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An unstructured quadrilateral mesh generation algorithm
for aircraft structures

John T. Hwang1 and Joaquim R. R. A. Martins1

Abstract Because commercial aircraft are built with thin-walled structures, their structural
performance is well-modeled using shell-element meshes. However, creating these meshes for the full
aircraft configuration can be challenging and presents a bottleneck in the design process, especially
in a configuration-level design space. This paper presents an algorithm that automatically creates
unstructured quadrilateral meshes for the full airframe based on just the description of the desired
structural members. The approach consists in representing each node in the mesh as a linear
combination of points on the geometry so that the structural mesh morphs as the geometry changes,
as it would, for example, in aerostructural optimization. The algorithm divides the aircraft skin into
4-sided domains based on the underlying B-spline representation of the geometry. It meshes each
domain independently using an algorithm based on constrained Delaunay triangulation, triangle
merging and splitting to obtain a quadrilateral mesh, and elliptical smoothing. Examples of full-
configuration structural meshes are provided, and a mesh convergence study is performed to show
that element quality can be maintained as the structural mesh is refined. The algorithm is available
as part of the open-source aircraft geometry tool suite, GeoMACH.

Keywords: aircraft design, structural design, mesh generation, aerostructural optimization, struc-
tural optimization, elliptical smoothing, finite-element analysis

1 Introduction
The commercial aviation industry faces a pressing need to find ways to reduce aircraft fuel burn
given the continued growth of air traffic [1], and rising environmental concerns. This has led to
research into new aircraft configurations that deviate significantly from the cylindrical tube-and-
wing design that has been used for over half a century, with the hopes of achieving revolutionary
breakthroughs in fuel efficiency and in other metrics of interest such as noise. Since there is a
lack of knowledge and data on unconventional configurations, there is a need for higher fidelity
computational models that can be deployed quickly.

Current aircraft design processes, however, do not take full advantage of computational design
tools. Early on in the design process, high-level design decisions are made with the help of relatively
low-fidelity and low-accuracy models. This is because high-fidelity models are not well-suited to
handle the range of designs considered in conceptual design. As the high-level aspects of the design
become frozen—e.g., the placement of the engines—higher-fidelity models are gradually introduced
to resolve the finer design parameters—e.g., the shape of structural ribs in the wing. This approach
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is not ideal, because the lowest-accuracy models are used earlier in the design process when the
design decisions are the most important. Therefore, it is beneficial to bring higher-fidelity models
earlier in the aircraft design process without sacrificing automation, usability, and computational
time.

One area in which high-fidelity computational tools can make an impact is the design of the
airframe—i.e., the structure of the aircraft. In airframe design, the dominant considerations are
the aerodynamic shape and structural layout, which are intrinsically coupled. As an example,
thinner and longer wings are beneficial for aerodynamics because they have lower drag, but they
also result in more structural weight per unit of wing area due to the higher bending stresses they
must withstand. Moreover, with these thin and flexible wings, the aerodynamic loads that produce
lift cause the wing to twist, which in turn causes higher aerodynamic loads, so there is a strong
coupling between these disciplines.

High-fidelity aerostructural optimization addresses this coupling by simultaneously optimizing
the aerodynamic shape of the airframe and the sizing of the structural members [2, 3]. This
leads to at least O(100) design variables that must be optimized. There can also be thousands or
more structural failure constraints, but these can be reduced to a single or a small number using
constraint aggregation methods, such as the Kreisselmeier–Steinhauser functional [4, 5]. At this
scale, gradient-based optimization is the only feasible approach [6, 7], especially given the large
computational cost of a structural or aerostructural simulation. For derivative computation, the
adjoint method is the best choice in terms of efficiency for most problems because it computes all
derivatives at a computational cost nearly independent of the number of design variables.

For high-fidelity structural modeling and design, which is the focus of this paper, the common
approach is to use a shell-element model. Aircraft are well-represented by shell elements because
the structural members in aircraft wings and fuselages are in general very thin due to the premium
placed on weight reduction. Using these shell elements, it is possible to model the ribs, stringers,
spars, and stiffeners in the wings, as well as floor beams, frames, longerons, and bulkheads in the
fuselage, and the shell elements carry bending, twisting, axial, and shear loads.

