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The conceptual design process of aircraft starts by deciding the representative mission
requirements, followed by optimization of design variables to satisfy the given requirements.
However, selecting appropriate mission requirements is not an obvious task, particularly when
designing the package delivery UAVs because UAVs must accommodate the various combi-
nations of package weight and delivery distances. The complexity increases further when
designing a heterogeneous fleet of UAVs that serves a large number of customers. In this work,
we tackle this problem by solving the coupled design-operation optimization to find the optimal
mission requirements and the optimal UAV designs simultaneously. We formulate this problem
as mixed-integer nonlinear optimization and propose a sequential heuristic algorithm to solve
the coupled problem. The benchmark study of the proposed algorithm against a non-convex
branch-and-cut solver shows that the sequential heuristics are effective. We also demonstrate
that the simultaneous UAV design and routing optimization reduces the fleet acquisition cost
by more than 10% on average compared to the conventional baseline.

1. Introduction
The unmanned aerial system (UAS) is a viable option for transporting commercial packages and medical supplies.

Unmanned aerial vehicles (UAVs) deliver faster than trucks and are not dependent on ground road networks or traffic
conditions. Among several UAV configurations, the electric vertical takeoff and landing (eVTOL) UAV has potential as
a solution for lightweight package delivery. One of the active research fields on the eVTOL UAV is the conceptual
design methodology, which is not yet established because of the lack of historical data and knowledge.

For package delivery applications, Sridharan et al. [1] performed the conceptual sizing study of quadrotor biplane
tailsitter (QBiT) configuration [2] for various payload weights and mission ranges. Govindarajan and Sridharan [3]
presented an optimization-based conceptual design approach and applied it to four eVTOL configurations including
QBiT and hexarotor. Work on multirotor design with no wing includes Bershadsky et al. [4], Winslow et al. [5],
and Delbecq et al. [6].

Regardless of the model or aircraft configuration, the conceptual design process starts by setting appropriate mission
requirements, for which engineers optimize the sizing variables. The research question here is: how should engineers
choose appropriate mission requirements? This is a challenging task for a package delivery UAV because the UAV
needs to perform delivery missions of various package weights and delivery distances. The problem becomes even
more complicated when we design a fleet of UAVs that serves a large number of customers. In this work, we tackle this
challenge using multidisciplinary design optimization (MDO) to find the optimal mission requirements and the optimal
UAV designs at the same time. We achieve this goal by simultaneously optimizing the UAV fleet design and delivery
operations for the minimum fleet acquisition cost.

The optimization of delivery operations is called a vehicle routing problem (VRP), an integer optimization problem
that seeks the optimal routes of a set of vehicles given the customer demands. The VRP has traditionally been studied for
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truck delivery, and recently, there have also been research efforts on UAV routing [7–9]. The recent literature includes
truck-UAV collaborative delivery [10–12] as well as the UAV-only delivery [13–16]. One crucial aspect that arises in
UAV routing problems is the energy consumption modeling. Because of the limited energy capacity of UAVs, the range
or duration is a limiting factor for UAVs, unlike conventional trucks. Dorling et al. [13] solved a UAV routing problem
using the linear approximation of the energy consumption model based on the momentum theory in hover. Cheng et al.
[16] extended their work by incorporating a nonlinear energy model into UAV routing. There have also been research
efforts that assess the sustainability impact of UAV delivery by solving the UAV routing with energy models [11, 17, 18].
Other energy consumption models used in the UAV routing literature are summarized in Zhang et al. [19].

The literature mentioned above all solved VRP to a make short-term tactical decision, i.e., to decide the delivery
schedule using an existing fleet. Our goal in this paper is to make a long-term strategic decision on the UAV fleet design
via VRP instead of tactical decisions. This type of VRP for a strategic decision is categorized as fleet size and mix VRP
(FSMVRP) [20, 21], which aims at finding the optimal number and composition of vehicles in the fleet to maximize
long-term profit. Accordingly, the customer information on which FSMVRP is solved should represent the demand over
a life cycle of the fleet. Compared to the rich literature of ordinary VRPs for tactical routing, FSMVRP has drawn
less attention from the research community; the previous work on UAV FSMVRP is limited to Troudi et al. [22] and
Choi [23], where both work studied homogeneous fleet sizing. In the current work, we seek to expand the scope of
FSMVRP by coupling it to the UAV conceptual design optimization. To the authors’ best knowledge, there has been
no literature on the truck or ship FSMVRP that includes the vehicle or vessel design variables. This is not a surprise
given that the delivery or transportation company does not usually have the freedom to design the vehicle or vessel
by themselves. However, because of the cheap unit cost of UAVs, it is possible for the delivery service providers to
also design the UAVs for their own use. The only preceding work of the UAV design-routing optimization is by Choi
[23]. They performed sequential optimization of multi-trip VRP and UAV design on a 20-node problem with up to 3
homogeneous UAVs. In the current work, we aim to expand the problem scope by considering a heterogeneous fleet,
including more UAV design variables such as cruise speed and payload capacity, and solving larger-scale problems.

