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This paper presents a novel framework for evaluating the shape sensitivities of the von Mises stress

function using an isoparametric finite-element formulation. The use of the isoparametric formulation

allows us to apply the level set method to structures that are confined to irregularly shaped domains

and therefore must be modeled using body-fitted, nonuniform finite element meshes. The shape

sensitivities of the von Mises stress function are evaluated on this nonuniform mesh and mapped

isoparametrically to a uniform Cartesian grid on which the Hamilton–Jacobi equation is solved. The

paper also introduces a new approach to the enforcement of volume constraints based on the

augmented Lagrangian formulation. The method is demonstrated on a series of two-dimensional

problems including an isoparametric variation of the classic L-bracket problem. We show that the

isoparametric level set method produces converged, feasible designs whose performance is comparable

to SIMP results in terms of their final objective value.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The level set method (LSM) is a powerful tool for the shape and
topology optimization of structures [1,2]. The large number of
papers published on the topic in recent years attests to this. In
spite of the increased popularity of LSM, most of the research
devoted to it has focused on a small class of problems, while
seeking to improve the numerical performance of the method
[3–6]. Consequently, large classes of important problems have not
yet been addressed. This is in contrast to more established
methods such as SIMP [7], which have been applied to a wide
variety of problems.

The current study focuses on two of these relatively unex-
plored areas. The first area involves the optimization of structures
confined to irregularly shaped physical domains. In most level set
studies, the example problems have a rectangle or a set of
rectangles for the working domain. This type of region can easily
be discretized into a uniform Cartesian mesh. However, when the
region in which the optimized structure must lie is nonrectan-
gular, as is the case for an aircraft wing for example [8], a uniform,
rectilinear discretization is no longer possible. Instead, these
problems require the use of nonuniform, body-fitted finite ele-
ment meshes. Such problems are routinely solved by SIMP
researchers [8–11], but they present a unique challenge for users
of the level set method.
All rights reserved.

: þ1 416 667 7799.

s).
In level set optimization, the Hamilton–Jacobi equation, which
describes the evolution of the material interface, is solved on a
uniform Cartesian grid using a time-marching scheme. When the
finite element mesh is uniform and rectilinear, the sensitivity
information obtained in the finite element analysis can be passed
directly into the Hamilton–Jacobi partial differential equation as a
set of advection velocities.

Several authors have presented techniques for solving the
Hamilton–Jacobi equation in problems where the finite element
mesh is unstructured or simply nonuniform [12,13,6]. Often these
methods involve constructing a piecewise continuous representa-
tion of the sensitivity field by interpolating the sensitivity values
calculated at the Gauss points of the finite elements inside a
region of interest. While these methods allow for the optimiza-
tion of structures modeled using nonuniform, nonrectilinear
meshes, they fail to address the situation in which the working
domain of the problem is also nonrectangular. The isoparametric
approach used in this study allows for the optimization of
structures with contoured working domains, as is often the case
in real-world engineering problems.

The isoparametric method was originally introduced by the first
and third authors [14], and the current paper extends the method to
stress-based design optimization, another area where the level set
method has been relatively underused. We derive the discretized
shape sensitivity formula for the von Mises stress function. Using
the isoparametric method, we then map the resulting shape
sensitivities to a uniform computational mesh on which the
Hamilton–Jacobi equation is solved. The method is demonstrated
on a series of example problems involving nonuniform, structured
finite element meshes. The results are compared with several SIMP-
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based results to investigate the effectiveness of the isoparametric
level set method for these problems.
2. Level set method

The level set method is used to optimize the location of a
material boundary, which is defined implicitly as the zero contour
of a higher-order function. The optimization problem can be
formulated as follows:

min
O

J

subject to c¼ 0,

Kd�F¼ 0,

rðxiÞ ¼
1, xiAO,

10�3, xiAO,

(

kðxÞ ¼ rðxÞk0, ð1Þ

where J is an objective function that depends on the design
variable, O. In the results presented in subsequent sections, all
structures are subject to a single equality constraint, c, on the
structural volume. K is the global stiffness matrix, d is the vector
of nodal displacements, and F is the vector of applied forces. The
symbol r denotes the relative material density of the finite
elements. This quantity determines the relative stiffness of each
element via the element stiffness matrix k. All elements located
inside the solid region O are considered to have full density, and
therefore r¼ 1 for these elements. Elements lying outside the
boundary are assigned a small nonzero density, rmin, to model
the behavior of a void space without causing singularities in the
global stiffness matrix. In the case of elements that are bisected
by the structural boundary @O, the relative material density is
interpolated according to the portion of the element that lies
within the boundary. All the material properties are assumed to
be piecewise constant throughout each element.

