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Abstract The design of satellites and their operation is a complex task that involves a large number
of variables and multiple engineering disciplines. Thus, it could benefit from the application of multidis-
ciplinary design optimization, but previous efforts have been hindered by the complexity of the modeling
and implementation, discontinuities in the design space, and the wide range of time-scales. We address
these issues by applying a new mathematical framework for gradient-based multidisciplinary optimization
that automatically computes the coupled derivatives of the multidisciplinary system via a generalized form
of the adjoint method. The modeled disciplines are orbit dynamics, attitude dynamics, cell illumination,
temperature, solar power, energy storage, and communication. Many of these disciplines include functions
with discontinuities and nonsmooth regions that are addressed to enable a numerically exact computation of
the derivatives for all the modeled variables. The wide-ranging time scales in the design problem, spanning
30 seconds to 1 year, are captured through a combination of multi-point optimization and the use of a small
time step in the analyses. Optimizations involving over 25,000 design variables and 2.2 million state variables
require 100 hours to converge 3 and 5 orders of magnitude in optimality and feasibility, respectively. The
results show that the geometric design variables yield a 40% improvement in the total data downloaded,
which is the objective function, and the operational design variables yield another 40% improvement. This
demonstrates not only the value in this approach for the design of satellites and their operation, but also
promise for its application to the design of other large-scale engineering systems.

Nomenclature
~(·) = Vector

(̂·) = Unit vector
A = Area, m2

Br = Bit rate, Gb/s
c = Vector of all constraint variables
C = Vector of all constraint functions
Ci = Vector of constraint functions corresponding to the ith component
ds = Distance from satellite to Earth–Sun axis, km
dc = Distance from satellite to Earth tangent plane at ground station, km
D = Downloaded data, Gb
Gt = Transmitter gain
I = Current, A
J = Mass moment of inertia matrix, kg·m2

L = Angular momentum vector, kg·m2/s
LOSs= Satellite-to-Sun line of sight
LOSc= Satellite-to-ground-station line of sight
O = Orientation matrix
P = Power, W

Q̇ = Heat transfer rate, W
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r = Position vector norm, km
~r = Position vector, km
SOC = Battery state of charge
T = Temperature, K
~v = Velocity vector, m/s
v = Vector of all variables (input, state, output)
vi = Vector of variables corresponding to the ith component
Vi = Vector of functions corresponding to the ith component
γ = Satellite roll angle, rad
ηs = Sun line of sight transition parameter
τ = Torque, N·m
ω = Angular velocity vector, 1/s

1 Introduction
Satellites serve a multitude of purposes that range from navigation and scientific research to military ap-
plications. Over the past decade, small satellites have gained increasing interest as alternatives to larger
satellites because of the low time and cost required to manufacture and launch them. In particular, the
CubeSat class of small satellites is becoming a common platform for education and research because it has
a set of specifications that facilitates relatively frequent launches as secondary payloads.

CADRE (CubeSat investigating atmospheric density response to extreme driving) is funded by the Na-
tional Science Foundation and will study the response of the Earth’s upper atmosphere to auroral energy
inputs [1]. This mission addresses the need for more accurate modeling of space weather effects, motivated
in part by the growth of the global space-based infrastructure. To help answer some of the important
scientific questions in this area, CADRE will provide critical in situ measurements in the ionospheric and
thermospheric regions.

CADRE will inherit much of the design of the University of Michigan’s Radio Aurora eXplorer (RAX)
CubeSat. However, the unique scientific goals of the mission necessitate a detailed design study. Power is
a driving factor because the scientific instruments are to run continuously, and large amounts of data must
be transmitted to ground stations. Fortunately, there are several geometric and operational design variables
whose impact can be captured with relatively inexpensive computational models, and it is possible to use
these variables to satisfy the mission requirements while improving the satellite’s performance. In the past,
this has mostly been done via experience and human intuition aided by computational design tools that
work with a relatively small number of design variables.

In the literature, there are many studies in which computational modeling and optimization have been
applied to satellite design. For instance, Boudjemai et al. [2] performed topology optimization on the
structure of a small satellite using NASTRAN for the finite element analysis. Numerical optimization has
been applied to several other disciplines as well. Galski et al. [3] optimized a thermal control system, while
Jain and Simon [4] implemented real-time load scheduling optimization of a small satellite’s batteries. More
recently, Richie et al. [5] and Zhang et al. [6] used optimization to size the energy storage and attitude control
system and to design the layout of the satellite’s components, respectively. All of these single-discipline
optimization studies share a common approach: with the exception of the actuator sizing optimization,
they use a genetic algorithm (GA) as a simple solution to deal with the discrete design variables and the
discontinuities that are often present in the models.

Other authors considered multiple disciplines simultaneously to better model the overall physical prob-
lem. Barnhart et al. [7] implemented SPIDR, a systems-engineering-based framework for satellite design with
an artificial-intelligence-based optimization algorithm that incorporates user-defined rules and constraints.
Fukunaga et al. [8] developed OASIS, which uses a machine-learning algorithm to adaptively select and
configure a metaheuristic optimizer such as a GA to optimize a model in MIDAS [9], a satellite design
framework. SCOUT [10] is another framework that uses a GA for optimization, and ATSV [11] uses a shop-
ping paradigm to aid the design process. Recently, Ebrahimi et al. [12] and Jafarsalehi et al. [13] developed
multidisciplinary design frameworks that use a particle swarm optimizer (PSO) and a GA, respectively.

With the exception of the last two efforts, all of the computational design tools cited above have graphical
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Figure 1: CADRE CubeSat geometry.

user interfaces (GUI) that significantly enhance usability. For these tools, the approach is to make user
interaction with the framework as streamlined as possible, allowing the user’s knowledge and experience
to work together with the framework’s optimization capability. However, as was the case with the single-
discipline studies, all of these computational design tools use optimizers or design techniques that do not
use gradients, which limits the number of design variables that can be considered. Without gradients,
algorithms must rely on sampling the design space at a cost that grows exponentially with the number of
design variables, and in practice, this becomes prohibitive when there are more than O(10) variables. Wu
et al. [14] used a gradient-based approach to solve a satellite MDO problem with collaborative optimization
(CO) [15, 16], but the cost of computing coupled derivatives limited the number of design variables to O(10)
here as well.

Given the existing body of work, this paper seeks to address the question whether multidisciplinary design
optimization (MDO) can handle the full set of design variables in the satellite design problem simultaneously,
even when there are tens of thousands of them. The high-level approach is gradient-based optimization in
combination with adjoint-based derivative computation, with a modular implementation of the disciplinary
models in an integrated framework. The full small-satellite design problem is simultaneously considered,
including all major disciplines, multiple time scales, and tens of thousands of design variables that parametrize
the variation of several quantities over time.

