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Higher-aspect-ratio lightweight wings can make aircraft more energy efficient thanks to
induced drag reduction. Because such wings exhibit large deflections, affecting the flutter
onset, design optimization using linear flutter analysis is inadequate. To address this issue, we
develop a framework for including a geometrically nonlinear flutter constraint into high-fidelity,
gradient-based wing structural optimization. The framework evaluates the objective function
(mass) and the stress and adjacency constraints in a built-up finite element model to capture the
structural details of realistic wings. This built-up finite element model is reduced to a low-order
beam representation to make geometrically nonlinear flutter analysis tractable for optimization.
The geometrically nonlinear flutter analysis considers the wing deformed shape at each flight
condition and aggregates the associated damping values into a scalar flutter constraint. The
flutter constraint is differentiated with respect to the built-up structural sizing variables using
the adjoint method to enable large-scale optimizations. The framework is demonstrated by
minimizing the mass of a high-aspect-ratio wingbox subject to the geometrically nonlinear
flutter constraint along with stress and adjacency constraints. The geometrically nonlinear
flutter constraint introduces a mass penalty up to about 60% of the baseline mass compared with
the 10% mass penalty by a linear flutter constraint based on the wing undeformed shape. This
methodology can help design new-generation energy-efficient aircraft with high-aspect-ratio
wings that require considering geometrically nonlinear effects early in the design cycle to prevent
flutter.

I. Introduction
Climate change concerns are driving an interest in new aircraft designs with lightweight and high-aspect-ratio wings

(HARWs) for higher energy efficiency [1]. While these aircraft can mitigate aviation environmental impacts, they
pose new challenges to standard design practice based on linear aeroelasticity techniques [2]. These techniques are
inapplicable to HARW aircraft because their high flexibility causes large aeroelastic deflections at normal operating
conditions that invalid linear assumptions. Large aeroelastic deflections may cause flutter to occur at conditions that
would be stable based on a linear flutter analysis of the wing undeformed shape [3–7]. This problem requires computing
the flutter boundaries of HARW aircraft early in their design process, considering geometrically nonlinear effects.
A promising approach to consider flutter early in the design cycle of the next generation of HARW aircraft is to

integrate a flutter constraint into design optimization [8]. This approach can produce energy-efficient aircraft designs
requiring fewer late modifications by ensuring adequate flutter margins while minimizing mass or fuel burn. Despite
the progress in including flutter constraints in practical aircraft design optimizations, only a few studies considered
geometrically nonlinear effects [8]. Variyar et al. [9] minimized the fuel burn of a strut-braced aircraft subject to
maneuver and gust constraints along with a geometrically nonlinear flutter speed constraint. They showed that the
flutter constraint drives the design and causes a fuel burn penalty compared with considering only maneuver and gust
constraints. Xie et al. [10] optimized the weight of a wind-tunnel wing model to ensure flutter in a given speed range
and compared the results with and without considering static aeroelastic deflections in the flutter analysis. Lupp and
Cesnik [11] minimized a blended wing-body aircraft fuel burn subject to a stress constraint and either a linear or a
geometrically nonlinear flutter constraint.
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The previous efforts evaluated the functions of interest (objective and constraints) using geometrically exact beam
models; however, accurate stress analysis of realistic wings requires detailed structural modeling. To address this
problem, this paper presents a framework for including a geometrically nonlinear flutter constraint into high-fidelity,
gradient-based wing structural optimization. The framework evaluates the objective function (mass) and the stress and
adjacency constraints in a built-up finite element model (FEM) that is reduced to a low-order beam representation for
evaluating the flutter constraint. The flutter constraint is formulated as an aggregate of the damping values associated
with a set of aeroelastic modes and operating conditions [12]. This formulation makes it possible to enforce this
constraint using gradient-based optimization. The damping values at each operating condition are obtained from an
aeroelastic eigenvalue analysis about the local wing deformed shape to capture geometrically nonlinear effects. The
derivatives of the flutter constraint with respect to the built-up FEM structural sizing variables are obtained using the
adjoint method to enable large-scale optimizations.
The paper is organized as follows: Sec. II presents the mathematical formulation of the geometrically nonlinear

flutter constraint and its adjoint derivatives with respect to the built-up FEM structural sizing variables; Sec. III describes
the computational framework that implements the proposed methodology; Sec. IV presents the wingbox test case; Sec. V
discusses the optimization results obtained by minimizing the wingbox mass subject to the geometrically nonlinear flutter
constraint at different root angles of attack, along with stress and adjacency constraints; and a section of concluding
remarks ends the paper.

II. Geometrically Nonlinear Flutter Constraint
This section describes the mathematical formulation of the geometrically nonlinear flutter constraint (Sec. II.A) and

of its adjoint derivatives with respect to the built-up FEM structural sizing variables (Sec. II.B). Previous optimizations
that included a geometrically nonlinear flutter constraint evaluated the objective and constraint functions in a beam
model [9–11]. Here, the objective function (mass) and the stress and adjacency constraints are evaluated in a built-up
FEM to capture realistic structural details; the flutter constraint is evaluated in a low-order beam representation derived
from the built-up FEM to make geometrically nonlinear aeroelastic eigenvalue analyses tractable for optimization. This
section describes the general methodology; Sec. III describes the computational implementation developed in this work.

A. Function Evaluation
Figure 1 shows the process for evaluating the geometrically nonlinear flutter constraint within a high-fidelity,

gradient-based wing structural optimization. The process considers 𝑁𝑑 design variables listed in the vector x ∈ R𝑁𝑑

representing shell element thicknesses—the inputs to the built-up FEM structural solver.
The built-up FEM at a given optimization step is reduced to a low-order beam representation for evaluating the

geometrically nonlinear flutter constraint, with a computational effort tractable for optimization. The structural model
reduction consists of computing equivalent inertia and stiffness distributions along a user-specified reference axis that is
fixed in the optimization (Fig. 1). The equivalent inertia distributions consist of constitutive properties that relate the
beam generalized forces to the corresponding generalized velocities; the equivalent stiffness distributions consist of
constitutive properties that relate the beam generalized forces to the generalized strains.
The built-up FEM is discretized in 𝑁 nodes with coordinates in the body frame listed in the vector p ∈ R3𝑁 :

p = {𝑝1𝑥
, . . . , 𝑝𝑁𝑥

, 𝑝1𝑦
, . . . , 𝑝𝑁𝑦

, 𝑝1𝑧 , . . . , 𝑝𝑁𝑧
}𝑇 (1)

The inertia distribution of the built-up FEM is described by its mass matrixM = M(x) ∈ R6𝑁×6𝑁 associated with the
discretization nodes (e.g., MGG matrix in MSC Nastran). This matrix depends on the structural design variables x and
gives a set of nodal masses listed in the vector m = m(M) ∈ R𝑁 :

m = {𝑚1, . . . , 𝑚𝑁 }𝑇 (2)

The nodal masses (2) are obtained by retaining one out of the three identical diagonal mass values for the translational
degrees of freedom in the 6 × 6 block of the mass matrixM associated with each built-up FEM node. The mass matrix
M is often a diagonal matrix,M = M𝐷 , that only provides three non-zero identical mass values per built-up FEM node.
In some cases, this matrix is non diagonal and also provides offsets 𝜹 ∈ R3𝑁 of the nodal masses m with respect to the
built-up FEM nodes p:

𝜹 = {𝛿1𝑥
, . . . , 𝛿𝑁𝑥

, 𝛿1𝑦
, . . . , 𝛿𝑁𝑦

, 𝛿1𝑧 , . . . , 𝛿𝑁𝑧
}𝑇 (3)
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Fig. 1 Geometrically nonlinear flutter constraint evaluation process.
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Futhermore, the built-up FEM mass matrix can also provide inertia tensors I ∈ R6𝑁 about the points p + 𝜹:

I = {I1𝑥𝑥
, . . . ,I𝑁𝑥𝑥

,I1𝑦𝑦
, . . . ,I𝑁𝑦𝑦

,I1𝑧𝑧 , . . . ,I𝑁𝑧𝑧
,I1𝑥𝑦

, . . . ,I𝑁𝑥𝑦
,I1𝑥𝑧

, . . . ,I𝑁𝑥𝑧
,I1𝑦𝑧

, . . . ,I𝑁𝑦𝑧
}𝑇 (4)

The mass offsets (3) and inertia tensors (4) are non zero when the built-up FEM contains beam or shell elements having
offsets with respect to the built-up FEM nodes or rigid-body elements (e.g., MSC Nastran CONM2 elements) with
offsets and concentrated inertias.
The equivalent inertia distributions of the built-up FEM are given by a set of masses m̂ ∈ R𝑁̂ , mass offsets 𝜹 ∈ R3𝑁̂ ,

and inertia tensors Î ∈ R6𝑁̂ associated with 𝑁̂ nodes along a user-specified beam reference axis. The masses m̂ are
listed in the vector

m̂ = {𝑚̂1, . . . , 𝑚̂ 𝑁̂ }𝑇 (5)

and are associated with the beam reference axis nodes of body-frame coordinates listed in the vector p̂ ∈ R3𝑁̂ :

p̂ = {𝑝1𝑥
, . . . , 𝑝 𝑁̂𝑥

, 𝑝1𝑦
, . . . , 𝑝 𝑁̂𝑦

, 𝑝1𝑧 , . . . , 𝑝 𝑁̂𝑧
}𝑇 (6)