The location of the material boundary, @O, is represented
implicitly through the level set function, c, which is defined via

cðxÞ ¼ 0; xA@O \ D,

cðxÞo0; xAO,

cðxÞ40; xAðD \OÞ:

Fig. 1 shows an example of a level set function with the
corresponding material boundary.
5 10 15 20 25 30 35 40 45 50 55 60

5

10

15

20

25

30

35

40

Fig. 1. Contour plot of optimized level set function with material boundary

located at c¼ 0 and represented by thick black line.
At each iteration, the level set function is updated using the
Hamilton–Jacobi equation

@c
@t
þv9rc9¼ 0) ctþdt ¼ct�v9rct9 dt: ð2Þ

The term rc is computed numerically at each point in the
computational grid by taking finite differences of the values of the
level set function at adjacent nodes. The advection velocity v is
determined by the shape sensitivity of the objective function at
each point. The parameter t is a fictitious time parameter that
represents the optimization iteration number, and the time step
dt is chosen in such a way that the CFL condition is satisfied [15].

The level set function is initialized as the signed distance from
the initial material boundary. After every few updates, the level
set function is restored to its signed-distance form. Here we use
an implementation of the fast sweeping method [16–18].

In accordance with the framework introduced by Allaire et al.
[1], the shape sensitivities are given by the Fréchet functional
derivative [19]

J0ðOÞðyÞ ¼
Z
@O

vy � n ds, ð3Þ

where y is an arbitrary small vector field and n is the unit vector
normal to the surface @O. The value v provides the advection
velocity at a given point on the boundary. For objective and
constraint functions that depend on the displacement state u, the
shape sensitivity is calculated using the adjoint method; a
detailed derivation is presented by Allaire et al. [1]. For an
arbitrary objective of the form

JðOÞ ¼
Z
O

jðxÞ dxþ

Z
@O

lðxÞ ds, ð4Þ

the generalized shape sensitivity is given by

J0ðOÞðyÞ ¼
Z
O

divðyðxÞjðxÞÞ dx

þ

Z
@O
yðxÞ � nðxÞ

@lðxÞ

@nðxÞ
þHðxÞlðxÞ

� �
ds, ð5Þ

) J0ðOÞðyÞ ¼
Z
@O
yðxÞ � nðxÞjðxÞ ds

þ

Z
@O
yðxÞ � nðxÞ

@lðxÞ

@nðxÞ
þHðxÞlðxÞ

� �
ds, ð6Þ

where H is the mean curvature of @O.
3. Isoparametric formulation

The shape sensitivities shown in Section 2 assume a smooth,
continuous displacement state u and strain field E, which can be
evaluated at any location in the working domain. In practice, the
finite element method is used to generate a discrete representation
of the displacement state, and the shape sensitivities are evaluated
at the Gauss quadrature points for each element [5], or they can be
averaged over the domain of the element, in which case the
sensitivity is assumed to be piecewise constant across each element.

The shape sensitivity values derived above must be computed
using finite element analysis, which produces a discretized
approximation of the continuous sensitivity field. We evaluate
the sensitivities at the Gauss quadrature points of each element
[5] and then average these values to obtain a sensitivity field that
is piecewise constant throughout each element. If the uniform
finite element mesh is composed entirely of square or cubic
elements, each finite element provides a unique advection velo-
city that can be used to update the Hamilton–Jacobi equation at
each node in the computational mesh.
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In contrast, with the isoparametric formulation, we can use
arbitrary quadrilateral or hexahedral elements to perform the
structural analysis. Isoparametric finite elements [20] allow us to
retain the one-to-one mapping of advection velocities while
allowing for nonuniform structural meshes. This makes it possible
to model structures that are confined to nonrectangular or con-
toured domains. It also allows a designer to coarsen the structural
mesh in regions of low material density or low strain and to refine
the mesh in regions where the stress is likely to be high, thereby
enhancing the computational efficiency of the algorithm.

The Hamilton–Jacobi equation is still solved using a uniform
Cartesian grid, which is mapped to the nonuniform structural
mesh shown in Fig. 2 using the Jacobian matrix of each finite
element.