The paper begins with a detailed description of CADRE and the design problem, which explains why
such a large number of design variables is necessary. Next, we discuss the approach taken to implement and
solve this large-scale MDO problem by listing all the challenges, as well as the measures taken to address
them. Having established the background and context, we describe each disciplinary model, emphasizing
those models that are original and have been developed specifically for this problem. Finally, we present
optimization results that demonstrate the validity of the MDO approach advocated in this paper and its
potential for small-satellite design.

2 The CADRE Design Problem
CADRE is a 3U CubeSat [1], meaning its body is a square prism with dimensions of 30 cm × 10 cm × 10 cm.
As with other CubeSats, CADRE’s dimensions are fixed so that it can be launched as a secondary payload
with a larger satellite in order to reduce costs. The satellite has four fins that are initially folded at the sides
of the satellite but are permanently deployed after launch in the rear direction to a preset angle. Although
the roll angle is flexible, CADRE must always be forward-facing because of the scientific requirements, so
the swept-back fins provide passive attitude stabilization through aerodynamic drag. CADRE has 12 solar
panels with 7 cells each: 4 panels on the sides of the body, and one on the front and back of each fin. In
general, the 84 cells are only partially illuminated because the Earth or another part of the satellite can cast
shadows even when a cell is facing the Sun. Since the cells cover most of the satellite, it may be beneficial
to install a radiator in place of one or more of the solar cells that are often shaded to provide cooling and to
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Figure 2: Extended design structure matrix (XDSM) diagram [17] showing all relevant disciplines in the
CADRE design problem.

improve the power generation of other cells. A rendering of the CADRE CubeSat is shown in Fig. 1.
Other relevant subsystems include energy storage, communication, and attitude control. Lithium-ion

batteries are installed with charge- and discharge-rate constraints, and a depth-of-discharge limit of 20% is
enforced to lengthen the battery life. To transmit data to ground stations, an antenna is installed toward the
rear of the satellite, and the installation angle is a parameter that can be varied, although it is constrained
to be in the vertical plane. For the purposes of this paper, data transmission to ground stations is assumed
to use a UHF antenna, although the final design for CADRE may use an S-band antenna for high-speed data
download. CADRE uses two types of attitude-control actuators that complement each other: magnetorquers
for gross changes, and reaction wheels for more precise control. With the latter, there is potential for the
rotation rates of the wheels to accumulate and grow unmanageably large, so the magnetorquers are used to
counteract constant torques such as that due to solar pressure. In this paper, only the reaction wheels are
modeled to capture the power requirements of the desired attitude profiles, and the cost of counteracting
disturbance torques is modeled as a constant background power consumption. Fig. 2 shows the disciplines
and how they are coupled through the state variables.

CADRE’s mission is to continuously collect data and transmit as much of that data as possible to the
ground stations. Therefore, the total data downloaded is the natural objective function for the CADRE
design optimization problem, although generating and storing sufficient energy is a driving factor. The
fin and antenna angles are important geometric design variables, because they affect the power generation
and the data-transmission rate, respectively. CADRE’s attitude profile over time can be designed as well,
providing further flexibility that can be used to increase power generation, cool panels when necessary,
and increase transmission gain during communication with a ground station. The attitude profile must be
optimized simultaneously with the geometric design variables because the fin and antenna angles that are
optimal for an assumed attitude profile may no longer be optimal for an attitude profile that is optimized
separately. The available power must also be optimally distributed between communication and actuation,
so the power-distribution profile must be considered simultaneously as well.

Optimizing these profile variables involves manipulating 2-D curves without any a priori knowledge of
their final optimal shapes. To do this, the curves must be discretized and parametrized, and in the simulation
of hours, days, or even months of the satellite’s operation, the resulting number of design variables can easily
reach tens of thousands. To summarize, the objective of the CADRE design problem is to maximize the total
data downloaded subject to constraints on the power and energy available, with respect to the fin angle,
the antenna angle, the attitude profile, the communication power profile, and the 84 binary cell-installation
variables.
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3 Approach
The advantage of the gradient-based MDO approach taken in this paper is that it can handle a problem
with many disciplines, design variables, and state variables. As a result, the true design problem can be
optimized with few simplifications. This section discusses the approach used in this paper by listing each of
the technical challenges and their solutions.

3.1 Large Number of Design Variables: Gradient-Based Optimization
Gradient-free optimizers do not perform well for problems with hundreds or thousands of design variables [18].
Gradient-free methods such as GAs and PSOs work with populations distributed over the design-variable
range, but for a constant level of convergence, the number of required function evaluations grows exponen-
tially.

When combined with analytic derivative computation, gradient-based optimization can be a powerful
tool, because the adjoint method makes it possible to compute derivatives at a cost that is nearly indepen-
dent of the number of design variables [19]. In addition, the number of iterations required for the optimization
typically scales only linearly with sequential quadratic programming (SQP). In the aerospace field, the ad-
joint method has been very successful in aerodynamic shape optimization, initially with the approach of
Jameson [20] and later with the optimization of full aircraft configurations [21–23]. It has also been success-
fully applied to the multidisciplinary optimization of aircraft aerodynamics and structures simultaneously
using a coupled adjoint approach [24, 25].

SQP methods are among the best for constrained nonlinear optimization problems because an approxi-
mate Hessian of the Lagrangian is built from only first derivatives and the method is second-order conver-
gent close to the optimum point. All the optimization problems in this paper are solved using SNOPT [26],
through the pyOpt interface [18]. SNOPT is a reduced-Hessian active-set SQP optimizer that efficiently
solves large-scale, sparse nonlinear constrained problems.

Gradient-based optimizers can never guarantee convergence to the global optimum. However, the global
optimum is not a realistic goal given the number of design variables in this problem, because many local
minima are expected. Even as a local optimizer, the gradient-based MDO algorithm is still useful because
it is able to find a design for CADRE better than that found using experience and human intuition. The
argument is that a local optimum for a problem that closely represents reality may be more useful than the
global optimum of a problem based on lower fidelity models.

3.2 Large Number of Disciplines: New MDAO Formulation
From an implementation perspective, the large number of disciplines presents one of the most significant
challenges of this work. Each discipline is decomposed into separate computations to simplify and modularize
the code, but this results in a large number of components. For instance, the output of the communication
discipline is ultimately the total data downloaded, but it is broken down into the computations of the ground
station line-of-sight variable, the position vector from the satellite to the ground station, the transmitter
gain as a function of this vector, the data-download rate, and the total data downloaded. In total, there
are 43 components when those of all the disciplines are combined, and Fig. 3 shows the dependencies to
illustrate the scope and complexity of this problem. In the figure, the (i, j)th entry represents the variable(s)
computed by the ith component and used as an argument by the jth component. The design structure
matrix is upper triangular because the problem has been formulated to remove feedback, as will be discussed
in Sec. 5. 5.1.

Programming all of these components, accounting for all the dependencies between variables, and cor-
rectly programming their derivatives is a long and error-prone process. We implemented all the components
within a framework that uses a new multidisciplinary design, analysis, and optimization (MDAO) formula-
tion [27].

