables (u, v, w, p, νt,
and φ), where φ is the surface flux. The reason for treating φ as an independent
state was explained by He et al. [60]. Therefore, we append these state names
to the registry list, as shown in Listing 1. To facilitate the solver-agnostic ad-
joint implementation, we need to separately register the states based on their field
types (i.e., volume-scalar, volume-vector, or surface-scalar variables). Then, we
call setDerivedInfo to register derived variable names, e.g., the reference value
for U (URef) and the residual for U (URes). There is no need to register turbulence
states here because this is done in the child classes of AdjointRASModel.

2. Create a child class AdjointJacobianConnectivitySimpleFoam to specify how
many levels of surrounding w are connected to R. This information will be used
by the graph coloring scheme to compute the colors. To set the connectivity,
we simply assign the stencil levels to the Jacobian connectivity lists, as shown in
Listing 2. Figure 3 shows the connectivity for the U residual in the case of a
two-dimensional structured mesh. The U residual (URes) depends on U , p, νt,
and φ at the residual cell (level zero, denoted in green). For the one level of sur-
rounding cells, URes depends on U , p, and νt. For the two levels of surrounding
cells, URes depends on U only. Similarly, we add connectivity information for all
the other residuals. The levels of connected states for a residual can be obtained
by analyzing each term’s stencil in the discrete residual equations. For example,
the pressure term ∇p depends on one level of surrounding p and the Laplacian
term νeff∇ · (∇U +∇UT ) depends on one level of νt and two levels of U . Alter-
natively, we can obtain the connectivity level by successively perturbing all the
surrounding states for a single cell residual and evaluating which state impacts
this residual. For complex residual equations, the latter is preferred. Next, we
replace νt with the corresponding turbulence state variables in the ResConInfo

list by calling correctAdjStateResidualTurbCon (e.g., replacing νt with ν̃ for
the SA model and replacing νt with k and ε for the k-ε model). Finally, we call
setAdjStateResidualTurbCon to add turbulence residual connectivity. As men-
tioned above, we treat the turbulence-model-related adjoint implementations sep-
arately; correctAdjStateResidualTurbCon and setAdjStateResidualTurbCon

are implemented in the child classes of AdjointRASModel.

3. Create a child class AdjointDerivativeSimpleFoam and provide a function to
compute R based on w and x. Generally, this task is time-consuming because
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Listing 2: Sample code to specify the momentum residual connectivity for simpleDAFoam.

1 ResConInfo.set

2 (

3 "URes",

4 {

5 {"U","p","nut","phi"}, // Level zero connected states

6 {"U","p","nut"}, // Level one connected states

7 {"U"} // Level two connected states

8 }

9 );

10 .... // Connectivity for other residuals

11
12 // replace "nut" in ResConInfo with the corresponding turbulence

13 // state variables for the selected turbulence model

14 adjRAS.correctAdjStateResidualTurbCon(ResConInfo["URes"]);

15 ....

16
17 // add residual connectivity for the selected turbulence model

18 adjRAS.setAdjStateResidualTurbCon(ResConInfo);

Figure 3: Connectivity of the U residual for a two-dimensional structured mesh. The residual
cell is in green.

the residual functions in a primal solver typically include low-level implementa-
tion details and can become complex as more governing equations are involved.
Fortunately, each primal solver in OpenFOAM has standardized high-level resid-
ual computation routines that we can reuse to facilitate the adjoint implementa-
tions. Listing 3 shows the code corresponding to the U residual computation as
an example. Note that this listing illustrates the idea of reusing the primal codes
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for residual computation; the actual calcResiduals function in simpleDAFoam is
slightly different. In the primal solver simpleFoam, a finite-volume matrix (FVM)
object UEqn has been already created containing all the relevant terms (pressure,
divergence, deviatoric, and Laplacian) for the U equation (lines 4 to 10). Then
simpleFoam solves the linear equation UEqn&U=0 to obtain U (line 12). In the ad-
joint implementation, we reuse the UEqn from the primal solver (lines 20 to 26) and
perform a matrix-vector product UEqn&U to compute the URes (line 27), where ‘&”
denotes the matrix-vector product operation in OpenFOAM. This strategy allows
us to rapidly identify and construct the residual computation functions without
specific knowledge of the low-level implementations of primal solvers. We need to
specify residual computation codes for all other residuals. In addition, we need to
update intermediate variables that depend on the state variables and are used in
the residual computation (for example, the density needs to be updated based on
the updated pressure and temperature). For simpleDAFoam, we do not need to
update any intermediate variable (lines 34 to 37).

In summary, we can follow the above steps to rapidly implement the discrete adjoint
method for existing or new steady-state primal solvers in OpenFOAM. We can also follow
a similar route (register state names, set connectivity, and provide residual functions)
to implement the adjoint for different turbulence models in the AdjointRASModel child
classes. We need to add or modify only a few hundred lines of source code. The
major differences in adjoint implementations between different primal solvers and models
are the details of the residual computation functions. As mentioned above, we can
reuse the OpenFOAM’s built-in FVM matrices, a high-level interface to construct the
linear equation matrices. This convenient feature allows us to rapidly construct the
corresponding residual computation functions without specific knowledge of the low-
level implementation details.