Although the application is not package delivery, there have been several works on simultaneous optimization of
commercial aircraft design and operations. Taylor and de Weck [24] used simulated annealing in combination with
a linear programming solver to optimize the aircraft conceptual design and cargo network flow. Mane et al. [25]
proposed a sequential decomposition approach to solve the aircraft sizing and airline allocation optimization, and
they compared their approach to a mixed-integer nonlinear programming (MINLP) exact solver. Davendralingam and
Crossley [26] used the decomposition method by Mane et al. [25] to perform robust optimization of aircraft design and
airline network design. Jansen and Perez [27] also optimized the aircraft design and fleet allocation by decomposing the
design-allocation coupled problem. In contrast to the decomposition-based approaches in the aforementioned literature,
Hwang et al. [28] used a monolithic MDO architecture [29] to solve the coupled optimization of computational fluid
dynamics (CFD)-based aircraft design, airline allocation, and flight trajectory. They used continuous relaxation of
the allocation problem to enable large-scale optimization. Roy et al. [30] proposed a surrogate-based monolithic
optimization framework to solve mixed-integer design-allocation problems.

Our work shares the same overarching goal as the literature [23–26, 28, 30]: we concurrently optimize the vehicle
design and fleet operation to achieve better system design. Our new contributions are: 1) a different aircraft configuration
and application, i.e., we design eVTOL UAVs for package delivery; and 2) VRP for the operation problem instead of the
resource allocation problems in the previous literature. The VRP is more complicated than the resource allocation
problem because the VRP decision variables include route selection from a network, which often has a huge number of
possible combinations. In contrast, the resource allocation problems typically do not include the routing variables.

The outline of the paper is as follows. Section 2 provides the problem statement of the design-operation optimization
for package delivery UAVs. Section 3 summarizes the eVTOL conceptual design model used in this study. In Section 4,
we present a MINLP formulation for the design-operation optimization problem and propose effective sequential
heuristics. We then perform a benchmark study of the optimization approaches in Section 5. Section 6 compares the
baseline and optimized solution to demonstrate the benefit of the coupled optimization.

2. Problem Description

2.1 Simultaneous Optimization of UAV Design and Operations
We minimize the fleet acquisition cost required to serve a given set of customers with respect to fleet design and

operation variables. The acquisition cost is approximated by the summation of the takeoff weights of all UAVs in the
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Fig. 1 Coupling of UAV fleet design and operations.

fleet. The operational optimization variables determine the allocation and routing; more precisely, the allocation of each
UAV to a subset of customers, and the sequence of the visit within the subset. The fleet design variables consist of the
number of UAVs in the fleet and the design of each UAV. We consider a heterogeneous fleet composed of multiple
designs and two configurations, which will be described in Section 3.

The design-operation optimization is a mixed-integer optimization problem because we have both discrete routing
variables and continuous design variables. Furthermore, the UAV design optimization is generally nonlinear, making
the coupled optimization a mixed-integer nonlinear programming (MINLP) problem [31].

Figure 1 shows the coupling structure of the design-operation optimization. The UAV fleet determines the optimal
operations because the routing solution is subject to the payload and energy capacity constraints of each UAV. The
operational optimization outputs a set of routes, which gives the flight mission requirements for UAV design optimization.
Here, we parametrize the missions in terms of the delivery distance, total package weight, and the number of customers
on each route. The UAV design optimization outputs a set of UAV designs, which compose a fleet, given the mission
requirements. Therefore there is a cycle of information between the operation and design optimization; thus, we need
the coupled optimization to find the optimal fleet design.