This formulation simplifies the task by defining the multidisciplinary analysis problem mathematically as a
nonlinear system of equations. The design, state, intermediate, input, and output variables are a subset of the
unknowns in this nonlinear system, and the objective, constraint, residual, and other functions are formulated
as equations. This is accomplished by classifying each variable as an independent variable whose value can be
set, an explicit variable, or an implicit variable whose value is the root of an equation. Design variables and
parameters are independent; behavior variables and other intermediate variables computed by evaluating
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Figure 3: Design structure matrix diagram illustrating the complexity of the problem.

Type ith Variable Corresponding constraint
Independent vi = v∗i Ci(v) = vi − v∗i
Explicit vi = Vi(v1, . . . , vj 6=i, . . . , vn) Ci(v) = vi − Vi(v1, . . . , vj 6=i, . . . , vn)
Implicit vi : Ri(v1, . . . , vj 6=i, . . . , vn, vi) = 0 Ci(v) = −Ri(v1, . . . , vj 6=i, . . . , vn, vi)

Table 1: Classification of variables in the MDAO formulation.

an expression (no matter how complicated) are explicit; and state variables that are computed by solving
a linear or nonlinear system of equations are implicit. Thus, the input variables for the multidisciplinary
analysis are independent, while the output variables, including the optimization objectives and constraints,
are either explicit or implicit, typically the former.

We define for each variable a corresponding constraint function that yields zero when the variable has
converged and has the value given by its definition, as shown in Table 1. In the remainder of this section,
upper-case symbols designate functions and lower-case symbols designate variables, e.g., c is the vector of
the output variables of C.

The variables are concatenated into a single vector, v, and the constraint vector is denoted C. This
formulation effectively defines the multidisciplinary analysis problem mathematically as the nonlinear system
C(v) = 0. Since ∂C/∂v is always invertible in practice, the inverse function theorem states that the inverse
of the Jacobian of C is the Jacobian of the inverse function of C, yielding the result [19]:

∂C

∂v

dv

dc
= I =

∂C

∂v

T dv

dc

T

. (1)

Methods resulting from the left equality are described as forward mode and those from the right equality
as reverse mode. For example, the two modes of algorithmic differentiation as well as the direct and adjoint
methods correspond to one of these two modes. This equation unifies all known methods for computing nu-
merical derivatives; more details can be found in Martins and Hwang [19]. Given accurate partial derivatives,
the equality on the right yields numerically exact partial derivatives at a cost that is nearly independent of
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Figure 4: Derivation of the adjoint method from Eq. (1) [19].

the number of design variables. As an illustration, Fig. 4 shows how the adjoint method can be derived from
Eq. (1) with the appropriate definition of the vector v. The nomenclature used in this figure is consistent
with the source of the figure [19], but it does not apply to the rest of this paper. In Fig. 4, x is the design
or input variable vector, y is the state variable vector, and f represents the output variables.

Figure 4 also helps explain the entries of the dv/ dc matrix, the interpretation of which may be unclear.
This matrix is the Jacobian of the local inverse of the C function at the solution of C(v) = 0, so a column
dv/dci is the vector of perturbations to v that solves the nonlinear system with a small perturbation added
to the ith constraint. The figure illustrates the meaning of the derivatives of input variables such as dx/df ;
since f has neither an explicit dependence on x nor an implicit one through y, these derivatives are zero. It
also illustrates the meaning of the derivatives with respect to the residuals: a column of dy/dr represents
the vector of perturbations to y that comes about by adding a small perturbation to one of the residuals.

In the second equality of Eq. (1), solving for the column of the transpose of dv/dc corresponding to a
desired objective or constraint function, for instance f , yields the full vector of the derivatives of f , a subset
of which is df/dx. Thus, one of the gradients needed during an optimization iteration can be computed at
the cost of just a single solution of a linear system.

Based on this formulation of the problem, it is possible to automatically solve the multidisciplinary system
and compute the coupled derivatives. To implement a component, we simply define methods for computing
Ci, ∂Ci/∂v and its transpose, and the preconditioner for ∂Ci/∂vi and its transpose, and we implement a
component-level solver that computes vi : Ci(v) = 0. Since feedback has been removed from the current
problem, as shown in Fig. 3, a system-level solver can then solve the nonlinear system by running a single

7



iteration of the nonlinear block Gauss–Seidel method. It can also solve the linear system in Eq. (1) using
a single iteration of the linear block Gauss–Seidel method to obtain the desired vector of derivatives. For
the optimization problem presented in this paper, we must find 31 linear solutions of the second equality in
Eq. (1)—one for each objective and constraint function—where the right-hand side of the linear system is
the ith column of the identity matrix, and i is the index of the output variable of interest in the global v
vector.

Alhough coupled derivatives are computed in the framework using (1), each component must be able
to compute the partial derivatives of any variables it computes with respect to any variables on which it
depends. The simplest option is finite-differencing, either column-by-column or as a directional derivative.
However, the accuracy of finite differences is limited because subtractive cancellation error dominates at small
step sizes, and the error term in the first-order Taylor expansion becomes significant at larger step sizes.
The complex-step method avoids this issue since there is no subtraction operation in the formula [19, 28].
However, the cost of differentiation is proportional to the number of variables, which is of the order of
thousands in this case. Algorithmic differentiation is another option with an error theoretically on the order
of machine precision, but the cost is proportional to either the number of outputs or the number of inputs,
which are both large in this problem [19].

For these reasons, each component has been analytically differentiated. This approach yields numerically
exact derivatives and can be more efficient than the other methods. Furthermore, many of the Jacobians
are large (thousands by thousands) but sparse. These sparse matrices are assembled directly in Fortran very
efficiently.

3.3 Multiple Time Scales: Multi-point Optimization
The CADRE design problem involves multiple time scales. Capturing CADRE’s power generation and
temperature fluctuations requires a time-resolution of O(5 min) because its orbit has a period of roughly
90 min. Ground-station passes last O(10 min) and energy must be stored between sets of ground-station
passes, which occur in patterns that roughly repeat each day. Assuming that the ground stations are close
to the Equator, this requires a resolution of O(1 min) with a simulation of at least 12 h of the satellite’s
operation. However, depending on the launch orbit, CADRE’s orbit may precess multiple times per year.
This, combined with the effect of the seasons, requires a simulation of one year to model one period of
oscillations in the satellite’s operating conditions.

This multi-scale characteristic, combined with the ambitious scope of the design problem, presents a
significant challenge. For a truly unbiased simulation, the year must be simulated with a resolution of 1
min, yielding 262, 800 discrete points. If a shorter period of time is simulated, the resulting design may be
optimal in one season but not others. In some seasons the satellite may have difficulty generating sufficient
power because the solar cells see much less of the Sun at the chosen fin angle.