The Jacobian matrix, J, is defined to be

Jðx,Z,zÞ ¼

@x

@x
@x

@Z
@x

@z
@y

@x
@y

@Z
@y

@z
@z

@x
@z

@Z
@z

@z

2
66666664

3
77777775

, ð7Þ

where the variables x, Z, and z represent the local coordinates in
each element, as shown in Fig. 3.

The relationship between the physical coordinates x, y, z and
the local or computational coordinates x,Z,z is determined by the
element shape functions

x¼
X8

i ¼ 1

Niðx,Z,zÞxi, ð8Þ

Niðx,Z,zÞ ¼
ð1þxxiÞð1þZZiÞð1þzziÞ

8
, xi,Zi,zi ¼ 71, ð9Þ

where Ni are the element shape functions and xi are the coordi-
nates of the element nodes. From this relationship, we can
determine the precise correlation between the advection
Fig. 2. Two-dimensional mapping of arbitrary structured mesh to uniform recti-

linear computational mesh.

Fig. 3. Two-dimensional illustration of mapping from local t
velocities calculated in physical space and those same velocities
expressed in computational space.

The advection velocities are chosen so that the vector com-
posed of the magnitudes of all these velocities points in the
direction of steepest descent. In a uniform volume field, the
velocities depend only on the shape sensitivity of the objective
or constraint function. However, in cases where the computational
grid does not map uniformly into physical space, we must also
take into consideration the contribution of this spatial mapping.
Therefore, we introduce the concept of relative impact, which is a
measure of the incremental change in the objective function
caused by a shape perturbation at a given point on the material
boundary. We define the relative impact m at a point p as the
product of the shape sensitivity at p and the incremental volume
change caused by an infinitesimal shape perturbation at p.

An infinitesimal cube at point p in computational space can be
assumed to have a volume of dx dZ dz. This cube represents a
volume of dx dZ dz9Jp9 in physical space. Therefore, the relative
impact of a shape perturbation at p that results in an incremental
volume change dx dZ dz9Jp9 is given by

mc ¼ vc dx dZ dz, ð10Þ

mp ¼ vp dx dZ dz9Jp9, ð11Þ

where vp and vc are the shape sensitivities at point p computed in
physical space and computational space respectively. Noting that
the relative impact must be consistent as we go from physical to
computational space, we set mc ¼ mp. Therefore, we get the
following formula for the transformed computational advection
velocities vc given a set of shape sensitivities vp:

vc ¼ vp9Jp9: ð12Þ

These velocities are then used in the solution of the Hamilton–
Jacobian equation (2), because they represent the set of velocities
that produce the maximum decrease in the objective function at a
given time t.

Because the velocity field is modeled as being piecewise
constant in each element, the conversion factor 9Jp9 is averaged
over each element’s volume. The resulting integral is equal to the
element volume, which is given by

vole ¼

Z
Oe

detðJðx,Z,zÞÞ dx dZ dz: ð13Þ

Finally, we find that given some shape sensitivity, vp, evaluated in
physical space, the resulting advection velocity in computational
space is given by vc ¼ volevp.

3.1. Constitutive relation

The constitutive matrix, D, describes the relationship between
the stress tensor, r, and the strain tensor, e, i.e.

r¼De: ð14Þ
o global coordinates for arbitrary quadrilateral element.
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In the two-dimensional case, this relationship can be written

sxx

syy

sxy

2
64

3
75¼ E

ð1�n2Þ

1 n 0

n 1 0

0 0
1�n

2

2
664

3
775

exx

eyy

exy

2
64

3
75, ð15Þ

where E and n are the Young’s modulus and Poisson’s ratio,
respectively, of the isotropic material. In the examples presented,
we use the ersatz material approach [1,21], in which the Young’s
modulus is scaled to account for void elements and elements that
are bisected by the material boundary. For bisected elements, we
interpolate the Young’s modulus according to the portion of the
element’s volume that falls inside the boundary, i.e.

Ee ¼ reE0, ð16Þ

) De ¼ reD0, ð17Þ

where Ee is the effective Young’s modulus of the element, and E0 is
the Young’s modulus of the solid material. The relative material
density re can be calculated as the fraction of the element’s
volume that lies inside the material boundary. Using the isopara-
metric formulation, we determine this quantity by the following
integral [14]:

re ¼
1

vole

Z
Oe

hð�cðx,ZÞÞdetðJðx,ZÞÞ dx dZ, ð18Þ

re �
1

vole

Xnp

p

hð�cpÞ9Jp9: ð19Þ

The Heaviside function, h, is defined such that its value is unity
where co0 (i.e., the solid region) and zero elsewhere. We
evaluate this integral numerically, by dividing the element into
a uniform grid of pixels. We set the number of pixels, np, to be
greater than or equal to 1=rmin. Each pixel is either solid or void,
depending on the value of the level set function at that pixel’s
location, cp. Therefore, the relative material density is approxi-
mated as a weighted sum of the Heavyside values for all the
pixels in the element, with the weight given by the determinant
of the Jacobian matrix. This operation can be computationally
expensive, but the cost is mitigated by dividing the structural
domain into blocks and carrying out the process in parallel.

