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1. Introduction

The level set method has been shown to be an effective tool for
topology optimization of structures. This is evidenced by the large
number of papers published on the topic within the past several
years [1–3]. As a result, the level set method now rivals more
established topology optimization methods, such as Solid Isotropic
Material with Penalization (SIMP) [4], in terms of popularity.
However due to the relative difficulty in implementing the level
set method when compared with SIMP, the vast majority of the
research devoted to the level set method has focused on a small
class of problems, while seeking to improve the numerical perfor-
mance of the method [5]. Consequently, there remain large classes
of problems to which the level set method has yet to be applied.

One such area involves the optimization of structures confined
to irregularly-shaped physical domains. These problems require
the use of body-fitted finite-element meshes, which are typically
non-uniform and non-rectilinear. Such problems have been solved
successfully by SIMP researchers on a number of occasions [6–9];
however, they present a unique challenge for users of the level
set method. The Hamilton–Jacobi equation, which is at the heart
of the level set method, is solved on a uniform Cartesian grid,
which typically coincides with the finite-element mesh. By using
a Cartesian computational grid, the sensitivities can be calculated
at the Gauss points of the finite elements and passed directly into
ll rights reserved.
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the Hamilton–Jacobi equation as advection velocities, using a
straightforward one-to-one mapping.

Some authors have developed techniques for solving the
Hamilton–Jacobi equation in cases where the finite-element mesh
is either unstructured or simply non-uniform [10,2]. One approach
is to construct a continuous representation of the sensitivity field
by interpolating the sensitivity values calculated at the Gauss
points of the finite elements [10]. This sensitivity field is then sam-
pled at the nodes of the uniform Cartesian grid in order to obtain a
set of advection velocities with which to solve the Hamilton–Jacobi
equation. Interpolation of the sensitivity field can be handled in a
variety of ways including the use of radial basis functions [10], as
well as least squares fitting [1] or boundary elements [11].

While these methods allow for application of the level set
method to any arbitrary structural mesh, they do not address
situations where the working domain of the problem is non-
rectangular. These situations arise frequently in engineering
optimization, as it is often necessary to design a structure that
must fit entirely within a non-rectangular region. In the following
sections of this paper, we describe a new method for optimizing
structures confined to such irregular domains. As in previous
methods, the Hamilton–Jacobi equation is solved on a uniform
rectilinear grid; however, the finite element modeling of the
structure is performed using a fixed non-uniform structured mesh
whose cells represent units in actual physical space. The structural
sensitivities are calculated on the non-uniform mesh and then
mapped into computational space using an isoparametric transfor-
mation within each cell. Because each element in the finite-
element mesh has its own unique cell in the rectilinear
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Fig. 1. Sample structural design problem using level set parametrization. Here CD

denotes the fixed boundary and CN denotes the boundary on which surface
tractions are applied.
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computational grid, we retain a one-to-one mapping between the
structural sensitivities and advection velocities and avoid
significant loss of robustness.

This method is demonstrated in two ways: first, on a series of
benchmark examples based on a variation of the classic
two-dimensional L-bracket problem, and second, on a three-
dimensional problem in which the working domain is given by
the outer surface of an aircraft wing. We also introduce a novel
approach to enforcing constraints based on the augmented
Lagrangian formulation.

2. The level set method

2.1. Problem formulation

The level set method was developed in the late 1980s by Osher
and Sethian [12] as a method for tracking front propagation. It has
been especially popular among researchers in fluid dynamics and
computer vision, though an increasing number of authors have
begun to apply the technique to structural topology optimization.
Although similar to SIMP methods in some respects, the level set
method differs in the way in which the structural shape and
topology are parameterized.