The periodic nature of many of the variables suggests a frequency-domain approach for the state and
design variables to reduce the size of the model and the optimization problems. Such an approach would
capture the oscillatory behavior of the variables with a relatively small number of degrees of freedom.
However, we did not adopt this approach for two reasons. First, many of the state variables, such as the
Sun line-of-sight variable, have near-discontinuous jumps that cannot be accurately represented with a small
number of frequencies. These effects propagate to other variables, such as the temperature, solar power,
and battery current, as similar discontinuities or as nonsmoothness. Second, while other state variables do
behave smoothly for the most part, they tend to have one or more spikes due to ground-station passes.
The transmitter gain, battery current, and temperature are examples of variables that exhibit such spikes,
although for temperature these are on a relatively small scale. These high-frequency components could
potentially be represented by additional modes, but they would require a priori knowledge of where the
passes are, and some of the automation in the computational tool would be lost. Nonetheless, it is worth
noting for future work that representing some of the state variables in the frequency domain and others in
the time domain would no doubt reduce the size of the problem.

Our solution is to simulate six 12-hour blocks with 0.5 min resolution, distribute them uniformly over
the year, and weight each one equally in a single optimization problem. The orbit and communication
time scales are captured within the 12-hour blocks, and simulating half a day every two months captures
the orbit-precession time scale. The optimization constraints are applied separately to each block, and the
objective functions computed from the six blocks are averaged. This approach is essentially multi-scale,
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multi-point optimization; the minute-level time scale is directly simulated, and the objective function for the
month-level time scale is numerically integrated using the midpoint rule.

3.4 Large Number of Constraints: Constraint Aggregation
As previously mentioned, the coupled-derivative equations compute the gradients efficiently because they
give either the full vector of derivatives with respect to a single variable (forward mode of (1)) or the full
gradient of a variable (reverse mode of (1)) using a single solution of a linear system. Since our optimization
has a large number of design variables, the reverse mode must be used, but it requires a linear solution for
each constraint. Moreover, the battery discipline requires four inequality constraints at each time instance—
maximum charge rate, maximum discharge rate, minimum state of charge, and maximum state of charge—
resulting in tens of thousands of constraints.

We use constraint aggregation to reduce the number of constraints. The Kreisselmeier–Steinhauser (KS)
function [29] aggregates the constraints over all the time instances into a single criterion. Constraint aggrega-
tion with KS functions has been shown to work well in combination with the adjoint method in optimization
problems, for instance in structural weight minimization [30] and aerostructural optimization [31, 32]. The
KS function is given by

KS(x) = fimax
(x) +

1

ρ
ln
∑
i

eρ(fi(x)−fimax (x)), (2)

where fi is the ith function in the vector of functions we wish to aggregate, imax is the index of the function
with the largest value at x, and ρ is a parameter that is problem-dependent. In the limit, as ρ approaches
infinity, the KS function approaches the maximum function because eρ·0 dominates in the sum, and KS(x)
approaches fimax

(x). For finite ρ, the KS function is a smooth function that is dominated by the fi with
the largest values. Thus, as an inequality constraint, the KS function encourages the optimizer to resolve
the largest infeasibilities first and eventually choose a point at which the KS function itself is less than or
equal to zero. The optimization problems solved in this paper use ρ = 50, a value which was found through
numerical tests.

3.5 Nondifferentiable Models: B-spline Interpolant
Often, a discipline has a model that cannot be differentiated. The reason could be that the underlying
physical phenomenon is nonsmooth, the computational model is a legacy code without source code access,
or only a table of data is available. To address these situations, we implemented in Fortran a tensor-product
B-spline interpolant with analytic derivatives. A model with any number of input variables can be fitted with
this interpolant given a structured array of data that spans the full range of values for the input variables.

3.6 Derivatives of ODE Variables: Modular Runge–Kutta Solver
Several of the disciplines in the CADRE design problem involve ordinary differential equations (ODEs),
which complicates the task of computing partial and total derivatives. In particular, ODEs in time have a
natural forward direction, so the unknown variable depends only on those before it in time, but the reverse
mode of (1) must compute the total derivatives in the opposite direction. This is not possible if the values
from previous time instances are discarded as the algorithm moves forward, so the CADRE MDO algorithm
explicitly keeps track of the full time series as a vector and operates on the entries of this vector in sequence.
Furthermore, the fourth-order Runge–Kutta method (RK4) has been implemented in Fortran as a modular
solver with the time-marching scheme differentiated. For each discipline that uses this modular RK4 solver,
only the derivatives of the ODE must be provided; correct indexing and application of the chain rule to
combine these with the partial derivatives of the RK4 equations are automatically handled.

4 Discipline Models
This section describes the models for all the disciplines in the CADRE MDO algorithm. For vectors, the
nomenclature used in this section is as follows. Upper-case subscripts represent the frames of reference: B,
R, E, and I represent the body-fixed frame, rolled body-fixed frame (explained later), Earth-fixed frame,
and Earth-centered inertial (ECI) frame, respectively. Lower-case subscripts represent the origins of frames:
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b, e, g, and s denote the body (satellite), Earth, ground station, and Sun, respectively. For instance, ~rb/e
signifies a vector pointing from the Earth’s origin to the satellite’s origin. The axes of the body-fixed frame
are denoted îB , ĵB , and k̂B . The orientation matrices are represented by O, e.g., OB/I represents the
orientation of the body-fixed frame as seen in the ECI frame.

4.1 Orbit Dynamics
The orbit-dynamics discipline computes the Earth-to-body position vector in the ECI frame. In the orbit
equation, there are terms that represent the fact that the Earth is not a perfectly spherical and homogeneous
mass. These are captured in the J2, J3, and J4 coefficients in the following equation1:

~̈r = − µ
r3
~r − 3µJ2R

2
e

2r5

[(
1− 5r2z

r2

)
~r + 2rzẑ

]
− 5µJ3R

3
e

2r7

[(
3rz −

7r3z
r2

)
~r +

(
3rz −

3r2

5rz

)
rzẑ

]
+

15µJ4R
4
e

8r7

[(
1− 14r2z

r2
+

21r4z
r4

)
~r +

(
4− 28r2z

3r2

)
rzẑ

]
. (3)

The values of the coefficients are listed in Table 2.
The J2, J3, and J4 terms must be considered because their effect is to rotate the orbit plane on a scale

of months. If they are ignored, a fin angle that may initially increase power generation may no longer be
optimal after the orbit plane has changed. This also makes the CADRE design problem a multi-scale problem
in time because much of the system’s behavior occurs on the scale of minutes and hours, since the period of
the satellite’s orbit is roughly 90 minutes. The slow rotation of the orbit plane affects the power generation
and communication as well, since the satellite’s trajectory affects how much data can be transmitted as it
passes over ground stations. We solve the orbit equation using the modular RK4 solver described earlier.

4.2 Attitude Dynamics
Because of the requirements for scientific data collection, CADRE must always have a forward-facing ori-
entation. The roll angle, γ, can change provided the maximum rate of 1 rad/min is not exceeded. The
optimizer controls the roll-angle profile over time, and all the other attitudes, torques, and related quantities
are computed from this. Since all the time instances are modeled simultaneously, this approach is equivalent
to determining the control inputs using optimization instead of a controller.