One of the bottlenecks in airframe structural analysis is the creation of the structural mesh,
which typically requires extensive manual effort and a high level of expertise. Meshing tools aim
to alleviate this bottleneck. Given the overarching motivation for this paper—the rapid design
and evaluation of unconventional aircraft configurations—there are four requirements for such a
structural meshing tool. First, the structural mesh should be global to enable quantitative trade
studies comparing configurations; that is, the mesh should model the full configuration (not just
the wing), and there should not be separate, disconnected meshes for different aircraft compo-
nents. Second, the mesh generation should be automatic so that given a description of the desired
structural members, number and location of ribs, placement of spars, etc., the mesh should be
created without any additional manual effort. Third, the mesh should be computed as a function
of shape design variables because for aerostructural design and optimization, shape changes must
automatically morph the structural mesh. Fourth, the mesh definition should be differentiable, and
the computation of the derivatives of the structural mesh coordinates with respect to the shape
design variables should be efficient. Existing aircraft structural meshing tools do not satisfy all four
requirements; some mesh only the wing [8], some lack automation because they use an external tool
to generate an unstructured quad mesh [9], and others do not compute the mesh as a differentiable
function of shape changes [10].

There are additional application-specific requirements that we have not addressed because our
primary focus is on the four fundamental requirements listed above. One such requirement is to be
able to handle the parametrization of the composite layup [11, 12]. The modeling of the composite
layup in each element is something that can be handled by a separate tool that takes the generated
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structural mesh as an input. Another requirement is multidisciplinary data transfer, especially
the transfer of displacements and loads to and from computational fluid dynamics (CFD) analysis.
However, it is possible to use a general load and displacement transfer algorithm that is independent
of the structural mesh [13, 2]. Another application-specific requirement is the modeling of control
surface deflections, which is limited when using structured multi-block CFD, but is possible when
approximating the control surfaces as morphing surfaces with a continuous trailing edge [14].

In this paper, we present an automatic unstructured quadrilateral mesh generation algorithm for
aircraft structures that uniquely satisfies the four requirements mentioned above. The algorithms
starts with a B-spline surface geometry representation and a list of requested structural members
defined in terms of parametric locations on the surfaces. It then splits the geometry into domains,
meshes each domain independently using constrained Delaunay triangulation (CDT) as well as
merging and splitting operations, and then applies Laplacian smoothing as a final step.

The paper proceeds as follows. We first present the overall approach, discussing the geometry
representation details, computation of the structural mesh, and the interface through which the
requested structural members are specified. Next, we present the actual mesh generation algorithm,
which divides into the global algorithm at the configuration level and a local mesh generation algo-
rithm. Finally, we present results, including aircraft structural meshes created using the proposed
algorithm.

2 Approach
In this section, we present the overall approach for the structural mesh computation. More specifi-
cally, we describe the assumed form of the geometry representation for the aircraft outer mold line
(OML), explain how the structural nodes are computed from the geometry using a linear map, and
then discuss how a user would specify the desired structural members.

For the results in this paper, we use the geometry-centric MDO of aircraft configurations with
high fidelity (GeoMACH) tool suite [15, 16]. GeoMACH is an open-source software library that
models aircraft geometries using a patchwork of untrimmed B-spline surfaces, and includes an
aircraft parametrization to support high-fidelity aircraft shape design optimization. The structural
mesh generation algorithm developed here is part of GeoMACH, which is available through an open
source license1.

2.1 Geometry representation

The only requirements on the OML geometry representation are that it is continuous and watertight.
As mentioned previously, we use the geometry modeler in the GeoMACH tool suite for the figures
presented in this paper. GeoMACH represents the geometry using untrimmed B-spline surfaces,
though this is not the only choice with which the structural mesh generation algorithm would
work. B-splines are piecewise polynomials used frequently in computer-aided design because of
their favorable mathematical properties: compact support for a desired order and smoothness,
and flexibility in terms of the number of control points and polynomial degree. B-spline surfaces
are tensor products of B-spline curves that maintain the advantages of smoothness and sparsity.
Figure 1(a) illustrates how a conventional wing-body-tail aircraft geometry can be constructed with
4-sided B-spline surfaces.