The masses m̂ may also have offsets 𝜹 ∈ R3𝑁̂ with respect to the points p̂:

𝜹 = {𝛿1𝑥
, . . . , 𝛿𝑁̂𝑥

, 𝛿1𝑦
, . . . , 𝛿𝑁̂𝑦

, 𝛿1𝑧 , . . . , 𝛿𝑁̂𝑧
}𝑇 (7)

along with inertia tensors Î ∈ R6𝑁̂ about the points p̂ + 𝜹:

Î = {Î1𝑥𝑥
, . . . , Î𝑁̂𝑥𝑥

, Î1𝑦𝑦
, . . . , Î𝑁̂𝑦𝑦

, Î1𝑧𝑧 , . . . , Î𝑁̂𝑧𝑧
, Î1𝑥𝑦

, . . . , Î𝑁̂𝑥𝑦
, Î1𝑥𝑧

, . . . , Î𝑁̂𝑥𝑧
, Î1𝑦𝑧

, . . . , Î𝑁̂𝑦𝑧
}𝑇 (8)

The masses m̂, mass offsets 𝜹, and inertia tensors Î in Eqs. (5), (7), and (8) depend on the built-up FEM mass
matrix through the nodal masses m in Eq. (2), that is, m̂, 𝜹, Î = m̂(m), 𝜹(m), Î (m). In a general case, these quantities
also depend on the mass offsets and inertia tensors provided by the built-up FEM mass matrix, given in Eqs. (3) and (4).
This dependency is omitted here because the mass offsets and inertia tensors associated with the built-up FEM nodes
are assumed to be only due to rigid-body elements representing non-structural mass distributions that remain fixed
during the optimization. The quantities m̂, 𝜹, Î in Eqs. (5), (7), and (8) provide the equivalent inertia distributions of
the built-up FEM for the geometrically nonlinear flutter analysis.
The equivalent stiffness distributions of the built-up FEM are computed via a structural identification process based

on a set of linear static solutions. These distributions are described by the vector k̂ ∈ R10𝑀̂ , where 𝑀̂ = 𝑁̂ − 1 is the
number of elements defined by pairs of consecutive beam reference axis nodes:

k̂ = {k̂𝑇
11, k̂

𝑇
22, k̂

𝑇
33, k̂

𝑇
44, k̂

𝑇
12, k̂

𝑇
13, k̂

𝑇
14, k̂

𝑇
23, k̂

𝑇
24, k̂

𝑇
34}

𝑇 (9)

k̂11 = {𝑘̂111 , . . . , 𝑘̂ 𝑀̂11
}𝑇 k̂22 = {𝑘̂122 , . . . , 𝑘̂ 𝑀̂22

}𝑇 k̂33 = {𝑘̂133 , . . . , 𝑘̂ 𝑀̂33
}𝑇

k̂44 = {𝑘̂144 , . . . , 𝑘̂ 𝑀̂44
}𝑇 k̂12 = {𝑘̂112 , . . . , 𝑘̂ 𝑀̂12

}𝑇 k̂13 = {𝑘̂113 , . . . , 𝑘̂ 𝑀̂13
}𝑇

k̂14 = {𝑘̂114 , . . . , 𝑘̂ 𝑀̂14
}𝑇 k̂23 = {𝑘̂123 , . . . , 𝑘̂ 𝑀̂23

}𝑇 k̂24 = {𝑘̂124 , . . . , 𝑘̂ 𝑀̂24
}𝑇

k̂34 = {𝑘̂134 , . . . , 𝑘̂ 𝑀̂34
}𝑇

(10)

In this work, the quantities in Eqs. (9) and (10) describe the 4 × 4 cross-sectional stiffness matrix constants associated
with each beam element according to the strain-based geometrically exact beam formulation of Su and Cesnik [13].
These quantities are a function of the assembled displacement outputs (translations and rotations) of the beam reference
axis nodes resulting from six independent static load cases applied to the built-up FEM, k̂ = k̂(Û).
The assembled displacement output vector Û ∈ R36𝑁̂ is obtained as follows. The built-up FEM displacement

vector for a generic load case, u = u(x) ∈ R6𝑁 , depends implicitly on the design variables x through the solution
of a linear static structural analysis. The displacement vector for the 𝑙th load case used for stiffness identification is
denoted by u𝑙 , that is, u1 . . . u𝑙 . . . u6 are the displacement vectors for the six independent load cases—typically, three
tip forces and three tip moments. The stiffness identification does not require the displacement output vector of the
entire built-up FEM but only the one of the beam reference axis nodes, which is recovered via interpolation elements
(e.g., MSC Nastran RBE3 elements). The displacement outputs at the beam reference axis nodes are extracted from the
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full displacement output u𝑙 for the 𝑙th load case using a search process and are stacked into û𝑙 . This process is written
as û𝑙 = û𝑙 (u𝑙) ∈ R6𝑁̂ and gives

û𝑙 = {𝑢̂𝑙,11, . . . , 𝑢̂𝑙,16, . . . , 𝑢̂𝑙, 𝑗1, . . . , 𝑢̂𝑙, 𝑗6, . . . , 𝑢̂𝑙, 𝑁̂1, . . . , 𝑢̂𝑙, 𝑁̂6}𝑇 (11)

where 𝑢̂𝑙, 𝑗1 is the displacement output for the first degree of freedom of the 𝑗 th beam reference axis node for the 𝑙th load
case. The linear static displacements of the beam reference axis nodes for the six independent load cases are assembled
into the output vector

Û = Û(û1, û2, û3, û4, û5, û6) (12)

This vector is built by extracting the 𝑘th displacement output for the 𝑗 th reference axis node and 𝑙th load case, given by
𝑢̂𝑙, 𝑗𝑘 , such that

Û = {𝑢̂1,11, . . . , 𝑢̂1,16, . . . , 𝑢̂𝑙,11. . . . , 𝑢̂𝑙,16, . . . , 𝑢̂6,11, . . . , 𝑢̂6,16,

𝑢̂1,21, . . . , 𝑢̂1,26, . . . , 𝑢̂𝑙,21. . . . , 𝑢̂𝑙,26, . . . , 𝑢̂6,21, . . . , 𝑢̂6,26,

. . . ,

𝑢̂1, 𝑗1, . . . , 𝑢̂1, 𝑗6, . . . , 𝑢̂𝑙, 𝑗1. . . . , 𝑢̂𝑙, 𝑗6, . . . , 𝑢̂6, 𝑗1, . . . , 𝑢̂6, 𝑗6,

. . . ,

𝑢̂1, 𝑁̂1, . . . , 𝑢̂1, 𝑁̂6, . . . , 𝑢̂𝑙, 𝑁̂1. . . . , 𝑢̂𝑙, 𝑁̂6, . . . , 𝑢̂6, 𝑁̂1, . . . , 𝑢̂6, 𝑁̂6}𝑇

(13)

The assembled displacement vector in Eq. (13) is used to compute the equivalent beam stiffness distributions of the
built-up FEM using the methodology detailed in Refs. [14, 15].
The equivalent inertia and stiffness distributions associated with the user-specified beam reference axis define the

low-order beam representation of the built-up FEM at a given optimization step. In this work, the low-order beam
representation is coupled to the potential-flow unsteady airfoil theory of Peters’ et al. [16] to obtain the aeroelastic model
for evaluating the geometrically nonlinear flutter constraint.
The geometrically nonlinear flutter constraint builds on the damping-based formulation proposed in Ref. [12] and its

geometrically nonlinear extension [11]. Consider a nonlinear aeroelastic system governed by

¤y = f (y(c, x), c, x) (14)

The quantity y in Eq. (14) is the 𝑁𝑦 × 1 state vector and c is the 𝑁𝑐 × 1 vector of control parameters. These control
parameters identify a point in the flight envelope in terms of boundary conditions (e.g., load factor or angle of attack)
and flight conditions (e.g., Mach number and altitude).
The stability of the nonlinear aeroelastic system (14) for a fixed design x is assessed by choosing 𝑁𝑠 flight envelope

points c𝑖 of interest for the stability analysis (𝑖 = 1, . . . , 𝑁𝑠). Each flight envelope point c𝑖 is associated with an
equilibrium state y𝑒𝑖 (x) := y𝑒 (c𝑖 , x) that satisfies

f (y𝑒𝑖 (x), c𝑖 , x) = 0 (15)

The small-amplitude dynamics about the equilibrium state y𝑒𝑖 (x) is governed by the linearized equation

Δ¤y = A𝑖 (x) Δy (16)

where Δy := y − y𝑒𝑖 is the 𝑁 × 1 state perturbation vector and

A𝑖 (x) :=
𝜕f (y(c, x), c, x)