2.4 Performance evaluation

Using DAFoam’s object-oriented adjoint framework shown in Sec. 2.3, we implement
the adjoint method for eight primal solvers, five turbulence models, and one radiation
model, as listed in Table 1. These solvers and models include a wide range of disciplines
(aerodynamics, heat transfer, structures, and radiation) and flow conditions (incom-
pressible, subsonic, transonic, as well as full and transitional turbulence). The naming
convention is to add “DA” (discrete adjoint) to the original name of a primal solver in
OpenFOAM. Taking simpleDAFoam as an example, it is based on the OpenFOAM’s
built-in steady-state incompressible solver simpleFoam. We can use simpleDAFoam to
simulate the flow and compute the adjoint derivatives in a gradient-based optimization
framework.

2.4.1 Speed, scalability, and memory usage

Now we evaluate the speed, scalability, and memory usage of the above adjoint implemen-
tations. We use Case 3 from the AIAA Aircraft Design Optimization Discussion Group
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Listing 3: Sample code to compute flow residuals for simpleDAFoam.

1 // *************************************************************

2 // Original U equation solution code in simpleFoam for reference

3 {

4 fvScalarMatrix UEqn // U FVM matrix

5 (

6 fvm::div(phi ,U) // Divergence term

7 + fvc::grad(p) // Pressure term

8 - fvm:: laplacian(nuEff ,U) // Laplacian term

9 - fvc::div(nuEff*dev2(T(fvc::grad(U)))) // Deviatoric term

10 );

11 UEqn.relax(); // Set under -relaxation

12 UEqn.solve(); // Solve the equation UEqn&U=0 to get U

13 }

14 // *************************************************************

15
16 // Residual computation function in simpleDAFoam

17 void calcResiduals ()

18 {

19 // Reuse the FVM matrix UEqn from the primal solver

20 fvVectorMatrix UEqn

21 (

22 fvm::div(phi ,U) // Divergence term

23 + fvc::grad(p) // Pressure term

24 - fvm:: laplacian(nuEff ,U) // Laplacian term

25 - fvc::div(nuEff*dev2(T(fvc::grad(U)))) // Deviatoric term

26 );

27 // Matrix -vector product for the U residual

28 volVectorField URes = UEqn&U;

29
30 ... // Compute other residuals

31 }

32
33 // Update any intermediate variables that depend on the state

34 // variables and are used in the residual computation

35 void updateIntermediateVariables ()

36 {

37 // no intermediate variable for simpleDAFoam

38 }

(ADODG)3, which consists of an unswept rectangular wing with a NACA 0012 airfoil
profile. We run the flow simulations and adjoint computation using simpleDAFoam at
Reynolds number 106 and Mach number 0.15. The objective function is the drag co-
efficient (CD) and the nominal flight condition is at lift coefficient (CL) of 0.375. The
design variables are the twists (γ) at eight spanwise locations. We used this configura-
tion to benchmark the performance of DAFoam adjoint solvers in Kenway et al. [33].
We generate a fine structured mesh with 10 141 696 cells and the computational domain

3http://mdolab.engin.umich.edu/content/aerodynamic-design-optimization-workshop
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Table 1: Summary of implemented adjoint solvers and turbulence models.

Adjoint solvers Governing Equations

laplacianDAFoam Laplacian equation

simpleDAFoam Incompressible NS equations

simpleTDAFoam Incompressible NS equations with heat transfer

buoyantBoussinesqSimpleDAFoam Incompressible NS equations with heat transfer,
buoyancy, and radiation

rhoSimpleDAFoam Compressible NS equations (subsonic)

rhoSimpleCDAFoam Compressible NS equations (transonic)

buoyantSimpleDAFoam Compressible NS equations with heat transfer,
buoyancy, and radiation

solidDisplacementDAFoam Linear elastic equation

Turbulence Models Description

SpalartAllmaras Spalart–Allmaras one-equation model

kEpsilon Standard k − ε two-equation model

realizableKE Realizable k − ε model

kOmegaSST Menter k − ω SST two equation model

kOmegaSSTLM Langtry–Menter four equation transitional
model based on kOmegaSST

Table 2: Wall-clock runtime for the flow and adjoint computation with increasing number of
CPU cores. The mesh contains 10 141 696 cells. The adjoint computation scales well up to
1536 cores.

