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Abstract

Traditionally, computational design optimization of commercial aircraft is performed
by considering a small number of representative operating conditions. These condi-
tions are based on the design Mach number, altitude, payload, and range for which the
aircraft will be flown. However, the design also influences which routes and mission
parameters are optimal, so there is coupling that is ignored when using the traditional
approach. Here, we simultaneously optimize the aircraft design, mission profiles, and
the allocation of aircraft to routes in an airline network. This is a mixed integer non-
linear programming problem that we reformulate as a nonlinear programming problem
because of the large number of design variables. We solve the reformulated problem
using a gradient-based optimization approach with a parallel computational framework
that facilitates the multidisciplinary analysis and the derivative computation. We use
a surrogate model for the CFD analysis that is re-trained in each optimization itera-
tion given the new set of shape design variables. The resulting optimization problem
contains over 4,000 design variables and close to 14,000 constraints. The optimization
results show a 2% increase in airline profit compared to the traditional multipoint op-
timization approach. The wing area increases to the upper bound, enabling a higher
cruise altitude that improves propulsive efficiency. We find that simultaneously op-
timizing the allocation, mission, and design to maximize airline profit results in a
different optimized wing design from that resulting from the multipoint optimization
approach.

1

http://mdolab.engin.umich.edu
https://arc.aiaa.org/doi/abs/10.2514/1.C035082
https://arc.aiaa.org/doi/abs/10.2514/1.C035082


1 Introduction
In the commercial aviation industry, there is significant interest in unconventional con-
figurations as a means to meet aggressive targets for fuel burn, emissions, and noise
reductions [1]. One of the challenges associated with designing these unconventional
concepts is the lack of prior experience and data, which makes numerical simulation
a valuable tool. With these applications, high-fidelity models are required because
unconventional concepts exploit tight coupling between disciplines involving compli-
cated physics, e.g., aeropropulsive coupling in concepts with boundary-layer ingestion
and aeroelastic coupling in concepts with high-aspect-ratio composite wings. For these
concepts, traditional empirical and low-fidelity models are insufficient to capture the
dominant tradeoffs, even in a conceptual design setting.

When computational models become mature, efficient, and robust, applying nu-
merical optimization can increase the value of the model in the design process. High-
fidelity aerostructural optimization algorithms couple computational fluid dynamics
(CFD) and finite-element analysis (FEA) to efficiently optimize the wing planform,
section-wise airfoil shapes, and detailed structural sizing at the cost of only hundreds
of simulations [2, 3]. Variants of this approach have been applied to the aerodynamic
design of the blended wing body [4], truss-braced wing [5], and D8 [6].

The state-of-the-art approach in this field is multipoint fuel burn or drag mini-
mization for aerostructural and aerodynamic optimization, respectively. The common
approach is to minimize a weighted sum of fuel burn or drag values computed at a
set of points sampled from a space consisting of Mach number, altitude, and lift co-
efficient (or alternatively, aircraft weight). These points, or operating conditions, are
chosen for the design mission, representing the longest range the aircraft can fly. For
aerostructural optimization, these on-design conditions are augmented with off-design
conditions for maneuver load cases.

Given that the multipoint approach is now mature, we seek to evaluate the effec-
tiveness of this approach compared to relaxing the ‘multipoint’ and ‘design mission’
assumptions. In this paper, we model the high-fidelity simulation using a surrogate
model, allowing us to model (1) the full mission profile directly rather than a number of
representative operating conditions and (2) the full set of missions in an airline network
rather than just the design mission.

The primary motivation for this approach comes from the fact that many long-
range airliners are flown well below their range. For instance, the Boeing 787’s top five
routes by seat capacity in Q3 2017 are all below 700 nmi [7], despite its range being
between 6000-8000 nmi, depending on the variant. For short-haul routes, the operating
conditions seen during climb and descent form a significant part of the flight, and they
differ significantly from the cruise conditions of the long-haul mission. Therefore, a
design optimization algorithm considering a set of operating conditions representing
the long-range design mission is likely to produce a sub-optimal design. The secondary
motivations for this full-mission, full-airline network approach include the evaluation
of new concepts in terms of profit for the airline industry as well as the ability to
model features that vary over the mission such as morphing wings and hybrid-electric
propulsion systems. This new approach is more computationally demanding than the
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multipoint approach, and it is only possible thanks to advances in computing hardware
and algorithms as well as using the right combination of existing and new methods,
which we later describe.

The objective of this paper is to develop this simultaneous allocation-mission-design
optimization approach and apply it to the wing design of the common research model
(CRM) [8]. Although part of the future motivation for this approach relates to un-
conventional configurations, we choose the CRM for this study because it has been
extensively studied and hence there is significant data for the CRM. We use a 128-
route hypothetical airline network and assume a fleet of existing aircraft based on an
approximate, quarter-scale version of United Airlines’ current fleet. This paper is an
extension of work presented in a previous AIAA conference paper [9].

The coupled analysis of the allocation, mission, and design sub-problems can be
summarized as follows. The design sub-problem consists of aerodynamic analysis using
CFD, which is used to generate a surrogate model for lift and drag coefficient as a
function of Mach number, angle of attack, and altitude. This surrogate model is used
in the mission sub-problem to compute the operational profiles for 128 discretized
missions. The mission analyses result in angle-of-attack, engine-thrust, and fuel-burn
profiles at each of the 100 points that discretize the 128 missions. From the resulting
data, the total fuel burn and block time values are evaluated for each mission, and this
data is in turn used in the allocation sub-problem to compute the total profit and the
allocation constraints.

The combined set of design variables consists of: wing area, sweep, twist distribu-
tion, and shape; the altitude profiles and cruise Mach numbers for the CRM on each
of the 128 routes; and the allocation of the CRM in competition with the hypothetical
airline’s existing fleet of aircraft on the 128 routes. Each aircraft-route combination
is parametrized with flights per day and passengers per flight. The objective function
is profit, and there are constraints on the wing leading edge, thickness, volume, and
moment coefficient; the climb angle, minimum thrust, and maximum thrust for each
discretization point in the mission profiles; and the route demand and aircraft count
in the allocation problem.

This paper is organized as follows. We start by presenting a literature survey and
a description of our overall approach in Sec. 2. We then describe the methodology in
Sec. 3, including both existing methods and methods that are new contributions. In
Sec. 4, we describe the disciplinary models, which consist of aerodynamics, atmospheric
models, the aerodynamic surrogate, the propulsion surrogate, aircraft dynamics, and
airline allocation. We then present the problem in Sec. 5 and the optimization results
in Sec. 6.