3.2. Stress-based design

Stress-based design presents a challenge for practitioners of
topology optimization. Because the stress function is local in
nature, and because topology optimization involves large num-
bers of finite elements, the combination of these factors can result
in thousands of individual constraints. An additional challenge is
caused by the singularity phenomenon [22]. This issue was first
encountered in truss optimization problems, where it was
observed that as the thickness (which is analogous to material
density) of an element approached zero, its stress value
approached infinity, which prevented the full removal of extra-
neous elements. This resulted in degenerate subspaces in the
feasible design space and caused most optimizers to converge to
locally optimal designs. Users of the SIMP method have addressed
this problem by relaxing the local stress constraints to smooth out
the feasible design envelope [23,24].

While a significant amount of research has been devoted to
stress-based topology optimization using the SIMP method, the
problem of stress-based design remains largely unexplored by
users of the level set method. One notable exception is the work
of Allaire and Jouve [25]. They demonstrated that the level set
method could indeed be used to effectively handle minimum
stress design, while avoiding some of the numerical challenges
associated with the SIMP method, including the stress singularity
problem. More recently, Asmutz and Novotny [26] presented a
new framework for the level set optimization of stress-based
designs using the topological derivative [2].

The following section builds on the framework introduced by
Allaire and Jouve [25] and extends it to incorporate isoparametric
finite elements. As in [25] we use a variation of the p-norm
function to aggregate the local von Mises stress values in each
element. This procedure results in the global stress function

G¼

Z
O
sb

VMðxÞ dx, ð20Þ

where sVM is the local von Mises stress, and b is the aggregation
parameter, which is some integer greater than 1.

The use of the p-norm function confers several advantages. In
particular, it reduces the number of constraints from hundreds or
thousands (at least one per element) to just one. This makes the
optimization process more computationally efficient. Although
the level set optimization method described above is designed to
perform unconstrained optimization, a single constraint can be
enforced simply by replacing the objective function with an
augmented Lagrangian, as outlined in the following section.

The p-norm function provides a conservative approximation of
the function maxðsVMe

Þ, and so it can be used to enforce failure
constraints or, as here, to minimize the maximum stress within a
structure. The function can be made arbitrarily close to the max

function by increasing the value of the exponent p. However,
unlike the max function, the p-norm function is smooth, making it
well-suited to gradient-based optimization. Care must be taken
when selecting the value of the exponent p to balance the desire
for a close approximation to the max function with the need to
maintain a high degree of smoothness, to ensure the stability of
the optimization process.

As shown by Allaire and Jouve [25], the shape derivative of this
function is

G0 ¼

Z
@O
ðsb

VMðxÞþeT ðwðxÞÞDeðuðxÞÞÞ dx, ð21Þ

where eT ðwðxÞÞ represents the strain tensor as a function of the
adjoint state w(x). We now derive the discretized formula for the
isoparametric sensitivity field corresponding to the global von
Mises stress formula (Eq. (20)), using Eq. (21) as our starting
point.

As for the displacement state u, we solve for the adjoint state
discretely at the nodes of the finite element mesh using Eq. (22).
The adjoint field is then interpolated using the isoparametric
shape functions given in Eq. (8)

Kw¼�
@G

@d
: ð22Þ

In the above adjoint equation, K is the global stiffness matrix,
obtained by summing the element stiffness matrices given in Eq.
(23), and d is the global displacement vector, obtained by solving
the governing equation, Kd�F¼ 0.