An important feature of the geometry modeler is the ability to perform point-to-surface projec-
tions. These are required so that we can evaluate surface nodes for modeling the aircraft skin and
for interpolating interior nodes. For the projections, the B-spline implementation in GeoMACH
performs a Newton search to find the parametric coordinates (u, v) on the surface that yield the
closest point to the given point that we are projecting. Since this procedure can fail in some cases,
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Figure 1: Conventional configuration geometry (a), final structural mesh (b), and derivative con-
tours of nodal coordinates with respect to a root chord design variable (c).
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the algorithm first computes a brute-force closest-point search on a structured discretization of
the surface, to be used as the initial point for the Newton search and as an alternative in case the
Newton search does not converge. To handle cases in which the closest point is at one of the surface
edges, there are provisions during the iteration loop to detect such a case and exit. This projection
algorithm occurs at the individual surface level, so in general, all the B-spline surfaces that make up
a geometry must be searched to find the closest point on the geometry to a given point. However,
in the current application, only the small number of B-spline surfaces that comprise the aircraft
component of interest (e.g., the upper surface of the wing) must be searched, since the relevant
component is known for a given structural node.

2.2 Structural mesh morphing

Given the continuous B-spline geometry representation, the approach we take is to define the
structural mesh as a linear map from the geometry description. In other words, each node in the
structural mesh is computed via a linear combination of points on the OML. Therefore, as the
shape design variables change the OML, we only need to apply this linear map to compute the
updated structural mesh nodes that reflect the geometry changes.

In the case of GeoMACH, a two-level parametrization is used for the geometry manipulation.
First, the shape design variables are mapped to the control points of theB-spline surfaces that define
the geometry. Next, the resulting control points are mapped to the discrete evaluation points on the
geometry by multiplying the sparse B-spline basis functions. The surface points from the structural
mesh simply represent one discretization of the B-spline geometry, and the parametric coordinates
of these surface points are computed using the projection algorithm described in Sec. 2.1.

Once the structural layout is computed during initialization, the structural mesh coordinates
are defined by a linear mapping from the B-spline control points of the geometry description.
Therefore, the derivatives of the structural mesh coordinates with respect to the B-spline control
points are given by a Jacobian that is constant and sparse. Using the chain rule, this Jacobian
must then be combined with the derivatives of the B-spline control points with respect to the shape
design variables to be used for optimization. Figure 1(c) plots derivative contours of the geometry
of the OML and structure with respect to a shape design variable, which is the root chord in this
case.

2.3 User interface

We now describe how the user specifies their desired structural design. In GeoMACH, the geometry
surfaces are already divided by aircraft component, which includes primitive components such as
the wing and the fuselage, and junction components for the fairings and blending regions where
primitive components intersect. One can define a structural member by specifying the aircraft
components and the parametric coordinates on those components from which the structural member
is interpolated. As an example, a wing rib is defined by specifying the upper and lower surfaces
of a wing component, along with the (u, v) coordinates in the chord-wise and span-wise directions,
respectively, where the span-wise parametric coordinate remains constant. The variation in the
vertical direction is achieved by varying the weights of the points on the upper and lower wing
surfaces, 0 to 1 for one surface and 1 to 0 for the other surface. Therefore, the internal structure
inside wing-type components is essentially embedded in a parametric volume controlled by the
upper and lower surfaces of the wing. Likewise, the internal structure inside a component, such
as a fuselage, is projected in a cylindrical volume controlled by the fuselage skin. These internal
structures warp, following changes to the fuselage and wing, and because the mapping is linear,
updating the full structural mesh takes on the order of only tens of milliseconds. The objective of

5



the structural mesh generation algorithm described in Sec. 3 is to compute this Jacobian matrix
that maps the vector of surface nodes on the B-spline geometry to the vector of structural nodes.

3 Mesh generation algorithm
In this section, we present the structural mesh generation algorithm in three parts: the overall
algorithm at the global (aircraft configuration) level, the quadrilateral mesh generation on a single
domain, and the elliptical smoothing step.

