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A fast-prediction surrogate model for large datasets

John T. Hwang1 and Joaquim R. R. A. Martins2

Abstract Surrogate models approximate a function based on a set of training points and can then predict
the function at new points. In engineering, kriging is widely used because it is fast to train and is generally
more accurate than other types of surrogate models. However, the prediction time of kriging increases with
the size of the dataset, and the training can fail if the dataset is too large or poorly spaced, which limits the
accuracy that is attainable. We develop a new surrogate modeling technique—regularized minimal-energy
tensor-product splines (RMTS)—that is not susceptible to training failure, and whose prediction time does
not increase with the number of training points. The improved scalability with the number of training points
is due to the use of tensor-product splines, where energy minimization is used to handle under-constrained
problems in which there are more spline coefficients than training points. RMTS scales up to four dimensions
with 10–15 spline coefficients per dimension, but scaling beyond that requires coarsening of the spline in
some of the dimensions because of the computational cost of the energy minimization step. Benchmarking
using a suite of one- to four-dimensional problems shows that while kriging is the most accurate option for
a small number of training points, RMTS is the best alternative when a large set of data points is available
or a low prediction time is desired. The best-case average root-mean-square error for the 4-D problems is
close to 1% for RMTS and just under 10% for kriging.

Keywords: Surrogate modeling; response surfaces; metamodels; regression; multidisciplinary design opti-
mization; Krylov methods

1 Introduction
A surrogate model is an approximation that is cheaper or more convenient to evaluate than the underlying
model it approximates. The most common use of surrogate models is to replace a known expensive compu-
tational model when a large number of repeated evaluations is required, e.g., for optimization or uncertainty
quantification. Another common application is when we want to obtain a continuous function from a fixed
dataset, e.g., when the data is obtained experimentally or from legacy code. A third application is smoothing
an underlying model with a lower order of continuity, perhaps to achieve differentiability for gradient-based
optimization (Hwang et al., 2014).

In discussions of surrogate models, it is beneficial to separate the construction and evaluation of the model,
because most such models have parameters that are precomputed during the construction stage. Here, we
refer to the evaluation of the model as prediction. Given nx inputs and nw parameters, the prediction is the
evaluation of

y = f(x,w), (1)

where x ∈ Rnx is an input vector, y ∈ R is the output variable, and w ∈ Rnw is the vector of model
parameters. We refer to the construction of the model as training, and thus to the dataset as training points.
The objective of training is to compute the model parameters w that satisfy or approximate

ȳi ≈ f(x̄i,w), ∀1 ≤ i ≤ nt (2)

where (x̄1, ȳ1), . . . , (x̄nt
, ȳnt

) are the nt training points.
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Because of its wide applicability and usefulness, surrogate modeling has been a topic of active research
for decades Simpson et al. (2001a). In engineering, kriging is one of the most commonly used methods for
several reasons Simpson et al. (2001b); Kleijnen (2009). First, it is the most accurate method overall for small
or moderate numbers of training points (nt < 103), as we confirm in Section 4. Second, kriging training
and prediction times scale well with the number of dimensions, nx, enabling its use in high-dimensional
problems where nx can be as high as O(102). Third, its stochastic interpretation provides an estimate of
the prediction error via the variance of the prediction point. However, the disadvantages of kriging include
the increase in prediction time with the number of training points, and the propensity of the training to fail
when the training points are too close to each other. These disadvantages limit the maximum number of
training points that kriging can handle, which in turn limits the accuracy that can be achieved when many
training points are available.

In this paper, we are primarily motivated by applications in which the surrogate model is a part of a
larger model. For example, the surrogate model might approximate aircraft aerodynamic performance with
respect to the flight conditions, where the surrogate is a part of a multidisciplinary model that includes
other disciplines represented by other models that may or may not be surrogates. If the set of training
points is fixed, then the surrogate model can be trained once in advance and used repeatedly each time the
multidisciplinary model is run. This is the case in many problems in multidisciplinary design optimization
(MDO), and it encourages emphasizing prediction time more than training time. Predictions are made
repeatedly to converge the multidisciplinary system, which in turn is done once per optimization iteration.
In some problems, this can lead to millions of predictions for a surrogate model trained once (Hwang and
Martins, 2016). Other applications, such as surrogate-based optimization, place more weight on a lower
training time because the training occurs at every optimization iteration.

We develop a new surrogate modeling method for low-dimensional problems (nx ≤ 4) that we call
regularized minimal-energy tensor-product splines (RMTS). RMTS is generally slower to train than kriging,
but it has a fast prediction time that does not increase with the number of training points. Moreover, it
can work with much larger numbers of training points, meaning that when large datasets are available, e.g.,
when the data source is a fast but nondifferentiable model, the accuracy that can be achieved with RMTS
is expected to be higher than with kriging, as we show in Section 4. Interest in tensor-product splines has
declined in the last few decades because of their poor scaling with nx; however, modern computing hardware
mitigates these scaling limitations and enables RTMS to scale up to four-dimensional problems. Moreover,
tensor-product splines enable prediction that is orders of magnitude faster than kriging when the number of
training points is large (nt > 104). RMTS uses energy minimization and regularization to improve accuracy
with small datasets and to handle unstructured datasets, i.e., training points not arranged in a structured
grid.

RMTS is available under an open-source license as part of the surrogate modeling toolbox (SMT)1. All
the benchmarking problems, as well as the other surrogate modeling approaches considered in this paper,
are included in the SMT repository, so our results are fully reproducible.

The paper is organized as follows. In Section 2, we review some of the surrogate modeling methods that
are commonly used in engineering: polynomials, splines, artificial neural networks, support-vector regression,
inverse-distance weighting, radial basis functions, and kriging. In Section 3, we present the equations and
solution algorithms of RMTS. In Section 4, we use a benchmarking suite to evaluate RMTS and to compare
the surrogate modeling methods in terms of training time, prediction time, and accuracy. We also discuss
the use of RMTS in a practical MDO context dealing with aircraft mission optimization.

2 Review of surrogate modeling methods
In engineering, a surrogate model is also known as a response surface in some contexts, or as a metamodel,
reflecting the idea that it is a model of an underlying model. In this paper, we use surrogate model throughout
to remain consistent, while noting that different terms are used in other contexts.

Surrogate modeling approaches can be classified as interpolation (if the surrogate model matches the
true function value at each point in the training dataset) or regression (if it does not). Regression methods
smoothly approximate noisy data, and they include polynomials, splines, artificial neural networks (ANN),
and support vector regression (SVR). Interpolation methods attempt to smoothly and accurately fit non-
noisy data, and they include inverse distance weighting (IDW), radial basis functions (RBFs), and kriging.
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These methods are extensively discussed in the literature Wang and Shan (2007); Simpson et al. (2008);
Forrester et al. (2008).