𝜕y
y(c,x)=y𝑒𝑖 (x) , c=c𝑖

(17)

is the 𝑁𝑦 × 𝑁𝑦 Jacobian matrix of the system (14) with respect to the state vector y evaluated at the equilibrium state y𝑒𝑖 .
The eigenvalues of A𝑖 (x) are denoted by 𝜎𝑖𝑘 (x) := 𝑔𝑖𝑘 (x) + 𝑗𝜔𝑖𝑘 (x) (𝑘 = 1, . . . , 𝑁𝑦), where 𝑔𝑖𝑘 (x) is the damping
associated with the 𝑘th mode at the 𝑖th equilibrium state, 𝜔𝑖𝑘 (x) the corresponding angular frequency, and 𝑗 the
imaginary unit.
The equilibrium state y𝑒𝑖 (x) associated with the 𝑖th flight envelope point c𝑖 is stable if the damping values 𝑔𝑖𝑘 (x)

are all negative. This requirement translates to the set of damping-based flutter constraints

𝑔′𝑖𝑘 (x) := 𝑔𝑖𝑘 (x) − 𝐺𝑖 ≤ 0
∀ 𝑖 = 1, . . . , 𝑁𝑠

∀ 𝑘 = 1, . . . , 𝑁𝑚

(18)
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where 𝑁𝑚 ≤ 𝑁𝑦 is the number of modes considered for enforcing the flutter constraint, which may be lower than
the total number of modes associated with Eq. (16). The quantity 𝐺𝑖 = 𝐺 (c𝑖) in Eq. (18) is the value of a damping
bounding curve at the flight envelope point c𝑖 that increases the design robustness by allowing for a residual damping
when the flutter constraint is active [12].
The constraints (18) are suitable for gradient-based optimization because they are continuous, smooth, and

differentiable functions of the design variables [8]. Because their large number 𝑁𝑠 × 𝑁𝑚 makes computing derivatives
unfeasible in practical problems, Eq. (18) is reduced to a scalar constraint using the Kreisselmeier-Steinhauser (KS)
aggregation function [17–19]. The aggregation enables computing derivatives efficiently using adjoint methods that
scale with the number of outputs but are independent of the number of design variables.
Assuming a constraint value of the aggregation parameter 𝜌KS for all the modes and equilibrium states gives

KSflutter (x) := 𝑔′max (x) +
1
𝜌KS

ln

{
𝑁𝑠∑︁
𝑖=1

𝑁𝑚∑︁
𝑘=1

exp
{
𝜌KS

[
𝑔′𝑖𝑘 (x) − 𝑔′max (x)

]}}
≤ 0 (19)

This scalar flutter constraint is a conservative estimate of the most positive bounded damping value in Eq. (18), denoted
by 𝑔′max (x), and tends to that quantity as the aggregation parameter tends to infinity [19].

B. Adjoint Derivatives
The geometrically nonlinear flutter constraint dependency on the structural design variables associated with the

built-up FEM sizing can be represented as

KSflutter (x) = KS(g′) (20)

= KS(g′(k̂, m̂, 𝜹, Î)) (21)

= KS(g′(k̂(Û), m̂(m), 𝜹(m), Î (m))) (22)

= KS(g′(k̂(Û), m̂(m(M)), 𝜹(m(M)), Î (m(M)))) (23)

= KS(g′(k̂(Û(û1, . . . , û6)), m̂(m(M)), 𝜹(m(M)), Î (m(M)))) (24)

= KS(g′(k̂(Û(û1 (u1 (x)), . . . , û6 (u6 (x)))), m̂(m(M(x))), 𝜹(m(M(x))), Î (m(M(x))))) (25)

This functional dependency yields the adjoint derivative formulation developed below.

1. Derivative Definitions
The functions of interest are listed in the 𝑁 𝑓 × 1 vector F. For a given set of control parameters c = c𝑖 , these

functions depend on the design variables x and on the state variables of the system y(x), which depend implicitly on the
design variables:

F = F (x, y(x)) (26)

where the residual equation is
R = R(x, y(x)) = 0 (27)

The total derivative of the functions of interest is
𝑑F

𝑑x
=

𝜕F

𝜕x
+ 𝜕F

𝜕y
𝑑y
𝑑x

(28)

and the total derivative of the residual equation is

𝑑R
𝑑x

=
𝜕R
𝜕x

+ 𝜕R
𝜕y

𝑑y
𝑑x

= 0 (29)

Rearranging Eq. (29) gives

𝜕R
𝜕y

𝑑y
𝑑x

= −𝜕R
𝜕x

(30)

𝑑y
𝑑x

= −
[
𝜕R
𝜕y

]−1
𝜕R
𝜕x

(31)
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and combining this relation with Eq. (28) gives

𝑑F

𝑑x
=

𝜕F

𝜕x
− 𝜕F

𝜕y

[
𝜕R
𝜕y

]−1
𝜕R
𝜕x

(32)

This total derivative can be computed using the direct or adjoint method. The adjoint equations are written as[
𝜕R
𝜕y

]𝑇
𝝍 =

[
𝜕F

𝜕y

]𝑇
(33)

where 𝝍 is the 𝑁𝑑 × 𝑁 𝑓 adjoint matrix. The 𝑖th column is the adjoint vector 𝝍𝑖 from a linear solve with a right-hand side
of [𝜕F𝑖/𝜕y]𝑇 for the 𝑖th function of interest. Computing the adjoint matrix requires 𝑁 𝑓 linear solves. Next, substituting
into Eq. (32) gives

𝑑F

𝑑x
=

𝜕F

𝜕x
− 𝝍𝑇 𝜕R

𝜕x
(34)

Alternatively, one can use the direct method
𝜕R
𝜕y

𝑑y
𝑑x

=
𝜕R
𝜕x

(35)

𝜕R
𝜕y

𝝓 =
𝜕R
𝜕x

(36)

This linear system needs to be solved 𝑁𝑑 times to get the full 𝑑y/𝑑x. The 𝑖th column is the direct vector 𝝓𝑖 from a linear
solve with a right-hand side of [𝜕R/𝜕𝑥𝑖] for the 𝑖th design variable. Once the entire matrix 𝝓 is known, one obtains

𝑑F

𝑑x
=

𝜕F

𝜕x
− 𝜕R

𝜕x
𝝓 (37)

In this work, the total derivatives are computed using the adjoint method to enable large-scale optimizations with
many design variables but few outputs of interest (objective and constraint functions). The adjoint method is the most
suitable for these problems because it does not scale with the number of design variables. The derivation below assumes
that the derivatives associated with all blocks in Fig. 1 are known and the derivative 𝜕KSflutter/𝜕u𝑙 for the 𝑙th load case
exists. One can use the adjoint equation (33) by substituting the 𝑙th derivative in for the right-hand side and by solving
the linear system: [

𝜕R𝑙

𝜕u𝑙

]𝑇
𝝍𝑙 =

[
𝜕KSflutter

𝜕u𝑙

]𝑇
(38)

This linear system needs to be solved for six load cases associated with the linear static solutions used in the equivalent
stiffness identification. Next, the total derivative of the flutter constraint with respect to the build-up FEM structural
sizing variables is

𝑑KSflutter
𝑑x

=
𝜕KSflutter

𝜕x
−

6∑︁
𝑙=1

(
𝝍𝑇
𝑙

𝜕R𝑙

𝜕x

)
(39)

The derivation of each term necessary for computing Eq. (38) and (39) is reported below.

2. Computing 𝜕KSflutter/𝜕x
To compute 𝜕KSflutter/𝜕x, one needs to vary the design variables while keeping the state variables (displacement

outputs of the linear static solutions) fixed and re-evaluate the aggregated constraint. The partial derivative chain is
given by

𝜕KSflutter
𝜕x

=
𝜕KSflutter

𝜕g
𝜕g
𝜕k̂

𝜕k̂
𝜕Û

𝜕Û
𝜕x

+ 𝜕KSflutter
𝜕g

(
𝜕g
𝜕m̂

𝜕m̂
𝜕m

+ 𝜕g
𝜕𝜹

𝜕𝜹

𝜕m
+ 𝜕g
𝜕Î

𝜕Î

𝜕m

)
𝜕m
𝜕M𝐷

𝜕M𝐷

𝜕x
(40)

=
𝜕KSflutter

𝜕g

[
𝜕g
𝜕k̂

𝜕k̂
𝜕Û

𝜕Û
𝜕x

+
(
𝜕g
𝜕m̂

𝜕m̂
𝜕m

+ 𝜕g
𝜕𝜹

𝜕𝜹

𝜕m
+ 𝜕g
𝜕Î

𝜕Î

𝜕m

)
𝜕m
𝜕M𝐷

𝜕M𝐷

𝜕x

]
(41)