Nodes Cores Flow runtime (s) Adjoint runtime (s) Adjoint/flow

8 192 810 (100.0%) 1809 (100.0%) 2.2
16 384 433 (93.5%) 976 (92.7%) 2.3
32 768 242 (83.7%) 481 (94.0%) 2.0
64 1536 156 (64.9%) 262 (86.3%) 1.7

extends 20 chords from the surface. The primal solver runs for 3000 steps, at which
point the residuals drop 13 orders of magnitudes and stall. For the adjoint computa-
tion, we set the relative residual tolerance for the adjoint linear equation solution to
10−6, which is a typical value in an optimization process. There is no need converge
the residual of adjoint linear equations any more than this because the adjoint total
derivatives are accurate only up to four significant digits (Table 3) due to the errors in
the finite-difference-based partial derivative computation (Sec. 2.2).

Table 2 shows the speed and scalability of flow and adjoint computations. All the
simulations are conducted on Stampede 2 [65] using the Skylake nodes. The Skylake
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nodes are equipped with an Intel Xeon Platinum 8160 CPU running at 2.1 GHz, and
each node has 48 CPU cores and 196 GB of memory. The values in parentheses are the
parallel efficiencies, defined as 192t192/(ntn) × 100%, where t is the wall-clock runtime
and n is the number of CPU cores. The adjoint derivative computation scales better
than the flow simulation, especially when using more CPU cores. For example, with
1536 CPU cores, the parallel efficiencies for the flow and adjoint are 65% and 86%,
respectively. In addition, the runtime ratio between the adjoint and flow solutions
varies between 1.7 to 2.2, which is within the acceptable range for performing practical
optimization. The runtimes for the partial derivative computation and adjoint linear
equation solution are similar. In terms of memory usage, the flow solution takes 73.2 GB
memory, while the adjoint computation requires 1146.2 GB memory. The large peak
memory requirement is the current bottle neck of our adjoint implementation, which
is in part because we explicitly form and store the transpose state Jacobian matrix
[∂R/∂w]T and its preconditioner matrix [∂R/∂w]TPC in memory. Due to the use of
SIMPLE algorithm and Rhie–Chow interpolation, the pressure residual depends on three
levels of surrounding cells in simpleDAFoam [33, 60]. In contrast, for density-based flow
solvers such as ADflow [33, 41] and SU2 [37], the flow residuals depend at most on
two levels of surrounding cells. The larger stencil in simpleDAFoam results in a denser
[∂R/∂w]T matrix, which requires a large amount of memory to store. In addition,
the denser preconditioner matrix [∂R/∂w]TPC causes a larger memory overhead when
using a nonzero fill-in level in the ILU factorization. To alleviate the large memory
requirement, we can use the Jacobian-free GMRES adjoint solution strategy detailed by
Kenway et al. [33], where the [∂R/∂w]T matrix is not explicitly computed or stored.
For ADflow, the Jacobian-free approach saved up to 30% memory, compared with the
FD Jacobian method [33]. Implementing the Jacobian-free approach in DAFoam and
optimizing its performance will be conducted in the future work.

2.4.2 Adjoint accuracy

To verify the adjoint derivative accuracy, we consider all the implemented adjoint solvers
and models. For the flow solvers, we use the ADODG Case 3 with a coarse mesh of
102 912 cells. The average y+ is 32.6; therefore, we use wall functions for all turbulence
models. The Mach numbers for the incompressible, subsonic, and transonic conditions
are 0.15, 0.5, and 0.7, respectively. As mentioned above, the adjoint solvers compute
derivatives at all eight spanwise locations; however, we show only one representative
derivative at the 40% spanwise location, dCD/ dγ40%, for all solvers and models.

For the structural analysis solver (solidDisplacementDAFoam), we use the Rotor 67
case (an axial compressor rotor) [66] with a rotational speed of 840 rad s−1. We generate
a triangular unstructured mesh with 91 475 cells. The objective function is an aggrega-
tion of the von Mises stresses (σav) of the rotor subjected to the centrifugal force, and
the design variable is the rotational speed. To compute σav , we use the Kreisselmeier–
Steinhauser (KS) function to aggregate σv over all the mesh cells [67] such that σav is a
conservative approximation of the maximal von Mises stress.

For the heat transfer solver (laplacianDAFoam), we use a flange geometry with 5712
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cells. The heat transfer is imposed by adding a 200 K temperature difference between
the internal and external boundaries. The objective function is the average temperature
T in the flange, and the design variable is the temperature at the internal boundary Ti.

We directly compute the total derivatives using the finite-difference method and use
them as the reference derivative values. To control the errors in the finite-difference
method, we perform step size studies by adding various perturbation magnitudes (rang-
ing from 10−5 to 10−2 with an interval of 0.1) to the design variable and then compare
the reference total derivative values. We conduct similar step size studies for the partial
derivatives in the adjoint computation; the tested step size magnitudes range from 10−9

to 10−4 with an interval of 0.1. The best step size varies depending on cases; how-
ever, 10−3 and 10−7 are the most common perturbation step sizes for the reference total
derivatives and the partial derivatives computation, respectively.