2 Background
In this section, we present literature surveys for high-fidelity design optimization and
airline allocation. We then describe our approach in the context of the previous work
in the relevant fields.
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2.1 High-fidelity design optimization

High-fidelity optimization with respect to detailed aerodynamic shape and structural
sizing variables is enabled by gradient-based optimization and the adjoint method.
The adjoint method has been used for over four decades for aerodynamic [10] and
structural [11] design optimization. The initial adjoint-based optimization approaches
can be characterized as, what we now call, single-point optimization, where the flow
or structural response is modeled and optimized at only one condition. It was quickly
realized that this produces designs with low robustness—for instance, in 2-D transonic
flow, the optimal airfoil shape is shock-free at the optimized Mach number, but away
from it, drag increases significantly. Therefore, a multipoint approach was adopted as
early as two decades ago in 2-D airfoil optimization as a way to prevent the optimizer
from exploiting a large number of degrees of freedom [12, 13]. In the past decade,
the multipoint approach has become routine, and it has been used for 3-D CFD-based
aerostructural optimization of a Boeing 777-based model [3, 14], the D8 double-bubble
configuration [6], a transonic wing with morphing trailing edges [15, 16], and a high-
aspect-ratio tow-steered wing [17].

For purely aerodynamic optimization, the problem is typically formulated as a
minimization of the drag coefficient subject to lift coefficient constraints at the various
operating conditions. For purely structural optimization, the problem can be formu-
lated as a compliance minimization or as a weight minimization subject to failure or
tip deflection constraints. For aerostructural optimization, the objective function is
typically fuel burn given a fixed range or range given a fixed fuel burn, as predicted by
the Breguet range equation.

In multipoint fuel burn minimization, the points are typically based on a stencil
in the shape of a grid or a cross, centered on a nominal condition in terms of some
combination of Mach number, altitude, and weight or lift coefficient. The weights
are most often selected using round numbers with higher weights closer to the nominal
condition. Liem et al. [18] select the point locations and weights by performing mission
analyses using the baseline design where the payload and range for each mission is
determined based on real-world data. This approach addresses the limitation of the
conventional multipoint approach, that it only designs for the design mission. However,
it uses historical data, which limits predictive capability, and it does not capture the
full allocation-mission-design coupling, since the multipoint weights are selected offline
and the online portion is still a multipoint optimization.

In summary, all previous high-fidelity aircraft design optimization studies involving
3-D CFD formulate the objective function as a linear combination of a particular
metric, evaluated at various operating conditions with different weights. The current
work is unique because no such linear combination is used. Here, a finite number of
high-fidelity evaluations are similarly utilized within each iteration, but rather than
formulating the objective function directly from the outputs of the evaluations, we
generate a surrogate model of the aerodynamic performance to enable direct modeling
of full, discretized mission profiles.
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2.2 Airline allocation

The allocation problem optimizes flights per day and passengers per flight for each air-
craft and route combination as a way to determine on which routes to operate which
aircraft, emulating a profit-seeking airline. By itself, it is a linear programming prob-
lem. The airline allocation problem has been studied since the 1950s [19]; thus, it was
one of the first applications of the simplex method, which was developed in 1947 [20].
In the 1960s, researchers started using optimization for flight scheduling [21] and later,
the fleet assignment problem (FAP)—determining the optimal allocation of aircraft to
scheduled flights—using linear programming for problems of realistic sizes [22]. Re-
search in the past decade has focused on improvements such as better revenue mod-
els [23, 24] and simultaneously performing scheduling and fleet assignment [25]. The
FAP algorithms have had a practical impact on airline operations [22, 26, 27].

Several recent research efforts have investigated the idea of simultaneously designing
a new aircraft and solving the fleet allocation problem. The early studies formulated
the problem as a mixed-integer nonlinear programming (MINLP) problem with profit
as the objective function [28, 29]. Mane et al. [28] and Marwaha and Kokkolaras [30]
use decomposition-based approaches that iteratively solve the allocation problem and
the aircraft sizing problem separately, which enables better scalability than a general-
purpose MINLP solver, since the mixed-integer part is contained in the linear allocation
problem. Others have focused on developing new MINLP algorithms based on an
efficient global optimization approach [31, 32, 33]. Another area of focus has been
robust design-allocation optimization given uncertain passenger demand [34, 35].

The two primary differences between the previous work and the current work are
that: (1) the previous efforts use low-fidelity aircraft models, whereas we use 3-D
CFD, which enables detailed shape optimization; and (2) we treat the integer design
variables—flights per day—as continuous variables. The latter assumption is made
with the rationale that the focus is on the wing design obtained through optimization.
While treating the variables as integers is likely to result in small changes to the optimal
fleet allocation, it is not expected to have a large impact on the optimal wing design.

The current work represents the culmination of a series of previous efforts building
towards high-fidelity design-allocation of a large representative airline network. The
first effort demonstrated allocation-mission optimization with a 3-route network [36]
using a mixed-integer optimization algorithm, follow-up work performed allocation-
mission optimization with a 128-route network using parallel computing with relaxed
integrality constraints [37], and later work extended this to allocation-mission-design
optimization using Euler-based CFD [9].

In this paper, we perform allocation-mission-design optimization with the same
128-route network using a Reynolds-averaged Navier–Stokes (RANS) CFD solver. We
build upon the prior allocation-design optimization work [9] by using a more relevant
geometry (the CRM) as well as more realistic models.
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3 Methodology

3.1 Overall Approach

In this paper, we develop a RANS CFD-based simultaneous allocation-mission-design
optimization approach. We use this approach to design a next-generation aircraft—
based on the CRM—for a market with 128 routes and an existing aircraft fleet modeled
as a quarter-scale version of the United Airlines fleet. The design variables consist of
almost 200 wing design variables (area, sweep, twist distribution, and airfoil shapes),
the CRM’s discretized altitude profiles and cruise Mach numbers for the 128 routes,
and the flights per day and passengers per flight for each route and each aircraft type
in the fleet. We generate surrogate models of the aircraft performance using RANS
CFD training data, and these surrogate models are used to perform mission analyses
for the 128 routes and compute fuel burn and flight time values. This data is then used
to compute profit and the relevant constraints in the allocation model. The objective
function being maximized is profit.

From the airline’s perspective, this approach is a way to gain insight into the most
profitable aircraft design given their current routes and fleets. Alternatively, from the
aircraft manufacturer’s perspective, this approach is a tool for designing a profitable
next-generation aircraft given the current routes and fleets of the industry as a whole.
While many limitations remain that detract from these goals, these potential applica-
tions for airlines and aircraft manufacturers provide the long-term motivation for the
proposed approach of simultaneously optimizing the design and allocation.