3.1 Global mesh generation algorithm

Automatic computation of a quadrilateral mesh for the entire airframe is challenging for several rea-
sons. The user is allowed to specify any arrangement of structural members (spars, ribs, stringers,
etc.), and the imprinting of these members onto the surface skin can create difficulties in the mesh-
ing process, as shown in Fig. 2. For instance, a spar, rib, and a stringer may form the sides of a
triangle on the skin that must eventually be meshed with quad elements. An example of this issue
is the orange region in Fig. 2. Moreover, the skins of all the aircraft components must be meshed
simultaneously to form a global mesh containing the aircraft wing, fuselage, tail, pylons, and na-
celles. Another challenge is that features such as taper make it more difficult to have high-quality,
isotropic elements since a regular (structured) mesh would have the same number of chord-wise
and through-thickness elements at the root and at the tip, which creates an imbalance with high
resolution at the tip and low resolution at the root of the wing.

The high-level approach of the global structural mesh generation algorithm is to divide the
problem of meshing the skin into multiple smaller, decoupled mesh generation sub-problems. The
geometry representation in GeoMACH consists of a union of untrimmed B-spline surfaces, so these
surfaces provide a natural subdivision of the skin mesh generation problem. The advantage of
this subdivision is that the problem of meshing the complex network of aircraft skin components
is simplified to meshing a set of smaller 4-sided domains, which is computationally cheaper. An
example of a 4-sided domain defined by a B-spline surface is shown in red in Fig. 2.

For a global mesh, there must be continuity between boundaries between domains—i.e., B-
spline surfaces—because an edge that intersects the boundary from one domain must propagate
into the neighboring domain to avoid hanging nodes, as shown by the dotted blue curve in Fig. 2.
To satisfy this requirement, the algorithm first loops through all the domains and computes the
intersections between the imprinted features (edges where ribs and spars intersect the skin), and
the bounding edges of the domains. The result of this process is now a set of decoupled mesh
generation sub-problems, where each one operates on a 4-sided domain. The shared edges are
discretized once so that the resultant global mesh matches at these bounding edges.

On top of this decomposition-based approach, the global structural mesh generation algorithm
uses a two-step process that first generates a coarsened “preview mesh”. This is done for two
reasons. First, it provides a quick preview for the user to visualize the airframe they have defined.
This feature has a fast turnaround time as the preview mesh takes O(sec) to compute, while the full
mesh takes O(min) for a fine discretization. When the user is interactively designing the structure,
the preview mesh is sufficient, so they can make changes and receive feedback in seconds. The
second reason is that estimates for the dimensions of the structural members are computed from
the preview mesh, and this information is later used to help ensure the quad elements have aspect
ratios as close as possible to 1 and angles close to 90◦.
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Figure 2: The local mesh generation algorithm is applied separately to each B-spline surface in the
geometry definition. The area in orange highlights an example of a triangular region created by
the intersection of spars, ribs, and stringers imprinting on the aircraft skin. The dotted blue curve
shows an edge that needs to be propagated from one component into an adjacent component.

3.2 Local mesh generation algorithm

Once the aircraft skin is divided into domains, a local mesh generation algorithm turns each domain
into an unstructured quadrilateral mesh. As discussed in Sec. 3.1, the consistency of nodes along the
boundaries between neighboring domains is assured in the global mesh generation step. However,
the main challenge during the local mesh generation step is to make sure that all internal members—
ribs, spars, bulkheads, etc.—that intersect the skin within a given domain show up in the mesh on
the skin and the nodes are consistent. To ensure this, we solve a 2-D quadrilateral mesh generation
problem with line constraints.

In general, 2-D quad meshing algorithms fall under three general categories: domain-decomposition [17,
18], advancing-front [19], and triangulation-based methods [20]. The first two—recursively split-
ting the domain through heuristic algorithms and marching out from boundaries, respectively—
are not suitable for the current problem because of the line constraints imposed by the struc-
tural members intersecting the skin. Two additional ideas that have been successful are topology
clean-up [21, 22, 23] and smoothing [24].

There has been work dealing with line constraints in structural mesh generation for marine
engineering. Jang et al. [25] use stiffener lines to decompose the domain into regions, while Lee et
al. [26] use an advancing-front approach on a background triangulation. Park et al. [27] also uses an
advancing-front approach, but with topological intersection and clean-up operations. The unique
aspect of the current problem is that there are multiple nonplanar domains that are connected
to each other. As mentioned previously, the global mesh generation algorithm addresses this by
discretizing the boundaries of each domain so that each one can be meshed separately, decoupled
from the others.