Finally, we evaluate the accuracy of adjoint derivative computation, as shown in
Table 3. For all the implemented solvers and models, there is good agreement between
the adjoint derivatives and the reference values computed using the brute-force finite-
difference method mentioned above. The average relative error is less than 0.1%. This
level of error is acceptable for performing gradient-based optimization, as shown in our
previous studies [12, 26, 60].

3 Results and Discussion
In this section, we integrate the implemented adjoint solvers and models into a gradient-
based optimization framework described in our previous work [60]. We then perform
four distinct optimizations that cover a wide range of disciplines, configurations, and
flow conditions: 1. Multipoint aerodynamic optimization for a low-speed UAV wing, 2.
Trimmed aerodynamic optimization for a transonic aircraft configuration, 3. Aerother-
mal optimization for a turbine internal cooling passage, 4. Aerostructural optimization
for an axial compressor rotor.

The main objective of this section is to demonstrate the benefit of having the flex-
ibility to rapidly implement the discrete adjoint method. Therefore, a comprehensive
optimization analysis that evaluates the impacts of different flow conditions, configura-
tions, turbulence models, and mesh densities for each of these applications is outside the
scope of the paper.

3.1 Multipoint aerodynamic optimization of a low-speed UAV wing

In this subsection, we perform a multipoint aerodynamic optimization for a low-speed
UAV wing. The goal is to demonstrate DAFoam’s multipoint optimization capability for
incompressible conditions. We use the adjoint solver simpleDAFoam, and the governing
equations are the incompressible NS equations, as shown in Eqs. (6) and (7). We use
the Spalart–Allmaras turbulence model (8) for all the optimizations in this paper.

The wing geometry is taken from a multi-mission UAV prototype called Odyssey [68].
The wing planform is rectangular with an aspect ratio of 8.57, a span of 4.572 m, and
an Eppler 214 airfoil. There is no twist or sweep in the baseline wing geometry. For the
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Table 3: The adjoint derivatives for all the implemented solvers and turbulence models rea-
sonably match the reference values. The average error is less than 0.1%.

ADODG Case 3 aerodynamics, Mach number 0.15, dCD/ dγ40% × 10−4

Solver Turbulence Model Reference Adjoint Error

simpleDAFoam Spalart–Allmaras −7.4141337 −7.4143066 0.002%
k − ε −7.6683056 −7.6684497 0.002%

Realizable k − ε −7.5622189 −7.5648494 0.035%
k − ω SST −7.4261818 −7.4254367 0.010%

k − ω SSTLM −7.3058416 −7.3105428 0.064%

simpleTDAFoam Spalart–Allmaras −7.4041615 −7.4043562 0.003%

buoyantBoussinesqSimpleDAFoam Spalart–Allmaras −7.1222484 −7.1223115 0.001%

ADODG3 wing aerodynamics, Mach number 0.5, dCD/ dγ40% × 10−4

Solver Turbulence Model Reference Adjoint Error

rhoSimpleDAFoam Spalart–Allmaras -7.9530799 -7.9513823 0.021%
k − ε -8.2006894 -8.2124952 0.144%

Realizable k − ε -8.1720642 -8.1724885 0.005%
k − ω SST -8.0006496 -8.0162433 0.195%

k − ω SSTLM -7.9764931 -7.9875446 0.138%

buoyantSimpleDAFoam Spalart–Allmaras -7.5714023 -7.5709535 0.006%

ADODG3 wing aerodynamics, Mach number 0.7, dCD/ dγ40% × 10−3

Solver Turbulence Model Reference Adjoint Error

rhoSimpleCDAFoam Spalart–Allmaras -1.4533128 -1.4524513 -0.059%

Rotor 67 blade rotating at ω=840 rad/s, dσav/ dω × 104

Solver Turbulence Model Reference Adjoint Error

solidDisplacementDAFoam – -9.6106984 -9.6109359 0.002%

Flange heat transfer, dT/dTi × 10−1

Solver Turbulence Model Reference Adjoint Error

laplacianDAFoam – 3.5956891 3.5956890 <0.001%

CFD, we use a structured hexahedral mesh with 548 352 cells identical to that of our
previous work [69, Fig. 5]. We use ANSYS ICEM-CFD to generate the surface mesh,
and then we extrude the surface mesh to the volume mesh using a hyperbolic mesh
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Table 4: Multipoint aerodynamic optimization setup for the low-speed UAV wing, which has
129 design variables and 416 constraints.

Function or variable Description Quantity

minimize f =
∑3

i=1w
iCD

i Weighted drag coefficients

with respect to ∆z Deformation of FFD points in 120
the vertical direction

γ Twist 6
α Angle of attack 3

Total design variables 129

subject to CL=0.6, 0.75, or 0.9 Lift-coefficient constraints for 3
each flight condition

t ≥ 0.5tbaseline Minimum-thickness constraint 400
V ≥ Vbaseline Minimum-volume constraint 1
∆zupper

LE = −∆zlower
LE Fixed leading-edge constraint 6

∆zupper
TE = −∆zlower

TE Fixed trailing-edge constraint 6
−0.5 m < ∆z < 0.5 m Design variable bounds

Total constraints 416

marching method [70] implemented in the pyHyp package 4. The average y+ is 33.7.
The simulation domain extends to 30 chord lengths. The Mach number is 0.074 and the
Reynolds number is 9× 105.