Since RMTS is classified as an interpolation method, we review the regression methods briefly and explain
the interpolation methods in more detail. Section 4 presents results comparing RMTS to IDW, RBFs, and
kriging, so we also present the equations for each, in the form they are implemented for the benchmarking.

2.1 Regression methods
2.1.1 Polynomial regression
Polynomial regression uses low-order global polynomials in multiple variables to approximate the training
data. Polynomial response surfaces were originally introduced by Box and Wilson (1951). They have the
advantage of simplicity, making them fast and easy to work with. However, they lack flexibility, and therefore
for many types of problems they are less accurate than other methods.

2.1.2 Splines
The most successful surrogate modeling method using splines is multivariate adaptive regression splines
(MARS), developed by Friedman (1991). MARS uses basis functions that are piecewise linear in each
dimension and adaptively splits the basis functions using a greedy algorithm. MARS scales well with problem
dimension (nx), but the downside is that both the training and prediction times increase with the number
of knots, which is tied to accuracy.

2.1.3 Artificial neural networks
ANNs work with an interconnected set of nodes that compute an activation signal based on inputs, just as
neurons in the brain fire based on impulses. These nodes are arranged in layers, where one layer consists
of the nx inputs, another layer consists of the ny outputs, and the remaining layers are known as hidden
layers. Compared to the typical surrogate modeling techniques in engineering, neural networks display slower
convergence of error versus the number of training points. On the other hand, they are capable of dealing
with significantly higher-dimensional problems, such as speech and character recognition.

2.1.4 Support vector regression
SVR Cortes and Vapnik (1995) also has its roots in machine learning, but it has been successful as a method
for surrogate modeling in engineering applications. It is typically derived first as an optimization problem
that finds the most “flat” linear approximation with a prescribed precision. The dual problem yields an
equivalent form with a dot product between the input vectors in the objective function, and replacing this
dot product with another function leads to the general SVR method. Choosing the Gaussian function turns
out to be similar to RBFs with a Gaussian kernel, except that it performs regression with a prescribed
tolerance rather than interpolation.

2.2 Interpolation methods
2.2.1 Inverse distance weighting
IDW, also known as Shepard’s method (Shepard, 1968), uses a linear combination of the training outputs,
where the coefficients are computed from the inverse of the distance from the prediction point to each training
point. It exactly interpolates unstructured data in n-dimensions while being continuous and differentiable
everywhere.

The original IDW interpolant is given by

f(x,w) =

{
ȳi, x = x̄i for some i∑nt

i=1 d(x,x̄i)
−pȳi∑nt

i=1 d(x,x̄i)−p , otherwise
(IDW)

where p > 1 is an option. Although the distance function is not defined when the evaluation point is
one of the training points, the overall IDW function is still continuous with this definition, and so are the
derivatives as long as p > 1. This definition has been modified to use sparse functions (Renka, 1988) and
spatially varying adaptive functions (Lu and Wong, 2008).
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IDW is unique because it does not require any training. Therefore, its advantage is that it can handle
very large numbers of training points (we give results for up to nt = 105). Another advantage is that the
interpolant stays within the minimum and maximum of the training points on the entire input space (Gordon
and Wixom, 1978). However, IDW is slow to predict because it computes the distances from the evaluation
point to all the training points. A more serious disadvantage is that the derivatives of the interpolant vanish
at each training point, so IDW yields an undesirable interpolant even in the simple 1-D case when the
training points are on a line.

2.2.2 Radial basis functions
RBFs are defined as linear combinations of basis functions, where each basis function depends on the distance
from the prediction point to each training point. The coefficients in the linear combination are determined
by solving a linear system that is typically dense. The radially varying basis functions are usually augmented
with polynomial functions to capture the general trends.

In presenting the RBF equations, we use pi : Rnx → R to denote the ith of np polynomial functions and
φi : Rnx → R to denote the ith of nt basis functions. Prediction using RBFs is given by

f(x,w) =

np∑
i=1

pi(x)ai +

nt∑
i=1

φi(x)bi (RBF)

where ai ∈ R is the weight for the ith polynomial trend function and bi ∈ R is the weight for the ith basis
function. Therefore, w consists of the coefficients a1, . . . , anp

and b1, . . . , bnt
.

In matrix notation, the prediction equation is

y = Pa + Φb, (3)

where y ∈ Rn, P ∈ Rn×np , a ∈ Rnp , Φ ∈ Rn×nt , and b ∈ Rnt .
The training for RBFs consists in solving the linear system[

Φ̄ P̄
P̄T 0

] [
b
a

]
=

[
ȳ
0

]
, (4)

where Φ̄ ∈ Rnt×nt is the evaluation of the basis functions at x̄1, . . . , x̄nt
, P̄ ∈ Rnt×np is the evaluation of

the polynomial functions at x̄1, . . . , x̄nt
, and ȳ ∈ Rnt is the training point output values in matrix form.

The linear system (4) is derived by performing an initial weighted least-squares approximation using the
polynomials to capture the general trends before applying the basis functions to the resulting error. The
least-squares system is P̄a = ȳ, and the associated normal equations are P̄T Φ̄−1P̄a = P̄T Φ̄−1ȳ. The second
step solves the linear system Φ̄b = ȳ − P̄a.

There are many choices for the basis functions, but the most common ones are the Gaussian,

φi(x) = exp

(
−||x− x̄i||2

r2
0

)
, (5)

thin plate splines (Duchon, 1977),

φi(x) = ||x− x̄i||2 ln ||x− x̄i||, (6)

and the multiquadric (Hardy, 1971),

φi(x) =
√
||x− x̄i||2 + r2

0, (7)

where r0 is the tuning parameter. Thin plate splines have the advantage that they have no parameters
that need to be tuned, and they are derived by analytically solving for the deformation of a thin elastic
plate under bending. For multiquadrics, there have been studies on optimally choosing the r0 parameter to
improve the interpolant’s accuracy (Carlson and Foley, 1991; Kansa and Carlson, 1992).

RBFs are very accurate for many problems, and they have a low training time for small datasets. However,
one disadvantage of RBFs is that they are highly susceptible to spurious oscillations with data that is rapidly
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changing or nonuniformly distributed in the input space. As the number of training points increases, the
prediction time also increases, and the matrix in Eq. (4) can become ill-conditioned and cause training
failures. Another disadvantage is the presence of problem-dependent tuning parameters. As we see in the
next section, kriging uses the same underlying equations as RBFs, but kriging’s equivalents of the basis
functions are tuned in an automated way.