The local mesh generation algorithm consists of six stages, as illustrated in Fig. 3. The figure
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shows a domain for illustrative purposes, containing a vertical edge extending from the top to the
bottom of the domain, two diagonal edges intentionally chosen to form a triangular region, and a
shorter edge that is floating by itself near the center of the domain. The six stages are as follows:

1. Initial domain: We start with a 4-sided domain representing a single B-spline surface, with
the internal members intersecting this surface pre-determined.

2. Discretization: We discretize the boundaries and the interior of the domain. The boundaries
are simply discretized using a global parameter representing the requested resolution. This
guarantees that the bounding edges shared by two neighboring domains always agree on the
boundary nodes because all domains use the same resolution parameter. The interior of the
domain is populated with a grid of points that are spaced based on the sizes of the element
boundaries, as measured from the preview mesh.

3. Triangulation: We perform CDT on the domain while respecting the edges from the bound-
aries and from the intersecting structural members. For our implementation, we use the
implementation in TRIPACK [28].

4. Quad-dominant mesh: From the triangulation, we obtain a quad-dominant mesh by ranking
all potential merges of adjacent triangles based on how close the angles would be to 90◦. The
triangles are merged according to this ranking until no possible merges remain.

5. Fully-quad mesh: We split all quads into four smaller quads and all triangles into three quads
using its centroid to obtain a fully quad mesh.

6. Smoothing: We perform an elliptical smoothing as the last step, which is explained in more
detail in the next section.

3.3 Elliptical smoothing

Here, we provide more detail on the last of the six steps in the local mesh generation algorithm.
This step performs elliptical smoothing on the fully quadrilateral mesh produced for each domain.

There are several types of general mesh smoothing algorithms. One type solves optimization
problems to maximize element quality [29] quantified using a combination of element aspect ratio,
angle, and area. However, nonlinear optimization is not always robust and can be inefficient.
Another type formulates elliptical partial differential equations (PDEs) with derivatives taken with
respect to the physical coordinates of the elements [30], but the resulting nonlinearity causes similar
drawbacks to the optimization-based approach.

According to Spekreijse [31, Ch. 4], the first use of the Laplace equations in grid generation
was by Winslow [32], who interprets the mesh lines as equipotentials, leading to the equations

ξxx + ξyy = 0 (1)

ηxx + ηyy = 0, (2)

where ξ(x, y) and η(x, y) are potential functions. Since Winslow [32] deals with triangles, a third
set of lines is defined by the condition that the three sets of lines intersect at 60◦ at any point in
parametric space. The triangular mesh can be drawn from the equipotential curves of ξ and η,
together with the third set of lines. Equations (1) and (2) are solved by inverting them, turning them
into nonlinear elliptic equations. These nonlinear equations can be tuned using control functions
to control boundary orthogonality and off-wall spacing for applications such as viscous CFD.
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(1) Initial domain (2) Discretization (3) Triangulation

(4) Quad-dom. mesh (5) Fully-quad mesh (6) Smoothing

Figure 3: The six steps of the unstructured quad meshing algorithm.
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Figure 4: Global (left) and local (right) coordinate frames for the elliptical smoothing.

Far from these boundaries, these nonlinear Poisson equations are well-approximated by the
linear Laplace equations,

xξξ + xηη = 0 (3)

yξξ + yηη = 0. (4)

The approach adopted here is based on these equations. However, we are forced to work with
an unstructured quadrilateral mesh, departing from the traditional Laplacian or Poisson-based
smoothing, because the imprinted features do not allow for a structured mesh. The parametric
coordinates ξ and η are not defined uniformly for the entire mesh; rather, they are defined within
each element only.

An alternative approach would be to apply a finite number of Gauss–Seidel or point Jacobi
iterations for the linear system given by equations (3) and (4) where the second derivative operator
is discretized using the second-order finite-difference formula. However, we use a sparse direct solver
instead to solve the linear system fully, rather than achieving only partial convergence because it
is very fast computationally—the solution time is negligible compared to the CDT step.

Therefore, our approach is to solve Equations (3) and (4) on each element using a finite-element
discretization of the quadrilateral mesh. In this manner, each element benefits from the tendency
of the Laplace equation to produce isotropic quadrilaterals with angles close to 90◦. However, since
neighboring elements share edges and vertices, the global finite-element solution finds the nodal
coordinates that find a compromise across all the elements.