At any given time instance, CADRE’s attitude is determined by applying the rotations from the ECI
frame to what is referred to here as the rolled frame and then to the actual body-fixed frame. The rolled
frame is an intermediate frame obtained after ensuring that CADRE is forward-facing but prior to applying
the appropriate rotation from the specified roll-angle profile. For this frame, k̂B must point in the opposite
direction to v̂b/e, and the chosen convention is that ĵB is parallel to r̂b/e. The orientation matrices that
implement these two successive rotations are given by

OR/I =

 îTBĵTB
k̂TB

 =

−(r̂b/e × v̂b/e)T
r̂Tb/e
−v̂Tb/e

 and OB/R =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 . (4)

Once the OB/I matrix is known for all time instances, its time derivative can be computed using finite

differences, and the angular-velocity vector can be computed using ~ω×B = ȮB/I ·OT
B/I .

As mentioned previously, we model only the reaction wheel for actuation. The required inputs are
computed from the satellite’s angular-velocity profile. We do this by applying conservation of angular
momentum to the satellite and reaction-wheel system, expressed by setting the time derivative of the total
angular momentum to zero:

~̇L = JB · ~̇ωB + ~ωB × (JB · ~ωB)︸ ︷︷ ︸
~τB

+JRW · ~̇ωRW︸ ︷︷ ︸
~τRW

+~ωB × (JRW · ~ωRW ) = 0. (5)

Computing the required reaction-wheel torque is a three-step process. First, we can compute ~τB since
~ωB is known and its time derivative can again be computed using finite differences. Next, we solve the
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Figure 5: Reaction-wheel model compared with manufacturer-provided data for three torques.

resulting ODE to determine ~ωRW over time, and finally we can compute ~τRW when the reaction wheels’
angular-velocity profiles are known. The mass moment of inertia matrices for the satellite and reaction
wheels are, respectively,

JB =

18 0 0
0 18 0
0 0 6

× 10−3 kg m2 and JRW =

28 0 0
0 28 0
0 0 28

× 10−6 kg m2. (6)

Based on the manufacturer’s data2, we develop a simple equation to model the dependence of the reaction
wheel’s current draw on its angular velocity and desired torque:

I = (aω + bτ)2 + I0. (7)

Given the right coefficients, this simplified model correctly captures the trends, as shown in Fig. 5. When
both the angular velocity and desired torque are zero, there is a constant baseline current draw. As the
angular velocity increases in either direction, the current draw increases roughly quadratically with the
torque constant. However, the behavior is asymmetric, since we need less power to achieve a torque in the
opposite direction of the angular velocity, which amounts to slowing down the wheel with the assistance of
friction. This effect is reflected in both the actual data and the model, as shown in Fig. 5. The motor is
assumed to run at 4 V.

4.3 Cell Illumination
The cell-illumination discipline models the area of each solar cell that is exposed to the Sun, projected onto
the plane normal to the Sun’s incidence. The 84 exposed areas depend on the fin angle as well as the azimuth
and elevation angles of the Sun in the body-fixed frame. We compute these using an OpenGL model of the
geometry, in which the satellite is discretized into small rectangles.

Since this model is both discontinuous and difficult to incorporate into the framework, we generate a
table of data, and we use the B-spline multi-dimensional interpolant mentioned in Sec. 3. 3.5. to provide an
approximation of the exposed areas in terms of the three parameters. This also has the effect of smoothing
the areas since the B-spline interpolant does not have a sufficient number of control points to capture the
discontinuous jumps, but it does have the degrees of freedom to follow the general trends. Figure 6 shows
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Figure 6: Normalized exposed area as a function of relative Sun position for the outermost cell in an inward-
facing panel.

the variation in the exposed area as a function of the Sun’s position for the outermost cell in one of the
inward-facing panels.

The line-of-sight variable, LOSs, is essentially a multiplier for the exposed areas: it is 0 if the satellite is
behind the Earth and 1 otherwise. To smooth this discontinuous jump, we assume that the sunlight does not
decrease instantaneously as the satellite moves into the Earth’s shadow, but instead, smoothly transitions
to zero. This is physically the case to a certain extent because of the umbra and penumbra effects, but it
is greatly exaggerated to avoid numerical difficulties in the optimization. The procedure used to compute
LOSs is illustrated in Fig. 7, and it is defined by

LOSs =


1 , ~rb/e · r̂s/e ≥ 0 1 , ds > Re

3η2 − 2η3 , αRe < ds < Re
0 , ds < αRe

 , ~rb/e · r̂s/e < 0

 , (8)

where ds and η are given by

ds = ||~rb/e × r̂s/e|| 2 and η =
ds − αRe
Re − αRe

. (9)

Mathematically, we construct a simple cubic function between ds = αRe and ds = Re, satisfying C1 conti-
nuity at each end point. The value of α represents how far this smoothing effect extends into the Earth’s
shadow; a typical value is α = 0.9.

4.4 Temperature
Temperature is an important consideration that couples many disciplines: it affects solar power generation
and battery performance, while both cell illumination and data transmission generate heat. The temperature
is assumed to be uniform within each of the fins and the body, so there are five temperature state variables
at each time instance. We use the Stefan–Boltzmann law to model the rate of heat radiation, and we use the
area exposed to the Sun to compute each cell’s contribution to the heating of its fin. Since communication
power amplifies data transmission with an efficiency, ηp, of roughly 20%, we assume that the remaining 80%
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Figure 7: Illustration of the Sun line-of-sight variable.

is converted to heat, which contributes to the temperature ODE for the body. The equations are

Ṫ =
Q̇in − Q̇out + Q̇∗comm

mcv
(10)

Q̇in = αqsolAexpLOSs (11)

Q̇out = ε

(
2π5k4

15c2h3

)
T 4AT (12)

Q̇comm = (1− ηp)Pcomm, (13)

where Aexp is the exposed area of the cell, T is the temperature, and Q̇ is the rate of heat transfer. The
values for all the constants are listed in Table 2.

4.5 Solar Power
The cells in each solar panel are connected in series, so their output voltages are added to compute the total
voltage for the panel. The voltage is set so as to maximize the power output, but the optimal voltage, and
thus the optimal current, changes depending on the illumination and temperature of the cells.