In both methods, the design domain is discretized into a series
of finite elements whose relative material density, q, is allowed to
vary continuously between 0 and 1 with the two extremes
representing void and solid elements, respectively. In the SIMP
approach, one optimizes these material densities directly, whereas
in the level set method, one optimizes the location of the material
boundary, oX, by solving the optimization problem described in
(1). From the location of this boundary, one determines which
elements are solid and which are void. Due to this boundary-based
parameterization, the level set method avoids mesh-dependence
and checkerboarding [3,13] – two of the main numerical
challenges associated with the SIMP method [14,15]

min
X

J

subject to : c ¼ 0
~c 6 0
Kd� F ¼ 0

qðxiÞ ¼
1; xi 2 X

10�3; xi 2 X

�

kðxÞ ¼ qðxÞk0:

ð1Þ

Here, J is an arbitrary objective function that is dependent on
the design variable, X. The structure may be subject to equality
and inequality constraints, c and ~c, and must satisfy the governing
equation Kd � F = 0, where K is the global stiffness matrix, d is the
vector of nodal displacements and F is the vector of applied forces.
Elements located inside the solid region X are assigned a material
density of unity, while those lying outside the boundary are given
some small non-zero density, qmin, so that they mimic the behavior
of a void space but can still be included into the global stiffness
matrix without causing singularities. The densities of elements
that are bisected by the structural boundary oX are interpolated
based on the fraction of that element’s volume that lies inside X.
The elasticity modulus, E, of a given element is the product of the
element’s relative density and the elasticity of the element in the
solid phase, E0. The material properties are taken to be piecewise
constant throughout each element.

Like the SIMP method, the level set approach begins by defining
a bounded domain D � Rd, of which all admissible structural
shapes X are a subset (see Fig. 1). One then parameterizes the
material boundary oX implicitly using a level set function w, where
w is defined such that
wðxÞ ¼ 0; x 2 oX \ D;

wðxÞ < 0; x 2 X;

wðxÞ > 0; x 2 D \X
� �

:

By implicitly representing the material boundary using a
higher-order level set function, one allows for changes in topology,
such as the merging of holes (in two dimensions) or cavities (in
three dimensions) in the structure. The level set function is defined
discretely at the nodes of a structured Cartesian mesh. These data
are periodically interpolated in order to extract the precise location
of the zero level set.

While the level set method is mesh-independent, the converged
solution of the optimization problem is dependent upon the initial
topology [3,13]. Therefore, one must carefully select the number of
holes in the initial design according to the desired length scale for
the final solution. Once the initial topology and material boundary
are defined, the level set function is initialized as the signed
distance of each point in the domain from the boundary, with
negative distances used for points inside the solid region X and
positive distances outside.

2.2. The Hamilton–Jacobi equation

In each optimizing iteration, the level set function is updated
using the Hamilton–Jacobi equation (2)

ow
ot
þ vjrwj ¼ 0: ð2Þ

Rearrangement of this equation leads to the following scalar
formula for updating the level set function at each point in the
domain:

wtþdt ¼ wt � vjrwtjdt: ð3Þ

Here the divergence rw is computed numerically at each point
using finite differencing of the values of the level set function at
adjacent nodes. The advection velocity v is given by the shape
sensitivity of the objective function at each point. The variable t is
a fictitious time parameter introduced to track the evolution of
the level set function over the course of the optimization. The
update described in Eq. (3) corresponds to moving the material
boundary by a distance of vdt in the outward normal direction from
the interface. The time step dt is typically chosen so that the
Courant–Friedrichs–Lewy (CFL) condition is satisfied [16].

When the advection velocity is given by the shape sensitivities of
the objective function, each Hamilton–Jacobi update is equivalent
to a steepest descent step. In this way, the Hamilton–Jacobi equation
replaces the optimization algorithms used in element-based
topology optimization methods such as SIMP. The optimization
reaches convergence once the advection velocities are within a
small tolerance of zero along the material interface. As noted by
Allaire et al. [3], the constrained optimization problem is generally
not convex despite the absence of a penalization on intermediate
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densities. As a result, convergence to a global minimum cannot be
guaranteed. Fig. 2 shows an optimized level set function for a
two-dimensional problem with the contour plots displayed in the
xy-plane. If one takes the contour line corresponding to the surface
w = 0 (the cyan-colored contour) this plot will give the material
boundary of the optimized structure.