In contrast to traditional elliptical smoothing, we solve a linear system rather than nonlinear
equations (3) and (4), so we gain efficiency, simplicity, and robustness. The computation time is
negligible compared to the CDT step for this reason, and also due to the sparse assembly and
solution of the finite-element system.

For simplicity in deriving the equations, we use φ in place of x and y. Therefore, the smoothing
step computes the x and y coordinates of the nodes in the quad mesh by solving Laplace’s equation,
in the form,

∂2φ

∂ξ2
+
∂2φ

∂η2
= 0, (5)

where φ represents either x or y, and ξ and η are the local coordinates in the element frame, as
shown in Fig. 4.

Laplace’s equation is solved using a finite-element discretization and the Galerkin method of
weighted residuals. Assuming n is the order of the finite-element basis function, the scalar field for
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x or y within an element is given by

φ(ξ, η) =
n∑
k=1

n∑
l=1

ukl · fk(ξ)fl(η), (6)

where ukl is a nodal value and fk or fl represents a basis function. The Galerkin method of weighted
residuals is applied to Laplace’s equation (5), yielding∫ ∫

A

[
∂2φ

∂ξ2
+
∂2φ

∂η2

]
fi(ξ)fj(η)dA = 0. (7)

Prior to inserting the approximate form for φ, it is beneficial to apply a step similar to integration
by parts to reduce the order of the integrand. Using the product rule, the two terms in the integrand
can be written as

fi(ξ)fj(η)
∂2φ

∂ξ2
=

∂

∂ξ

(
fi(ξ)fj(η)

∂φ

∂ξ

)
− ∂

∂ξ
(fi(ξ)fj(η))

∂φ

∂ξ
(8)

fi(ξ)fj(η)
∂2φ

∂η2
=

∂

∂η

(
fi(ξ)fj(η)

∂φ

∂η

)
− ∂

∂η
(fi(ξ)fj(η))

∂φ

∂η
, (9)

and inserting the expressions in Eqs. (8) and (9) into Eq. (7) yields,∫ ∫
A

[
∂

∂ξ

(
fi(ξ)fj(η)

∂φ

∂ξ

)
+

∂

∂η

(
fi(ξ)fj(η)

∂φ

∂η

)]
dA−∫ ∫

A

∂

∂ξ
(fi(ξ)fj(η))

∂φ

∂ξ
dA−

∫ ∫
A

∂

∂η
(fi(ξ)fj(η))

∂φ

∂η
dA = 0. (10)

In the first term of Eq. (10), the integrand is the divergence of a vector field and the integration
occurs over a compact subset, so Gauss’s theorem can be applied to establish the equality,

∫ ∫
A
∇ ·

fi(ξ)fj(η)
∂φ

∂ξ

fi(ξ)fj(η)
∂φ

∂η

 dA =

∮
∂A

fi(ξ)fj(η)
∂φ

∂ξ

fi(ξ)fj(η)
∂φ

∂η

 · n̂ ds, (11)

but fi(ξ) and fj(η) are zero on ∂A for appropriately chosen shape functions, so the entire line
integral on the right-hand side is zero. Setting the divergence term to zero, and inserting the
expression for φ into Eq. (10) yields,∫ ∫

∂

∂ξ
(fi(ξ)fj(η))

∂

∂ξ

(
n∑
k=1

n∑
l=1

uklfk(ξ)fl(η)

)
dξdη+ (12)

∫ ∫
∂

∂η
(fi(ξ)fj(η))

∂

∂η

(
n∑
k=1

n∑
l=1

uklfk(ξ)fl(η)

)
dξdη = 0 (13)

Rearranging, the final form of the discretized equations is,

n∑
k=1

n∑
l=1

[∫
f ′i(ξ)f

′
k(ξ)dξ

∫
fj(η)fl(η)dη +

∫
fi(ξ)fk(ξ)dξ

∫
f ′j(η)f ′l (η)dη

]
ukl = 0. (14)
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Introducing the matrices F and F ′ to simplify, the previous equation becomes

n∑
k=1

n∑
l=1

[
F ′ikFjl + FikF

′
jl

]
ukl = 0 (15)

or
n∑
k=1

n∑
l=1

Kij,kl ukl = 0, (16)

where Kij,kl represents the entry in the global finite element matrix located at the row corresponding
to node (i, j) and the column corresponding to node (k, l) in the current element. Similarly, ukl is
the value of x or y for the node in the global ordering indexed as (i, j) in the current element.