2.2 Vehicle Routing Problem (VRP)
As operational optimization, we solve a fleet size and mix VRP (FSMVRP) [20, 21], which aims at making a

strategic decision on the fleet size and composition. Because of its long-term objective, FSMVRP requires representative
customer information over the life cycle of the fleet, which we assume to be available.

The key assumptions and constraints in our VRP model are as follows:
1) The fleet is heterogeneous and is composed of various UAV designs.
2) Not all UAVs in the fleet need to be used; the VRP solver finds the optimal number and composition of UAVs.
3) Customer locations and demands are deterministic and known a priori.
4) All customers must be served by exactly one UAV. Customers can neither be dropped nor served more than once

(i.e., we prohibit splitting the demand between multiple vehicles).
5) We only consider a single depot. Each route must be a closed-loop that starts and ends at the depot.
6) Each UAV is used only once; we do not allow the multi-trip of each vehicle.
7) Each UAV must satisfy the payload capacity and energy consumption constraints.

3. UAV Conceptual Design Model
This section presents an eVTOL UAV sizing model we used in this study. We consider two different configurations,

a hexarotor and a quadrotor biplane tailsitter (QBiT) [1], as shown in Fig. 2. Both configurations are capable of vertical
climb, descent, and hover. In cruise, the hexarotor performs the edgewise flight, whereas the QBiT uses wings to
generate the lift that compensates its weight.

The goal of the sizing model is to find the minimum-weight UAV design given mission requirements. We parametrize
the mission in terms of range R, total payload weight Wpayload, and the number of customers nc on the route. In general,
we optimize a UAV for multiple missions, i.e., we find a single UAV design that can fly multiple delivery scenarios. In
such cases, the mission inputs R,Wpayload, and nc are vectors. The sizing outputs are the UAV takeoff weight Wtotal,
battery weight Wbattery, and power consumption in hover Phover and cruise Pcruise.

The inputs and outputs of the sizing module are summarized as follows:(
Wtotal,Wbattery, Phover, Pcruise

)
= fsizing

(
R,Wpayload, nc

)
. (1)
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(a) Hexarotor. (b) Quadrotor biplane tailsitter (QBiT)

Fig. 2 Delivery UAV configurations considered in this study. Figures are adapted from Ref. [3]

Inside the above function fsizing(·), we perform UAV design optimization.
Figure 3 shows the extended design structure matrix (XDSM) [32] of the QBiT sizing model. The hexarotor sizing

model also has a similar structure.

3.1 Weight Estimation
We breakdown the UAV weight into the payload, battery, and empty weight as follows:

Wtotal = Wpayload +Wbattery +Wempty , (2)

where the empty weight is further broken down into

Wempty = Wmotor +WESC +Wrotor +Wwing +Wframe . (3)

The motor and electronic speed controller (ESC) weights are estimated using the regression models [3],

Wmotor (lb) = 0.412P (hp) ,
WESC (lb) = 0.591P (hp) ,

(4)

where P is the installed power of the motor. We assume a 50% power margin on top of the maximum power required
during the missions.

The rotor weight is given by the regression formula [4],

Wrotor (g) = 0.1207(2r)2 − 0.5122(2r), (5)

where r is the rotor radius in inches.
We assume the wing weight to be linear with respect to the wing area:

Wwing (kg) = −0.0802 + 2.2854Swing (m2) . (6)

We also assume that the frame weight, including miscellaneous weights such as wires and recovery parachutes, is linear
with respect to the takeoff weight:

Wframe = 0.5 + βWtotal (kg) , (7)

where β = 0.2 for the hexarotor and β = 0.18 for the QBiT. We determined the linear coefficients in Eqs. (6) and (7)
so that our sizing outputs agree with the results of Govindarajan and Sridharan [3], where they used a finite element
analysis-based weight estimation. The smaller value of β for the QBiT accounts for the wings that we compute the
weight separately, which can also carry the structural load.

The battery weight is computed based on the battery energy density and the total energy required for the mission.
We assume a simple mission profile composed of vertical takeoff, cruise, and landing. Furthermore, we approximate the
power in vertical climb and descent to be equal to the power in hover. The energy required for the mission is then

Ereq = Phover
(
2(nc + 1)thover

)
+ Pcruise

R
V∞

, (8)
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where V∞ is the cruise speed; Phover and Pcruise are the power consumption in hover and cruise, respectively. The first
term is the energy for takeoff and landing, and the second term the energy is for a cruise. We assume the hovering time
thover of 60 s for a takeoff or landing operation; therefore, a UAV hovers for 120 s at each customer or the depot. We
assume that Phover and Pcruise are constant across the mission, which means that we ignore the UAV weight change after
unloading the payload. The battery weight is then given by

Wbattery =
Ereq

0.85ρb
. (9)

The battery density ρb is assumed to be 158 Wh/kg, which is conservative but a typical value in commercial battery
packs including the safety casing [3]. The factor of 0.85 accounts for the losses in battery and transmission as well as
the power required by onboard systems other than motors.