Because the Hamilton–Jacobi update assumes that the spatial
derivative is valid over the distance vdt, it is necessary to
periodically reinitialize the level set function to a form that
validates this assumption. Therefore after every few updates, one
must recover the signed distance form of the level set function,
while maintaining the location of the current zero level set [3].
The results presented rely on an implementation of the fast
sweeping method [17–19].

2.3. Sensitivity analysis

For an arbitrary objective function, the shape sensitivity is
defined according to the following equation, which uses the
Fréchet functional derivative [20],

J0ðXÞðhÞ ¼
Z

oX
vh � nds; ð4Þ

where h is an arbitrary small vector field, and the advection velocity
v is equal to the local shape sensitivity of the objective J at a given
point on the boundary. The shape sensitivity is usually some
function of the displacement state u and can be derived using the
following identity for generalized shape derivatives. For objectives
of the form

JðXÞ ¼
Z

X
jðxÞdxþ

Z
oX

lðxÞds; ð5Þ

where X is a smooth, bounded open set, we have

J0ðXÞðhÞ ¼
Z

X
div hðxÞjðxÞð Þdx ð6Þ

þ
Z

oX
hðxÞ � nðxÞ olðxÞ

onðxÞ þ HðxÞlðxÞ
� �

ds;

) J0ðXÞðhÞ ¼
Z

oX
hðxÞ � nðxÞjðxÞds ð7Þ

þ
Z

oX
hðxÞ � nðxÞ olðxÞ

onðxÞ þ HðxÞlðxÞ
� �

ds;
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Fig. 2. Two-dimensional example of an optimized level set function, with contour
lines displayed in the xy-plane.
where H is the mean curvature of oX given by H =rn [3]. In the
current study, all sensitivities are evaluated using the adjoint
method derived by Allaire et al. [3].

2.4. Constraint handling

Few papers address the topic of constrained optimization
within the context of the level set method. Most authors account
for constraints by adding a Lagrangian-style constraint term to
their objective. Some use a constant Lagrange multiplier [3], while
others update the Lagrange multiplier using a bisection method
[21]. The bisection approach is similar to the optimality criteria
method, which has also been used in combination with SIMP
frameworks [22]. However, like the optimality criteria method,
the bisection approach is only applicable to problems involving a
single constraint. Given this limitation, other researchers have
proposed alternative methods for problems with multiple
constraints [23], but no method has yet been widely adopted, as
most lack flexibility, robustness or, both.

Here, we introduce a new method based on an augmented
Lagrangian approach, where the Lagrange multiplier is updated
according to the Karush–Kuhn–Tucker (KKT) conditions. To apply
equality constraints, we construct a Lagrangian function L by
adding an additional term to the objective for each constraint to
be handled, i.e.,

LðXÞ ¼ JðXÞ � k � cðXÞ; ð8Þ

where c is the vector of equality constraints satisfying c(X) = 0. This
allows us to perform unconstrained optimization on the Lagrangian
with respect to the design variable X as well as the vector of
Lagrange multipliers k. Convergence is reached once the first order
KKT conditions are satisfied.

The shape variable X is updated using the Hamilton–Jacobi
equation, while the vector k is updated using the following
heuristic,

kkþ1 ¼ kk þ rcðXÞ: ð9Þ

This update corresponds to a steepest descent step whose length is
obtained by taking the first derivative of the Lagrangian with
respect to the Lagrange multiplier. The step size r is a fixed value
chosen to obtain the best trade-off between convergence time and
stability. Consequently, this method is relatively inexpensive and
works well for problems involving a single constraint.
3. The isoparametric formulation

The shape sensitivities derived in Section 2.3 assume a smooth,
continuous displacement state u, and strain field �, which can be
evaluated at any location throughout the working domain. In
practice, the finite element method is used to generate a discrete
representation of the displacement state, and the shape sensitivi-
ties are evaluated at the Gauss quadrature points for each element
[21]. Alternatively the sensitivities can be averaged over the
domain of the element, in which case the sensitivity is assumed
to be piecewise constant across each element.