The multidisciplinary model components is shown in Fig. 1 as an extended design
structure matrix [38]. The overall strategy is to solve the optimization problem as
a nonlinear program (NLP) using the multidisciplinary feasible (MDF) architecture,
where nonlinear and linear block Gauss–Seidel solvers are used to fully converge the
coupling in the model [39]. As Fig. 1 illustrates, the optimizer passes design variables
into the overall model, and this model computes the constraints as well as the objective
function (profit), which are fed back to the optimizer. The coupling between the
aerodynamic surrogate, propulsion surrogate, and mission equation blocks is handled
in the mission analysis discipline (Sec. 4.6).

The remainder of this section describes the methods used to solve the simultaneous
allocation-mission-design optimization problem in an efficient way. We do so by pre-
senting the methods as solutions to four computational challenges: high-dimensional
optimization, model complexity, large cost of CFD, and optimization convergence. The
solutions to the first two challenges use previously developed methods; those for the
last two challenges represent new contributions.

3.2 Challenge 1: high-dimensional optimization—adjoint approach

The first challenge is the large number of design variables in the optimization problem.
There are about 200 design variables that parameterize the wing shape, about 2600 that
parametrize the 128 altitude profiles, and about 1300 allocation variables, resulting in
a total of over 4100 design variables.
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Figure 1: Design structure matrix showing the design (blue), mission (red), and allo-
cation (green) parts of the model and the dependencies between them.

We are able to solve this high-dimensional optimization problem thanks to a com-
bination of a gradient-based optimization algorithm with an adjoint approach that effi-
ciently computes the required gradients. We use the multidisciplinary feasible (MDF)
architecture [40, 39], where a single monolithic optimizer is used to solve the problem
and the model resolves all feedback loops with solvers. The gradient-based optimizer is
SNOPT [41], which uses a robust sequential quadratic programming algorithm that is
efficient for problems with large numbers of design variables and constraints. We com-
pute the derivatives of the objective function and constraint functions using the adjoint
method [42, 43], since it can compute accurate derivatives and its cost is practically
independent of the number of design variables in models with coupling.

3.3 Challenge 2: model complexity—modular approach

The second challenge is dealing with the complexity of the model. Since we are using the
MDF approach, we develop a single model that integrates the CFD analyses, allocation
models, and 128 mission analyses, which includes propulsion, aircraft dynamics, an
ordinary differential equation (ODE) that computes the fuel burn over the mission,
and the aerodynamic-performance surrogate model. These sub-models are parallelized
differently, and the use of the adjoint method imposes additional requirements and
difficulties in developing the integrated model.

To simplify the model development, we take a modular approach and use NASA’s
OpenMDAO (open-source multidisciplinary design, analysis, and optimization) soft-
ware framework [44]. OpenMDAO is a framework for solving multidisciplinary design
optimization (MDO) problems that supports efficient derivative computation using the
modular analysis and unified derivatives (MAUD) architecture [45]. In OpenMDAO,
a model is implemented in a modular way as a set of Component objects with a con-
sistent interface that are hierarchically and recursively combined using Group objects.
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The MAUD architecture uses a generalization of the adjoint method [46, 47]. MAUD
works with any combination of components defined by implicit or explicit functions,
whereas the adjoint method requires a particular type of model where implicit func-
tions define the states and explicit functions define the functionals. The chain rule
naturally falls out of this generalization if the model has only explicit functions that
depend sequentially on each other.

MAUD simplifies derivative computation in complex heterogeneous models because
regardless of the model structure, there are always two steps: computing the partial
derivatives and computing the total derivatives by solving a linear system. For our
model, we compute the partial derivatives using hand-differentiation everywhere except
for the CFD solver—there, we use the CFD solver’s native adjoint solver [42, 43]. The
total derivative computation consists in solving a linear system with a right-hand side
for each objective or constraint function for which we require derivatives.

3.4 Challenge 3: large cost of CFD—dynamically trained surrogate
model

The third challenge is that tens of millions of evaluations of the aerodynamic model are
required, which is not feasible in a reasonable amount of time with a CFD model. The
aerodynamic model must be evaluated at each of the O(100) points in each mission
analysis, and the coupling in the mission equations necessitates a solver that requires
O(10) iterations. Compounding on this, there are 128 missions, and the optimizer
requires O(100) iterations. Combining all of these factors results in at least tens of
millions of evaluations of the aerodynamic model.

Since tens of millions of RANS CFD evaluations would be prohibitively expensive,
we replace the CFD model with a surrogate model. A surrogate model in terms of the
hundreds of wing design parameters would also require a prohibitively large amount
of CFD evaluations to train. Therefore, we use a surrogate model whose only inputs
are the parameters that represent the operating condition—Mach number, angle of
attack, and altitude. Since the training data for the surrogate model changes as the
wing design parameters change, the surrogate model is re-trained in each optimization
iteration, given the CFD training data computed from the current iterates for the wing
design parameters. However, since we are taking a gradient-based approach, this means
that we require derivatives of the surrogate model’s outputs with respect to not only
the inputs, but also the training data.

A surrogate model can be generally formulated as

y = f(x, xt, yt), (1)

where xt is the vector of training point inputs, yt is the vector of training point outputs,
x is the prediction input vector, and y is the prediction output. Derivatives are often
relevant in surrogate modeling; gradient-enhanced surrogate models take dyt/dxt as
additional training data and evaluating derivatives at prediction points consists in
computing dy/dx. However, here, the derivatives with respect to training data that we
are referring to are dy/dyt.
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The need for dy/dyt presents a unique requirement that motivated the development
of a new surrogate model called regularized minimal-energy tensor-product splines
(RMTS) [48]. RMTS interpolates the training data with tensor-product cubic Hermite
splines or B-splines and solves an optimization problem that minimizes energy while
approximating the training points. RMTS is designed so that the prediction outputs
are differentiable with respect to the training outputs, and so that these derivatives
can be readily computed.

3.5 Challenge 4: optimization convergence—single-discipline pre-
optimizations

The final challenge is dealing with potentially slow optimization convergence due to
the large number of dimensions and disciplines. Since SNOPT is a quasi-Newton algo-
rithm, the Hessian matrix is initialized to the identity matrix and is gradually updated
throughout the optimization. With over 4000 design variables, it can take hundreds of
iterations for the Hessian approximation to become adequate to achieve second-order
convergence rates. Moreover, the presence of design variables from many disciplines
makes scaling a challenge. It is difficult to choose the right scaling parameters for
the design variables to avoid situations where the optimizer largely neglects to change
certain design variables until after tens of optimization iterations.