=
𝜕KSflutter

𝜕g

(
𝜕g
𝜕m̂

𝜕m̂
𝜕m

+ 𝜕g
𝜕𝜹

𝜕𝜹

𝜕m
+ 𝜕g
𝜕Î

𝜕Î

𝜕m

)
𝜕m
𝜕M𝐷

𝜕M𝐷

𝜕x
(42)
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This calculation uses 𝜕M/𝜕x = 𝜕M𝐷/𝜕x that holds because the quantities 𝜹 and I do not play a role in Eq. (40) as they
are associated with rigid-body elements that are not optimized.
Additionally, differentiating and expanding 𝜕Û/𝜕x one has

𝜕Û
𝜕x

=
𝜕Û
𝜕û1

𝜕û1
𝜕u1

𝜕u1
𝜕x

+ 𝜕Û
𝜕û2

𝜕û2
𝜕u2

𝜕u2
𝜕x

+ · · · + 𝜕Û
𝜕û6

𝜕û6
𝜕u6

𝜕u6
𝜕x

(43)

=

6∑︁
𝑙=1

(
𝜕Û
𝜕û𝑙

𝜕û𝑙

𝜕u𝑙

𝜕u𝑙

𝜕x

)
= 0 (44)

This term is zero because the states (displacement outputs from the linear static solution) depend implicitly but not
explicitly on the design variables, 𝜕u𝑙/𝜕x = 0.
By differentiating Eq. (25) with respect to the displacement outputs for the 𝑙th static load case, u𝑙 , the partial

derivative can be written as

𝜕KSflutter
𝜕u𝑙

=
𝜕KSflutter

𝜕g

[
𝜕g
𝜕k̂

𝜕k̂
𝜕Û

𝜕Û
𝜕û𝑙

𝜕û𝑙

𝜕u𝑙

+ 𝜕g
𝜕m̂

𝜕m̂
𝜕Û

𝜕Û
𝜕û𝑙

𝜕û𝑙

𝜕u𝑙

+ 𝜕g
𝜕𝜹

𝜕𝜹

𝜕Û
𝜕Û
𝜕û𝑙

𝜕û𝑙

𝜕u𝑙

+ 𝜕g
𝜕Î

𝜕Î

𝜕Û
𝜕Û
𝜕û𝑙

𝜕û𝑙

𝜕u𝑙

]
(45)

=
𝜕KSflutter

𝜕g
𝜕g
𝜕k̂

𝜕k̂
𝜕Û

𝜕Û
𝜕û𝑙

𝜕û𝑙

𝜕u𝑙

(46)

The terms 𝜕m̂/𝜕Û = 𝜕𝜹/𝜕Û = 𝜕Î/𝜕Û = 0 because the equivalent inertia distributions are independent of the
displacement outputs needed to identify the equivalent stiffness distributions. Rewriting as transpose for adjoint equation
of efficient matrix-vector products gives

𝜕KSflutter
𝜕u𝑙

𝑇

=
𝜕û𝑙

𝜕u𝑙

𝑇 𝜕Û
𝜕û𝑙

𝑇
𝜕k̂
𝜕Û

𝑇
𝜕g
𝜕k̂

𝑇 𝜕KSflutter
𝜕g

𝑇

(47)

The different partial derivatives involved in the above relations from the KS aggregation, low-order flutter analysis,
and structural model order reduction, and built-up FEM static solutions are grouped as follows:

𝜕KSflutter
𝜕g︸     ︷︷     ︸

KS aggregation

𝜕g
𝜕k̂

,
𝜕g
𝜕m̂

,
𝜕g
𝜕𝜹

,
𝜕g
𝜕Î︸                ︷︷                ︸

Low-order flutter analysis

𝜕k̂
𝜕Û

,
𝜕m̂
𝜕m

,
𝜕𝜹

𝜕m
,
𝜕Î

𝜕m︸                   ︷︷                   ︸
Model order reduction

𝜕m
𝜕M𝐷

,
𝜕Û
𝜕û𝑙

,
𝜕ûl
𝜕u𝑙︸               ︷︷               ︸

Pre-processing

𝜕u𝑙

𝜕x
= 0,

𝜕MD
𝜕x︸             ︷︷             ︸

Built-up FEM

(48)

The calculation of these terms is discussed below.

3. Computing 𝜕m/𝜕M𝐷 and 𝜕M𝐷/𝜕x
The derivatives of the built-up FEM mass matrix 𝜕M𝐷/𝜕x are provided by built-up FEM structural solver and are

not detailed here, see Ref. [20] for details about the implementation used in this work. The operationm → M𝐷 is a
reduction operation, thus the derivative 𝜕m/𝜕M𝐷 is a sparse matrix of zeros and ones.

4. Computing 𝜕Û/𝜕û𝑙 and 𝜕û𝑙/𝜕u𝑙

Extracting the displacement vectors û𝑙 associated with the beam reference axis nodes from the built-up FEM
displacement vectors u𝑙 and the assembly operations for stacking these elements into the vector U are a mapping and a
permutation operation, respectively, whose derivatives are given by sparse matrices of ones and zeros. For instance,
𝜕Û/𝜕û𝑙 is a permutation operation, resulting in a partially filled identity matrix that serves to select only the derivatives
related to û𝑙 .

5. Computing Equivalent Inertia Distribution Derivatives
The equivalent inertia distributions are differentiated analytically to compute the partial derivatives 𝜕m̂/𝜕m, 𝜕𝜹/𝜕m,

and 𝜕Î/𝜕m. For optimizations including only structural designs variables considered in this work, these derivatives are
computed for a fixed discretization of the built-up FEM and of the beam reference axis.
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The mass 𝑚̂ 𝑗 of the rigid-body element at the 𝑗 th beam reference axis node ( 𝑗 = 1, . . . , 𝑁̂) is the sum of the nodal
masses of the 𝑁 𝑗 built-up FEM nodes its nearest neighbor:

𝑚̂ 𝑗 =

𝑁 𝑗∑︁
𝑖=1

𝑚𝑖 (49)

The derivative of Eq. (49) with respect to the mass 𝑚𝑘 associated with the 𝑘th built-up FEM node in the nearest neighbor
of the 𝑗 th beam reference axis node is

𝜕𝑚̂ 𝑗

𝜕𝑚𝑘

=

𝑁 𝑗∑︁
𝑖=1

𝜕𝑚𝑖

𝜕𝑚𝑘

= 1 (50)

If the 𝑘th built-up FEM node does not belong to the nearest neighbor of the 𝑗 th beam reference axis node, its nodal
mass does not play a role in Eq. (49) and the derivative (50) is zero. Because Eq. (49) does not depend on the other
built-up FEM mass matrix data, the associated derivatives are also zero:

𝜕𝑚̂ 𝑗

𝜕𝛿𝑘𝑥
= 0

𝜕𝑚̂ 𝑗

𝜕𝛿𝑘𝑦
= 0

𝜕𝑚̂ 𝑗

𝜕𝛿𝑘𝑧
= 0

𝜕𝑚̂ 𝑗

𝜕I𝑘𝑥𝑥
= 0

𝜕𝑚̂ 𝑗

𝜕I𝑘𝑦𝑦
= 0

𝜕𝑚̂ 𝑗

𝜕I𝑘𝑧𝑧
= 0

𝜕𝑚̂ 𝑗

𝜕I𝑘𝑥𝑦
= 0

𝜕𝑚̂ 𝑗

𝜕I𝑘𝑥𝑧
= 0

𝜕𝑚̂ 𝑗

𝜕I𝑘𝑦𝑧
= 0

(51)

The mass offset components 𝛿 𝑗𝑥 , 𝛿 𝑗𝑦 , and 𝛿 𝑗𝑧 of the rigid-body element at the 𝑗 th beam reference axis node are

𝛿 𝑗𝑥 =
1
𝑚̂ 𝑗

𝑁 𝑗∑︁
𝑖=1

𝑚𝑖

(
𝑝𝑖𝑥 + 𝛿𝑖𝑥 − 𝑝 𝑗𝑥

)
𝛿 𝑗𝑦 =

1
𝑚̂ 𝑗

𝑁 𝑗∑︁
𝑖=1

𝑚𝑖

(
𝑝𝑖𝑦 + 𝛿𝑖𝑦 − 𝑝 𝑗𝑦

)
𝛿 𝑗𝑧 =

1
𝑚̂ 𝑗

𝑁 𝑗∑︁
𝑖=1

𝑚𝑖

(
𝑝𝑖𝑧 + 𝛿𝑖𝑧 − 𝑝 𝑗𝑧

)
(52)

The derivatives of Eq. (52) with respect to the built-up FEM mass matrix data are reported for 𝛿 𝑗𝑥 only because the
derivatives for the other mass offset components in Eq. (52) are given by similar relations.
The derivative of 𝛿 𝑗𝑥 with respect to the mass 𝑚𝑘 associated with the 𝑘th built-up FEM node in the nearest neighbor

of the 𝑗 th beam reference axis node is given by

𝜕𝛿 𝑗𝑥

𝜕𝑚𝑘

=
1
𝑚̂ 𝑗

[(𝑝𝑘𝑥 + 𝛿𝑘𝑥 ) − (𝑝 𝑗𝑥 + 𝛿 𝑗𝑥 )] (53)