In our previous work, we had performed a single point aerodynamic optimization for
the same UAV wing [60]. In this paper, we use a similar design variable and constraint
setup but consider multipoint optimization, as detailed in Table 4. We select three flight
conditions with CL=0.6, 0.75 (nominal), and 0.9. The objective is the weighted CD with
weights of 0.25, 0.5, and 0.25 for the three flight conditions, respectively.

All the optimizations are conducted using MACH 5, an open-source framework for
high-fidelity gradient-based optimization. We use the free-form deformation (FFD)
method to parameterize the design surface [71] through the pyGeo package6. For volume
mesh deformation, we use an analytic inverse-distance method [72] through the IDWarp
package7. As in our previous work we use 120 free-form deformation (FFD) points to
control the local wing shape at six spanwise locations [69, Fig. 5]. In addition, the twists
at these six spanwise locations are selected to be the design variables along with the
angle of attack at the three flight conditions. The root twist is fixed. The total number
of design variables is 129. We constrain the lift coefficients for each flight condition.
In addition, we limit the local wing thickness to be greater than 50% of the baseline
thickness. Finally, we constrain the total volume of the optimized wing to be greater
than or equal to that of the baseline wing, and the leading and trailing edges of the wing

4https://github.com/mdolab/pyhyp
5https://github.com/mdolab/mach-aero
6https://github.com/mdolab/pygeo
7https://github.com/mdolab/idwarp
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are fixed. In total, we have 416 constraints for this case. We use SNOPT [73] as the
optimizer for all the optimizations in this paper through the pyOptSparse interface [74]8.
We set the optimality and feasibility tolerances to 10−6. We run the optimizations until
the optimizer either reaches the above tolerances or aborts due to numerical difficulties
to further improve the design. We also manually terminate the optimizations if the
objective function changes less than 0.001% in five steps.

The comparison of pressure, spanwise lift, twist, and maximum thickness distribu-
tions between the baseline and optimized designs is shown in Fig. 4. The optimiza-
tion converges in 25 steps, achieving a 3.7% drag reduction. This is lower than the
single-point optimization (5.6% drag reduction) reported in our previous work, which
is expected [60]. However, compared with the previous single-point optimization [60,
Fig. 16], the leading edge is less sharp at all spanwise locations, which is better for
off-design performance. Similar to the single-point optimization, the optimized design
achieves the desired elliptical lift distribution by fine-tuning the twist, thickness, and
camber distribution.

3.2 Trimmed aerodynamic optimization of a transonic aircraft con-
figuration

In this subsection, we perform a trimmed aerodynamic shape optimization for an air-
craft wing-body-tail configuration. The goal is to demonstrate DAFoam’s optimization
capability for complex aircraft configurations at transonic conditions, similarly to our
previous efforts [23, 24, 75, 76] using a dedicated RANS solver ADflow [33, 41]. We use
the adjoint solver rhoSimpleCDAFoam, and the governing equations are the compressible
NS equations:

∇ · (ρU) = 0, (9)

∇ · (ρUU ) +∇p− µeff∇ · (∇U +∇UT ) = 0, (10)

∇ · (ρeU) +∇ · (0.5ρ|U |2U + pU)− αeff∇ · (∇e) = 0, (11)

where ρ is the density, e is the internal energy, µ is the dynamic viscosity, and α is the
thermal diffusivity. The heat and mechanical source terms are ignored. The govern-
ing equations (9)–(11) are solved using the compressible form of the SIMPLEC algo-
rithm [77], which is a modified SIMPLE algorithm for compressible flows.

The aircraft geometry is obtained from the Common Research Model (CRM), which
is representative of a modern transonic commercial transport aircraft with a size similar
to that of a Boeing 777. This configuration is also known as the Drag Prediction Work-
shop 4 (DPW4) geometry [78] and was studied in our previous work [23, 24, 75, 76].
The Mach number is 0.85 and the Reynolds number is 5 × 106. We generate unstruc-
tured hexahedral meshes with a total of 872 404 cells using OpenFOAM’s built-in utility
snappyHexMesh , as shown in Fig. 5. The average y+ is 307.8.