Each cell has a unique I-V curve that depends on its exposed area and temperature. Our model is based
on one [33] that is a nonlinear implicit equation in I given by

I = Isc − Isat
[
exp

{
V +RsI

VT

}
− 1

]
− V +RsI

Rsh
, (14)

where the values of the constants are listed in Table 2, and

Isc = LOSs
Aexp
AT

Isc0 and VT =
nkT

q
. (15)

Our model has two modifications. First, the series resistance is very small, so the two terms containing
Rs can be neglected. Second, a diode is used to limit the voltage in the negative region to V0 = −0.6 V, so a
shifted hyperbolic tangent function is used to model the I-V curve for negative voltages. We determine the
coefficient in the argument of tanh by applying the constraint that the first derivative must be continuous
at V = 0. Since V is still an implicit function of I in the positive voltage region, we evaluate the model for
the full ranges of areas and temperatures, and we fit the B-spline interpolant discussed earlier. The model
is plotted in Fig. 8 and the expressions areIsc − Isat

[
exp

{
V
VT

}
− 1
]
− V

Rsh
− I = 0 , I ≤ Isc

V (I) = V0 tanh
[

−VTRsh

V0(IsatRsh+VT ) (I − Isc)
]
, I > Isc

 . (16)
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Figure 8: Solar cell I-V curve at different cell temperatures and exposed areas.

4.6 Energy Storage
The energy-storage discipline tracks the state of charge (SOC) of the battery. We can compute the SOC by
integrating the nonlinear ODE given by

˙SOC =
Pbat
VbatQ

, (17)

where Q is the nominal discharge capacity of the battery.
We model the dependence of the voltage on the SOC as an exponential, primarily to ensure that the

voltage is always positive. A linear relationship would have been within the scope of this work. However, a
battery at a large negative SOC has a negative voltage, and drawing power from the battery would increase
its SOC since the current is still positive. Negative states of charge often arise at the initial point in an
optimization, when a poor baseline design point uses more power than is available. In these circumstances,
the model must provide the optimizer with the correct gradient directions instead of failing. Artificially
removing the drop-off in voltage does not lead to inaccuracies that affect our results, since the optimization
constrains the SOC to be nonnegative, which ensures that the optimal design is never in this drop-off region.

The dependence of the voltage on the temperature is also exponential, as shown in Fig. 9, which compares
the model to the manufacturer’s data3. The values for the constants are listed in Table 2, and the expression
is

Vbat(SOC) =

(
3 +

eSOC − 1

e− 1

)(
2− eλ

T−T0
T0

)
. (18)

At any given time instance, the battery power is the sum of the loads, i.e.,

Pbat = Psol − PRW − Pcomm − P0, (19)

where P0 is a 2-W constant power usage that accounts for the scientific instruments on the satellite and
small actuator inputs in response to disturbance torques.

4.7 Communication
The communication discipline models the data-transfer bit rate as a function of several variables. We fix the
signal-to-noise ratio (SNR) to a minimum acceptable value to maintain a reliable connection. A line-of-sight
variable, similar to that computed in the Sun-position discipline, is used to account for the times when a link
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Figure 9: Battery-discharge curve model compared with manufacturer’s data at two temperatures.
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Figure 10: Transmitter gain as a function of the ground-station position in the body-fixed frame.

with the ground station is not possible. We compute the resulting data-download rate using the following
equation [34, pp. 550–558]:

Br =
c2GrLl

16π2f2kTs(SNR)

ηpPcommGt
S2

LOSc, (20)

where the constants are listed in Table 2, S is the distance to the ground station, and Gt is the transmitter
gain, which is plotted in Fig. 10.

We compute the LOSc variable based on the dot product between the normalized Earth-to-ground station
vector and the Earth-to-body vector in the inertial frame. We again smooth the discontinuous function, in
this case by assuming that the line-of-sight variable gradually increases as the satellite comes over the horizon.
This is illustrated in Fig. 11.
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Orbit Dynamics

Earth’s gravitational parameter µ 398600.44 km3s−2

Earth’s radius Re 6378.137 km
Orbit perturbation coefficients J2 1.08264× 10−3

J3 −2.51× 10−6

J4 −1.60× 10−6

Attitude Dynamics

Model coefficients a 4.9× 10−4 A1/2 s/rad

b 4.5× 102 A1/2/(Nm)
I0 0.017 A

Temperature
Mass m 0.4 (fin), 2.0 (body) kg
Specific heat capacity cv 0.6 (fin), 2.0 (body) kJ/kg K
Absorptivity α 0.9 (cell), 0.2 (radiator)
Emissivity ε 0.87 (cell), 0.88 (radiator)
Boltzmann constant k 1.3806488× 10−23 m2 kg/(s2 K)
Speed of light c 2.99792458× 108 m/s
Planck’s constant h 6.62606957× 10−34 m2 kg/s
Total cell area AT 2.66× 10−3 m2

Solar constant qsol 1.36× 103 W/m2

Communication efficiency ηp 0.2
Solar Power
Diode voltage V0 −0.6 V
Max. short-circuit current Isc0 0.453 A
Saturation current Isat 2.809× 10−12 A
Diode factor n 1.35 V
Charge of an electron q 1.60217657× 1019 C
Shunt resistance Rsh 40 Ω
Energy Storage
Nominal capacity Q 2900 mAh
Temperature decay coeff. λ ln

(
1

1.15

)
Reference temperature T0 293 K
Max. discharge rate Imin −10 A
Max. charge rate Imax 5 A
Communication
Receiver gain Gr 12.9 dB
Line loss factor Ll −2.0 dB
Transmission frequency f 437 MHz
System noise temperature Ts 500 K
Minimum acceptable SNR SNR 5.0 dB

Table 2: Data for discipline models
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5 Optimization
5.1 MDO Architecture
For an optimization problem involving many disciplines, the choice of the MDO architecture is critical. We
use the multidisciplinary feasible (MDF) architecture [16], which solves an MDO problem by fully resolving
the coupling between all the disciplines within each optimization iteration, effectively treating the coupled
analyses of all the disciplines as one monolithic analysis. The rationale is that taking a restricted path
to the optimum, with the interdisciplinary coupling converged at every optimization iteration, yields a
robustness that is likely necessary for a problem with such a large number of disciplines. For a review of
MDO architectures, the reader is encouraged to refer to Martins and Lambe [16].

However, the approach has elements that resemble the simultaneous analysis and design (SAND) ar-
chitecture [16, 35] because some of the design variables could also be state variables. The roll-angle design
variables could be replaced with reaction-wheel control inputs that are computed using a control law, and the
optimal solar panel current at every time instance could be computed using maximum power point tracking
(MPPT). Instead, we use nonlinear optimization as the controller in the former case. In the latter case, we
compute all the peak power currents simultaneously as a smooth profile over time; our goal is to avoid poor
conditioning due to local maxima.

Overall, this SAND-type approach yields three benefits. First, it avoids assumptions that would be
required if these design variables were implemented as state variables. For instance, the attitude-control
law must assume a desired roll-angle profile based on predetermined weights for the solar panel heating
and cooling, cell illumination, and communication signal strength, while the optimization considers the net
effect of rolling on the objective function by way of these three criteria. Second, it eliminates the risk that
a discipline may not have a feasible solution, such as the attitude controller lacking the power to satisfy the
forward-facing orientation constraint for any roll angle. Allowing the optimizer to control the distribution of
power and enforce the battery-power and charge-level constraints ensures that all the disciplines are feasible
internally, while we allow the battery constraints to be violated during the optimization. Finally, it removes
the coupling between disciplines from the multidisciplinary analysis by moving the appropriate state variables
to the optimization as design variables. The optimizer resolves the coupling, allowing the MDA to become
a sequential problem, as shown in Fig. 12.