The derivatives with respect to the mass offset components associated with the 𝑘th built-up FEM node are

𝜕𝛿 𝑗𝑥

𝜕𝛿𝑘𝑥
=
𝑚𝑘

𝑚̂ 𝑗

𝜕𝛿 𝑗𝑦

𝜕𝛿𝑘𝑦
= 0

𝜕𝛿 𝑗𝑧

𝜕𝛿𝑘𝑧
= 0 (54)

If the 𝑘th built-up FEM node does not belong to the nearest neighbor of the 𝑗 th beam reference axis node, the
derivatives (53) and (54) are zero. Because Eq. (49) does not depend on the built-up FEM inertia tensor data, the
associated derivatives are also zero:

𝜕𝛿 𝑗𝑥

𝜕I𝑘𝑥𝑥
= 0

𝜕𝛿 𝑗𝑥

𝜕I𝑘𝑦𝑦
= 0

𝜕𝛿 𝑗𝑥

𝜕I𝑘𝑧𝑧
= 0

𝜕𝛿 𝑗𝑥

𝜕I𝑘𝑥𝑦
= 0

𝜕𝛿 𝑗𝑥

𝜕I𝑘𝑥𝑧
= 0

𝜕𝛿 𝑗𝑥

𝜕I𝑘𝑦𝑧
= 0 (55)
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The independent components of the inertia tensor of the rigid-body element at the 𝑗 th beam reference axis node
( 𝑗 = 1, . . . , 𝑁̂ 𝑗 ) about the local center of mass are given by

Î𝑗𝑥𝑥 =

𝑁 𝑗∑︁
𝑖=1

I𝑖𝑥𝑥 +
𝑁 𝑗∑︁
𝑖=1

𝑚𝑖 {[(𝑝𝑖𝑦 + 𝛿𝑖𝑦 ) − (𝑝 𝑗𝑦 + 𝛿𝑖𝑦 )]2 + [(𝑝𝑖𝑧 + 𝛿𝑖𝑧 ) − (𝑝 𝑗𝑧 + 𝛿 𝑗𝑧 )]2}

Î𝑗𝑦𝑦 =

𝑁 𝑗∑︁
𝑖=1

I𝑖𝑦𝑦 +
𝑁 𝑗∑︁
𝑖=1

𝑚𝑖 {[(𝑝𝑖𝑥 + 𝛿𝑖𝑥 ) − (𝑝 𝑗𝑥 + 𝛿 𝑗𝑥 )]2 + [(𝑝𝑖𝑧 + 𝛿𝑖𝑧 ) − (𝑝 𝑗𝑧 + 𝛿 𝑗𝑧 )]2}

Î𝑗𝑧𝑧 =

𝑁 𝑗∑︁
𝑖=1

I𝑖𝑧𝑧 +
𝑁 𝑗∑︁
𝑖=1

𝑚𝑖 {[(𝑝𝑖𝑥 + 𝛿𝑖𝑥 ) − (𝑝 𝑗𝑥 + 𝛿 𝑗𝑥 )]2 + [(𝑝𝑖𝑦 + 𝛿𝑖𝑦 ) − (𝑝 𝑗𝑦 + 𝛿 𝑗𝑦 )]2}

Î𝑗𝑥𝑦 =

𝑁 𝑗∑︁
𝑖=1

I𝑖𝑥𝑦 −
𝑁 𝑗∑︁
𝑖=1

𝑚𝑖 [(𝑝𝑖𝑥 + 𝛿𝑖𝑥 ) − (𝑝 𝑗𝑥 + 𝛿 𝑗𝑥 )] [(𝑝𝑖𝑦 + 𝛿𝑖𝑦 ) − (𝑝 𝑗𝑦 + 𝛿 𝑗𝑦 )]

Î𝑗𝑥𝑧 =

𝑁 𝑗∑︁
𝑖=1

I𝑖𝑥𝑧 −
𝑁 𝑗∑︁
𝑖=1

𝑚𝑖 [(𝑝𝑖𝑥 + 𝛿𝑖𝑥 ) − (𝑝 𝑗𝑥 + 𝛿 𝑗𝑥 )] [(𝑝𝑖𝑧 + 𝛿𝑖𝑧 ) − (𝑝 𝑗𝑧 + 𝛿 𝑗𝑧 )]

Î𝑗𝑦𝑧 =

𝑁 𝑗∑︁
𝑖=1

I𝑖𝑦𝑧 −
𝑁 𝑗∑︁
𝑖=1

𝑚𝑖 [(𝑝𝑖𝑦 + 𝛿𝑖𝑦 ) − (𝑝 𝑗𝑦 + 𝛿 𝑗𝑦 )] [(𝑝𝑖𝑧 + 𝛿𝑖𝑧 ) − (𝑝 𝑗𝑧 + 𝛿 𝑗𝑧 )]

(56)

The derivatives of Eq. (56) with respect to the built-up FEM lumped mass matrix data are reported for the Î𝑗𝑥𝑥 and Î𝑗𝑥𝑦

components because the derivatives for the other components in Eq. (56) are given by similar relations.
The derivatives of Î𝑗𝑥𝑥 with respect to the mass 𝑚𝑘 associated with the 𝑘th built-up FEM node in the nearest

neighbor of the 𝑗 th beam reference axis node is given by

𝜕Î𝑗𝑥𝑥

𝜕𝑚𝑘

= [(𝑝𝑘𝑦 + 𝛿𝑘𝑦 ) − (𝑝 𝑗𝑦 + 𝛿 𝑗𝑦 )]2 + [(𝑝𝑘𝑧 + 𝛿𝑘𝑧 ) − (𝑝 𝑗𝑧 + 𝛿 𝑗𝑧 )]2 (57)

The derivatives with respect to the mass offset components associated with the 𝑘th built-up FEM node are

𝜕Î𝑗𝑥𝑥

𝜕𝛿𝑘𝑥
= 0

𝜕Î𝑗𝑥𝑥

𝜕𝛿𝑘𝑦
= 2𝑚𝑘 [(𝑝𝑘𝑦 + 𝛿𝑘𝑦 ) − (𝑝 𝑗𝑦 + 𝛿 𝑗𝑦 )]

𝜕Î𝑗𝑥𝑥

𝜕𝛿𝑘𝑧
= 2𝑚𝑘 [(𝑝𝑘𝑧 + 𝛿𝑘𝑧 ) − (𝑝 𝑗𝑧 + 𝛿 𝑗𝑧 )] (58)

The derivatives with respect to the inertia tensor components for the 𝑘th built-up FEM node are

𝜕Î𝑗𝑥𝑥

𝜕I𝑘𝑥𝑥
= 1

𝜕Î𝑗𝑥𝑥

𝜕I𝑘𝑦𝑦
= 0

𝜕Î𝑗𝑥𝑥

𝜕I𝑘𝑧𝑧
= 0

𝜕Î𝑗𝑥𝑥

𝜕I𝑘𝑥𝑦
= 0

𝜕Î𝑗𝑥𝑥

𝜕I𝑘𝑥𝑧
= 0

𝜕Î𝑗𝑥𝑥

𝜕I𝑘𝑦𝑧
= 0 (59)

If the 𝑘th built-up FEM node does not belong to the nearest neighbor of the 𝑗 th beam reference axis node, the
derivatives (57) to (59) are all zero.
For the off-diagonal component Î𝑗𝑥𝑦 , Eq. (57) becomes

𝜕Î𝑗𝑥𝑦

𝜕𝑚𝑘

= −[(𝑝𝑘𝑥 + 𝛿𝑘𝑥 ) − (𝑝 𝑗𝑥 + 𝛿 𝑗𝑥 )] [(𝑝𝑘𝑦 + 𝛿𝑘𝑦 ) − (𝑝 𝑗𝑦 + 𝛿 𝑗𝑦 )] (60)

Equation (58) becomes

𝜕Î𝑗𝑥𝑦

𝜕𝛿𝑘𝑥
= −𝑚𝑘 [(𝑝𝑘𝑦 + 𝛿𝑘𝑦 ) − (𝑝 𝑗𝑦 + 𝛿 𝑗𝑦 )]

𝜕Î𝑗𝑥𝑦

𝜕𝛿𝑘𝑦
= −𝑚𝑘 [(𝑝𝑘𝑥 + 𝛿𝑘𝑥 ) − (𝑝 𝑗𝑥 + 𝛿 𝑗𝑥 )]

𝜕Î𝑗𝑥𝑦

𝜕𝛿𝑘𝑧
= 0 (61)