Table 5 summarizes the trimmed aerodynamic optimization setup. The objective
function is CD. The design variable and constraint setup is similar to our previous

8https://github.com/mdolab/pyoptsparse
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Figure 4: Multipoint aerodynamic optimization results for the UAV wing. We achieve the
desired elliptical lift distribution. The drag is reduced by 3.7%, and the constraints are satisfied.

work [75, 76]. We use 216 FFD points to control the local wing shape at nine spanwise
locations (Fig. 5). In addition, the wing twists at these nine spanwise locations are
selected to be the design variables, along with the tail rotation and the angle of attack.
The root twist is fixed. The total number of design variables is 227. We constrain
the lift coefficients to be equal to 0.5 and the pitching moment to be equal to zero.
In addition, we limit the local wing thickness to be greater than 20% of the baseline
thickness. Finally, we constrain the total volume of the optimized wing to be greater
than or equal to that of the baseline wing, and the leading and trailing edges of the wing
are fixed. In total, we have 771 constraints for this case.

The comparison of pressure, spanwise lift, wing twist, tail rotation, and maximal-
thickness distributions between the baseline and optimized geometries is shown in Fig. 6.
The optimization converges in 31 steps, achieving 3.6% drag reduction. This is partially
achieved by fine tuning the wing shape and twist distribution to change the spanwise
lift closer to the desired elliptical distribution. In addition, the shock wave at the
upper wing surface is eliminated in the optimized design, as confirmed by the sectional
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Figure 5: Unstructured hexahedral mesh for the CRM wing-body-tail case. The squares are
the FFD control points to morph the design surface geometry. Only the blue FFD points are
allowed to move.

Table 5: Trimmed aerodynamic optimization setup for the CRM wing-body-tail configuration,
which has 227 design variables and 771 constraints.

Function or variable Description Quantity

minimize CD Drag coefficients

with respect to ∆z Displacement of FFD points in 216
the vertical direction

γ Wing twist 9
ηtail Tail rotation 1
α Angle of attack 1

Total design variables 227

subject to CL=0.5 Lift-coefficient constraint 1
CyM=0 Pitching moment constraint 1
t ≥ 0.2tbaseline Minimum-thickness constraint 750
V ≥ Vbaseline Minimum-volume constraint 1
∆zupper

LE = −∆zlower
LE Fixed leading-edge constraint 9

∆zupper
TE = −∆zlower

TE Fixed trailing-edge constraint 9
−10 m < ∆z < 10 m Design variable bounds

Total constraints 771

pressure distributions. By adjusting the tail rotation, the pitching moment changes
from −0.08427 (baseline) to −0.00036 (optimized) and the pitching moment constraint
is satisfied.
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Figure 6: Trimmed aerodynamic optimization results for the CRM wing-body-tail configura-
tion. The drag is reduced by 3.6%, and the constraints are satisfied.

3.3 Aerothermal optimization of a turbine internal cooling passage

In this subsection, we perform an aerothermal optimization for a turbine internal cool-
ing channel. The goal is to demonstrate DAFoam’s flexibility to handle complex PDEs
that involve multiple disciplines. We use the adjoint solver buoyantBoussinesqSim-
pleDAFoam, and the governing equations are the incompressible NS equations, coupled
to heat transfer, buoyancy, and radiation equations:

∇ ·U = 0, (12)
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Table 6: Aerothermal optimization setup for the turbine internal cooling channel, which has
113 design variables and 38 constraints.

Function or variable Description Quantity

Minimize f Weighted CPL and Nu

with respect to ∆x, ∆y, and ∆z Displacement of FFD points 113

subject to gsym
z =0 Zero slope at symmetry plane 29

∆yin1 + ∆yin2 > tmin Non-overlapping inner walls 9
bound (∆x, ∆y, ∆z) Design-variable bounds to confine the

design surfaces within the bounding box
Total constraints 38

∇ · (UU ) +∇p− νeff∇ · (∇U +∇UT )− ρg = 0. (13)

∇ · (TU)− αeff∇ · (∇T ) +
aG− 4eσT 4

ρCp
= 0, (14)

γ∇ · (∇G)− aG+ 4eσT 4 = 0, (15)

where g is the gravitational acceleration, T is the temperature, Cp is the specific heat
at constant pressure, and σ is the Stefan–Boltzmann constant. We use the P1 radiation
model [79], where a and e are the absorption and emission coefficients, respectively,
and G is the incident radiation intensity. The emission contribution and scattering are
ignored.

The baseline geometry is a U-bend channel benchmark, representative of a section of
serpentine internal cooling passages [80]. It has a square cross section with a hydraulic
diameter Dh = 0.075 m, and upstream section going from x = 0 (inlet) to x = 10Dh,
a 180◦-bend section, and a downstream section from x = 10Dh back to x = 0 (outlet),
refer to [26, Fig.4]. We generate a structured mesh with 409 600 cells using OpenFOAM’s
built-in utility blockMesh. The average y+ is 1.3. The Reynolds number is 4.2 × 104,
based on Dh. In our previous work, we performed aerothermal optimization for the
same U-bend channel [26]. In this subsection, we consider a case that adds buoyancy
and radiation effects. We added the gravitational acceleration g = (−9.81, 0, 0) in the
streamwise direction and use a 10 K temperature difference between the main stream
and the walls to drive heat transfer.