To improve accuracy, anisotropic basis functions—ones that do not only depend radially—have been
studied extensively in the literature (Mitášová and Mitáš, 1993; Dinh et al., 2001; Casciola et al., 2007,
2010; Beatson et al., 2010; Yu and Turk, 2013). Another modification to RBFs is the use of compactly
supported basis functions to achieve sparsity for better efficiency (Wendland, 1995; Wu, 1995; Buhmann,
2000). Compact basis functions improve the evaluation efficiency somewhat, and optimally chosen basis
functions improve accuracy. However, the primary disadvantage of RBFs remains: they are not as robust as
interpolants based on energy minimization, especially with data points that vary significantly in spacing or
in output value.

2.2.3 Kriging
Kriging, also known as Gaussian process regression (GPR), can be seen as a generalization of the RBF
approach, as we will show. However, kriging interprets the interpolation function as a random process,
where the function value at each point in the domain is treated as a separate random variable that is
correlated to all the others. Kriging was named after Krige (1951) by Matheron (1963). It was initially
developed independently and in various forms in many fields (Cressie, 1990), most notably in geostatistics,
but after Sacks et al. (1989) it became widely used in computational modeling and design.

Kriging incorporates general trend models in a manner similar to the global polynomials that are used
for RBFs. Simple kriging uses a known mean; ordinary kriging uses a constant but unknown mean; and
universal kriging assumes a general polynomial mean. Universal kriging is used to improve accuracy at the
expense of a slight increase in computational complexity, but numerical experiments show that this is not
universally the case (Zimmerman et al., 1999).

We use the notation of RBFs for the polynomial trend functions, pi : Rnx → R, and we denote the
correlation between the prediction point and the ith training point as ψi : Rnx → R. Then, the prediction
equations for universal kriging are

f(x,w) =

np∑
i=1

pi(x)ai +

nt∑
i=1

ψi(x)bi (8)

where ai ∈ R is the weight for the ith polynomial trend function and bi ∈ R is the weight for the ith training
point. Therefore, w consists of the weights a1, . . . , anp

and b1, . . . , bnt
.

In matrix notation, the prediction equation is

y = Pa + Ψb, (9)

where y ∈ Rn, P ∈ Rn×np , a ∈ Rnp , Ψ ∈ Rn×nt , and b ∈ Rnt .
The weights are computed by solving the linear system[

Ψ̄ P̄
P̄T 0

] [
b
a

]
=

[
ȳ
0

]
, (10)

which is identical to that for RBFs except that we have correlation functions ψ instead of radial basis
functions φ.

Similarly to RBFs, we can derive Eq. (10) by applying a two-step process. The first step and the
associated computation of a are identical to the RBF case—the coefficients of the polynomial functions can
be found via a weighted least-squares solution. The second step and the computation of b follow from first
deriving y −Pa = ΨΨ̄−1(ȳ − P̄a) (see A), which can easily be shown to solve Eq. (10).

Where kriging departs from RBFs is in the selection of the covariance function ψ. Kriging assumes a
general form for ψ and computes the parameters via optimization of the likelihood function. The most
commonly used form, as expressed by Toal et al. (2008), is

ψi(x) = σ2 exp

(
−

nx∑
k=1

θk||xk − x̄i,k||pk
)
, (11)
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where σ2 is the variance, and θ1, . . . , θnx and p1, . . . , pnx are called hyperparameters.
The optimal hyperparameters for a given set of training data can be found by computing the maximum

likelihood estimator (MLE) through optimization. In this context, the likelihood function takes as inputs
the values of the hyperparameters and returns the probability that the random variables take on the actual
output variable values at the training points. Therefore, we tune the values of the hyperparameters to
maximize this likelihood. More details on the MLE for hyperparameter tuning can be found in (Toal et al.,
2008).

The automation and optimization aspects of the MLE approach are attractive, but the correlation matrix
can be susceptible to ill-conditioning, and the log of the likelihood function, which is used as the objective,
can be multi-modal (Martin and Simpson, 2005). Two alternative approaches to MLE exist: fitting the
covariance function to an empirically determined variogram, and “leave-one-out” cross-validation (Mitchell
and Morris, 1992). Cross-validation avoids the numerical issues of maximizing the log-likelihood function,
but it can be inconsistent and sometimes performs much worse (Martin and Simpson, 2005).

In summary, kriging has many advantages, but there are numerical issues for certain types of problems
that limit its robustness. In terms of advantages, kriging scales well with dimensionality (nx), and it has
the attractive property that training points that are part of a dense cluster of points have lower weighting
in general than those that are located in a sparse area of the input space. In terms of disadvantages, the
size of the linear systems that kriging solves is tied to the number of training points, and for large problems
this can be a bottleneck. This has motivated research into kriging using high-performance computing and
parallelism (Kerry and Hawick, 1998), fixed-rank approximations using the Sherman–Morrison–Woodbury
formula (Cressie and Johannesson, 2008), and approximation of the inverse of the covariance matrix Leithead
and Zhang (2007) using the BFGS update formula. Another disadvantage is that computing the kriging
hyperparameters can be a challenge. Determining the empirical variogram is a manual process that is not
always robust, and MLE can fail to converge, especially with problems with more than O(100); we observed
this in numerical experiments. The alternative is to manually select and tune the covariance function, in
which case the method is no different from RBF interpolation.

3 Method
We now develop the RMTS surrogate model. It is similar to IDW, RBFs, and kriging in its representation
of the prediction output as a linear combination of the training outputs. Like that for RBFs and kriging, the
prediction output for RMTS can also be interpreted as a linear combination of basis functions, where the
coefficients are precomputed during training. However, unlike RBFs and kriging, RMTS does not require
the number of basis functions to be tied to the number of training points.

3.1 General form
The prediction equations for RMTS are given by

f(x,w) =
∑

i1,...,inx∈I
b1,i1(x1) · · · bnx,inx

(xnx
)wi1,...,inx

(12)

where bk,i : R → R is the ith basis function for the kth input variable and wi1,...,inx
is a coefficient of the

multivariate spline.
In matrix notation, the prediction equation is

y = Fw, (13)

where F ∈ Rn×nw and w ∈ Rnw . Since splines are piecewise polynomials, each coefficient affects only part
of the domain; therefore, each basis function has finite support and F is sparse.

The RMTS methodology permits any type of splines to be used. However, splines with uniform knot
spacing have a lower prediction time. If the spline knot spacing is not uniform, it is necessary to perform
a search for each prediction point and each of the nx dimensions to locate the knot interval containing the
input value, which increases the prediction time. For this paper and in the SMT package, two types of splines
have been implemented: B-splines with uniform knot vectors and cubic Hermite splines.