To avoid confusion, it is worth restating that the MDO architecture used in this problem is still MDF.
The connection to SAND is limited to the fact that certain variables that could have been state variables
have been implemented as design variables. However, the remaining state variables are not exposed to the
optimizer, and all the variables are converged fully within every optimization iteration, which is consistent
with the MDF architecture.
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Figure 12: Extended design structure matrix (XDSM) diagram [17] for the MDO problem.

5.2 Optimization Problems
As previously mentioned, the multi-scale nature of the problem requires a multi-point optimization with 6
points, each representing a 12-hour simulation at the midpoint of every 2-month interval. We simulate half
a day, 1, 3, 5, 7, 9, and 11 months after launch. This results in a multidisciplinary analysis with a total
of 2,204,861 variables. The objective function is the average of the data-downloaded values of the 6 points,
which is an estimate of the total annual data downloaded after a scaling factor. The battery charge rate,
discharge rate, minimum SOC, maximum SOC, and periodicity constraints are enforced separately for each
of the 6 points. The periodicity constraint enforces equality of the SOC at the beginning and end of each
12-hour simulation. The remaining four constraints are KS aggregation functions.

There are two scalar design variables (fin angle and antenna angle) and 84 binary variables that indi-
cate whether or not a cell or radiator is installed. The variables that require the parameterization of their
variations over time are the roll angle, the 12 solar panel currents, and the power allotted to the communica-
tion discipline for transmission. The current variable has the effect of emulating MPPT for the solar-power
module, since the optimizer effectively selects the current, and indirectly the voltage, at which the maxi-
mum power can be generated from the cells in a given solar panel. Each profile variable is discretized with
1500 points, which is the number of points used in the time integrations, and they are represented using
fourth-order B-splines with 300 control points. The optimization problem is summarized in Table 3.

As previously mentioned, we solve the optimization problem using SNOPT [36], a reduced-Hessian active-
set SQP optimizer that solves nonlinear constrained problems very efficiently, particularly when derivatives
are provided, as is the case here. We use the pyOpt optimization framework [18]; it provides a common
interface to a suite of optimizers, including SNOPT.

Figure 13 plots the convergence history for the optimization. The number of function evaluations roughly
corresponds to the number of SQP major iterations, and each takes about 20 min on a single processor,
including the derivative computations. Overall, the algorithm requires 100 h to achieve convergence of
nearly 5 orders of magnitude in feasibility and 3 orders of magnitude in optimality. Figure 13 shows that by
the end of the optimization, nearly half of the design variables are superbasic variables in SNOPT, which
are those variables that are truly free to change because they are not fixed by bounds or constraints. This
indicates that near this local optimum, the dimension of the feasible design space is large, meaning that
there is considerable design freedom with respect to which the design is optimal.

Figure 13 also illustrates the sequence in which the objective function was improved and the battery
constraints were satisfied. For all six points, the initial design is clearly infeasible since the SOC curve is
mostly negative. The optimizer spends most of the first 100 function evaluations trying to increase the power
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Variable/function Description Quantity

maximize
∑6
i=1Di Data downloaded

with respect to 0 ≤ Isetpt ≤ 0.4 Solar panel current 300× 12× 6
0 ≤ γ ≤ π/2 Roll-angle profile 300× 6
0 ≤ Pcomm ≤ 25 Communication power 300× 6
0 ≤ cellInstd ≤ 1 Cell vs. radiator 84
0 ≤ finAngle ≤ π/2 Fin angle 1
0 ≤ antAngle ≤ π Antenna angle 1
0.2 ≤ SOCi ≤ 1 Initial state of charge 6

Total number of 25292
design variables

subject to Ibat − 5 ≤ 0 Battery charge 6
−10− Ibat ≤ 0 Battery discharge 6
0.2− SOC ≤ 0 Battery capacity 6
SOC − 1 ≤ 0 Battery capacity 6
SOCf − SOCi = 0 SOC periodicity 6

Total number of 30
constraints

Table 3: The general optimization problem.
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Figure 13: Convergence histories and snapshots of data and SOC at intermediate optimization iterations.
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Fin Antenna Data
angle angle downloaded

Baseline optimization 45◦ 0◦ 2122 Gb/yr
Geometry optimization 63.8◦ −45◦ 2991 Gb/yr
Geometry and 64.4◦ −45◦ 3758 Gb/yr
attitude optimization

Table 4: Optimal design variables for for the three optimization problems.
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Figure 14: Division of total data downloaded over the six simulations for the three optimization problems.

generation to make the SOC curves feasible. After this, it focuses on increasing the objective function.

5.3 Impact of Optimization
To quantitatively assess the impact of the optimization, we solve three optimization problems. The first is
a baseline optimization that is the same as the original optimization problem in Table 3, except that the
fin angle, antenna angle, and roll-angle profile are removed from the set of design variables. The remaining
design variables are the solar-panel current, communication power, initial SOC, and installation of cell or
radiator, which provide a baseline design. The second optimization adds the geometric design variables,
which are the fin and antenna angles. The third optimization adds both the geometric and attitude design
variables to the baseline optimization, yielding the problem described in Table 3.

Table 4 summarizes the results. Since the constraints are satisfied in all of the optimizations, the objective
function alone provides a good metric for comparison. Adding the geometric design variables yields a 40%
increase in the estimate of the data downloaded, and adding the roll angle yields an additional 40% increase.
Whenever the antenna angle is permitted to vary, it goes to the bound of −45◦, while the fin angle converges
to an interior optimum. For all the problems, the optimizer chooses to install the solar cell instead of the
radiator for all 84 cells. Figure 14 shows how the objective-function increases are distributed among the 6
points.

These optimization results can be summarized as follows. The fin angle and roll-angle profile increase the
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cell illumination to provide more communication power, and the antenna angle increases the gain during the
ground-station passes for higher data rates. However, an examination of each variable reveals more insight
into how the optimization problems compare, as well as how they satisfy the battery constraints and increase
the total downloaded data. Figures 15 and 16 plot several quantities of interest as functions of time, for each
point and for each of the three optimization results.

In Fig. 15, the data downloaded plots demonstrate the importance of optimizing both the geometric and
attitude design variables. The communication power plots show that the optimizer allocates power to the
transmitter only during the ground-station passes, as expected, but the peaks of the spikes are limited by
the available SOC and the discharge constraint. The transmitter gain plots show the highest gains for the
geometry and attitude optimization, followed by the geometry optimization, then the baseline optimization.
This is evidence that the fin angle provides an increase in gain, and the roll-design variables provide a further
increase in gain, which translates to higher data rates. An interesting observation regarding the roll-angle
profiles is that they are smooth for the most part but exhibit spikes aligned with ground-station passes.
Finally, the SOC plots show that the additional power generated by the optimizations is used for a gradual
build-up of energy between data transmissions, enabling short and rapid power discharges for high-bit-rate
data transmissions.