The element stiffness matrix is obtained by performing the
following integral over the volume of the element:

ke ¼

Z
Oe

BT
ðx,ZÞDeBðx,ZÞ9Jðx,ZÞ9 dx dZ, ð23Þ

where the strain–displacement matrix, B, is composed of the set
of first derivatives of the element shape functions. It gives the
relationship between the element nodal displacements and the
strain tensor, e, as shown below

eðx,ZÞ ¼ BT
ðx,ZÞde: ð24Þ

The stress sensitivity is assumed to be piecewise constant
across each element and is therefore approximated by averaging
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the integrand of Eq. (21) over the domain of each element.
The first term in the integrand is just the von Mises stress itself.
The von Mises stress can be expressed in terms of the stress
tensor as

s2
VMðx,ZÞ ¼ s2

xxþsxxsyyþs2
yyþ3s2

xy ð25Þ

s2
VMðx,ZÞ ¼ eT ðx,ZÞDMDeðx,ZÞ, ð26Þ

where M is the coefficient matrix

M¼

1 �
1

2
0

�
1

2
1 0

0 0 3

2
66664

3
77775, ð27Þ

as introduced by Svanberg and Werme [27]. Using finite elements,
the discrete formula for the local von Mises stress at any point,
fx,Zg, is given by

s2
VMðx,ZÞ ¼ dT

e BT
ðx,ZÞDMDBðx,ZÞ de: ð28Þ

To find the average of the local squared von Mises stress, we
integrate over the domain of the element as follows:

s2
VM ¼

1

vole

Z
Oe

dT
e BT
ðx,ZÞDMDBðx,ZÞde9Jðx,ZÞ9 dx dZ ð29Þ

) sb
VM ¼

1

vole

Z
Oe

ðdT
e BT
ðx,ZÞDMDBðx,ZÞdeÞ

b=29Jðx,ZÞ9 dx dZ: ð30Þ

We compute this integral using Gauss quadrature, yielding the
following formula for the average von Mises stress:

sb
VM ¼

1

vole

X
i

oiðd
T
e BT
ðxi,ZiÞDMDBðxi,ZiÞdeÞ

b=29Jðxi,ZiÞ9: ð31Þ

Here foig are the Gauss weights and fxi,Zig are the coordinates
of the Gauss points. For compactness, we introduce the matrix Si,
which is defined to be

Si ¼ BT
ðxi,ZiÞDMDBðxi,ZiÞ ð32Þ

) sb
VM ¼

1

vole

X
i

oiðd
T
e Sei

deÞ
b=29Jðxi,ZiÞ9: ð33Þ

Note that because this matrix is dependent on the constitutive
matrix, D, it scales quadratically with the relative material
density r.

Moving now to the second term in the formula for the global
von Mises stress (Eq. (21)), we can express the product
eT ðwðxÞÞDeðuðxÞÞ in terms of the element stiffness matrix and the
element displacement and adjoint vectors, de and we respectively.
Using Gauss quadrature integration, we obtain the following
discrete expression for the element stiffness matrix:

ke ¼
X

i

oiðd
T
e BT
ðxi,ZiÞDBðxi,ZiÞdeÞ

b=29Jðxi,ZiÞ9: ð34Þ

Combining Eq. (23) with Eq. (24) givesZ
Oe

eT ðwðxÞÞDeðuðxÞÞ ¼wT
e kede: ð35Þ

To solve for the adjoint state, w, we first write the finite
element approximation of the global stress function G in terms of
the element nodal displacement vectors de, the element adjoint
vectors we, and the matrices, Sei

, calculated for each element

G¼
X

e

ðvolesb
VMe
Þ ð36Þ

¼
X

e

X
i

ðoiðd
T
e Sei

deÞ
b=29Jeðxi,ZiÞ9Þ: ð37Þ
Taking the first derivative of this equation with respect to de

we obtain an expression for the right-hand side of the adjoint
equation (Eq. (22)). Using the Gauss quadrature approximation of
the global von Mises stress function shown above, we can find the
partial derivative analytically

@G

@de
¼
X

i

9Jeðxi,ZiÞ9ðoibðd
T
e Sei

deÞ
ðb=2Þ�1SiÞde: ð38Þ

Substituting this vector into Eq. (22) and solving for the adjoint
vector, w, we can now write the expression for the advection
velocity vp of each element. Taking the integrand of the shape
sensitivity function (Eq. (21)), we express the advection velocity
in discrete form by

vp ¼
1

vole

X
i

oiðd
T
e Sei

deÞ
b=29Jeðxi,ZiÞ9þwT

e kede

 !
: ð39Þ

This value can be converted to its equivalent in computational
space by multiplying by a factor of vole. Therefore, the final
computational advection velocity, vc, for the global von Mises
stress function is given by

vc ¼
X

i

oiðd
T
e Sei

deÞ
b=29Jeðxi,ZiÞ9þwT

e kede: ð40Þ

During each iteration of the optimization algorithm, this
function is computed for each element, with the resulting values
being passed into the Hamilton–Jacobi equation (Eq. (2)) to
update the level set function.
4. Constraint handling