We call the B-spline implementation RMTB, where the B stands for B-splines. In the SMT implemen-
tation of RMTB, the B-spline order and number of control points can be arbitrarily chosen, as long as
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the number of control points is not less than the order. With B-splines of higher order, better accuracy is
typically achieved but the training and prediction times are much higher because F is less sparse. Typically,
third- or fourth-order B-splines are used. B-splines have higher smoothness than cubic Hermite splines; the
highest order of derivatives that are continuous at the knots is two less than the order of the B-spline.

We call the cubic Hermite spline implementation RMTC, where the C stands for cubic Hermite splines.
In the SMT implementation of RMTC, the only option is the number of cubic elements in each dimension.
Each cubic element is an nx-dimensional hypercube. Its 4nx multivariate polynomial coefficients are uniquely
defined by the 2nx interpolant values and derivatives at its 2nx nodes. At each node, the same values and
derivatives are shared between all elements that share the node, so we are guaranteed C1 continuity.

3.2 Constrained energy minimization
Conventional tensor-product spline interpolants require the number of coefficients, i.e., the size of w, to
be equal to the number of training points and for the training data to be arranged in a structured grid.
Otherwise, the problem of computing the coefficients, w, can be over- or under-constrained. RMTS uses
more coefficients than necessary (more control points for RMTB or elements for RMTC) and minimizes the
integral of the sum of squares of the second derivatives, i.e., the bending energy of the function. This idea
draws inspiration from the behavior of an elastic plate or surface that deforms to pass through a set of points.
Since the output variable is interpreted as the transverse displacement, the second derivatives represent the
curvature of the plate, and the squares of the second derivatives quantify the bending energy stored in the
material when loads are applied to achieve the desired deformation.

The idea of minimizing energy has been used extensively in the field of computer graphics for at least half
a century (Schweikert, 1966; Lee and Forsythe, 1973). In these contexts, the term minimal-energy splines
is used interchangeably with variational splines, faired splines, thin plate splines, and splines in tension,
although there are small differences in meaning. Depending on the application, the kernel function can be 1-
D cubic splines Brunnett and Kiefer (1994), 2-D bicubic splines Zhang et al. (2001), Bezier surfaces Moreton
and Séquin (1992), B-spline surfaces Welch and Witkin (1992), triangular meshes Kobbelt (2000), or other
more advanced geometry representations such as Catmull–Clark splines Halstead et al. (1993). In each
of these studies, an energy functional is minimized to determine the coefficients or parameters of a curve
or surface. Energy minimization has also been used for specific applications such as extending a curve or
surface with additional points Mo and Zhao (2006), providing a framework for incorporating monotonicity
constraints Wolberg and Alfy (2002), and inserting points in the domain Vassilev (1996).

Here, the continuous functional that is minimized is∫ b(nx)

a(nx)

. . .

∫ b(1)

a(1)

[(
∂2f

∂x2
1

)2

+ . . .+

(
∂2f

∂x2
nx

)2
]
dx(1) . . . dx(nx). (14)

The cross-derivatives are included in other contexts, but assembly of this functional can be expensive, and
in numerical experiments including the additional terms did not provide a significant benefit.

For convenience, we introduce H ∈ Rnw×nw to represent the discretized matrix for the continuous energy
functional (14). We also introduce F̄ such that ȳ = F̄w. Then, the constrained optimization problem that
minimizes the energy subject to the training point constraints is

min
w

1

2
wTHw (15)

s.t. ȳ = F̄w.

We use regularization to ensure that the matrix in the linear system is invertible. We add to the
Lagrangian the norm of the degree-of-freedom vector with β as the coefficient, and we subtract from it
the norm of the Lagrange multipliers with α as the coefficient. Figure 1 shows the resulting unconstrained
minimization problem and the linear system that provides necessary conditions for a stationary point.

3.3 Reformulation using the Schur complement
We now reformulate Eq. (16) to reduce the size of the system and obtain a more flexible formulation. Since
the linear system in Fig. 1 has a block structure, the α regularization allows us to apply block Gaussian
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min
w,λ

1
2wTHw + λT

(
F̄w − ȳ

)
+ 1

2βwTw − 1
2αλ

Tλ
(16)

H + βI

F̄

F̄T

−αI

w

λ

=

0

ȳ

Figure 1: Regularized unconstrained minimization problem with the method of Lagrange multipliers already
applied to the equality constraints (left), and the resulting block linear system (right).

min
w

1
2wTHw + 1

2βwTw

+ 1
2

1
α

(
F̄w − ȳ

)T (
F̄w − ȳ

) (17) H + βI + 1
α F̄

T F̄ w = 1
α F̄

T ȳ

Figure 2: Minimization of a weighted combination of the bending energy term and the least-squares training
data approximation term (left), and the resulting linear system (right).

elimination. In the linear system that results, the matrix is then the Schur complement, as we see in Fig. 2.
The new optimization problem in Fig. 2 is an unconstrained minimization of the sum of the energy term, a
least-squares approximation term, and regularization terms. This contrasts with the optimization problem
in Fig. 1, which is an energy minimization subject to training-data constraints with regularization.

The size of the linear system is reduced but we lose sparsity through this reformulation. Both H and
F̄ are sparse, so the matrix in Fig. 1 is sparse, but the product F̄T F̄ causes us to lose sparsity in Fig. 2.
However, numerical experiments show that the matrix assembly time and the linear solution time are both
lower with the smaller, denser matrix.

Another advantage is that this new formulation is more versatile. As we see in Section 4, energy mini-
mization is not necessary when the number of training points is large (say, nt > 103). This formulation allows
us to exclude the energy minimization terms easily, without changing the structure of the linear system; this
is an option in the implementation of RMTS in SMT. The reformulated problem can be interpreted as a
weighted combination of energy minimization and least squares approximation with regularization.

3.4 Nonlinear reformulation
In problems with few training points and a smooth function, energy minimization significantly increases the
accuracy of the interpolant. However, it can increase the error in fitting the training points when the true
function has large variations in curvature, especially with a large number of training points.

Reformulating the problem once more to make the problem nonlinear improves accuracy in these situa-
tions. This is done by generalizing the training point error term to powers greater than 2. Thus, we replace
(F̄w − ȳ)T (F̄w − ȳ) by

∑
i(F̄w − ȳ)pi , where p > 2. With this change, the objective function is no longer

quadratic, so multiple iterations of Newton’s method must be performed, as shown in Fig. 3.
We can interpret this reformulation in two ways. First, the nonlinear approach in Fig. 3 can be interpreted

as repeatedly solving the original problem of weighted energy minimization and least squares approxima-
tion (17), but with the approximation terms weighted by the error from the previous iteration. This can be
viewed as repeatedly solving the original problem (17), where the weights are updated each time to place
more emphasis on the training points that were not well-approximated in the previous iteration.