We address these issues by pre-optimizing each part of the larger MDO problem on
its own and extracting the initial design variable values from those results. Specifically,
we perform a multipoint design optimization, followed by 128 separate mission opti-
mizations, followed by an allocation optimization. The multipoint design optimization
provides initial values for the wing design variables in the full MDO problem. Based
on the resulting design, an initial aerodynamic surrogate model is generated, which
is used to perform the 128 mission optimizations with a fixed wing design to provide
initial altitude profiles for the full MDO problem. Using the fuel burns and block times
computed from these mission optimizations, a pure airline allocation optimization is
performed to obtain an initial values for the allocation design variables in the full
MDO problem. This allocation optimization also provides a baseline profit value for
the multipoint approach. This value provides a point of reference for measuring the
profit improvement achieved by the allocation-mission-design optimization.

4 Models

4.1 Geometry model

The geometry of interest is the Common Research Model (CRM) wing [8, 49]. We use
the high-fidelity aircraft design optimization tool suite developed by Kenway and Mar-
tins [2]—MDO of aircraft configurations with high-fidelity (MACH). In this approach,
the discrete representation of the CRM is parametrized using a free-form deformation
volume where the volume is a 4th order tensor-product B-spline [49]. This is illustrated
in Fig. 2. There are two relevant maps: the wing area, sweep, twist, and shape design
variables first map to the B-spline control point coordinates (shown in red in Fig. 2),
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Figure 2: The Common Research Model (CRM) wing [51] enclosed in a free-form
deformation block with the control points shown in red.

and the B-spline control point coordinates map to the new surface nodes. The first
map is differentiated using the complex-step method [50], and the second map is linear
and the partial derivative Jacobian is simply the matrix representing the mapping.

From the surface nodes, we compute thickness and volume constraints, as we show
in Fig. 1. The computation of these constraints given wing area, sweep, twist, and shape
is implemented as a single OpenMDAO component—the internal details of the FFD
mapping and the associated derivative computation are abstracted from OpenMDAO
and are all handled within the MACH framework.

4.2 CFD solver

The CFD solver we use, ADflow, is also part of the MACH framework. ADflow is
a structured multi-block finite-volume solver with multigrid [2]. ADflow solves the
Reynolds-averaged Navier–Stokes (RANS) equations using the fourth-order Runge–
Kutta scheme or the diagonally dominant alternating direction implicit (DDADI)
scheme, combined with the Newton–Krylov method. Derivatives of the functionals
with respect to geometric design variables are computed using the adjoint method
with partial derivatives computed using algorithmic differentiation.

The CFD mesh deformation algorithm we use propagates the displacements and
rotations from the deformed surface to the full CFD volume mesh by using inverse-
distance weighting [52]. More specifically, the deformation of each node in the CFD
volume mesh is the sum of the displacements and rotations of all the nodes on the
deformed surface, weighted by the inverse of the distance to that surface node.

In the context of the model in Fig. 1, the OpenMDAO component for the CFD solver
computes lift and drag coefficients as a function of wing area, sweep, twist, and shape.
The outputs are used to train a surrogate model in terms of Mach number, angle of
attack, and altitude. Therefore, each instance of this CFD solver component is assigned
a fixed Mach number, angle of attack, and altitude that does not change throughout the
optimization. Using the MAUD architecture, OpenMDAO automatically parallelizes
across these instances and the CFD solver also internally runs in parallel. There are
36 training points, and we run with 140 processors in total, so each training point is
computed using 3 or 4 processors.
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Figure 3: Pressure, temperature, density, and speed of sound are computed using
atmospheric models. For the Mach number, we assume a constant indicated airspeed
climb at 300 knots until the cruise Mach number is reached.

4.3 Atmospheric models

In this section, we describe the computation of various altitude-dependent quantities
that are required for mission analysis. OpenMDAO components are implemented to
compute each of the quantities shown in Fig. 3 in a vectorized manner—the values at
all mission points are vectorized and computed together for efficiency.

Temperature, pressure, density, and speed of sound. The dependence of tem-
perature on altitude is assumed to be linear in the troposphere and constant in the
stratosphere—the effects of local weather conditions are not considered. The tropopause,
the boundary between the troposphere and stratosphere, depends on the latitude and
the local atmospheric conditions, but we approximate it to occur at 11 km everywhere.
Since we require smooth derivatives, we use a cubic function to smoothly transition
between the linear and constant regions. Temperature as a function of altitude is given
by

T (h) =


T0 − L× h, h < ht − ε
c3h

3 + c2h
2 + c1h+ c0, ht − ε ≤ h ≤ ht + ε

T1, ht + ε < h

, (2)

where T0 = 288.16 K is the temperature at sea level, T1 = 216.65 K is the temperature
in the stratosphere, L = 6.5 K/km is the lapse rate, ht = 11 km is the tropopause
altitude, and ε = 0.5 km is the half-width of the smoothing region. The cubic function
coefficients are given in Appendix A.
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Pressure is computed by integrating the hydrostatic equation, replacing density
with an expression involving pressure and temperature using the ideal gas law. Since
we know that temperature is linear and constant in the troposphere and stratosphere,
respectively, we can insert the known functions and analytically solve for pressure as
a function of altitude. We end up with different functions in the two regions, and
we smooth the transition using a cubic function as before. Pressure as a function of
altitude is given by

p(h) =


p0

(
T (h)
T0

) g
LR
, h < ht − ε

d3h
3 + d2h

2 + d1h+ d0, ht − ε ≤ h ≤ ht + ε

p1 exp
(
g(ht−h)
RT1

)
, ht + ε < h

, (3)

where p0 = 101325 Pa is the pressure at sea level, p1 = 22632 Pa is the pressure in the
stratosphere, g = 9.81 m/s2 is the acceleration due to gravity, and R = 287 m2/s2/K is
the gas constant. The cubic function coefficients are given in Appendix B. Given the
temperature and pressure, we can easily compute density from the ideal gas law using

ρ =
p

RT
, (4)

and the speed of sound using
a =

√
γRT , (5)

where γ = 1.4 and again, R = 287 m2/s2/K.

Mach number and true airspeed. In the optimizations involving mission analysis,
we allow cruise Mach number to be a variable, and the Mach number profile over
the mission is uniquely determined by the cruise Mach number and altitude profile.
The idea is that we assume a constant indicated airspeed (IAS) of 300 knots when
below a critical altitude and switch to a constant Mach number (the specified cruise
Mach number) during cruise. More precisely, we compute the true airspeed (TAS)
corresponding to an IAS of 300 knots at all points and use the lower of this value and
the value computed from the specified cruise Mach number. However, instead of using
the minimum function, we use the Kreisselmeier–Steinhauser [53] function since we
require a smooth minimum.