3.2 Power Consumption

3.2.1 Power in hover and vertical flight
Based on the momentum theory, the shaft power required by each rotor is,

Phover =
1

ηhover

T1.5√
2ρA

, (10)

where T is the thrust of each rotor, ρ is the air density, and A is the rotor disk area. The trim condition in hover yields
T = Wtotal/nrotor. We assume the hover figure of merit of ηhover = 0.75 for hexarotors and 0.65 for QBiTs; we set
lower efficiency for the QBiTs because the QBiT rotors (propellers) are generally designed to be efficient in cruise at
the sacrifice of hover efficiency. On the other hand, the hexarotor’s rotor operates in similar conditions in hover and
edgewise forward flight, which allows it to have hover-efficient rotors.

3.2.2 Power in cruise
In forward flight, we use the relation [33] based on the momentum theory to compute the power required as follows:

Pcruise = TV∞ sin α + κTVi + P0 , (11)

where V∞ is the freestream velocity, Vi is the induced velocity, α is the shaft tilt angle, and P0 is the profile power.
Accordingly, V∞ sin α is the component of the freestream velocity normal to the rotor disk. Following the method
by Govindarajan and Sridharan [3], the induced power factor κ is given by

κ = min *
,
1.15,

1
ηhover

−

√
2ρA

T1.5 P0+
-
. (12)

To compute the induced velocity Vi , we first solve the inflow equation

λ = µ tan α +
CT

2
√
µ2 + λ2

(13)

for the rotor inflow λ. Then, we use the following relation to obtain Vi:

V∞ sin α + Vi

Ωr
= λ . (14)

In Eq. (13), µ, CT are the rotor advance ratio and thrust coefficient, given by

µ =
V∞ cos α
Ωr

,

CT =
T

ρA(Ωr)2 ,
(15)
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R, nc Wpayload

Optimization Wtotal, r Wtotal, r ,V∞,Sw r ,V∞, J V∞ r ,Sw V∞ Wtotal Wtotal

Power in hover Phover Phover Phover

CL,T/A Trim in cruise T ,α

CT/σ Nondim. parameters µ, Ω µ,CT , Ω

Profile power P0

Inflow equation Vi

Power in cruise Pcruise Pcruise Pcruise

Empty weight Wempty

Battery weight Wbattery Wbattery

Wresidual Weight residual

Fig. 3 Extended design structure matrix (XDSM) of QBiT sizing optimization.

where Ω, r are the rotor angular velocity and radius, respectively. For the winged cruise of the QBiT, we also introduce
the propeller advance ratio

J =
V∞
2nr

, (16)

where n is the number of propeller revolutions per second.
The profile power is given by the following formula [3]:

P0 =
σCd0

8
(
1 + 4.65µ2

)
(ρA)(Ωr)3 , (17)

where Cd0 is the airfoil zero-lift drag coefficient and σ is the rotor solidity; we use Cd0 = 0.012 and σ = 0.13 [33].

3.2.3 Trim conditions in cruise
The trim conditions determine the thrust and shaft tilt angle. For the hexarotor without wing,

nrotorT =
√

W2
total + D2

body ,

tan α =
Dbody

Wtotal
,

(18)

where Dbody is the body drag, and nrotor is the number of rotors, which is six for the hexarotor. For the body drag
estimation, we use the method of Sridharan et al. [1] and Govindarajan and Sridharan [3]. Their method assumes the
UAV body to be a cylinder whose radius is 58% of the rotor radius, and the length-to-diameter ratio is 2.5. Then the
drag is given by

Dbody =
1
2
ρV 2
∞SbCD,b ,

CD,b = 0.1 + 0.2 cos3 α ,

(19)

where the body reference area Sb is the cylinder frontal area, i.e., the radius times the length.
For the QBiT with wings, the trim conditions are simply nrotorT = D and L = W . The drag is