Whereas most level set frameworks use square and cubic finite
elements to coincide with the Cartesian computational grid, the iso-
parametric formulation allows for the use of arbitrary quadrilateral
and hexahedral elements. Therefore, the isoparametric level set
method relies heavily upon the isoparametric finite element
formulation [24]. As with the standard approach, the Hamilton–
Jacobi equation is solved on a uniform Cartesian grid with unit
spacing between the nodes in all directions. This uniform, orthogonal
spacing means that the spatial derivatives of the level set function
can be evaluated simply by taking finite differences of the function



Fig. 3. Two-dimensional mapping of an arbitrary structured mesh to the uniform
rectilinear computational mesh.
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evaluated at adjacent grid points. Each node in this computational
grid corresponds to a four-node element (eight-node in three
dimensions) in the finite-element mesh (see Fig. 3). The shape
sensitivities are evaluated in physical space using the non-uniform
finite-element mesh (one sensitivity value for each element), and
each of these values is transformed into its representative analog in
computational space before being passed into the Hamilton–Jacobi
equation.

This transformation is based on the isoparametric transformation
required to morph a unit square (or cube) into the quadrilateral (or
hexahedral) shape of the element in question. The Jacobian for this
transformation is defined in Eq. (12).

Within each element one defines a local coordinate system n, g,
f, where the orthogonal basis vectors~n;~g;~f represent the directions
in computational space. Fig. 4 shows the two-dimensional local
coordinate system associated with the quadrilateral element
whose nodes are located at {xi,yi}, as expressed in physical space.
Note that in the figure, the computational coordinates n, g range
from �1 to 1. This choice of domain facilitates Gauss quadrature
integration. This implies that each element occupies a volume of
4, as opposed to unity, in computational space. However, this
quantity is inconsequential as long as all elements have the same
volume in computational space.

The physical location {x,y,z} of any point within the element
can be expressed as a weighted sum of the node locations,

x ¼
X8

i¼1

Ni n;g; fð Þxi; ð10Þ

where the weights, Ni, are the linear shape functions of the finite
element:

Ni n;g; fð Þ ¼ 1þ nnið Þ 1þ ggið Þ 1þ ffið Þ
8

; ni;gi; fi ¼ �1; ð11Þ

which depend on the local coordinates {n,g,f}.
Given this relationship between the physical coordinates

and the local or computational coordinates, we can define the
Fig. 4. Two-dimensional illustration of the mapping from local t
Jacobian matrix of the coordinate transformation within each
element:

J n;g; fð Þ ¼

ox
on

ox
og

ox
of

oy
on

oy
og

oy
of

oz
on

oz
og

oz
of

2
664

3
775: ð12Þ

From here, we can derive the relationship between the sensitivities
as calculated in physical space and the equivalent sensitivities to be
used in computational space.

Consider an infinitesimal patch located at some point p on the
surface of the material interface. Since the orientation of the local
coordinate axes is arbitrary, we can choose them so that the f axis
points in the direction normal to the patch. Therefore, the area of
the patch, measured in computational space, is given by dndg. If
the patch moves a distance df in the outward normal direction,
it will trace a prism whose volume is given by dndgdf, when
measured in computational space. This prism represents a total
volume of dndgdfjJj in physical space. We now define a new
quantity that is hereafter referred to as the relative impact. The
relative impact of a shape perturbation at a point p on the material
surface is defined as the product of the incremental volume Q
caused by that perturbation, and the shape sensitivity of the
objective function at the point p.