We now develop the relationship between IAS and TAS using the known and mea-
sured total pressure. IAS is the value shown to the pilot on the airspeed indicator and is
measured via impact pressure, qc = pt− p. Since local air density cannot be measured,
IAS is computed from impact pressure using the sea-level density, ρ0. Therefore, total
pressure as a function of IAS is

pt = p+
1

2
ρ0v

2
IAS. (6)

TAS is the true airspeed that can be used to compute the Mach number. Total pressure
as a function of TAS is given by

pt = p

[
1 +

γ − 1

2

(vTAS

a

)2
] γ
γ−1

. (7)
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Combining these two expressions for total pressure and inserting γ = 1.4, we obtain

vTAS = a
√

5

√√√√( 1
2
ρ0v2

IAS

p
+ 1

) 2
7

− 1. (8)

4.4 Aerodynamic surrogate model

The aerodynamic surrogate model maps Mach number, angle of attack, and altitude
to the lift and drag coefficients. As mentioned previously, the surrogate model is
necessary because tens of millions of aerodynamic evaluations are required due to: the
discretization of the 128 mission profiles, the iterations required for converging the
mission equations, and the iterations solving the optimization problem. We use the
aforementioned RMTS interpolant, which meets our requirement for derivatives with
respect to training data.

In Fig. 4, we show the training point locations and investigate the accuracy of the
surrogate. Among the three input variables, Mach number M and angle of attack
α are the most of interest; altitude is less important because of the aforementioned
relationship between Mach number and altitude. We cannot neglect altitude completely
as a third input variable because cruise Mach number is not known a priori. Instead,
we sample in the M−α space as shown in the right-hand plots in Fig. 4 and for each of
the 18 points in the M−α space, we sample at two altitudes close to the one suggested
by the bottom left plot in Fig. 3. Therefore, we have 36 training points in total.

In the M − α space, we choose the distribution shown in Fig. 4 because we know
that the lift and drag coefficients have more nonlinearity versus M than versus α. The
left and center plots in Fig. 4 confirm this; lift and drag coefficient show low curvature
versus α, but drag coefficient varies significantly with M because of the well-known
drag bucket and drag divergence. Moreover, we know that as M decreases, altitude
decreases, and α increases. Therefore, accuracy is required neither at low M and low
α nor at high M and high α. Given this unstructured distribution of points, RMTS
interpolates the data smoothly with an interpolation error that is less than 0.2% for
the data set shown in Fig. 4, and the surrogate model follows the general trends, as
required. As the optimization proceeds, the training outputs change for the 36 points,
but the locations of the points in M -α-h space are held fixed, where h is altitude.

4.5 Propulsion surrogate model

The propulsion surrogate model maps Mach number, altitude, and throttle to thrust
and thrust-specific fuel consumption (SFC). The surrogate model uses data from the
Numerical Propulsion System Simulation (NPSS) [54] engine cycle analysis tool for a
GE-90-sized engine. Again, RMTS is used to interpolate the data, which is structured
in this case. In Fig. 5, we plot 1-D slices of both thrust and SFC with respect to all
three input variables. The plots confirm that the surrogate model captures the trends
and approximates the training data with minimal interpolation error and without in-
troducing spurious oscillations.
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Figure 4: 1-D slices and contour plots for the aerodynamic surrogate model for the
CFD solver. The plots in the middle represent a diagonal slice passing through the top
row of training points in the contour plot.

4.6 Mission analysis equations

In this section, we describe the vertical and horizontal equations of motion, the fuel
weight ordinary differential equation (ODE), the method of solving the ODE, and the
solver for the coupled system.

The vertical and horizontal equations of motion are aligned with the freestream
velocity direction, and they are given by

T cosα−D −W sin γ − W

g
v̇y sin γ − W

g
v̇x cos γ = 0, (9)

T sinα + L−W cos γ +
W

g
v̇x sin γ − W

g
v̇y cos γ = 0, (10)

where T , L, D, and W are the total aircraft thrust, lift, drag, and weight, respectively,
α is the angle of attack, γ is the climb angle, and v̇x and v̇y are the horizontal and
vertical components of acceleration in the Earth-fixed frame. While these equations
can be interpreted as an ODE, we have a guess for the altitude profile coming from
the optimizer, so we use these equations to solve for and compute thrust and lift,
respectively.
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Figure 5: 1-D slices versus of thrust and specific fuel consumption versus throttle
setting, altitude, and Mach number.
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The fuel weight ODE is given by

dWf

dx
=

SFC · T
vx

, (11)

where Wf is the fuel weight and x is the horizontal coordinate. This is an ODE because
the right-hand side depends on Wf—Wf contributes to W , which affects L and thus
D, which in turn affects T .

Incorporating an ODE in a model that is to be used for gradient-based optimization
can be tricky because the equations for integrating the ODE must be differentiated.
For this, we use a vectorized, parallel-in-time integration approach [55] using the gen-
eral linear methods (GLM) formulation. Developing a differentiated ODE solver using
GLMs enables rapid implementation of any Runge–Kutta or linear multistep ODE
integrator with no need to derive and implement partial derivatives for each integra-
tor [55]. We use this ODE solver, choosing the 2nd order Gauss–Legendre integrator
based on the recommendations of a previous benchmarking study [55].

As we can see in Fig. 1, the mission analysis has a feedback loop. Fuel weight
affects aircraft weight, which affects lift through the vertical equation of motion. Lift,
in turn, affects drag through the aerodynamic surrogate model, and drag affects thrust
through the horizontal equation of motion. Thrust can be mapped to SFC through the
propulsion surrogate model, and SFC affects fuel weight through the ODE, completing
the cycle. We found that in numerical experiments, the nonlinear block Gauss–Seidel
iteration, which is essentially a fixed-point iteration, is the most efficient nonlinear
solver, in the context of running a simulation. Likewise, we found the linear block
Gauss–Seidel iteration to be the most efficient linear solver when computing derivatives.

4.7 Allocation problem equations

The allocation problem is formulated with two sets of design variables: the number
of flights per day (fltdayi,j) flown using each aircraft type j on each route i, and the
corresponding number of passengers per flight (paxflti,j

). This formulation was first
used as an application of linear programming in 1956 [19]. Here, we seek to maximize
the profit subject to operational and demand constraints [36, 29].

The airline profit for a given number of routes (nrt) and aircraft (nac) is evaluated
using

profit =
nrt∑
i

nac∑
j

[
pricepaxi,j

· paxflti,j
· fltdayi,j

]
(12)

−
nrt∑
i

nac∑
j

[
(costflti,j + costfuel · fuelflti,j) · fltdayi,j

]
,

where pricepaxi,j
is the ticket price per flight, costflti,j is the total cost of operating a

flight except for fuel costs, costfuel is the assumed cost per unit fuel, and fuelflti,j is the
total fuel burn for a flight.