D = Dbody + Dwing

= Dbody +
1
2
ρV 2
∞Sw

(
CD0,w + CDi

)
,

(20)
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Table 1 UAV conceptual design optimization problem

Function/variable Description Bounds
minimize Wtotal Takeoff weight, kg
given R,Wpayload, nc One or multiple mission requirements
with respect to Wtotal Takeoff weight, kg [0.5, 50]

V∞ Cruise speed, m/s [10, 50]
r Rotor radius , m [0.05, 1.0]
µ Edgewise advance ratio, hexarotor only [0.01, 0.5]
J Propeller advance ratio, QBiT only [0.01, 1.3]
Sw Wing area, m2, QBiT only [0.05, 5.0]

subject to Wtotal −Wpayload −Wbattery −Wempty = 0 Equality constraint to satisfy Eq. (2)
T/A ≤ 250 N/m2 Disk loading
CT /σ ≤ 0.14 Blade loading
CL ≤ 0.6 Cruise lift coefficient, QBiT only

where Sw is the wing area, CD0,w is the zero-lift drag coefficient of the wing (set to 0.01), and CDi is the induced drag
coefficient given by

CD,i =
C2
L

πARe
. (21)

We assume a fixed aspect ratio of AR = 8 and Oswald efficiency of e = 0.8 [3]. For the body drag, we use the same
method as the hexarotor, with the angle of attack of 5 deg (i.e., α = 85 deg) assumed.

3.3 Sizing Optimization Problem
Given the mission requirements, we minimize the takeoff weight with respect to the cruise speed, rotor radius,

edgewise or propeller advance ratio in cruise, and wing area (only in QBiT cases). The UAV sizing optimization problem
is summarized in Table 1. We impose the upper limit on disk loading, blade loading, and the cruise lift coefficient to
avoid poor maneuverability and poor gust responses. The upper bound values are the same as those of Govindarajan and
Sridharan [3], who explains these constraints.

The sizing model has three implicit variables that need an iterative solver: the rotor inflow λ in Eq. (13); shaft tilt
angle α in Eqs. (18) and (19); and takeoff weight Wtotal in Eq. (2). We use a Newton solver for λ and α, whereas we
impose the weight residual as an equality constraint instead of Eq. (2).

We implemented the sizing models using the OpenMDAO framework [34] with analytical derivatives, and we used
SNOPT [35] via pyOptSparse [36] as an optimizer.

3.4 Characteristics of Hexarotor and QBiT
This section explains the key characteristics of the UAV models in the context of the design-routing coupled

problem; the detailed discussion about the UAV conceptual design and its design space can be found in Sridharan et al.
[1], Bershadsky et al. [4] and Govindarajan and Sridharan [3].

The most important distinction between the hexarotor and QBiT is their different suitability on various mission
settings. The hexarotor is more efficient in hover than the QBiT, therefore, it is preferable for short-range flights as well
as multi-customer delivery. On the other hand, the QBiT is more efficient in cruise because of its wings, making it a
viable option for long-range delivery with a few customers.

Figure 4 shows the optimized takeoff weight of each configuration for single- and 4-customer delivery with various
payload weights and mission ranges. The takeoff weight was smaller with hexarotors for shorter ranges, whereas the
hexarotors became heavier than QBiTs on longer-range missions. For single-customer delivery, the “switch” of the
takeoff weight occurred between 30 and 50 km range, depending on the payload weight. For 4-customer delivery, the
hexarotor weight was always smaller except 1 kg-60 km delivery, although the hexarotor weight was more sensitive
to the range than the QBiT weight. In deciding the optimal design, the hover performance becomes more dominant
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Fig. 5 Optimized design variables and power performances for single-customer missions with 3 kg payload. In
the power plot, the thicker lines represent the hover conditions, and the thinner lines represent cruise.

than the cruise when the number of customers increases. This is because the increased number of customers requires a
longer hovering time.

Figure 5 shows the power consumption, cruise speed, and rotor radius of the optimized UAVs with a single customer
with 3 kg payload. The QBiT consistently required more power in hover than the hexarotor because of its smaller rotor
radius, the fewer number of rotors, and the lower hover figure of merit. On the other hand, the QBiT consumed less
power in cruise than the hexarotor when the mission range was longer than 43 km, which led to the smaller takeoff
weight, as shown in Fig. 4. In cruise, the wings achieve a low thrust-to-weight ratio that reduces the cruise power.