Given a shape sensitivity, vp, computed in physical space at
point p, we choose an equivalent computational sensitivity, vc,
such that the relative impact of an infinitesimal shape perturbation
at p, when measured in computational space, is maintained.
Therefore we can deduce the following relationship:

Qcvc ¼ Q pvp; ð13Þ

) dndgdfvc ¼ dndgdfjJjvp; ð14Þ

) vc ¼ jJjvp: ð15Þ

Because the shape sensitivities are computed at discrete loca-
tions corresponding to the finite-element mesh, we approximate
the Jacobian as being piecewise constant throughout each element.
To do this we approximate jJj as being equal to the determinant of J
averaged over the element volume, which turns out to be equal to
the volume of the element itself, i.e.,

vole ¼
Z

Xe

det Jðn;g; fÞð Þdndgdf: ð16Þ

Therefore given some shape sensitivity, vp, evaluated in
physical space, the resulting advection velocity in computational
space is given by vc = volevp. Thus, using the set of transformed
sensitivities as the advection velocities in the Hamilton–Jacobi
equation corresponds to taking a step in the direction of the
steepest descent.
o global coordinates for an arbitrary quadrilateral element.
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3.1. The constitutive relation

The constitutive matrix, which defines the relationship between
the stress tensor, r, and the strain tensor, e, is given in Eq. (18) for
the two-dimensional case

r ¼ De; ð17Þ

rxx

ryy

rxy

2
64

3
75 ¼ E
ð1� m2Þ

1 m 0
m 1 0
0 0 1�m

2

2
64

3
75

exx

eyy

exy

2
64

3
75: ð18Þ

Here E and m are Young’s modulus and Poisson’s ratio of the isotropic
material. Note that in all two-dimensional examples, the plane stress
condition is assumed.

As is typical among previous studies, we use the ersatz material
approach [3,25], in which constitutive relation is tailored to
account for those elements which lie, either partially or fully,
outside the material domain. For these elements, Young’s modulus
is interpolated according to the portion of the element’s volume
that falls inside the boundary, i.e.,

Ee ¼ qeE0; ð19Þ
) De ¼ qeD0; ð20Þ

where, Ee is the effective Young’s modulus of the element, and E0 is
Young’s modulus of the solid material. The variable qe represents
the element volume fraction, which can also be interpreted as the
relative material density. Under the isoparametric formulation, qe

is evaluated using the integral,

qe ¼
1

vole

Z
Xe

h �wðn;gÞð Þdet Jðn;gÞð Þdndg; ð21Þ

qe �
1

vole

Xnp

p

h �wp

� �
Jp

�� ��: ð22Þ

The symbol h denotes the Heaviside function, which is equal to 1
wherever the level set function, w, is negative, and is equal to 0
everywhere else. In order to evaluate this integral numerically,
the element is divided into a uniform, Cartesian grid of pixels,
where the number of pixels, np is equal to or greater than 1/qmin.
Each pixel is either solid or void depending on the value of the level
set function at that pixel’s location, wp. In order to evaluate the level
set function at these off-node locations, we simply interpolate using
the linear shape functions shown in Eq. (11). The integral is then
approximated as a weighted sum of solid pixels, with the weighting
given by the determinant of the Jacobian matrix. Interpolating the
level set function in this way can become computationally expen-
sive, especially for three-dimensional problems. This challenge
can be mitigated significantly, however, through the use of parallel
processing. We have vastly improved computation time by dividing
the structure into equally-sized blocks of elements and assigning
each block to a processor.

3.2. Compliance minimization

Compliance minimization is commonly used among researchers
of the level set method [3,1,16] to demonstrate new concepts,
largely because of the ease with which it can be implemented. As
shown by Allaire et al. [3], for the compliance objective function
(i.e. the work done by external forces, Eq. (23)) the shape sensitivity
reduces to the form shown in Eq. (24):

JcompðXÞ ¼
Z

X
gðxÞ � uðxÞdxþ

Z
CN

f ðxÞ � uðxÞds

¼
Z

X
eTðxÞDeTðxÞ
� �

dx; ð23Þ
J0compðXÞðhÞ ¼
Z

C0

hðxÞ � nðxÞ eTðxÞDeTðxÞ
� �

ds: ð24Þ

In the above equations, g and f denote body forces and surface
tractions respectively, while u represents the continuous displace-
ment field. The domain C0 refers to the traction-free surface, which
is the only portion of the material boundary that varies during the
optimization. Despite this restriction, the resulting advection
velocity formula v = eT(x)DeT(x) is used for all points within the
working domain when solving the Hamilton–Jacobi equation so
that continuity is maintained.