The allocation problem contributes two inequality constraints to the optimization
problem. The first inequality ensures that the total number of people that fly on a
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given route on a given day is less than the total demand for that route and can be
written as

paxi =
nac∑
j

[
paxflti,j

· fltdayi,j

]
≤ demandi , 1 ≤ i ≤ nrt. (13)

The second inequality constraint takes into consideration how many aircraft of a given
type are actually owned by the airline and can be written as

usagej =
nrt∑
i

[
fltdayi,j ·

(
timeflti,j (1 + maintj) + turnflt

)]
≤ 12hr·numacj , 1 ≤ j ≤ nac,

(14)
where timeflti,j is the block time for a flight, maintj is the maintenance time required
as a multiple of block time, turnflt is the turnaround time between flights, and numacj

is the number of aircraft available for type j.

5 Problem
As described in Sec. 3, we improve the optimization convergence by initializing the
full MDO problem with the solution of three smaller optimization problems—design,
mission, and allocation optimization. In this section, we describe each of the four
optimization problems, which are all shown in Tab. 1.

Table 1: The optimization problem statements.

Variable
Optimization problem (quantity)

Lower Upper Design Mission Allocation Full
objective drag (sum) X

fuel burn X
profit X X

design wing area (rel.) 0.9 1.1 1 1
variables wing sweep (deg) −5 5 1 1

wing twist (deg) −8 8 7 7
wing shape 192 192
cruise Mach 0.6 0.865 1 1 × 128
altitude (km) 0 13 20 20 × 128
pax per flight 0 * 5 × 128 5 × 128
flights per day 0 10 5 × 128 5 × 128
total 201 21 1280 4169

constraints wing LE/TE 0 0 2 × 8 2 × 8
wing thickness (rel.) 0.5 25 × 30 25 × 30
wing volume (rel.) 1.
wing Cm −0.17 1 1
climb angle (deg) −20 20 100 100 × 128
min. thrust (KS) 0.01 1 1 × 128
max. thrust (KS) 1.00 1 1 × 128
route demand 0 * 128 128
aircraft count * 5 5
total 759 102 133 13921

problem type NLP NLP MILP NLP
optimizer SNOPT SNOPT CPLEX SNOPT
rel.: quantities that are relative to initial
NLP: nonlinear programming MILP: mixed-integer linear programming
SNOPT: optimizer for large-scale NLP problems CPLEX: optimizer package that includes LP, MILP solvers
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5.1 Design problem

The geometry of interest is the common research model (CRM) wing, modeled with
RANS CFD. The general properties of the aircraft are shown in Tab. 2 We use a roughly
50,000-cell mesh created using a hyperbolic mesh generation algorithm. We use a coarse
mesh in order to minimize computation time and because detailed resolution of drag
does not significantly affect our ability to evaluate the benefit of the allocation-mission-
design optimization approach.

Table 2: Aircraft properties.

Reference area 419.0 m2 4509.9 ft2

Reference chord 7.8 m 25.7 ft
OEW 1.35× 106 N 3.03× 105 lb

The wing design variables consist of area, sweep, twist, and shape. The area change
is constrained to be within 10% and sweep is constrained to vary by less than 5◦. These
restrictions are necessary because structural constraints and weights are not modeled.
Our intent is to permit only small changes to overall aircraft sizing so that we can
observe the general directions the optimization problem favors, such as a smaller or
larger wing. As we see in Fig. 2, there are 8 sections of B-spline control points, so
with the root fixed, there are 7 B-spline control points that parametrize the twist
distribution. The shape design variables control the vertical component of the B-spline
control points in Fig. 2. There are 8 sections with 24 control points per section, so
there are 192 in total. The FFD volume uses 4th order B-splines.

There are 2×8 linear constraints for the leading and trailing edge of each section to
ensure equal-and-opposite movement so that the shape variables do not add undesired
twist. There are 750 thickness constraints, 25 span-wise and 30 chord-wise, for struc-
tural and manufacturing considerations as well as to prevent cross-over of the upper
and lower surfaces. The thickness is constrained to be more than 50% of the original
CRM thickness at each point. There is a constraint that the moment coefficient is
at least −0.17, since we do not directly model trim drag, and this is applied at the
nominal condition of M = 0.85 and α = 2◦. Finally, there is a volume constraint
ensuring that the volume does not decrease below that of the CRM, for structural and
fuel volume reasons. This constraint is scaled with area so that with a larger area, the
minimum volume increases correspondingly, by A

3
2 .

The design pre-optimization problem is as described in Tab. 1. It is a multipoint
lift-constrained drag minimization with 9 equally-weighted points generated by a 3× 3
grid formed from CL values of 0.4, 0.5, 0.6 and M values of 0.84, 0.85, 0.86 at an altitude
of 11 km (roughly 36,000 ft).

5.2 Mission problem

The mission problem has two groups of design variables—cruise Mach number and
altitude control points. Cruise Mach number is constrained to be between 0.6 and
0.865, and with the altitude profile known, it uniquely determines the Mach number
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profile over the mission using the relationship described in Sec. 4. The altitude profile is
parametrized with a 4th order B-spline with 20 control points. Each mission, regardless
of the range is discretized with 100 nodes.

There are three groups of constraints associated with the mission problem. There
are linear constraints at each of the mission points constraining the climb angle to be
between −20◦ and 20◦. There are minimum and maximum thrust constraints that also
apply at each mission point. However, since these are nonlinear and have derivatives
that are expensive to compute, they are aggregated using Kreisselmeier–Steinhauser
functions [53].

The mission pre-optimizations consists of 128 separate problems that minimize
fuel burn for each of the 128 missions. From the design pre-optimization result, an
aerodynamic surrogate model is generated once. This surrogate model is used in the
128 mission optimizations that generated initial values for the cruise Mach numbers
and altitude control points for the full MDO problem.

5.3 Allocation problem

For the allocation problem, we use a hypothetical airline network with 128 routes,
shown in Fig. 6. The routes range from roughly 400 km to 14000 km, and the alloca-
tion problem data, including the routes and the demand numbers, are obtained from
the Fleet-Level Environmental Evaluation Tool (FLEET) developed at Purdue Univer-
sity [56]. The fleet is modeled after a quarter-size version of United Airlines’ fleet, and
is shown in Tab. 3. There are four types of existing aircraft, and a limited number of
the aircraft being designed as well. The idea is that we are using optimization to de-
termine the most profitable allocation of the next-generation aircraft we are designing
(based on the CRM) in competition with the existing aircraft that the hypothetical
airline has available.

Table 3: Aircraft fleet.