Finally:
𝜕Î𝑗𝑥𝑦

𝜕I𝑘𝑥𝑥
= 0

𝜕Î𝑗𝑥𝑦

𝜕I𝑘𝑦𝑦
= 0

𝜕Î𝑗𝑥𝑦

𝜕I𝑘𝑧𝑧
= 0

𝜕Î𝑗𝑥𝑦

𝜕I𝑘𝑥𝑦
= 1

𝜕Î𝑗𝑥𝑦

𝜕I𝑘𝑥𝑧
= 0

𝜕Î𝑗𝑥𝑦

𝜕I𝑘𝑦𝑧
= 0 (62)
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If the 𝑘th built-up FEM node is not in the nearest neighbor of the 𝑗 th beam reference axis node, the derivatives (60)
to (62) are zero.
The analytical derivatives in this section are simplified using the definition of local center of mass associated with

the 𝑘 beam reference axis node:
1
𝑚̂ 𝑗

𝑁 𝑗∑︁
𝑖=1

𝑚𝑖 [(𝑝𝑖𝑥 + 𝛿𝑖𝑥 ) − (𝑝 𝑗𝑥 + 𝛿 𝑗𝑥 )] = 0

1
𝑚̂ 𝑗

𝑁 𝑗∑︁
𝑖=1

𝑚𝑖 [(𝑝𝑖𝑦 + 𝛿𝑖𝑦 ) − (𝑝 𝑗𝑦 + 𝛿 𝑗𝑦 )] = 0

1
𝑚̂ 𝑗

𝑁 𝑗∑︁
𝑖=1

𝑚𝑖 [(𝑝𝑖𝑧 + 𝛿𝑖𝑧 ) − (𝑝 𝑗𝑧 + 𝛿 𝑗𝑧 )] = 0

(63)

The derivatives with respect to the built-up FEM mass offsets and inertia tensors are reported for completeness, but
not used in this work where these quantities are associated with rigid-body elements representing non-structural mass
distributions that are not optimized.

6. Computing Equivalent Stiffness Distribution Derivatives
The equivalent stiffness distributions in Fig. (1) are differentiated numerically using the complex-step method to

compute the partial derivatives 𝜕k̂/𝜕Û. A finite-difference implementation is developed for verification.
Figure 2 shows a high-level schematic of the equivalent stiffness identification (see Refs. [14, 15] for details on

each block). The stiffness module inputs are the 3𝑁 × 1 vector p listing the built-up FEM node coordinates, the 3𝑁̂ × 1
vector p̂ listing the coordinates of the beam reference axis nodes, and the 36𝑁̂ × 1 vector Û of the built-up FEM static
displacements (translations and rotations) for the six static load cases at the beam reference axis nodes. The module
output is the 10(𝑁̂ −1) ×1 vector 𝒌̂ of the equivalent stiffness distributions describing the low-order beam representation
of the built-up FEM based on the formulation of Su and Cesnik [13]. Because the quantities p and p̂ are constant in
optimizations that consider only structural sizing variables, the equivalent stiffness module is differentiated to compute
only the partials 𝜕k̂/𝜕Û.

7. Computing Flutter Analysis and Aggregation Derivatives
The flutter analysis and constraint aggregation are differentiated in part analytically and in part using automated

differentiation (AD) to compute the partial derivatives 𝜕g/𝜕k̂, 𝜕g/𝜕m̂, 𝜕g/𝜕𝜹 and 𝜕g/𝜕Î and 𝜕KSflutter/𝜕g.
The flutter analysis involves linearizing the equations of motion about the equilibrium states at selected flight

conditions to obtain the state-space matrices in Eq. (16) and extract their eigenvalues. The real part of the eigenvalues
(damping) are bounded by a safety margin and aggregated to evaluate the flutter constraint in Eq. (19). The aggregation
is conducted in two steps by first aggregating all the bounded damping values for different modes at each flight condition
and by then aggregating the resulting quantities over the flight conditions.
The linearization process leverages a nonlinear aeroelastic framework described in Sec. III, the University of

Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST) [6]. In this work, a AD-based module associated
with UM/NAST was developed to compute the derivatives of the nested KS aggregation (over the modes for a given
flight condition) to obtain the partial derivatives of the aggregate values with respect to the equivalent beam inertia and
stiffness distributions. The derivatives of the outer KS aggregation are given by the analytical derivatives of the KS
function, and the two sets of derivatives are coupled to compute the derivatives of the flutter constraint with respect to
the equivalent inertia and stiffness distributions. A finite-difference calculation is also developed for verifying the AD
implementation.

III. Computational Implementation
This section describes the computational framework for high-fidelity, gradient-based wing structural optimization

that implements the methodology of Sec. II. The novel contribution from this work consists of coupling the modules
described below to evaluate the geometrically nonlinear flutter constraint, obtaining the partial derivatives of each
module, and evaluating the constraint adjoint derivatives with respect to the built-up FEM structural sizing variables.

11

https://arc.aiaa.org/doi/10.2514/6.2022-2092


This is a preprint of: Jonsson et al., “High-Fidelity Gradient-Based Wing Structural Optimization Including a Geometrically
Nonlinear Flutter Constraint,” 2022 AIAA SciTech Forum, San Diego, CA & Online, January 3–7, 2022.
The published article may differ from this preprint and is available at: https://arc.aiaa.org/doi/10.2514/6.2022-2092.

k̂

Built-up FEM, RBE3sSix load cases

p, p̂

Built-up FEM linear static solver

Beam model

Relative local displacements

Displacement-based stiffness matrices (6 × 6)

Strain-based flexibility matrices (6 × 6)

Û

Symmetry enforcement

Symmetry enforcement

Symmetry enforcement

Strain-based flexibility matrices (4 × 4)

Strain-based stiffness matrices (4 × 4)

Local displacements

Fig. 2 Computational procedure for equivalent stiffness module.
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A. Optimization Algorithm
The optimization algorithm is SNOPT (Sparse Nonlinear OPTimizer) [21], a gradient-based optimizer that

implements a sequential quadratic programming (SQP) algorithm. SNOPT uses an augmented Lagrangian merit
function; the Hessian of the Lagrangian is approximated using a quasi-Newton approach that is suited to optimization
problems with many sparse nonlinear constraints. The interface with SNOPT is handled by pyOptSparse∗ [22], an
implementation of pyOpt [23] that eases defining large sparse Jacobians crucial to the performance of large scale
optimizers like SNOPT.

B. High-Fidelity Structural Analysis
The structural analysis solver is the Toolkit for the Analysis of Composite Structures (TACS) [20].†, an open-source

parallel finite element solver that handles poorly conditioned problems common in aircraft thin-walled structures. For
such cases, the stiffness matrix condition numbers may exceed O(109), but TACS can solve these poorly conditioned
problems using a Schur-complement-based parallel direct solver. Sensitivities of structural functions of interest with
respect to structural and geometric design variables are computed efficiently using the adjoint method [20].

C. Low-Order Flutter Analysis
The geometrically nonlinear flutter constraint is evaluated based on damping values from aeroelastic eigenvalue

analyses about the equilibrium states at selected flight conditions. These eigenvalue analyses are conducted in
UM/NAST [6], a low-order multidisciplinary framework for modeling, analyzing, and simulating very flexible wings
and complete aircraft in free flight.
UM/NAST describes an aircraft as a set of beams representing different components (wing, fuselage, etc.) that

undergo arbitrary structural deflections relative to a body-fixed frame in rigid-body motion within an inertial frame.
Structural deflections are described by the strain-based, geometrically exact beam formulation of Su and Cesnik [13],
which uses element strains (axial extension and bending/torsion curvatures) as the independent degrees of freedom and
recovers the deformed shape by integrating nonlinear kinematic relations [6, 13].
UM/NAST handles different loads including gravity, point/distributed forces and moments, and aerodynamics.

Aerodynamic loads can be computed using multiple formulations, such as the potential-flow unsteady airfoil theory of
Peters et al. [16] used in this work. This formulation assumes strip theory: the aerodynamic loads at the cross sections
of the beam element nodes depend only on the local flow and control parameters (angle of attack, Mach number, etc.).
These aerodynamic loads may be corrected for compressibility, sweep, or tip losses using analytical relations. Unsteady
aerodynamic effects are captured by a set of aerodynamic states representing inflow expansions [16].
This work leverages the UM/NAST capability to conduct aeroelastic eigenvalue analyses in the frequency domain.

The process consist of linearizing the nonlinear equations of motion about the equilibrium states at chosen flight envelope
points to compute the local state-space matrices, extract their eigenvalues, and post-processing them to compute the
flutter point. The post-processing is skipped for optimization because the flutter constraint is posed on the damping
values rather the flutter point.

D. Structural Model Order Reduction
To evaluate the geometrically nonlinear flutter constraint it requires reducing the built-up FEM in TACS at a given

optimization step to an equivalent beam representation in UM/NAST (see Sec. II). The equivalent beam distributions
of the TACS built-up FEM are computed using the University of Michigan’s Enhanced FEM2Stick (UM/EF2S)
code [14, 15], which has been enhanced with derivative capabilities. The outputs from EF2S are fed to UM/NAST
to compute the geometrically nonlinear flutter constraint and its derivatives with respect to the equivalent inertia and
stiffness distributions. The total derivatives of the geometrically nonlinear flutter constraint with respect to the built-up
FEM structural design variables used in TACS are obtained from the adjoint formulation introduced in Sec. II.B.