Second, the nonlinear reformulation can be interpreted as making our approach closer to the minimization
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min
w

1
2wTHw + 1

2βwTw

+ 1
2

1
α

∑
i(F̄w − ȳ)pi

(18)
H + βI + 1

α
p
2 (p− 1)

F̄TD((F̄w − ȳ)p−2)F̄
∆w =

−Hw − βw
− 1
α
p
2 F̄

T (F̄w − ȳ)p−1

Figure 3: Reformulation of the weighted energy and least squares minimization (17) so that the optimality
conditions result in a nonlinear system (left), shown along with the resulting Newton system (right).

of the largest error among the training points. Since the p-norm approaches the max-norm as p approaches
infinity, increasing the value of p above 2 equalizes the error and results in a better overall fit.

In numerical experiments, the nonlinear reformulation either improves or matches the accuracy of the
original formulation (17). However, it increases the training time because each nonlinear iteration involves
solving a linear system.

In our implementation of RMTS in SMT, the number of nonlinear iterations is a user-specified option.
The matrices are assembled and solved using sparse linear algebra via the NumPy and SciPy packages in
Python. Since the matrix is always symmetric, we use the conjugate gradient (CG) method with a maximum
of 100 iterations by default. For most problems, the matrix assembly time is larger than the linear solution
time, which motivates us to perform a larger number of CG iterations. In problems in which the matrix is
poorly conditioned, the nonlinear formulation provides another benefit—if the linear system is not adequately
converged in the first nonlinear iteration, the linear systems in subsequent nonlinear iterations have tighter
convergence. As a result, the nonlinear form of RMTS is robust, and the linear solver parameters did not
require tuning in any of the numerical experiments. All of the benchmarking results shown in the next
section were obtained using the default settings.

3.5 Summary and implementation
In this section, we summarize the training procedure for RMTS and describe its practical implementation.
We first present a slight modification of Eq. (17) and Eq. (18) that is more convenient to use, and we describe
the RMTS implementation in algorithmic form.

First, we multiply the objective function by α, and replace the parameters α and β with α′ = α and
β′ = αβ. We define α′ and β′ in this way so that they represent scaling factors for the energy term (H) and
regularization term (I), respectively. With this small reformulation, the quadratic optimization problem in
Eq. (17) becomes

min
w

1

2
α′wTHw +

1

2
β′wTw +

1

2

(
F̄w − ȳ

)T (
F̄w − ȳ

)
, (19)

and its solution is computed by solving the linear system,(
α′H + β′I + F̄T F̄

)
w = F̄T ȳ. (20)

Similarly, the nonlinear optimization problem in Eq. (18) becomes

min
w

1

2
α′wTHw +

1

2
β′wTw +

1

2

∑
i

(F̄w − ȳ)pi , (21)

and the Newton iterations for solving this problem are given by(
α′H + β′I +

p

2
(p− 1)F̄TD((F̄w − ȳ)p−2)F̄

)
∆w = −α′Hw − β′w − p

2
F̄T (F̄w − ȳ)p−1. (22)

This form is more convenient to use since the energy minimization or the regularization terms can be ‘turned
off’ by setting either α′ or β′, respectively, to zero.

With these modifications, we now present the RMTS training procedure in Alg. 1. We start by pre-
computing F and H as an initialization step; however, H is only computed if α′ is not zero since this
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step forms a significant portion of the computation time in most situations. Next, we solve the quadratic
optimization problem from Fig. 2, reformulated as Eq. (20). In some cases, the result is sufficiently accurate,
and we can skip the nonlinear optimization solution by setting num nonlinear iterations to zero. Otherwise,
we use the quadratic optimization solution as an initial guess and solve the nonlinear optimization problem
from Fig. 3, reformulated as Eq. (22). We loop over output variables and apply a Newton iteration.

Algorithm 1 RMTS training algorithm

compute F as a sparse matrix
if α′ 6= 0 then

compute H as a sparse matrix
else

initialize H as a sparse matrix of zeros
end if

# solve the quadratic optimization problem
assemble the matrix of the linear system in Eq. (20)
for each output variable do

solve Eq. (20)
end for

# solve the nonlinear optimization problem (optional)
if num nonlinear iterations > 0 then

for each output variable do
while not converged and iteration < num nonlinear iterations do

assemble the matrix of the linear system in Eq. (22)
solve Eq. (22)

end while
end for

end if

Gradient information in the training data set can be easily incorporated via F̄ and ȳ. Without gradient
information, the number of rows of F̄ and the size of the ȳ vector are both equal to the number of training
points. When gradient information is available, it is simply appended to F̄ and ȳ. Therefore, if we have nt
training points and nx input variables with gradient information available at all training points with respect
to all nx input variables, the number of rows of F̄ and the size of ȳ would both be nt + ntnx since there nt
training output values in addition to nx derivatives at each of the nt training points.

4 Results
We now present results investigating the accuracy and efficiency of RMTS, and we compare it to other
surrogate modeling approaches. We first present a suite of benchmarking problems and then use this problem
suite to compare RMTS to IDW, RBFs, and kriging. Next, we examine the effect of energy minimization and
the nonlinear reformulation of RMTS presented in Section 3, and the use of gradient information. Finally,
we apply RMTS to a practical MDO application.

4.1 Benchmarking problems
To compare RMTS to other approaches, we use a suite of 1-D, 2-D, 3-D, and 4-D benchmarking problems
where the true function is known. Four problems are n-dimensional (where n can be any number), two
problems are 3-D, and another two are 4-D. Therefore, there are four 1-D, four 2-D, six 3-D, and six 4-D
problems in the benchmarking suite.

The n-dimensional problems include the position tracking of a robot arm An and Owen (2001), the tip
deflection of a cantilever beam Cheng et al. (2015), a tensor product of hyperbolic tangent functions, and
the multidimensional Rosenbrock function. The 3-D problems include the shear stress of a welded beam Deb
(2000) and the flow of water through a borehole Morris et al. (1993). The 4-D problems include the weight
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of an aircraft wing Forrester et al. (2008) and the vibration frequency of a torsion beam Wang et al. (2006).
The problems from the literature were compiled by Liu et al. (2016). The tensor-product hyperbolic tangent
problem is included because it approximates a step function, which is known to cause oscillations with some
surrogate modeling approaches. For all the problems, the function, the list of inputs and outputs, and their
ranges are given in B. In all cases, we use Latin hypercube sampling (LHS) to generate an unstructured set
of training data.