Aircraft Quantity Seat capacity
Embraer E-170 40 58
Boeing 737-800 42 122
Boeing 777-200ER 20 207
Boeing 747-400 5 294
Next-generation (CRM) 25 300

There are two groups of allocation design variables. The first is flights per day
of each aircraft type (5) and route (128); there are 640 variables of this type. If the
optimal value for route i and aircraft j is zero, we can interpret this as a result that it
is not optimal to operate aircraft j on route i. The flights per day variable allows us
to formulate the allocation problem in a continuous way that avoids representing the
choice of route for each aircraft type using a discrete variable. The second allocation
design variable is passengers per flight for each aircraft type and route, so there are
640 of these variables as well. This variable is necessary because when the passenger
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Figure 6: Visualization of the 128 routes. The color scale represents the total number
of passengers flown on a given route per day.

demand constraint is active, at least one flight has the leftover number of passengers,
rather than being full.

There are also two groups of allocation constraints. The passenger demand con-
straints limit the total number of passengers per day who fly on any aircraft for each
route. Therefore, there are 128 such constraints, and they prevent the optimal alloca-
tion from excessively concentrating on a subset of routes that are the most profitable.
The aircraft count constraints consider the total number of each type of aircraft that
is available, the total flight times, the number of flights per day, and the hours per day
that each can be flown. Therefore, this constraint captures the effect of having a finite
fleet of aircraft with limited numbers of each type. In this work, we do not consider
resource allocation aspects of airline operations such as crew scheduling and routing of
individual aircraft, nor the times of specific flights.

The allocation pre-optimization optimizes the flights per day and passengers per
flight variables given the fuel burn and block time values computed by the mission
pre-optimizations. Since the fuel burn and block time values are fixed, this is a linear
optimization problem that maximizes profit. The optimized flights per day and pas-
sengers per flight variables are used to initialize the corresponding values in the full
MDO problem.

6 Results
In this section, we present the optimization results. We compare the AMD optimization
results to the baseline, obtained by performing multipoint design optimization, then
128 separate mission optimizations, and then an allocation optimization. These are the
same three optimization steps used to compute the initial values of the design variables
for the AMD optimization. However, they also provide baseline values, because they
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Figure 7: Initial (purple) and optimized (black) wing design. The grey outline depicts
the planform for the initial wing.

represent the profit value corresponding to the multipoint-optimized design, assuming
this design is flown with optimal mission profiles and with the optimal utilization within
the airline.

6.1 Impact of simultaneous AMD optimization

The primary question we want to answer is whether the simultaneous allocation-
mission-design optimization is worthwhile, compared to the conventional multipoint
design optimization. To answer this question, we first look at the profit values result-
ing from the respective optimizations.

The AMD optimization results in an increase in profit from $8.058 million per
day to $8.242 million per day, representing a 2.3% increase. We can interpret this
result as follows—designing an aircraft using the AMD formulation and operating it
in the way predicted by the AMD optimization yields a 2.3% higher profit compared
to designing an aircraft using the multipoint formulation, which does not consider the
actual operation, and then operating it optimally given the limits of this design. As we
explore in the sections that follow, this increase in profit is achieved mostly through
changes to the wing design and the mission profiles.

6.2 Wing design and performance

In Fig. 7, we show the wing design before and after AMD optimization. The initial
wing design is the design that results from multipoint optimization.

The biggest difference we observe is an increase in wing area, which allows the
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aircraft to cruise at its optimal lift-to-drag ratio at a higher altitude. A secondary
effect is that increasing wing area increases chord, which in turn increases the Reynolds
number, resulting in a lower viscous drag coefficient. The impact of wing area on
structural weight is not considered here, which is why we put bounds on the area
design variable to limit the change to 10%.

To first order, a 10% wing area increase leads to a similar percentage increase in
wing structural weight. The weight of the wing ranges between 10–20% of the aircraft
gross weight, so the increase in gross weight would be 1–3%. The gross weight is a
first-order surrogate for aircraft acquisition cost, which in turn is on the order of 30%
of flight operating cost. Therefore, the acquisition cost increase as a result of the larger
wing would subtract, at worst, 1% from the 2.3% profit increase.

In terms of the airfoil shapes, we observe that the AMD optimum has a more blunt
leading edge. This is consistent with what is observed in multipoint optimization
because the AMD optimization considers a wider range of operating conditions that
suppress the sharper leading edges characteristic of airfoils designed for a narrow range
of conditions.

We also observe a decrease in wing sweep, which results in more lift, but also more
wave drag and less pitch-up moment for satisfying the moment constraint. Similarly, we
observe a decrease in washout in the AMD-optimized wing. Both the wing sweep and
washout decrease because with a larger wing at lower angle of attack, the pitch-down
moment that must be counteracted is smaller.

In Fig. 8, we show contours of lift-to-drag ratio versus lift coefficient and Mach
number for the initial and optimized wing designs with the L/D = 26 contour high-
lighted in grey. The 36 training points are shown with red markers (only 18 are clearly
visible because there are two slices in the altitude dimension), and the path of the
longest-range mission is shown in black. First, we observe that the AMD-optimized
design flies at higher Mach numbers—this is due to the previously-described Mach
schedule that we assume, combined with the increases in the altitude profiles. Second,
we observe that the region where L/D > 26 shrinks and the AMD optimization result
is less aerodynamically efficient; however, this is offset by the increase in propulsive
efficiency as we will see later.

6.3 Mission design

We now consider the impact of the AMD optimization in terms of the optimized mission
profiles. In Fig. 9, we show the altitude profiles for the CRM on all 128 routes with
the inactive routes (those on which the CRM has 0 flights per day) shown in grey.
As discussed previously, we observe that the optimal cruise-climb altitudes increase
after the AMD optimization, while the altitude profiles in grey do not change, as
expected. The altitude increase is related to the increase in wing area as the larger
wing offsets the reduction in density at higher altitudes, while maintaining the optimal
L/D. Increasing altitude also decreases specific fuel consumption, and decreases thrust,
forcing an increase in throttle, which also decreases specific fuel consumption. This
coupling between aerodynamics, propulsion, and mission analysis is not captured by
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Initial design

Optimized design

Figure 8: The contours show L/D, the red markers indicate training point locations,
and the black markers and lines indicate the path of the aircraft through CL-M space
for the longest-range mission. The L/D = 26 contour is highlighted in grey.
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Initial design

Optimized design

Figure 9: The altitude profiles for: routes on which the CRM is not flown (grey), the
initial design (purple), and the optimized design (black).

the multipoint optimization formulation—wing area is sized purely for aerodynamic
considerations, but increased propulsive efficiency via an increase in altitude is another
motivation for increasing wing area.