The compliance shape sensitivity, which is equal to twice the
local strain energy density, is treated as being piecewise constant
within each element. Therefore the advection velocity for each
element is approximated as being proportional to the average
strain energy density within that element. Under the isoparametric
formulation, the calculation proceeds as follows for the two-
dimensional case:

Ue ¼
1
2

Z
Xe

eTðn;gÞDeeðn;gÞjJjdndg; ð25Þ

where Ue is the total strain energy for element e. In order to obtain
the average strain energy density, we divide this integral by the
element volume given in Eq. (16). The expression can be simplified
by introducing the strain–displacement matrix, B, which is
comprised of the set of first derivatives of the element shape
functions (Eq. (11)). We can therefore express the strain in terms
of the strain displacement matrix and the vector of element nodal
displacements de

eðn;gÞ ¼ BTðn;gÞde: ð26Þ

Finally we introduce the element stiffness matrix, ke, which is
defined as

k0 ¼
Z

Xe

BTðn;gÞD0Bðn;gÞjJjdndg; ð27Þ

ke ¼
Z

Xe

BTðn;gÞDeBðn;gÞjJjdndg; ð28Þ

) ke ¼ qek0; ð29Þ

and the advection velocity becomes

vp ¼
qedT

e k0de

vole
: ð30Þ

In order to obtain the computational velocity to be used in
performing the Hamilton–Jacobi update, we multiply this
expression by the element volume. Therefore the computational
advection velocity reduces to

vc ¼ qedT
e k0de: ð31Þ

In order to enforce a volume constraint we must find the shape
sensitivity of the structural volume. From Eq. (6), we see that the
shape sensitivity of the volume function is simply equal to unity.
The equivalent sensitivity in computational space is simply the
element volume. Combining the two functions according to
the Lagrangian formulation defined above, the computational
advection velocity for the compliance minimization problem
subject to a constraint on structural volume is given by Eq. (32):

vc ¼ qedT
e k0de � kvole: ð32Þ
4. Numerical examples

The isoparametric formulation derived above is demonstrated
in a series of two-dimensional and three-dimensional sample
problems. The following examples are based on the classic
L-bracket problem, which has been used frequently in topology
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optimization studies [5,26]. In all L-bracket sample problems, the
mesh is comprised of a lattice of trapezoidal elements as shown
in Fig. 5(b). This mesh is mapped to a single uniform rectangular
mesh using a one-to-one mapping.

The L-bracket problem is solved for minimum compliance
subject to a constraint on the structural volume so that the total
volume of the optimized structure does not exceed 40% of the
volume of the working domain. This problem is solved using two
different geometries. In the long L-bracket problem, the vertical
and horizontal segments of the bracket have an aspect ratio of 2.
In the short L-bracket problem, shown in Fig. 6, this aspect ratio
is reduced to 1. This geometry causes the individual elements to
have larger aspect ratios, particularly near the bottom-left corner
of the domain. In both cases the applied force has a magnitude of 1.

Figs. 7 and 8 show the optimized topologies for the long and
short L-bracket problems. In each figure the zero contour of
the level set function (i.e. w = 0) is plotted. In both cases, the
isoparametric level set method produces converged, feasible
solutions. The zero contour of the level set function reveals
straight, well-defined members and is unaffected by the lack of
uniformity in the finite-element mesh.
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Fig. 5. The long L-bracket problem. (a) Initial topology and loading conditions.
(b) Finite-element mesh.
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ig. 6. The short L-bracket problem. (a) Initial topology and loading conditions.
) Finite-element mesh.