For the benchmarking results, RMTS, IDW, RBFs, and kriging are all used with their default settings
in SMT. We do this to enable a fair comparison free of bias or tuning for a particular set of problems. For
RMTS, we show separate results for RMTB and RMTC, and both are run with default settings: RMTB is
run with 15 control points and an order of 3, and RMTC is run with 4 cubic Hermite spline elements. The
RBFs are run with Gaussian basis functions, no polynomial trend functions, and regularization involving the
addition of 10−10 to the diagonal. We use ordinary kriging with Gaussian correlation functions. For kriging,
we use the implementation of Bouhlel et al. (2016), with ordinary kriging, which is the default option for
kriging in SMT. For the maximum likelihood estimation, the initial guess for all hyperparameters is 10−2.

4.2 Comparison with other surrogate modeling approaches
In Fig. 4, we compare the training time, prediction time, and RMS error for IDW, RBFs, kriging, and four
forms of RMTS: RMTB, RMTC, and their equivalents with energy minimization. As a reminder, RMTB and
RMTC stand for regularized minimal-energy tensor-product B-splines and cubic Hermite splines, respectively.
Energy minimization increases the training time while improving accuracy in problems with sparse datasets;
to quantify this tradeoff, we consider RMTB and RMTC with and without energy minimization.

4.2.1 Training time
We first examine the training time plots in Fig. 4 and discuss the trend versus the number of training points.
We see that RBFs and kriging are the fastest for smaller numbers of training points. However, they scale
poorly as the number of training points increases while the training time for RMTS scales better than linearly
up to at least O(105) training points. Moreover, kriging fails to converge outright with more than nt = 1000
training points. These observations are expected, since RBF requires the solution of a dense matrix of size nt,
and kriging requires the inversion of a dense matrix of size nt. In terms of training time versus the number of
inputs, kriging and RBFs show low sensitivity to nx, while the training time for RMTS scales poorly with nx,
especially when using energy minimization. Furthermore, using energy minimization increases the training
time for RMTS by at least an order of magnitude. There is no training time data for IDW since it does not
require training.

4.2.2 Prediction time
Examining the prediction time plots in Fig. 4, we can arrive at three conclusions. First, IDW, RBFs, and
kriging scale linearly with the number of training points because the prediction requires computing the
distance to each training point. Second, the prediction times for all variants of RMTS are independent of
the number of training points, since the coefficients of the B-spline or cubic Hermite spline are precomputed.
Finally, RMTS has a lower prediction time than the other methods for problems with more than roughly 100
training points. However, the RMTS prediction time increases with nx.

4.2.3 Error
We now examine the error plots in Fig. 4. The error is quantified by the evaluation of 5000 points, also
selected using LHS in the input space. IDW has a consistent but poor rate of convergence, because the
surrogate model is locally flat at all training points—i.e., it has zero partial derivatives at the training point
locations. As expected, kriging is the most accurate when it converges, i.e., when nt < O(103), but it fails in
problems with more training points. RMTS does not have this issue, and its accuracy improves with more
training points. Therefore, the conclusion is that when a large number of training points is available, RMTS
achieves a higher accuracy than the other methods considered. However, it plateaus at a certain point when
the resolution of the spline is insufficient to fit the function to the desired level of accuracy. We see that
energy minimization either improves the accuracy or has no effect, but the improvement is larger with fewer
training points, as expected.
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4.3 Effect of energy minimization and the nonlinear reformulation
We now investigate the effect of energy minimization and the nonlinear reformulation in more depth via the
cantilever beam and robot arm problems. In Fig. 5, we plot the RMTS interpolation functions with no energy
minimization, with energy minimization and no nonlinear iterations, and with energy minimization and 20
nonlinear iterations. We see that energy minimization and the nonlinear reformulation are both beneficial
despite the increase in training time for small to moderate datasets.

x

Robot arm
y

200 training pts.

No EM; 0 iter.

EM; 0 iter.

EM; 20 iter.

True function

Cantilever beam
y

x

1000 training pts.

x

5000 training pts.

Figure 5: The true function compared to the RMTS interpolant with and without energy minimization and
nonlinear iterations. The test problems are the 3-D cantilever beam and 3-D robot arm problems. The
conclusion is that energy minimization and nonlinear iterations are both necessary and beneficial for smaller
datasets with fewer than O(103) points.

In Fig. 6, we show the error versus the number of nonlinear iterations. For the cantilever beam, the
error decreases continuously with the number of iterations, while for the robot arm, only the first iteration
provides any noticeable benefit. Therefore, the number of iterations required is problem-dependent.

4.4 Gradient-enhanced RMTS
Gradient-enhanced surrogate models use the gradients of the function with respect to the inputs in addition
to the function values in the surrogate model construction Forrester et al. (2008). RMTS readily generalizes
to gradient-enhanced interpolation via additional approximation terms. In the approximation error equation
F̄w̄ = ȳ we simply add rows to F̄ and ȳ for the derivative data.

In Fig. 7, we show how each of RMTB, RMTBe, RMTC, and RMTCe compare to the corresponding
versions with gradient information available at each training point location. We can draw several conclusions
from these results. First, energy minimization increases the training time by almost an order of magnitude,
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Figure 6: Error versus number of nonlinear iterations for the 3-D cantilever beam and 3-D robot arm
problems. The number of iterations after which the improvement plateaus is problem-dependent, but as a
general recommendation 10–20 iterations are worthwhile.

but for small to moderate datasets, it may be justified if improved accuracy is desired. Second, the use of
gradient information causes a smaller increase in training time, and it improves accuracy for moderate-sized
datasets. However, gradient information does not consistently improve accuracy. This is to be expected
because with larger datasets, we may sacrifice accurate interpolation of the training values to more closely
interpolate the derivatives. Third, RMTB has a lower prediction time but a higher error than RMTC with
the default settings. The default settings are fourth-order B-splines with 15 control points for RMTB and 4
cubic elements for RMTC.

The interpretation of this result is that when the spline does not have sufficient resolution, including
gradient information hurts accuracy in the output value because some of the limited degrees of freedom are
used to fit the derivatives, taking away from the ability to fit the function itself. Therefore, these results
suggest that with RMTS, it may not always be worthwhile to compute gradient information, especially in
situations with a large number of training points and a small number of B-spline control points or cubic
spline elements. However, these results were generated with the default settings of RMTB and RMTC.
Gradient information is likely to improve accuracy in problems with higher-resolution splines.

4.5 RMTS application in a practical MDO context
We now use RMTS in a practical MDO problem, aircraft mission analysis and optimization. This problem
seeks to design the full altitude and Mach number profile for a commercial transport aircraft by modeling the
aircraft equations of motion over the full flight profile Kao et al. (2015). This problem is motivated by recent
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research into unconventional aircraft configurations, morphing wing technologies Burdette et al. (2016), and
new optimal descent profiles for reduced fuel burn. The problem involves several coupled disciplines because
the weight of the aircraft affects its lift, which sets up a cascade of dependencies on drag, required thrust,
fuel burn rate, and total mission fuel weight, looping back to total aircraft weight. This loop involves
aerodynamics and propulsion models, along with the equations of motion.