We note that the optimized altitude at the start of cruise is approximately the
same, regardless of the mission. This is expected because the optimal altitude is a
function of the aircraft weight at a given operating condition. The aircraft has roughly
the same amount of fuel remaining to start the descent regardless of the range, so the
altitude just prior to descent should be the same across all routes, and we see this in
the optimization results.

In Fig. 10, we show the relative changes in fuel burn and block time for each route
due to the AMD optimization. The fuel burn decreases in all but the shortest routes,
and the decrease is larger for longer routes. We hypothesize that this is because most
of the reduction in fuel burn comes from the increase in propulsive efficiency during
cruise which is a small proportion of the mission for short-haul routes.

The reduction in block times can be attributed to two factors. First, the Mach
number profiles are higher overall for all routes because of the higher altitudes combined
with the Mach schedule that we assume. Second, the cruise Mach number is not at
the maximum of 0.85 in the baseline mission optimization results, but they increase to
the upper bound after the AMD optimization. This is because the AMD optimization
rewards flying faster with a greater utilization rate for the airline. When optimizing
the design, then mission, then allocation, this feedback from the allocation problem to
the mission optimization problem is not captured.
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Figure 10: Missions on which the CRM is not flown are in grey, values for the initial
design are in purple, and values for the optimized design are in black.
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6.4 Allocation problem

In Fig. 11, we show the total number of passengers flown daily for each aircraft type
and for each route. This is the result of multiplying the flights per day and passengers
per flight design variables. We observe small changes in the utilization of the CRM
and none for the other aircraft types—this is expected since we perform design and
mission optimization for only the CRM. However, a major reason for the small changes
in the allocation is that the sizing for the CRM is largely fixed and the number of seats
is not allowed to change. This prevents us from making conclusive statements regard-
ing the strength of the design-allocation coupling with respect to the fleet allocation
design variables. If larger-scale design changes were permitted, a larger change in the
allocation would be expected.

Since we are using a gradient-based optimization approach, we can expect the AMD
solution to be dependent on the initial values computed by the pre-optimizations. For
the allocation variables, this can be an advantage because the allocation-only pre-
optimization solves a linear problem that does not have multiple local minima. There-
fore, it computes the global solution to the allocation problem within the assumptions
of the linear problem. In future work, using the AMD solution to update the inputs to
the allocation-only pre-optimization and running a second cycle of pre-optimizations
and then the AMD optimization would provide more confidence in the global optimality
of the final solution.

7 Conclusion
We presented in this paper an algorithm that performs high-fidelity aircraft design
optimization using CFD while simultaneously optimizing the mission profiles and air-
line allocation. We solve a single monolithic optimization problem in which the design
variables include: the area, sweep, shape, and twist distribution of a common research
model wing; the cruise Mach number and altitude profile for the aircraft’s trajectory
on 128 candidate routes; and the number of flights per day and passengers flight for
each route and each of several types of aircraft that the hypothetical airline owns. We
maximize profit for this hypothetical airline that operates 128 routes with a set of
existing aircraft and a finite number of the new aircraft being designed.

To enable this formulation, we use gradient-based optimization and develop an
approach in which a surrogate model for the CFD is trained in each optimization
iteration in terms of angle of attack, Mach number, and altitude. We use this surrogate
model to perform the analysis of the discretized mission for each of the 128 routes. The
surrogate modeling approach is unique because it includes derivatives of the prediction
outputs with respect to the training data outputs, which are needed for the dynamic
retraining. The profit and relevant constraints from the airline allocation problem are
computed using simple formulas.

The complexity of the multidisciplinary model and of the derivative computation is
mitigated by using the modular analysis and unified derivatives (MAUD) architecture,
which is the approach of constructing the model is a particular, modular way and
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Figure 11: Total number of passengers flown per day for each aircraft type and for
each route.

27



performing adjoint derivative computation using a unified equation. We develop our
model within the OpenMDAO framework, which implements the MAUD architecture.
MAUD recasts the derivative computation problem into the solution of a linear system,
and it facilitates the use of parallel computing in executing the model and computing
the derivatives. In this problem, we parallelize in three ways—across the CFD training
points, within each CFD training point, and across the 128 mission analyses.

The allocation-mission-design (AMD) optimization problem is solved and compared
to the traditional approach for CFD-based shape optimization, which is multipoint
optimization. We follow the multipoint optimization with 128 decoupled mission opti-
mizations and an allocation-only optimization, to obtain initial design variables values
for the AMD optimization and to provide a baseline profit value. Compared to this
baseline, the AMD optimization results in a 2.3% increase in daily profit for the hy-
pothetical airline, from $8.058 million to $8.242 million. The wing area increases by
10%, enabling the aircraft to cruise at a higher altitude with a similar lift-to-drag ra-
tio, which in turn leads to improvements in propulsive efficiency. The airline profit
increase is thus achieved through a combination of reduced fuel burns for each mission
and reduced block times, which enables the airline to operate more flights. The largest
change is for a flight of about 11,000 km, where the number of flights per day increases
by just over 3 flights.

We draw two main conclusions from this research effort. First, we have quantified
the benefit of performing high-fidelity design optimization with mission and allocation
optimization in the same problem to be 2.3% in airline profit for our problem, given the
limitations of our approach. The wing design that results is different (10% larger area)
from that from the traditional multipoint optimization, and the latter is predicted to
cause the aforementioned loss of profit. Our second conclusion is that the coupling
between design, mission, and allocation is significant in the sense that the optimal
design is very different when optimized for profit, rather than when using a multipoint
fuel-burn objective. The wing area affects not only the aerodynamic performance
but also the mission analysis and thus the propulsive efficiency because it affects the
cruise altitude, which has a strong impact on specific fuel consumption. Therefore, the
aerodynamics and propulsion should be modeled together along with the full mission
profile, and this motivates the inclusion of the allocation problem because many long-
haul aircraft have historically spent a significant portion of their operation in short-haul
routes.

The most significant limitation of this study is the exclusion of structures and
weights, which prevents the algorithm from capturing important design trades affect-
ing wing area and sweep. A second limitation is the fact that it permits non-integer
numbers of flights per day in order to keep the optimization problem non-discrete.
Another major limitation is not considering high-lift configurations, which contributes
non-trivial error for short-range routes. However, these limitations can be overcome
with more accurate models and greater computational power, and they do not detract
from the method developed in the paper for optimizing the design, mission, and allo-
cation simultaneously. In addition to addressing these limitations, the most relevant
area for future work is the application of this technique to the design of unconven-
tional configurations with sufficient fidelity to allow for non-trivial changes in aircraft
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sizing—where the difference between the AMD optimization and a traditional multi-
point optimization is expected to be much larger.
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