In Fig. 16, the large increase in the solar power generation from the baseline optimization to the geom-
etry optimization and the smaller increase from the geometry optimization to the geometry and attitude
optimization indicate that the fin angle has a large effect, and the attitude profile has a smaller but still
definite effect. The solar-panel current curves represent the maxima for each time instance among the twelve
panels, and they correctly go to zero when the satellite is in the Earth’s shadow to prevent negative voltages,
while taking on optimal current values when in the sun to maximize power. As with the solar-power plots,
the total-exposed-area plots give a clear indication that the fin angle has the largest effect in increasing
cell illumination, and interestingly, the exposed area is sacrificed in months 1 and 7 when the satellite is
always in the sun and is not power constrained. The body temperature is weakly dependent on the roll-angle
profile and it also has a smaller effect on the solar power, so periodicity constraints are not used to avoid the
additional linear solutions required for the associated derivatives. The battery-current plots show that the
communication power is limited by the battery-discharge constraint for many of the ground-station passes,
while the remainder are energy-limited.

5.4 Comparison Between Launches
One of the strengths of our approach and implementation is that the design optimization algorithm is robust
with respect to convergence. To aid decision-making, it is possible to run optimizations for various choices of
parameters, such as the launch, ground-station selection, and satellite specifications, and to compare them.
To illustrate, we ran two additional optimizations for different launch orbits and dates. These optimizations
involve the design variables listed in Table 3.

The results are summarized in Table 5. The antenna angles converge to the same value, and the estimated
data downloaded is roughly the same for the three launches. However, there is a large discrepancy in the
optimal fin angle, which suggests that it could be sensitive to the launch orbit. It has been consistently
observed that the fin angle has a large effect on the potential power generation, and the optimal fin angle
varies significantly for different launches as the result for launch 2 shows. This observation points to the
importance of carefully selecting the fin angle once the launch orbit is known. Figure 17 shows how the
total downloaded data is divided among the points.
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Figure 17: Division of total data downloaded over the six simulations for the three launches.

Launch Fin Antenna Data
angle angle downloaded

1 64.4◦ −45◦ 3758 Gb/yr
2 49.9◦ −45◦ 3829 Gb/yr
3 68.5◦ −45◦ 3587 Gb/yr

Table 5: Optimal values for the three launches.
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6 Future Research Directions
In the course of this work, it has become clear that combining small-satellite design and MDO is beneficial
to both fields. From the MDO point of view, this problem has many disciplines, variables, and tradeoffs, and
the fact that much of the behavior and coupling in the system can be captured with relatively inexpensive
numerical models allows it to truly leverage MDO. These features also make it a suitable benchmarking
problem; in fact, it has been implemented as a test problem in OpenMDAO [37], which is an open-source
framework for MDAO. From the satellite-design point of view, our results show that MDO has the potential
to shorten the design process and yield performance improvements when CADRE is designed and built.

The most obvious avenue for future work is to improve the models and explore the design problem with
more fidelity. In particular, the temperature model and the reaction-wheel power consumption model have
room for improvement, and a model for the magnetorquers would be beneficial. These areas do not strongly
affect the objective and constraint functions, so they are not expected to significantly change the results of
this study. However, they represent weaknesses in the model that could be addressed in the future.

Another potential avenue for future research is the exploration of alternative objective functions. The
modularity of the framework that has been developed facilitates the rapid implementation of new objective
and constraint functions since the most time-consuming aspects—interfacing new code to the existing code
and computing the coupled derivatives—are handled with a high level of automation. For instance, to
maximize profit rather than the total data downloaded, we would simply need to implement a computation
for profit as a function of the data downloaded and other relevant variables as well as the corresponding
partial derivatives. The coupled derivatives that the framework automatically computes would then include
derivatives of the profit with respect to any other variable in the MDAO problem.

On the numerical side, parallel computing would significantly reduce the wall time for the analysis
and optimization, enabling a faster turnaround time and a more rapid exploration of the design problem.
Many of the models can easily be parallelized because the state variables at all time instances are tracked
simultaneously. Parallel computing would also result in more available memory, which would allow us to
consider larger problems with more resolution or a longer satellite operation time.

Finally, the generalization of our MDAO formulation to seamlessly support problems in other fields is a
promising area for future work. A forthcoming paper will present a formal description and detailed exposition
of the generalized formulation.

7 Conclusion
The objective of this paper was to apply large-scale multidisciplinary design optimization to a small satellite.
We used gradient-based optimization along with the multidisciplinary feasible architecture implemented
within a new formulation for multidisciplinary analysis and optimization problems. Other key enabling
tools included multi-point optimization, constraint aggregation, multi-dimensional B-spline interpolation, a
differentiated fourth-order Runge–Kutta solver, and efficient numerical linear algebra.

We have demonstrated the ability to reliably solve an optimization problem with 7 disciplines, more than
25,000 design variables, and over 2.2 million state variables that represent 12 hours of the satellite’s operation
at 6 uniformly spaced points over the year. To assess the impact of this tool, we solved three optimization
problems with varying sets of design variables. The addition of geometric design variables to the satellite
design problem yielded a 40% improvement in the objective function (the total data downloaded), and the
addition of operational design variables yielded a further 40% improvement. Furthermore, changing the
launch parameters changed the values of the objective function and the design variables, suggesting that this
tool could be used to evaluate launch options and to tailor the design to a particular launch opportunity.

In addition to these contributions to satellite design, we have made four broader contributions. First, we
have demonstrated that considering all the major disciplines, time scales, and design variables simultaneously
for the small-satellite problem is feasible through a rigorous multidisciplinary approach. As an alternative
to more detailed single-discipline studies, this approach provides a system-level perspective of the problem
with sufficient depth to capture high-level tradeoffs and reveal insights that are perhaps not obvious at the
discipline level.

Second, we have demonstrated that a design problem with many discontinuities and discrete data can
be solved with gradient-based optimization. The discontinuities were overcome with a combination of multi-
dimensional B-spline interpolation of the data and the development of smooth models for various disciplines.
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Third, the SAND-like approach of implementing what might more naturally be state variables as design
variables simplified the multidisciplinary analysis without a significant sacrifice in the optimization conver-
gence. Instead of using predetermined state variables to satisfy the power constraints, the optimizer had
the freedom to optimally distribute the available power among the attitude-control actuator, communication
gain, and scientific instruments, while satisfying the battery constraints.

Our final contribution is the successful application of the MDAO formulation. The disciplines were
implemented in a modular way so that solving the multidisciplinary analysis problem and computing the
coupled derivatives was as automated as possible, and the task of adding more disciplines was greatly
simplified. These results demonstrate the promise of this approach and build a strong case for the adoption
of this method not only in satellite design but in other engineering design problems as well.
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