The enforcement of constraints in optimization problems is
typically achieved using a Lagrange-multiplier approach. How-
ever, in many level set schemes, the Lagrange multiplier is
replaced by a constant coefficient, so that the task is to optimize
a weighted sum of the objective and constraint functions [1].
Others perform a line search to determine the value of the
Lagrange multiplier that satisfies the constraint at each itera-
tion [5]. The weighted-sum approach is imprecise; it offers the
designer no control over the final value of the constraint function.
However, the line-search approach requires the repeated evalua-
tion of the volume constraint function at each major optimization
iteration. Even the evaluation of a volume constraint can be
computationally expensive when isoparametric elements are
used. To address these issues, we have developed an adaptive
Lagrangian approach that strictly enforces the constraint and
requires only one evaluation of the constraint function at each
major iteration.

We define the Lagrangian L as a weighted sum of the objective
function, G, and the constraint function, c, which, in this case, is
the structural volume. The Lagrange multiplier l acts as the
weight coefficient in the summation expression

L¼ GðOÞþlcðOÞ: ð41Þ

We then perform unconstrained optimization of the Lagrangian
with respect to the design variable O. At each iteration, the
Lagrangian is updated using the heuristic

lkþ1 ¼ lkþrcðOÞ: ð42Þ

This update corresponds to a descent step, whose length is given
by the derivative of the Lagrangian with respect to l, as well as
the step size r, which is chosen to obtain an acceptable trade-off
between convergence time and stability. In the results presented
this method yielded converged solutions in which the final
constraint value was within 0.01% of the target value.



Fig. 6. Optimized structures for L-bracket with minimum global von Mises stress.

Each figure shows contour line c¼ 0 of optimized level set function. (a) b¼2.

(b) b¼6.
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5. Numerical examples

The isoparametric stress formulation derived above is demon-
strated on a series of benchmark problems, which are based on a
variation of the L-bracket problem. The initial design and loading
conditions are shown in Fig. 4. The finite element mesh is
composed of a grid of trapezoidal elements, shown in Fig. 5, so
that it can be mapped to a single rectangular Cartesian mesh. The
mesh is finest along the inner surface of the structure where the
entrant corner appears and where the local von Mises stress is
likely to be highest. The elements along the outer surface (i.e., the
left and bottom edges of the vertical and horizontal segments
respectively) are slightly larger and have a higher aspect ratio.

In our examples, we minimize the global von Mises stress
while enforcing a 40% volume constraint. The problem is solved
for two different values of the aggregation parameter b. Fig. 6
shows the material boundaries for the optimized structures
corresponding to the two objective functions. The solutions in
Fig. 6 contain some areas where the material boundary appears to
be non-smooth. This is caused by the inexactness of the method
F

Fig. 4. Initial design and boundary conditions for L-bracket problem.
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Fig. 5. Trapezoidal finite element mesh used in L-bracket problem.

Fig. 7. Material distributions for the minimum-stress L-bracket structures.

(a) b¼2. (b) b¼6.
used for computing the shape sensitivities, as well as the
inexactness of the method used for plotting the material bound-
ary. Because the boundary location is approximated using a
limited amount of discrete data, this can introduce some imper-
fections. However, these imperfections have a minimal impact on
the material density distribution (shown in Fig. 7), which is
ultimately what determines the stress distributions. The stress
distributions for the b ¼ 2 and b ¼ 6 solutions are shown in Figs. 8
and 9 respectively.

It is often the goal of stress-based design to minimize the
maximum local von Mises stress in the structure [23]. To do this,
we may set the aggregation parameter, b, to some integer value
that is large relative to the number of finite elements, since, in the
limit as b approaches infinity, the p-norm aggregate is equivalent
to the function maxfseg. However, we are restricted in our choice
of values for b. If b is too large, the elements with high stress
dominate the sensitivity field, and the contribution from low-
stress elements approaches zero. Therefore, to maintain the
stability of the algorithm, b is chosen such that b5ne, where ne

is the number of finite elements in the structure.
In spite of this, we see that even at low values of the aggrega-