Though the true basis functions vanish at their boundaries, it is valid to derive element matrices
by considering only the parts of basis functions within a given element. A linear equation corre-
sponding to an interior node includes contributions from all the adjacent elements, which together
partition the true basis function associated with this node. A linear equation corresponding to a
boundary or constrained interior node does not influence the finite-element solution.

The basis functions and the matrices for second-order elements are

f1(t) = 1− t
f2(t) = t

with F =
1

6

[
2 1
1 2

]
and F ′ =

[
1 −1
−1 1

]
(17)

and those for third order-elements are

f1(t) = 2t2 − 3t+ 1
f2(t) = 4t− t42
f3(t) = 2t2 − t

with F =
1

30

 4 2 −1
2 16 2
−1 2 4

 and F ′ =
1

3

 7 −8 1
−8 16 −8
1 −8 7

 . (18)

Having derived the local element matrices, the global finite element equations can be assembled
and solved in the form presented in Fig. 5. All unique nodes are concatenated into a single vector,
and the local element matrices contribute to a global finite-element matrix, K. The linear system
is solved twice: once for all the x values, and a sescond time for all the y values. The rectangular
matrix P in Fig. 5 is a permutation matrix that has one entry per row with a value of 1 in a column
corresponding to a constrained node. Therefore, P is a linear transformation that selects from the
global vector of nodes only those that are on the boundary or are in the interior, but are fixed. In
Fig. 5, the ∗ components of the solution vectors are essentially Lagrange multipliers so they are
ignored, and the x̄ and ȳ sub-vectors represent the coordinates of the constrained nodes.

Figure 6 quantifies the change in mesh quality due to smoothing using one of the test cases
shown earlier with varying mesh size. Four mesh quality metrics are used. For the determinant
ratio metric, the determinant of the Jacobian of each element is computed at all the Gauss points
of the element. The minimum determinant value is divided by the maximum within the element,
and the smallest of these determinant ratios across the elements is reported, where 1 is the best
possible value and a lower value indicates a mesh of lower quality. The minimum angle metric
simply reports the minimum across all 4n angles, where n is the number of elements in the mesh,
and a minimum angle close to 90◦ is desired. The aspect ratio is the largest side length divided by
the smallest side length for an element, and a lower maximum aspect ratio in the mesh is preferable.
The same is the case with the taper ratio, which is defined as the maximum side length plus the
average side length, all divided by the average side length.

While there is no single metric that captures all the mesh quality features, the overall results
in Fig. 6 suggest that the elliptical smoothing algorithm we propose is effective. The smoothing
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Figure 5: Global finite element equations for the elliptical smoothing. The K matrix represents the
global finite element matrix, and P is a permutation matrix with a single entry of value 1 in each
row, in the columns of nodes that are constrained. The vectors x, y represent the solution and x̄, ȳ
contain the coordinates to which a node is constrained.

provides an improvement in nearly all the cases with respect to the minimum angle, aspect ratio,
and taper ratio metrics. The determinant ratio metric shows a small decrease in quality, but this
is a known side effect of elliptical smoothing [33].

4 Demonstration
In this section, we demonstrate the structural mesh generation algorithm on example problems.
We show global aircraft meshes for several configurations for illustration, demonstrate the local
mesh generation algorithm on example domains with different levels of resolution, and perform a
mesh convergence study.

As stated in the introduction, the high-level motivation for this work is to facilitate the use of
high-fidelity structural models when analyzing and comparing unconventional configurations. To
this end, we show structural models for four configurations in Fig. 7. These meshes model ribs,
spars, fuselage frames, and longerons, in addition to the skin.

Figure 8 focuses specifically on the local mesh generation algorithm, and shows the results for
two example domains for three different resolution parameter values. For illustrative purposes, we
show intermediate stages—the result after the CDT and the triangle merging step, which produces
a quad-dominant mesh. The final mesh is the fully quad smoothed mesh. The internal edges in
the two examples in Fig. 8 are chosen to create triangular and pentagonal regions to demonstrate
the local mesh generation algorithm.