The objective function is a combination of total pressure loss coefficient CPL and
average Nusselt number Nu, and their weights are 0.2 and −0.8, respectively. We use 63
FFD points to morph the bend section and have 113 degrees of freedom (design variables)
in total [26, Fig. 5]. To ensure practical shape, we impose 38 geometry constraints, as
shown in Table 6. More detailed optimization configurations can be found in He et al.
[26].

Figure 7 compares the velocity and Nusselt number of the baseline and optimized
designs. The optimization converges in 34 steps. We obtain simultaneous improvement
for aerodynamics (CPL decreases by 20.5%) and heat transfer (Nusselt number increases
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Figure 7: Aerothermal optimization results for the turbine internal cooling channel, where a
simultaneous improvements for the aerodynamics and heat transfer are achieved.

by 5.6%). Similar to what we observed in the previous work [26], the aerodynamic
loss reduction is primarily achieved by creating a smoother U-bend section that reduces
the flow separation, as evident in the velocity contours and streamlines comparison.
In addition, the channel shrinks before and after the U-bend section, which increases
the velocity magnitude and the convective heat transfer, as shown in the local Nusselt
number contours and the streamwise Nusselt number distributions. However, we observe
a smaller separation bubble in the baseline design compared with the previous work [26,
Fig. 11a], for which buoyancy and radiation were not included. In addition, we obtain
higher reduction in aerodynamic loss (20.5% compared with 11.7% [26]), although a
small separation region is present in the optimized design.

3.4 Aerostructural optimization of an axial compressor rotor

In this subsection, we perform an aerostructural optimization for an axial compres-
sor rotor. The goal is to demonstrate DAFoam’s capability to integrate two adjoint
solvers (flow and structural analyses) for multidisciplinary design optimization. These
two adjoint solvers are rhoSimpleDAFoam and solidDisplacementDAFoam. The govern-
ing equations for rhoSimpleDAFoam are the compressible NS equations, written in the
multiple-reference-frame form:

∇ · (ρU a) = 0, (16)

∇ · (ρU rU a) + ω ×U a +∇p− µeff∇ · (∇U a +∇UT
a ) = 0, (17)
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Figure 8: Unstructured triangular meshes for the Rotor 67 case. The squares are the FFD
control points to morph the design surface geometry. Only the blue FFD points are allowed
to move.

∇ · (ρeU a) +∇ · (0.5ρ|U |2aU a + pU a)− αeff∇ · (∇e) = 0, (18)

where U a and U r are the absolute and relative velocities, respectively, and they are
related through U a = U r +ω×x with ω being the rotational speed vector and x being
the cell-center coordinate vector. The above governing equations are solved using the
compressible form of SIMPLE algorithm based on the absolute velocity in the stationary
frame; however, the flux for the convective term in the momentum equation (17) is
computed using the relative velocity in the rotating frame.

The governing equations for solidDisplacementDAFoam are the linear elastic equa-
tions with the centrifugal force:

∂2ρD

∂t2
−∇ · (µ∇D + µ∇DT + λItr[∇D])− ω × (ω × x) = 0, (19)

where D is the structural displacement, t is the time, I is a 3× 3 identity matrix, “tr”
denotes the trace of a matrix, and µ and λ are the Lamé constants for the material. The
governing equations are solved by time marching the solutions until the steady-state is
reached. At each time step, the three components of structural displacement vector are
solved in a segregated manner.

The baseline geometry is Rotor 67, which has 22 blades with a tip radius RT of
255.4 mm and an aspect ratio of 1.56 [66]. We consider the no tip-clearance configuration
and run the simulations at 50% design speed (840 rad/s) with a total pressure ratio
pout0 /pin0 = 1.1. The inlet absolute Mach number is 0.29, and the chordwise Reynolds
number is 8.5× 105. We simulate only one blade with rotationally periodic boundaries
conditions. We find that the contribution of the pressure force to the maximum stress is
one order of magnitude lower than that of the centrifugal force. Therefore, the pressure
load is ignored, and the only external force for the blade structure is the centrifugal
force due to rotation. In addition, the maximum blade structural displacement is less
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Table 7: Aerostructural optimization setup for the Rotor 67 case, which has 120 design
variables and 3 constraints.