Fig. 7. Optimized topology for the short L-bracket problem.
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Fig. 8. Optimized topology for the long L-bracket problem.
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Fig. 9. Convergence history for the long L-bracket compliance minimization
problem.
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Fig. 10. Convergence history for the short L-bracket problem.

(a) (b)

Fig. 12. Optimized density distribution for the short L-bracket. (a) Level set
solution. (b) SIMP solution.

(a) (b) 

ig. 11. Optimized density distribution for the long L-bracket. (a) Level set solution.
) SIMP solution.

Table 1
Minimum compliance values for the SIMP and level set solutions. In all cases, the
volume fraction is constrained at 0.4. (Note that the compliance values for the SIMP
solutions have been calculated without any penalization.)

Level set method SIMP

Long L-bracket 364.44 366.18
Short L-bracket 83.84 84.31
Cantilevered ring 6.07 5.84
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The convergence plots for both problems are shown in Figs. 9
and 10. The plots indicate smooth convergence to a local
minimum. Also, while the constraint function does oscillate during
the optimization, the objective is reduced monotonically. Careful
selection of the coefficient r in Eq. (9) can be used to reduce the
F
(b
amplitude and number of these oscillations. An effective choice is
to use r � 0.1k0, where k0 is the initial value of the Lagrange
multiplier.

We now compare the solutions displayed in Figs. 7 and 8 with
solutions obtained using the SIMP method. In both SIMP solutions,
the finite-element mesh is identical to that used above. We use a
density filtering method to avoid checkerboarding [27,28], in
combination with the optimality criteria method [29] to carry out
the constrained optimization problem. In the case of the short
L-bracket, the isoparametric level set method generates a solution
nearly identical to that of the SIMP method, as illustrated in Fig. 12.
In contrast, the two solutions to the long L-bracket problem differ
greatly from one another (see Fig. 11), although both solutions
exhibit similar compliance, as shown in Table 1.

While the above examples make effective use of the isopara-
metric level set method, both L-bracket problems could have been
solved using uniform Cartesian meshes. In addition to these
problems, the isoparametric formulation enables us to apply the
level set method to an entire class of problems that would
otherwise be beyond the reach of most level set algorithms. We
provide two examples of such problems. The first example is a
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novel problem designed specifically to test the effectiveness of the
isoparametric formulation. This problem involves the optimization
of a cantilevered ring structure, where material is distributed
throughout a circular domain, which contains a void region in
the center. Fig. 14 shows the problem geometry, as well as the
support and loading conditions.

The optimized density distribution for the cantilevered ring
problem is shown in Fig. 15. As is the case with the short L-bracket,
the isoparametric level set method and the SIMP method yield very
similar structures. Table 1 confirms that in this case, as well as in
both L-bracket problems, the isoparametric level set solution
exhibits very similar compliance to the SIMP solutions. Also, from
the convergence plot given in Fig. 13, we see that the two methods
have comparable computational cost in terms of the number of
structural analyses required to reach convergence.

Another problem that requires the use of a non-uniform mesh is
the topology optimization of an aircraft wingbox. In the following
example, the working domain of the problem is roughly deter-
mined by the shape of the wing’s outer surface, and material can
be placed anywhere within this three-dimensional region.

The cross-section of the domain is based on a symmetric
two-dimensional airfoil with the leading and trailing edges
removed in order to replicate the shape of a wingbox. The resulting
cross-section is then extruded to an aspect ratio of 3.02. The
structure also has a taper ratio of 0.91, and a leading edge sweep
angle of 9.4�. Fig. 16 shows the working domain and the finite-
element mesh for the problem, while Fig. 17 shows the loading
conditions. The top surface of the structure is subject to a uniform
distributed load acting in the downward direction. To the bottom
surface we apply another distributed load, which is constant in
the chordwise (x) direction, and tapers off elliptically in the
spanwise (z) direction. The structure is fixed along the face located
at the root of the wing, where the wing connects with the fuselage
of the aircraft. The structural mesh is comprised of 32 � 16 � 96
linear, eight-node hexahedral elements in the x, y, and z directions
respectively.