IV. Optimization Problem
This section describes the optimization problem used for demonstrating the proposed methodology. Section IV.A

describes the baseline wingbox being optimized and Sec. IV.B reports the optimization problem statement.
∗https://github.com/mdolab/pyoptsparse
†https://github.com/gjkennedy/tacs
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Fig. 3 Baseline wing model.

A. Baseline Model
The baseline wing model is shown in Fig. 3. The model consists of a rectangular, untwisted wing with a unit chord,

an aspect ratio of 12, and a constant NACA 0012 aerodynamic cross section. The structural wingbox spans from
15% to 65% of the aerodynamic chord and its sizing is determined from a preliminary structural optimization under
representative 2.5 g aerodynamic loads, without a flutter constraint. The resulting optimized structural mass is 68.5 kg.
The wingbox model is completed by three 15-kg non-structural point masses along the trailing edge at each third of
the semispan. These non-structural masses make the baseline model flutter over a range of flight speeds and angles of
attack that result in a sensible range of static aeroelastic deformed shapes. Because the non-structural masses are not
optimized, they are included into the UM/NAST equivalent beam model of the wingbox as rigid-body elements that are
not differentiated against, differently from the structural equivalent inertia distributions that are updated at each step.
To evaluate the geometrically nonlinear flutter constraint, the wingbox built-up FEM in TACS is condensed to an

equivalent beam model in UM/NAST at each optimization step. The beam reference axis is at 41% of the aerodynamic
chord and is discretized in 8 reference nodes corresponding to 7 three-node beam finite elements in UM/NAST. For the
stiffness condensation, each beam reference axis node is connected to the leading and trailing edges of its corresponding
cross section by an interpolation element akin to a MSC Nastran RBE3 element. Figure 4 shows the TACS and
UM/NAST models overlapped. The equivalent beam model in UM/NAST is coupled to a potential-flow unsteady thin
airfoil model [16] with a zero-thickness, flat-plate cross section. The resulting low-order aeroelastic model is used
for evaluating the geometrically nonlinear flutter constraint while the other functions of interest are evaluated on the
built-up FEM directly. This choice allows for capturing realistic structural details and their influence on the wing mass
and stress levels while keeping the geometrically nonlinear flutter analysis tractable for the optimization.

B. Optimization Statement
Table 1 summarizes the optimization problem for demonstrating the methodology of Sec. II. The optimization

minimizes the wingbox mass by varying the thickness of the skin, spar, and rib panels. Each wingbox panel is treated as
a non-stiffened shell element and given its own thickness variable, resulting in 76 structural sizing variables.
The primary constraint is the geometrically nonlinear flutter constraint evaluated in UM/NAST based on the

formulation of Section II.A. This constraint aggregates the damping values from a set of aeroelastic eigenvalue
analyses at fixed angle of attack and varying speed. The aggregation provides a continuous, smooth, and differentiable
approximation to the most positive damping value for a given design. The damping values are bounded by a threshold
of 0.12 rad/s that is constant with speed and are aggregated using a constant aggregation parameter 𝜌KS = 100 for
all modes and flight conditions. The positive threshold is introduced to avoid constraint violations associated with
marginally stable in-plane modes, achieving a similar effect as adding structural damping.

14

https://arc.aiaa.org/doi/10.2514/6.2022-2092


This is a preprint of: Jonsson et al., “High-Fidelity Gradient-Based Wing Structural Optimization Including a Geometrically
Nonlinear Flutter Constraint,” 2022 AIAA SciTech Forum, San Diego, CA & Online, January 3–7, 2022.
The published article may differ from this preprint and is available at: https://arc.aiaa.org/doi/10.2514/6.2022-2092.

Fig. 4 Baseline wing TACS and UM/NAST structural models.

Table 1 Optimization formulation.

Function/variable Description Quantity
minimize 𝑀 Wingbox mass

with respect to 𝑡 Panel thicknesses of skins/spars/ribs 76
subject to KSflutter ≤ 0 KS aggregate of modal damping values 1

KSstress ≤ 1 KS aggregates of 2.5 g Yield stress values 4
|𝑡skin, 𝑖 − 𝑡skin, 𝑖+1 | ≤ 0.005 Skin adjacency constraints 28
|𝑡spar, 𝑖 − 𝑡spar, 𝑖+1 | ≤ 0.005 Spar adjacency constraints 28

In addition to the geometrically nonlinear flutter constraint, the optimization includes stress constraints. Each panel
is constrained not to exceed its failure criterion at a representative 2.5 g flight condition. The constraints for groups of
panels are KS-aggregated to reduce the total number of constraints, resulting in four failure constraints: one for the upper
skins, one for the lower skins, one for both spars, and one for the ribs. The stress constraints are evaluated in the built-up
FEM subject to pre-computed loads to allow for a more accurate representation of the wingbox stress levels. The
optimization also includes a set of linear adjacency constraints that limit the thickness change between any two adjacent
skin or spar panels to be less than 5 mm. These constraints enforce more realistic structural designs and improve the
optimizer performance by limiting the design space, even in cases where the adjacency constraints are not active.
Three optimization problems are solved by evaluating the geometrically nonlinear flutter constraint for different

values of the root angle of attack 𝛼 = 0◦, 3◦, and 6◦. These cases are considered to investigate the impact of geometrically
nonlinear effects on the optimal design. For zero angle of attack, the geometrically nonlinear flutter constraint reduces to
a linear flutter constraint that considers the wing undeformed shape; for non-zero angle of attack, the wing experiences
static aeroelastic deflections (which vary with the flight condition) that modify the flutter boundary and the constraint
value, leading to different results. The flutter analysis considers the speed range 𝑉 = 10 → 180 m/s sampled with 10
equally spaced points and assumes sea-level conditions. These conditions, subject to the specified angles of attack, are
chosen to result in no, medium, and large static aeroelastic displacements. Subsonic compressibility effects are handled
by means of the Prandtl-Glauert correction and unsteady aerodynamic effects by adding six inflow states per beam
element according to the potential-flow unsteady thin airfoil theory of Peters et al. [16]. Three-dimensional aerodynamic
effects are not considered in the flutter analysis, but they will be incorporated as a future development. This could be
done by applying a tip loss factor correction to the strip theory model, or by specifying a variable lift curve slope along
the span derived from a three-dimensional aerodynamic model (e.g., CFD model).
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Table 2 Verification of the total derivatives of the flutter constraint KSflutter with respect to selected structural
design variables (relative finite-difference step size ℎ = 10−3).

Derivative formulation
Design variable Finite difference Adjoint Δ (%)

𝑥Rib 4 −14.108794 −14.114520 4.0586×10−2

𝑥Front spar 4 −739.824090 −739.809480 1.9747×10−3

𝑥Rear spar 4 −615.554519 −615.548978 9.0021×10−4

𝑥Upper skin 12 −900.766347 −900.753299 1.4486×10−3

𝑥Lower skin 12 −900.415733 −900.398323 1.9335×10−3

C. Derivative verification
The total derivatives of the geometrically nonlinear flutter constraint with respect to the built-up FEM structural

sizing variables are verified by comparing the values computed from the developed adjoint formulation (Sec. II.B) with
a second-order central finite-difference approximation applied to the entire derivative chain:

𝑑F
𝑑x

=
F (x + ℎ) − F (x − ℎ)

2ℎ
+𝑂 (ℎ2).

A step-size study is performed, and the resulting relative step used for the verification is ℎ = 10−3. Table 2 compares the
derivatives for selected design variables computed using the finite-difference approximation and the adjoint formulation.
The derivative values agree with each other for all design variables, showing relative errors from about 0.001% to 0.04%.
The level of agreement for the total derivatives reported in Table 2 is representative of all the total derivatives: the
average relative difference between the finite-difference and adjoint results is 0.005%.