Function or variable Description Quantity

minimize CzM Normalized torque

with respect to ∆x, ∆y, ∆z FFD displacement in the x, 120
y, and z directions

subject to ṁ = ṁbaseline Constant mass flow rate 1
pout

0 /pin
0 = [pout

0 /pin
0 ]baseline Constant total pressure ratio 1

σav ≤ [σav ]baseline von Mises stress constraint 1
−2 mm < (∆x,∆y,∆z) < 2 mm Design variable bounds

Total constraints 3

than 0.01 mm. Therefore, we assume that the blade is rigid and thus the fluid-structure
interaction is ignored. As shown in Fig. 8, we use ANSYS ICEM-CFD to generate a
triangular unstructured mesh with 361 256 cells for the fluid domain with an average y+

of 224.4, and a 94 711 cell mesh for the solid domain.
Table 7 summarizes the aerostructural optimization setup. The objective function

is the normalized torque Cz
M . We use 40 FFD points to morph the shape of the rotor

blade, as shown in Fig. 8. These FFD points can move in the x, y, and z directions, for a
total of 120 design variables. The FFD point displacements between the fluid and solid
domains are identical. To ensure that the optimized design satisfies the aerodynamic
coupling for the other compressor components, we constrain the mass flow rate ṁ and
total pressure ratio to be equal to their baseline values, similar to Wang et al. [81]. In
addition, we impose a stress constraint to force σav to be less than or equal to the baseline
value to avoid structure failure. As mentioned before, σav is a conservative approximation
of the maximum von Mises stress.

Figure 9 shows the comparison of pressure and stress distributions between the base-
line and optimized designs. The optimization converges in 20 steps and achieves a 3.2%
reduction in torque. This is primarily achieved by fine tuning the blade shape and thus
the pressure distribution. For example, we observe that the aft-loaded pressure distri-
bution in the baseline design is shifted forward, especially at the mid span. In addition,
the change in blade shape is a compromise between aerodynamic and structural con-
siderations; the mass flow rate, total pressure ratio, and maximal stress constraints are
well satisfied in the aerostructural optimization.

4 Conclusion
In this paper, we propose DAFoam: an open-source, object-oriented framework to
rapidly implement the discrete adjoint method for any of the steady-state primal solvers
in OpenFOAM. This can be accomplished by adding or modifying only a few hundred
lines of source code. The central recipe in the proposed approach is to use a generalized
framework for partial derivative computation and adjoint equation solution, and then
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Figure 9: Aerostructural optimization results for the Rotor 67 case. The torque is reduced by
3.2%, and the constraints are satisfied.

provide a high-level interface to add the solver-specific implementations.
For the solver-agnostic adjoint implementation, DAFoam uses the finite-difference

method to compute the partial derivatives, accelerated by a heuristic parallel graph
coloring scheme. The adjoint equations are then solved using the GMRES method.
For the solver-specific part, DAFoam provides an object-oriented interface that requires
developers to specify only the functions to compute the residuals along with names
of state variables and stencil levels. The residuals are computed by reusing the FVM
matrix objects that have been already defined in the OpenFOAM primal solvers. This
convenient feature allows users to easily construct the residual functions without specific
knowledge of their low-level implementations.

Using the above strategy, we implement the adjoint method for eight primal solvers,
five turbulence models, and one radiation model. These adjoint implementations exhibit
excellent scalability with up to 10 million cells and 1536 CPU cores. The runtime ratio
between adjoint and flow computation ranges from 1.7 to 2.2, and the average error in
the adjoint derivatives is less than 0.1%.

Finally, we integrate the implemented adjoint solvers and models into a gradient-
based optimization framework MACH and perform four distinct design optimizations
that involve aerodynamics, heat transfer, structures, and radiation. We obtain perfor-
mance improvements for all these four cases: 3.7% drag reduction for the multipoint
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aerodynamic optimization of the UAV wing, 3.6% drag reduction for the aerodynamic
optimization of CRM wing-body-tail configuration, 20.5% reduction in aerodynamic
loss and 5.6% increase in heat transfer for the aerothermal optimization of the U-bend
cooling passage, and 3.2% torque reduction for the aerostructural optimization of the
Rotor 67 blade. The optimization setup for these cases, including the meshes, flow and
optimization configurations, and run scripts, are publicly available [55].

DAFoam is available under an open-source license and is a powerful tool for the high-
fidelity multidisciplinary design optimization of engineering systems such as aircraft,
ground vehicles, marine vessels, and turbomachinery.

Acknowledgments
The computations were done in the Extreme Science and Engineering Discovery En-
vironment (XSEDE), which is supported by National Science Foundation Grant No.
ACI-1548562.

References
[1] Pironneau, O., “On Optimum Profiles in Stokes Flow,” Journal of Fluid Mechanics,

Vol. 59, No. 01, 1973, pp. 117–128. doi:10.1017/S002211207300145X.

[2] Jameson, A., “Aerodynamic Design via Control Theory,” Journal of Scientific Com-
puting, Vol. 3, No. 3, 1988, pp. 233–260. doi:10.1007/BF01061285.

[3] Nielsen, E. J., and Anderson, W. K., “Aerodynamic Design Optimization on Un-
structured Meshes Using the Navier–Stokes Equations,” AIAA Journal, Vol. 37,
No. 11, 1999, pp. 1411–1419. doi:10.2514/2.640.

[4] Jameson, A., “Aerodynamic shape optimization using the adjoint method,” Lecture
series, Von Karman Institute for Fluid Dynamics, Rode Saint Genèse, Belgium,
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