For the hexarotor, the optimized rotor radius increased as the UAV total weight increased for longer ranges, but
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Table 2 Additional constraints and assumptions for design model linearization

Variable Additional constraint or assumptions to fix the variable
Cruise speed V∞ Constant at 18 m/s for hexarotor, 33 m/s for QBiT
Rotor radius r Fixed hover disk loading of 120 N/m2 for hexarotor, 180 N/m2 for QBiT
Edgewise advance ratio µ Fixed at 0.3, hexarotor only
Propeller advance ratio J Fixed at 1.3, QBiT only
Wing area Sw Constant lift coefficient of 0.6 in cruise, QBiT only

the cruise speed was nearly constant regardless of the range. The optimal speed implies the best balance between
the following two effects: 1) the slower cruise speed results in a longer cruise duration, which increases the energy
consumption; 2) on the other hand, the slower speed reduces the profile power because the profile power is proportional
to (Ωr)3 according to Eq. (17), where (Ωr) is in inverse proportion to the speed under the constant advance ratio. The
optimal advance ratio was constant because it was always constrained by the blade-loading constraint; the detail of the
blade-loading constraint is discussed by Govindarajan and Sridharan [3]. The hexarotor power ratio, Pcruise/Phover was
less sensitive to the range than the QBiT. The lower power consumption in cruise than in hover is mainly because of the
translational lift.

The QBiT design was more sensitive to the mission range than the hexarotor, and it showed a trade-off between
hover performances and cruise performances. A smaller rotor radius benefits the cruise efficiency by reducing the
profile power as well as the empty weight. On the other hand, in hover, a larger rotor is preferable to reduce the power,
according to Eq. (10). As a result of this trade-off, the optimizer chose a smaller rotor radius for long-range missions
where the cruise performance is dominant. In contrast, it preferred a larger radius for short-range missions where the
hovering is more critical than the cruise. In long-range missions, the cruise efficiency was further benefitted by flying
slowly and reducing the drag and parasite power. This benefit of reducing the power was more significant than the
detriment of the increased cruise duration on the long-range missions. In short-range missions, in contrast, the higher
cruise speed resulted in a smaller takeoff weight by shortening the cruise duration at the sacrifice of the cruise power.
Note that the propeller advance ratio always reached its upper bound of J = 1.3. This upper bound prevented too small
a rotor in the long-range missions, or too fast a cruise speed in the short-range missions.

3.5 Linear Surrogate Models
The sizing module, which is a mapping from the mission inputs to the sizing outputs as summarized in Eq. (1),

is nonlinear because we perform design optimization inside this mapping. When solving the coupled design-routing
optimization, the heuristic approach (which will be described in Section 4.2) is capable of directly incorporating this
nonlinear design optimization. However, the mixed-integer nonlinear programming (MINLP) approach (in Section 4.1)
is not compatible with the design nonlinearity. This section builds linear surrogates of the sizing model to enable the
coupled optimization by a MINLP branch-and-cut solver.

We first introduce new equality constraints on the disk loading and lift coefficient to determine the rotor radius
and wing area. We also fix the cruise speed and advance ratio; the fixed values are summarized in Table 2. The sizing
optimization now has zero degrees of freedom with these new assumptions.

Next, we train the linear fitting models for Wtotal, Phover, and Pcruise in the (R,Wpayload, nc) three-dimensional space.
The input domains are 10 ≤ R ≤ 40 km, 1 ≤ Wpayload ≤ 10 kg, and 1 ≤ nc ≤ 9. Here, we set the range upper bound at
40 km to exclude the increasing nonlinearity above 40 km, as shown in Fig. 4. We then build the surrogate models by
solving the least square problems with non-negativity constraints on the weight and power predictions. We do not need
a surrogate for Wbattery because the MINLP formulation directly incorporates the energy capacity constraint. The trained
surrogates have the “switching point” of the takeoff weight under the 40 km range, which implies that the design-routing
solution would include both hexarotor and QBiT in the optimal fleet.