tion parameter, the algorithm seeks to reduce the presence of
stress concentrations. In the case where b¼6, the stress concentra-
tion caused by the re-entrant corner dominates the global von
Mises stress function. Therefore, rather than filling in the void at
this location (which maximizes stiffness), the optimizer retains a
smooth curve that dissipates the stress concentration and lowers
the maximum local stress. However, it is important to begin the
optimization with some material interface near the location of the
entrant corner. In the above example, this requirement is satisfied
by keeping the entrant corner void in the initial design. The reason
for this approach is that the optimizer uses sensitivity information
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Fig. 9. Local von Mises stress distribution for b¼6.
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Fig. 10. Convergence history of objective and constraint functions for minimum-

stress L-bracket problem with b¼2.
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Fig. 11. Convergence history of objective and constraint functions for minimum-

stress L-bracket problem with b¼6.

Table 1
Comparison of L-bracket solutions optimized for various objectives.

Optimized for Optimization result

P
s2

P
s6 maxfsg Comp.

P
s2 184.75 33.621 1.146 197.11P
s6 194.38 7.951 0.715 218.90

Comp. 182.23 29.594 1.104 192.96
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Fig. 8. Local von Mises stress distribution for b¼2 showing spike in stress at

entrant corner.
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only along the material boundary (which is not to be confused with
the domain boundary), and it can generate changes in the structure
only through movement of the material boundary. Therefore, if the
entire region near the stress concentration is solid, the entrant
corner is likely to remain sharp with a high stress concentration
because there is no nearby material interface that can be used to
reshape the structure at this location. In this sense, the optimized
structure is dependent on the initial design.

Figs. 10 and 11 show the convergence histories of the global
von Mises stress function and the volume constraint for the
L-bracket optimization problem. The plots show that the adaptive
Lagrangian method for handling constraints produces some over-
shoot, but it ultimately converges to an optimal solution in which
the constraint is satisfied. The convergence history of the b¼6
case demonstrates the impact of the aggregation parameter p,
which must be chosen carefully. Near the beginning of the
optimization, we observe mild oscillations in the global von Mises
stress value. As the aggregation parameter increases, the number
and magnitude of these oscillations also increase because of a
decrease in the degree of smoothness in the global von Mises
stress function, which can prolong or prevent convergence.

Table 1 contains a breakdown of the numerical results for each
case. In the table each row corresponds to a different solution
optimized for a specific objective. The columns represent the
different performance criteria used to evaluate each solution.
The table shows that each solution is designed to perform well
for its specific objective. The table also compares the stress-based
results with those of an L-bracket optimized using the same mesh
and boundary conditions but with compliance as the objective
function (Figs. 12 and 13). The numbers reveal that the minimum-
compliance bracket exhibits good global stress behavior for low
values of the aggregation parameter. However, for higher values of
b, the global von Mises stress is dominated by regions of highly
concentrated stress, and in these cases the global stress
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formulation works best. This is illustrated by column 3 of the
table, which shows the maximum local stress in the structure. In
this category, the stress-based formulation with b¼6 performs the
best.
Fig. 12. Optimized material boundary for minimum-compliance L-bracket.
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Fig. 13. Local von Mises stress distribution for minimum-compliance L-bracket.

Fig. 14. SIMP solution for minimum-stress L-bracket with b¼6.
The results shown in Fig. 6 were also compared with the
results obtained using a SIMP formulation. To compare the two
methods, we performed the SIMP optimization using the finite
Table 2
Comparison of optimized objective values of level set

and SIMP solutions for minimum-stress L-bracket

problem.

Method
P

s2
P

s6

Level set 184.75 7.95

SIMP 206.28 11.63

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 15. Local von Mises stress distribution for minimum-stress SIMP solution

with b¼6.

Fig. 16. Semicircular cantilever beam problem. (a) Loads and constraints and

(b) finite element mesh.
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Fig. 17. Semicircular cantilever beam at various stages of optimization.
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Fig. 18. Local von Mises stress distribution for semicircular cantilever beam.

Fig. 19. Geometry and boundary conditions for isoparametric bridge problem.

Fig. 20. Finite element mesh used in isoparametric bridge problem.

Fig. 21. Initial shape and topology of bridge structure.
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element mesh shown in Fig. 5 with the relaxed p-norm formula-
tion introduced by Le et al. [28]. To eliminate the checkerboarding
that can occur with bilinear SIMP-type elements, we used a node-
based density formulation, in which C0 continuity of the density
field was enforced across the elements [29,30].