We also provide a mesh convergence study to verify that the unstructured quad meshing algo-
rithm maintains element quality as the mesh is refined. The test case is the wing from the common
research model (CRM) [34], which is a reference geometry developed for benchmarking. The CRM
is based on the Boeing 777 wing, featuring a straight leading edge with the Yehudi break located
at 37% of the span. The structural analyses are performed using the toolkit for the analysis of
composite structures (TACS), which was developed by Kennedy and Martins [35].

The structure includes two main spars, stringers, ribs, and a secondary spar. The aft spar, the
secondary spar, and one of the ribs form a triangle, testing the algorithm’s ability to handle such
cases. Even without the triangle, this case is designed to produce irregular nodes because of the
wing taper—there will be far more elements in the chordwise direction at the root than at the tip
of the wing.

A 1 kN point load is applied at the upper outboard-most tip of the front spar, and the vertical
deflection is measured at the same location. An aluminum structure is used with a constant thick-
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Figure 6: Comparison between the smoothed and unsmoothed meshes. In nearly all cases, the
smoothed mesh shows improved quality for all but the Jacobian determinant metric, which is
consistent with what is expected with Laplacian smoothing.

14



Conventional

Blended wing body

Double bubble

Truss-braced wing

Figure 7: Four configurations with the corresponding structural meshes.
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Figure 8: Demonstration of the local mesh generation algorithm on two example domains with
three resolution parameters.
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ness of 5 mm, and linear kinematics are assumed. Figure 9 shows six meshes of varying resolutions
and the contours of vertical deflection, and Fig. 10 plots the results of the mesh convergence study.
In Fig. 10, the displacement appears to converge monotonically to about 21 mm. This result sug-
gests that the unstructured mesh generation algorithm maintains element quality as the mesh is
refined.

5 Conclusion
The motivation for this work was to develop a tool for modeling aircraft structures to enable high-
fidelity analysis and optimization. This tool can be applied during conceptual design when multiple
configurations are being created and examined. We noted that such a tool does not currently exist
because existing options fail to satisfy at least one of four requirements: meshing the full aircraft
configuration simultaneously, being fully automated, morphing in response to geometry changes
(e.g., for aerodynamic shape optimization), and having a differentiable mapping with efficient and
accurate derivative computation.

In this paper, we presented an unstructured quadrilateral mesh generation algorithm for aircraft
structures that satisfies all of these requirements. It defines the positions of internal structural nodes
by interpolating points on the geometry. For the actual mesh generation, it divides the geometry
into domains using the surfaces in the geometry representation, and applies a local mesh generation
algorithm on each domain, independent from the others, using CDT and elliptical smoothing as
key steps in the process. The entire algorithm is included in the GeoMACH aircraft geometry tool
suite, which is available as open source software2.

As implemented, the mesh generation algorithm benefits from the fact that GeoMACH provides
a geometry composed of untrimmed quadrilateral surfaces. However, the overall algorithm can be
extended to a more general geometry input. If, for instance, the geometry is a union of trimmed
surfaces, the local mesh generation algorithm can be applied on each trimmed surface. For each
domain, the trim curves would in general make the bounding edges curved even in parametric space.
This would not pose a problem for the CDT, elliptical smoothing, or any of the other steps, and
our algorithm could be extended to handle this. The only required addition would be a curve-curve
intersection algorithm to determine if and where edges from imprinted features intersect with the
trim curves.

Another promising extension of our algorithm would be to examine one of the many mesh
clean-up algorithms that change the topology of the unstructured quad mesh to improve quality
and increase the number of regular nodes. It would also be interesting to implement and consider
alternative smoothing options for the purpose of improving mesh quality.

The proposed mesh generation tool makes it easier to develop relatively detailed structural
models even for unconventional aircraft configurations. The expectation is that it will facilitate the
use of higher-fidelity structural analysis tools earlier in the design process. Moreover, the automa-
tion offered by this tool could enable parametric studies on structural layout—for instance, one
could set the number of ribs or the rib spacing in a wing as a design variable and carry out a study
that performs structural or aerostructural optimization for each possible layout. Another specific
study that this tool enables is aerostructural optimization of unconventional configurations with the
entire airframe modeled structurally. This could help expedite the design process for new aircraft
concepts and facilitate design studies that compare the performance of different unconventional
configurations.
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