Figure 6 shows an example of the surrogate model compared to the original nonlinear model (after applying the
assumptions in Table 2). We evaluate the surrogate prediction error using 100 random test points. The average and
maximum errors were 6.0% and 24.6% for the hexarotor, and 3.4% and 12.1% for the QBiT, respectively. Note that our
primary purpose of linearization is not to have accurate and inexpensive surrogates; instead, we are restricted to the
linear models because of the limitation of the MINLP solver, regardless of the surrogate accuracy.
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4. Optimization Approaches
This section first presents a mixed-integer nonlinear programming (MINLP) formulation of the design-operation

coupled optimization, which will be solved by a commercial branch-and-cut solver. However, the MINLP solver cannot
incorporate nonlinear UAV design models and requires linearized surrogates instead. The MINLP solver is also limited
to the small problem size. To tackle these challenges, in Section 4.2, we propose a novel heuristic approach that can
efficiently solve large-scale problems and incorporate nonlinear design models.

4.1 Mixed-Integer Nonlinear Programming (MINLP)
The first approach solves the coupled design-routing optimization using a mathematical MINLP solver. This

monolithic optimization approach corresponds to the simultaneous analysis and design (SAND) in terms of the MDO
architecture [29]. We formulate the coupled optimization as a non-convex mixed-integer quadratic constrained program
(MIQCP) using the three-index vehicle flow model [37] for routing, which allows us to consider a heterogeneous UAV
fleet. We use the non-convex branch-and-cut solver by Gurobi 9.5.0 [38]. This solver utilizes the bilinear transformation
and spatial branching to handle non-convex quadratic constraints.

Let N be a set of customers, N = {1, 2, ..., n}, where n is the total number of customers. Define a set V of the
nodes, which consists of the customers and depot,V = N

⋃
{o, d}. Here, we consider a single depot but distinguish the

start point o and endpoint d. We also define a set of arcs between the nodes, A = (V\{d}) × (V\{o}). For the UAV
fleet, we consider a heterogeneous fleet K , K = {1, 2, ..., kmax}, where kmax is the maximum number of UAVs available
for delivery. Furthermore, we define a subset of the fleet for each configuration, Khexa and KQBiT. The two subsets are
the disjoint sets and satisfy K = K Hexa ⋃K QBiT. In the MINLP formulation, we assume that each UAV has its own
design variables, and therefore, we may have up to kmax different designs of UAVs. Since each UAV serves only one
route, the number of routes in the solution equals the number of distinct designs. Note that the solution does not need to
(and in most cases, it does not) use all kmax UAVs; rather than that, the solver determines the optimal number of UAVs
required for delivery.

The optimization variables are binary variables x, y, and α for routing; continuous variables R, Wpayload, and integer
variables nc to represent flight missions; and continuous variables Wtotal, Phover, and Pcruise for UAV design. The routing
variable xi jk = 1 if vehicle k travels from node i to j, 0 otherwise. The indicator variable yik = 1 if node i is served by
vehicle k; αk = 1 if vehicle k is active (i.e., serves at least one customer) and 0 otherwise (i.e., vehicle k is not used).
The mission and design variables are assigned to each UAV.

To avoid unrealistically large-sized UAVs, we impose upper bounds on payload and energy capacity. The upper
bound of the payload capacity is 10 kg. For the energy capacity, we impose a constraint such that the UAV’s designed
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energy capacity is less than the energy it consumes to perform a single-customer 40 km-range flight. In other words, we
limit the maximum UAV size by not allowing any UAVs to fly more than 40 km on a single-customer delivery. This
implies that the range upper bound RUB is 40 km, which is only reachable when a vehicle serves only one customer.
When a UAV serves more than one customer, the maximum range is less than 40 km because it consumes additional
energy in hover.

The MINLP formulation is summarized as follows:

minimize
∑
k∈K

αkWtotal,k , (22)

w.r.t. xi jk, yik, αk ∈ {0, 1}, nc,k ∈ I ∀i, j ∈ V, k ∈ K , (23)
Wtotal,k,Wpayload,k, Phover,k, Pcruise,k, Rk ∈ R ∀k ∈ K , (24)

subject to
∑
k∈K

yik = 1 ∀i ∈ N , (25)∑
j∈V\{i,o }

xi jk −
∑

j∈V\{i,d }

x jik = 0 ∀i ∈ N , ∀k ∈ K , (26)∑
j∈V\{i,o }

xi jk = 1 i = o, ∀k ∈ K , (27)∑
j∈V\{i,o }

xi jk = yik ∀i ∈ V\{d}, ∀k ∈ K , (28)∑
j∈V\{i,d }

x jik = yik i = d, ∀k ∈ K , (29)∑
i∈N

yikqk = Wpayload,k ∀k ∈ K , (30)∑
i, j∈A

xi jkdi j = Rk ∀k ∈ K , (31)∑
i∈N

yik = nc,k ∀k ∈ K , (32)∑
i∈N

yik ≤ αk M ∀k ∈ K , (33)∑
∀i, j∈S

xi jk ≤ |S| − 1, ∀S ⊆ N , ∀k ∈ K , (34)