In this example, we use a fixed Lagrange multiplier and begin
with an initial volume fraction of 60%. The Lagrange multiplier is
set according to k ¼ 0:65C0=Vf0 , where C0 is the initial compliance
and Vf0 is the initial volume fraction. A minimum skin thickness is
enforced on the top and bottom surfaces of the structure. At a given
location along the span, the local skin thickness is equal to 1/2 the
thickness of the local surface element measured in the y-direction.
This thickness requirement is enforced by setting the minimum
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Fig. 13. Comparison of the convergence histories of the SIMP and level set methods
for the short L-bracket problem.

ig. 14. The two-dimensional cantilevered ring problem. (a) Initial topology.
) Finite-element mesh
F
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Fig. 15. Optimized designs for the cantilevered ring problem. (a) Level set solution.
(b) SIMP solution.
relative material densities of all top and bottom surface elements
to qmin = 0.5. The structure is optimized for minimum compliance,
with a 40% volume constraint.



Fig. 16. Working domain and finite-element mesh for the wingbox optimization
problem.

Fig. 17. Loading conditions for the wingbox optimization problem.

Fig. 18. Initial wing topology.

Fig. 19. Optimized wing topology.

Fig. 20. Span-wise view of the optimized wing structure.

Fig. 21. Chord-wise view of the optimized wing structure.
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Figs. 18 and 19 show the initial and optimized internal topologies
for the wingbox problem. The figures do not include the wing skin,
which covers the top and bottom surfaces of the structure. The
optimized structure can be interpreted as being comprised of two
main types of components. A large portion of material is devoted
to reinforcing the top and bottom skin of the structure, particularly
near the root, where the fixed boundary condition is applied and
where the internal bending moment of the structure is the largest.
Also, as illustrated in Fig. 20, the remainder of the material is used
to create a series of spar-like structures. These consist of truss-like
members aligned at roughly 45� from the horizontal xz-plane, in
order to resist internal shear force in the z direction. Fig. 21 also
reveals that these members are slanted slightly in the chordwise
direction. This reflects the asymmetry of the structure due to the
sweep angle. Because the wing is swept, any upward bending also
results in a torsional moment. The chordwise slant of the spar
members allows the structure to resist the twisting caused by this
torsional moment.
5. Conclusions

In this paper we have presented a robust and computationally
efficient method for performing structural topology optimization
using the level set method combined with a non-uniform finite-
element mesh. We have demonstrated how this isoparametric
formulation can be used to effectively optimize structures that
are confined to irregularly-shaped domains. In addition to the
isoparametric formulation, we have also presented a new
method for enforcing equality constraints based on the augmented
Lagrangian approach. These methods have been demonstrated on
a series of two- and three-dimensional structures optimized for
minimum compliance subject to weight constraints. The results
indicate that the method generates converged, feasible solutions
that are comparable in performance to solutions obtained using
the SIMP method.

Optimization of structures modeled using body-fitted meshes
represents a large and vitally important class of problems in
structural optimization. The developments presented are aimed
at extending the range of applicability of the level set method,
thereby allowing researchers to use the method for tackling
problems that more closely resemble those encountered in
real-world applications. An important component of the push
toward handling more realistic design problems is the implemen-
tation of additional objective and constraint functions. Although
the current study focuses on compliance minimization subject to
a volume constraint, the isoparametric method can also be applied
to other objectives without any modification to the general
algorithm. Going forward, some useful problems to explore include
mass minimization subject to yield failure constraints – as is often
done in the design of aerospace structures – as well as maximization
of failure load with respect to elastoplastic collapse, as one might
encounter in a structural engineering context.
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