The aerodynamics and propulsion models must be evaluated once for each: 1) mission discretization point,
2) Newton iteration, 3) mission (if multiple missions are simultaneously considered), and 4) optimization
iteration. When we multiply the resulting nested loops, tens of millions of evaluations of the aerodynamic
and propulsion models Hwang and Martins (2016) are required, so direct evaluations of high-fidelity models
are not feasible. Moreover, the most important consideration in this problem is to minimize the prediction
time.

Figures 8 and 9 show 1-D slices of the 2-D aerodynamics and 3-D propulsion models where the training
points are generated offline using high-fidelity models. The training points are arranged in a structured
grid, which allows us to plot 1-D slices of the RMTS surrogate model along with training points to evaluate
the quality of the approximation. The aerodynamics problem has 506 training points, and the propulsion
problem has 1056 training points. The high nonlinearity and multiple inflection points present in both
datasets make them challenging to fit accurately and without oscillations. We fit the aerodynamic model
using 50 B-spline control points with RMTB, and we fit the propulsion model with RMTC with 6 elements
by turning off energy minimization. Some tuning was required to obtain the fits, but the main advantage
of using RMTS is that the prediction time is an order of magnitude lower than that for a kriging surrogate
model, as we can infer from Fig. 4. Moreover, it is helpful that the parameters of RMTS (e.g., number of
control points, nonlinear iterations, weight of the energy minimization term) are easily understood by a user,
facilitating manual tuning of the model.
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Figure 8: 2-D surrogate model for aircraft aerodynamics with drag coefficient computed as a function of lift
coefficient and Mach number.

5 Conclusion
In this paper, we developed regularized minimal-energy tensor-product splines (RMTS), a surrogate modeling
technique for problems with up to four dimensions. Kriging is widely used for low-dimensional surrogate
modeling applications because it is generally fast and accurate; however, it can fail to train and is slower to
predict in problems with thousands of training points. In contrast, tensor-product splines are more robust,
and the prediction time is independent of the number of training points. RMTS uses energy minimization
to handle under-constrained problems in which there are more spline coefficients than training points, and it
makes use of a nonlinear generalization of the constrained energy minimization problem to improve accuracy.

We compared the performance of RMTS to inverse distance weighting (IDW), radial basis functions
(RBFs), and kriging in terms of accuracy and efficiency. We benchmarked each method using a suite of 1-D,
2-D, 3-D, and 4-D functions, representing a mixture of practical engineering models and simple academic
functions. Using these functions, we generated unstructured sets of training data using LHS.
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Figure 9: 1-D slices versus throttle (top) and altitude (bottom) for the 3-D aircraft engine model.

The results of the benchmarking can be summarized as follows. In terms of training time, RMTS is the
slowest for most reasonably sized training datasets. This is because the training time scales poorly with
the number of dimensions, although it scales better than linearly with the number of training points. In
terms of prediction time, RMTS is the best choice above a certain number of training points (O(10) for 1-D
and O(100) for 4-D). In applications where the surrogate model is evaluated thousands of times or more in
discretization or solver loops, the benefit of the fast prediction can offset a high training time. In terms of
accuracy, kriging is generally better than RMTS, but RMTS is more consistent across problems without the
risk of convergence failure that kriging is prone to.

Thus, RMTS is an attractive surrogate modeling technique for low-dimensional problems with many
training points, or when prediction time is the most important criterion. In other situations, kriging has
a lower training time, and it is generally more accurate. When hundreds of training points are available,
kriging has a higher prediction time that increases with the number of training points. Moreover, it can also
fail to converge. There is also a risk of convergence failure for training datasets in which some of the points
are too close together in the input space.

RMTS is expected to be useful primarily for engineering problems where the surrogate model replaces a
computational model that incurs significant run time. For instance, if a moderately expensive computational
model is called within a loop during an optimization, it would be beneficial to precompute a large set of
training data once and replace the model with RMTS for its fast prediction time. The upfront cost would
be especially worthwhile in MDO problems, since the surrogate model would be run many times while
converging coupled multidisciplinary analyses and debugging other disciplines.

Even for computational models with significant run times and thus small training datasets, RMTS can
be useful when kriging has convergence failures or produces an interpolant with spurious oscillations. In the
benchmarking tests, RMTS had an error two or three times higher than that of kriging, but it never failed
to converge. Moreover, the RMTS parameters are easy to understand: in particular, the number of B-spline
control points or the number of cubic elements, the relative weight on the energy minimization terms, and
the number of nonlinear iterations. Therefore, when the application allows for manually tuning the surrogate
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model, the intuitive and physically meaningful parameters in RMTS can be an advantage that enables a
more accurate interpolant to be achieved.

Our implementation of RMTS and the other surrogate models and problems benchmarked in this paper
are available in the open-source SMT Python package2.
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A Derivation of the kriging equation
Here, we show how we derive y −Pa = ΨΨ̄−1(ȳ − P̄a) in the development of the kriging equations.

We first define z̄ = ȳ − P̄a and z = y − Pa, where both z̄ and z are random vectors. Moreover, we
assume z = Cz̄, signifying that the detrended output at each prediction point is a random variable defined
as a linear combination of detrended training point outputs, which are also random variables. We also define
ẑ as the random vector of the true detrended outputs at the prediction points, from the true underlying
model.

We assume that the polynomial trend model accurately captures the unknown function in an average
sense, neglecting random variations. Then, any linear combination of the random variables at the training
points is also expected to be accurate and thus have zero mean. We use the coefficients of the linear
combination to minimize the variance of the error, which is ε = Cz̄ − ẑ, since a good interpolant would
not deviate significantly from zero error. Therefore, for the ith prediction point, the vector of coefficients is
computed by solving

min
Ci∗

E(ε2i ). (23)

The variance of the error can be written as

E(ε2i ) = Ci∗E(z̄z̄T )CT
i∗ − 2Ci∗E(ẑiz̄) + E(ẑiẑi). (24)

Setting the gradient with respect to Ci∗ to zero reveals that the minimum of this objective function is given
by

E(z̄z̄T )CT
i∗ = E(ẑiz̄), (25)

which can be simplified to
Ψ̄C̄T = ΨT . (26)

Since Ψ̄ is symmetric, this leads to C = ΨΨ̄−1, and inserting this into z = Cz̄ yields

y −Pa = ΨΨ̄−1(ȳ − P̄a), (27)

which is what we set out to prove. Therefore, the form of the training equations used in kriging (10) is
identical to that of RBFs, but with a different derivation originating from the interpretation of the training
and prediction outputs as random variables.
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B Benchmarking problems
n-D robot arm problem

r =

√√√√√n+1∑
i=1

Li cos

 i∑
j=1

θj

2

+

n+1∑
i=1

Li sin

 i∑
j=1

θj

2

(28)

Quantity Description
y1 r Distance of tip of robot arm

0≤ θ1 ≤ 2π Angle of the first arm segment
x1 0≤ θ2 ≤ 2π Angle of the second arm segment
...