V. Optimization Results
Table 3 summarizes the objective function value and state of the constraints of the optimized designs. The wingbox

mass (objective function) is impacted by including the flutter constraint. For the 𝛼 = 0◦ case, resulting in a linear flutter
analysis of the wing undeformed shape, the mass penalty due to the flutter constraint is 11.1% of the baseline mass. In the
non-zero angle of attack cases 𝛼 = 3◦ and 6◦, the wing experiences static aeroelastic deflections, which vary with speed,
resulting in a geometrically nonlinear flutter analysis. In these cases, the mass penalty increases to 38.1% and 52.7% of
the baseline mass—more than three and five times the mass penalty from the linear flutter constraint—demonstrating
the importance of considering geometrically nonlinear effects when optimizing high-aspect-ratio wings.
The stress constraints on the ribs and spars are inactive for all optimized designs, while the stress constraints on

the upper skins are always active. The stress constraints on the lower skins are active for the baseline and the 𝛼 = 0◦
case but are not active for the 𝛼 = 3◦ and 𝛼 = 6◦ cases. This behavior can be explained by analyzing the structural
sizing for each optimized design along with its difference compared to the baseline, shown in Fig. 5. The optimized
designs increase the thickness of the spars, upper, and lower skins, with higher angle of attack to satisfy the added flutter
constraint. The increased thickness of the spars results in smaller deflections, which mitigates the skin stress levels.
Thickness also increases substantially for the lower skins in the 𝛼 = 3◦ and 𝛼 = 6◦ cases compared with the baseline and
the 𝛼 = 0◦, more than for the upper skins.
A detailed mass breakdown for each group of components is given in Table 4. Except for the optimized design at

𝛼 = 0◦, all ribs remain unchanged, at the lower bound, compared with the baseline wing. All optimized designs show a
significant increase in the spar thickness, especially for the front spar. This is expected, as placing mass ahead of the
elastic axis has stabilizing aeroelastic benefits. Additionally, increasing the spar thicknesses is the most mass-efficient
way for the optimizer to increase the torsional stiffness of the wingbox, which mitigates flutter. The upper and lower
skins also show a significant increase in mass compared with the baseline, except for the 𝛼 = 0◦ case (the linear flutter
analysis), where there is only a marginal increase. These sizing differences are attributed to the fact that the critical
flutter modes for the non-zero angle of attack cases involve a different mechanism compared with the 𝛼 = 0◦ case
(discussed below), involving a geometrically nonlinear coupling of in-plane bending and torsion resulting from static

16

https://arc.aiaa.org/doi/10.2514/6.2022-2092


This is a preprint of: Jonsson et al., “High-Fidelity Gradient-Based Wing Structural Optimization Including a Geometrically
Nonlinear Flutter Constraint,” 2022 AIAA SciTech Forum, San Diego, CA & Online, January 3–7, 2022.
The published article may differ from this preprint and is available at: https://arc.aiaa.org/doi/10.2514/6.2022-2092.

Table 3 Optimization results (empty circle = inactive constraint, filled circle = active constraint).

Flutter constraint angle of attack
Baseline 0◦ 3◦ 6◦

Wingbox mass [kg] 68.5 76.1 (+11.1%) 94.6 (+38.1%) 104.6 (+52.7%)
KSflutter
KSstress for ribs
KSstress for spars
KSstress for upper skins
KSstress for lower skins

aeroelastic deflections [4, 24]. At non-zero angle of attack, the optimizer also uses the skin thickness to influence the
stiffness associated with in-plane bending motions to delay flutter. At zero angle of attack, the optimizer delays flutter
primarily by thickening the front spar. While the optimized design at 𝛼 = 6◦ has the largest increase in skin thickness,
the spars show a smaller increase compared to the optimized design at 𝛼 = 3◦.
The optimized structural sizing is reflected in the static aeroelastic response. Figure 6 shows the wing displacements

normalized by the semispan and twist distribution along the span for all optimal designs at the maximum velocity
considered in the flutter analyses, 180 m/s. The baseline out-of-plane bending tip displacements range from 0–50% of
the semispan, compared to 0–29% across all optimized designs. Wing shortening effects are attenuated compared to the
baseline design, demonstrating overall stiffer designs. Twist angles are also smaller in the optimized designs than the
baseline: the optimized twist distribution along the span is closer to linear, while the baseline twist angles flatten closer
to the tip due to geometrically nonlinear effects. Overall, the smaller static aeroelastic deflections in the optimized
designs can be directly attributed to the increased spar thickness, resulting in a stiffer structure.
Figure 7 and Table 5 show the structural vibration modes of the wing in its undeformed configuration, where OOP,

IP, and T refer to out-of-plane bending, in-plane bending, and torsion modes respectively. The offset location of the
concentrated masses couples OOP bending and torsion in all designs, causing no pure torsional modes but several
coupled bending-torsion modes. While the mode shapes are similar across all designs, the frequency values and
frequency separation increase with the angle of attack considered in the flutter analysis because of the added structural
thickness to satisfy the flutter constraint.
The flutter constraint is active for all optimized designs, as highlighted in the individual damping plots of Fig. 8.

While the flutter analysis considers the complete set of aeroelastic modes, only the first four modes are visualized to
highlight the critical modes. Figure 9 compares the optimized and baseline designs across all cases. Regardless of the
angle of attack, the baseline design is flutter critical. In contrast, the previously unstable modes are pushed below the
0.12 rad/s damping threshold for all optimized designs at the velocity points used in the optimization.
The critical mode and flutter characteristics vary with the angle of attack and static deflection. For the undeformed

case, 𝛼 = 0◦, the two fluttering modes for the baseline design are modes 3 and 4, which involve coupled out-of-plane
bending and torsion. By increasing the thickness of the front spar, the optimizer slightly increases the frequencies of
these modes but also, more importantly, alters the bend-twist coupling of the modes such that they have weaker damping
characteristics. Mode 2, an in-plane bending mode, is unaffected by the optimization because it does not interact with
aerodynamics for this undeformed case.
With non-zero angle of attack, i.e., including static aeroelastic deflections, the mode that originates from the in-plane

structural mode 2, is the critical mode for the baseline design and remains active at both the 𝛼 = 3◦ and 𝛼 = 6◦ optimal
designs. As mentioned above, this behavior is driven by the coupling of in-plane bending and torsion motions in the
presence of static aeroelastic deflections and the optimizer attenuates this mode by increasing the thickness of both spars
and skins of the wingbox.

VI. Concluding Remarks
This paper presented a framework for high-fidelity, gradient-based wing structural optimization subject to a

geometrically nonlinear flutter constraint. The framework evaluates the objective function (mass) and the stress and
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Table 4 Breakdown of the optimized mass [kg] and change relative to the baseline design.

Flutter constraint angle of attack
Baseline 0◦ 3◦ 6◦

Group Mass [kg] Mass [kg] Δ[%] Mass [kg] Δ[%] Mass [kg] Δ[%]

Ribs 4.8 6.3 30.2 4.8 0.0 4.8 0.0
Front spar 3.4 5.5 61.4 9.4 173.3 9.0 161.8
Rear spar 2.8 3.1 11.9 7.7 176.0 7.3 161.5
Upper skin 29.4 29.8 1.2 35.9 21.9 40.9 39.1
Lower skin 28.1 30.4 8.5 36.9 31.5 42.6 52.0

(a) Baseline sizing, optimized without flutter constraint

(b) Optimized sizing with flutter constraint for 𝛼 = 0◦ (c) Sizing difference with flutter constraint for 𝛼 = 0◦ and without

(d) Optimized sizing with flutter constraint for 𝛼 = 3◦ (e) Sizing difference with and without flutter constraint for 𝛼 = 3◦

(f) Optimized sizing with flutter constraint for 𝛼 = 6◦ (g) Sizing difference with and without flutter constraint for 𝛼 = 6◦

Fig. 5 Comparison of the baseline and optimized structural sizing.
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Fig. 6 Static aeroelastic response of the baseline and optimized designs at 𝑉 = 180 m/s.
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(c) 𝛼 = 6◦

Fig. 7 Mode shapes of the baseline (dash) and optimized (solid) designs.

Table 5 Structural frequencies of the baseline and optimized designs.

Flutter constraint angle of attack
Baseline 0◦ 3◦ 6◦

Mode f [Hz] Type f [Hz] Δ[%] f [Hz] Δ[%] f [Hz] Δ[%]

1 3.44 OOP1 3.47 0.9 4.01 16.6 4.26 23.8
2 10.24 IP1 10.60 3.5 13.47 31.5 13.86 35.4
3 17.07 IP2+T2 17.65 3.4 17.63 3.3 18.13 6.2
4 28.37 OOP1+T1 28.69 1.1 34.32 21.0 36.11 27.3
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Fig. 8 Flutter analysis of baseline and optimized designs for each angle of attack.
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Fig. 9 Flutter analysis of all baseline and optimized designs.
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adjacency constraints in a high-fidelity, built-up FEM to capture the realistic structural details. The built-up FEM at
each optimization step is reduced to a low-order beam representation to make geometrically nonlinear flutter analysis
tractable for optimization. The geometrically nonlinear flutter analysis considers the wing deformed shape at each flight
condition and aggregates the associated damping values into a scalar flutter constraint.
The methodology was implemented into a computational environment that couples the built-up FEM solver

TACS with the UM/NAST nonlinear aeroelastic solver using the EF2S framework to compute the equivalent beam
representation of the built-up FEM at each optimization step. The total derivatives of the geometrically nonlinear flutter
constraint evaluated using UM/NAST with respect to the TACS built-up FEM structural sizing variables were computed
using the adjoint method. The methodology was demonstrated by minimizing the mass of a high-aspect-ratio wingbox
subject to the geometrically nonlinear flutter constraint along with stress and adjacency constraints. The geometrically
nonlinear flutter constraint added a mass penalty more than five times the one from a linear flutter constraint for the
maximum angle of attack considered in the study. Using geometrically nonlinear analysis also revealed a different
critical flutter mode, leading to significantly different thickness distributions in the optimized wingbox designs.
This work is a step toward considering geometrically nonlinear effects and dynamic aeroelasticity early in the aircraft

design cycle to prevent flutter. Future work will investigate the impact of the structural model reduction and different
geometrically nonlinear effects on the optimal design and include aerodynamic design variables.
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