Fig. 14 shows the SIMP solution for the case where the aggrega-
tion parameter is set to b¼6. The corresponding von Mises stress
distribution is shown in Fig. 15. Table 2 shows a comparison of the
performances of the level set solutions and the SIMP solutions in
terms of their objective values. The table shows that the level set
solutions slightly outperform the SIMP solutions in both cases. This
indicates that the isoparametric level set method is competitive
with the SIMP method in terms of the performance of the optimized
structures, but it does not conclusively demonstrate the superiority
of the former method. It should also be noted that although the re-
entrant corner has not been eliminated in the SIMP solution in this
particular case, this result will differ at higher values of the
aggregation parameter p. For such values, as shown in Table 1,
stress concentrations dominate the global von Mises stress function
and drive the optimization search.

In addition to allowing for a locally refined finite element
mesh, the isoparametric formulation allows us to apply the level
set method to structures with nonrectangular domains, as is the
case in many real-world engineering problems. The following
examples show how the isoparametric stress formulation can be
used to optimize a structure whose working domain is nonrec-
tangular. The first example is that of a short cantilever beam with
a semicircular domain. Fig. 16(a) shows the initial design and
boundary conditions for the problem. To model this problem, we
use the semicircular finite element mesh shown in Fig. 16(b). In
this problem, as in the previous examples, the objective is to
minimize the global stress function (36), subject to a 40%
constraint on the final volume fraction. The aggregation para-
meter is set to b¼6.
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Fig. 22. Material boundary of bridge structure at various stages of optimization.
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Fig. 17 shows the location of the material boundary at various
stages of the optimization process. The final image contains
the optimized structure, which is composed of two members
that converge at a 901 junction to form a symmetric truss
structure. Fig. 18 shows the von Mises stress distribution in the
optimized structure together with the working domain for the
problem.

In the second example we use the isoparametric formulation
to optimize a bridge structure whose geometry and loading
conditions are given in Fig. 19. Material can be placed anywhere
in the grey region. The structure is clamped along the bottom
surface, while a narrow uniform distributed load is applied to the
top of the structure. This example, like the semicircular cantilever
beam example, highlights the usefulness of the isoparametric
level set method. The curved portions of domain boundaries for
both problems are most effectively handled using a body-fitted
mesh. Although it is possible to handle this problem using a
uniform Cartesian mesh, a large number of much smaller ele-
ments would be needed to fit the Cartesian finite element mesh to
the curvature of the domain boundary. Furthermore, one would
have to expend significant effort to keep track of the element
numbering when traversing the finite element mesh in order to
perform the Hamilton–Jacobi update, as the computational mesh
would no longer be rectangular. The isoparametric level set
method circumvents both these challenges with little additional
computational or development cost.

Figs. 20 and 21 show the finite element mesh and the initial
design of the structure. The problem is solved for minimum global
von Mises stress subject to a 20% constraint on the final volume
fraction.

Fig. 22 shows the location of the material boundary at various
stages of the optimization. The dashed line represents the domain
boundary. The final image (iteration 590) depicts the optimized
structure. Note that the structure initially converges rapidly
toward the two-member truss configuration. Then, beginning
around iteration 50, the two members begin to migrate inward
toward the edge of the semicircular void. The optimization
progresses relatively fast initially but slows down significantly
as the design approaches an optimum and the advection velo-
cities approach zero.

It should also be noted that in both the cantilever beam
problem and the bridge problem, there is no stress concentration
at the bottom of the junction where the two members meet. This
is because of the clamped boundary condition at the base of both
structures. This boundary condition prevents the members from
moving outward, so there is no internal moment in the structure
at the junction point. As a result, we do not see the entrant-corner
effect that was present in the L-bracket problem.
6. Conclusions

We have presented a method for the design of structures
modeled using nonuniform finite element meshes and optimized
for minimum von Mises stress. The method was demonstrated on
a series of examples based on the classical L-bracket problem and
shown to produce converged, feasible designs. This result is
significant in that it applies level set optimization to two classes
of problems that have been largely unexplored by researchers
investigating the level set method. The ability to use nonuniform
finite element meshes is important because it vastly increases the
range of problems to which the level set method can be applied.
Additionally, the technique can be used to improve the computa-
tional efficiency of existing algorithms since it allows users to
strategically refine the mesh in regions of interest. The problem of
stress-based design in the context of the level set method is
another area that receives little attention despite its usefulness.
The combination of the isoparametric method with von Mises
stress constraints provides a useful tool for the design of practical
structures that can be used in real-world applications.
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