...
xn 0≤ θn+1 ≤ 2π Angle of the last arm segment

0≤L1 ≤ 1 Length of the first arm segment
...

0≤Ln+1 ≤ 1 Length of the last arm segment

n-D cantilever beam problem

w =
P

3E

n∑
i=1

 12

bih3
i


 n∑
j=i

lj

3

−

 n∑
j=i+1

lj

3

 (29)

Quantity Description
y1 w Tip deflection
x1 0.5 ≤ l1 ≤ 1.0 Length of the first element
...

...
xn 0.5 ≤ ln ≤ 1.0 Length of the last element

0.01≤ b1 ≤ 0.05 Width of the first element
...

0.01≤ bn ≤ 0.05 Width of the last element
0.30≤ h1 ≤ 0.65 Height of the first element

...
0.30≤ hn ≤ 0.65 Height of the last element
P = 50 kN Applied force at the tip
E = 200 GPa Young’s modulus

n-D tensor-product hyperbolic tangent function

f =

n∏
i=1

tanh(axi) (30)

Quantity Description
y1 f
x1 -1≤ x1 ≤ 1 First input variable
...

...
xn -1≤ xn ≤ 1 Last input variable

a = 10 Abruptness of the step function

n-D Rosenbrock function

f =

n−1∑
i=1

[
100(xi+1 − x2

i )
2 + (1− xi)2

]
(31)

22



Quantity Description
y1 f
x1 -2≤ x1 ≤ 2 First input variable
...

...
xn -2≤ xn ≤ 2 Last input variable

3-D welded beam problem

τ =

√
τ ′2 + τ ′′2 +

lτ ′τ ′′√
0.25 (l2 + (h+ t)2)

(32)

where τ ′ =
6000√

2hl
, τ ′′ =

6000(14 + 0.5l)
√

0.25 (l2 + (h+ t)2)

2 [0.707hl (l2/12 + 0.25(h+ t)2)]

Quantity Description
y1 τ Shear stress
x1 5 ≤ t ≤ 10 Beam thickness
x2 0.125≤ h≤ 1 Beam height
x3 5 ≤ l ≤ 10 Beam length

3-D water flow problem

f =
2πTu(Hu −Hl)

ln(r/rw)
[
1 + 2LTu

ln(r/rw)r2wKw
+ Tu

Tl

] (33)

Quantity Description
y1 f Water flow
x1 0.05 ≤ rw ≤ 0.15 Radius of borehole (m)
x2 100 ≤ r ≤ 50000 Radius of influence (m)
x3 1120 ≤L ≤ 1680 Length of borehole (m)

63070≤ Tu ≤ 115600 Transmissivity of upper aquifer (m2/y)
990 ≤Hu ≤ 1110 Potentiometric head of upper aquifer (m)
63.1 ≤ Tl ≤ 116 Transmissivity of lower aquifer (m2/y)
700 ≤Hl ≤ 820 Potentiometric head of lower aquifer (m)
9855 ≤Kw ≤ 12045 Hydraulic conductivity of borehole (m/y)

4-D wing weight problem

Ww = 0.036S0.758
w W 0.0035

fw

(
A

cos2 Λ

)
q0.006λ0.04

(
100tc

cosλ

)−0.3

(NzWdg)
0.49

+ SwWp (34)

Quantity Description
y1 Ww Wing weight
x1 150 ≤ Sw ≤ 200 Wing area (ft2)
x2 6 ≤A ≤ 10 Aspect ratio
x3 -10 ≤Λ ≤ 10 Quarter-chord sweep (deg)
x4 0.5 ≤ λ ≤ 1 Taper ratio

220 ≤Wfw ≤ 300 Weight of fuel in the ring (lb)
16 ≤ q ≤ 45 Dynamic pressure at cruise (lb/ft2)
0.08 ≤ tc ≤ 0.18 Aerofoil thickness to chord ratio
2.5 ≤Nz ≤ 6 Ultimate load factor
1700 ≤Wdg ≤ 2500 Flight design gross weight (lb)
0.025≤Wp ≤ 0.08 Paint weight (lb/ft2)
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4-D torsion vibration problem

f =

√
−b−

√
b2−4ac

2a

2π
where a = 1 , b = −

(
K1 +K2

J1
+
K2 +K3

J2

)
, c =

K1K2 +K2K3 +K3K1

J1J2
(35)

and Ki =
πGidi
32Li

∀i ∈ {1, 2, 3} , Mi =
ρiπtiDi

4g
∀i ∈ {1, 2} , Ji = 0.5Mi

(
Di

2

)2

∀i ∈ {1, 2} (36)

Quantity Description
y1 f Lowest natural frequency
x1 2.7 ≤ t1 ≤ 3.3 Thickness of disk 1
x2 3.6 ≤ t2 ≤ 4.4 Thickness of disk 2
x3 10.8 ≤D1 ≤ 13.2 Diameter of disk 1
x4 12.6 ≤D2 ≤ 15.4 Diameter of disk 2

0.252 ≤ ρ1 ≤ 0.308 Density of disk 1
0.09 ≤ ρ2 ≤ 0.11 Density of disk 2
1.8 ≤ d1 ≤ 2.2 Diameter of shaft 1
1.6425 ≤ d2 ≤ 2.0075 Diameter of shaft 2
2.025 ≤ d3 ≤ 2.475 Diameter of shaft 3
9 ≤L1 ≤ 11 Length of shaft 1
10.8 ≤L2 ≤ 13.2 Length of shaft 2
7.2 ≤L3 ≤ 8.8 Length of shaft 3
10.53e7≤G1 ≤ 12.87e7 Shear modulus of shaft 1
5.58e6 ≤G2 ≤ 6.82e6 Shear modulus of shaft 2
3.51e6 ≤G3 ≤ 4.29e6 Shear modulus of shaft 3
0.252 ≤ λ1 ≤ 0.308 Density of shaft 1
0.144 ≤ λ2 ≤ 0.176 Density of shaft 2
0.09 ≤ λ3 ≤ 0.11 Density of shaft 3
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