Phover,k
(
2(nc,k + 1)

)
thover + Pcruise,k

Rk

V∞,k
≤ Phover,k (4thover) + Pcruise,k

RUB
V∞,k

∀k ∈ K , (35)

Wtotal,k = f Hw
(
Rk,Wpayload,k, nc,k

)
∀k ∈ K Hexa, (36)

Phover,k = f Hph
(
Rk,Wpayload,k, nc,k

)
∀k ∈ K Hexa, (37)

Pcruise,k = f Hpf
(
Rk,Wpayload,k, nc,k

)
∀k ∈ K Hexa, (38)

Wtotal,k = f Qw
(
Rk,Wpayload,k, nc,k

)
∀k ∈ K QBiT, (39)

Phover,k = f Qph
(
Rk,Wpayload,k, nc,k

)
∀k ∈ K QBiT, (40)

Pcruise,k = f Qpf
(
Rk,Wpayload,k, nc,k

)
∀k ∈ K QBiT. (41)

As a problem setup, we generate a set of customers with known locations and demands qi , which can be non-uniform.
We then compute the distance of each arc di j based on the customer locations prior to running the MINLP solver.

The objective (22) minimizes the summation of the active UAV weights, which we assume approximates the fleet
acquisition cost. Constraints (25) impose that each customer is served by only one vehicle. Constraints (26) and (27)
ensure the vehicle flow conservations, that is, each route is a closed-loop. Constraints (28) and (29) are for the
consistency between xi jk and yik . Constraints (30) are the vehicle capacity constraints. Constraints (31) relate the
active arcs and the flight range of each route. Constraints (32) relate the route and nc,k . Constraints (33) relate yik and
αk , where M is a large constant (so called “big M”) that needs to satisfy M ≥ n.
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Constraints (34) are the subtour elimination constraints (SECs), where S is a customer subset. The SECs prohibit
infeasible closed loops that do not include the depot. The number of constraints (34) is exponential with respect to the
number of customers, which is prohibitive for large-scale problems. Therefore, we employ the separation procedure [37]
for SECs to avoid imposing the exponential number of constraints. This procedure first solves a relaxation problem
without SECs, and every time the optimizer finds a feasible solution to the relaxation problem, it identifies all the
subtours in the solution and adds the corresponding SECs. The optimizer then returns to the updated relaxation problem
with new SECs, and repeats the process until no subtour is found in the solution.

Constraints (35) are the energy capacity constraints. The right-hand side is the energy consumed by vehicle k if it
performed a single-customer 40 km-range delivery. The left-hand side is the actual energy required by vehicle k to serve
nc,k customers in the route of distance Rk . The energy constraint requires the energy consumption (left-hand-side) to be
less than the maximum energy capacity (right-hand-side). Constraints (35) are bilinear because Phover, nc , Pcruise, Rk in
the left-hand side are all optimization variables. This non-convex nonlinearity is the consequence of the design-routing
coupling. In conventional routing problems with fixed vehicle designs, Phover and Pcruise are constant, and therefore, the
energy constraints are linear. However, this bilinearity is inevitable when we include the vehicle design variables.

Finally, constraints (36)–(41) are the design surrogate models from Section 3.5. These constraints are linear because
we use linear surrogates. If we directly used the original nonlinear design model instead, the constraints would become
general nonlinear equalities. To the authors’ best knowledge, any existing mixed-integer programming solvers, including
Gurobi 9.5.0, cannot practically deal with such general nonlinear constraints.

4.2 Decomposition and Sequential Heuristics
The second optimization approach, a new approach we propose, decomposes the design-routing problem into

design optimization and VRP, then solves them sequentially. Such decomposition has been successful in the coupled
optimization of aircraft design and network flow [24–26]. Furthermore, we propose a modification to the conventional
sequential optimization [23] to avoid local minima and increase the probability of finding a coupled optimal solution.

The optimization procedure is summarized as follows:
1) Prepare an initial fleet. The fleet is parametrized by variables

[
Wtotal,Wbattery, Phover, Pcruise

]
of each UAV.

2) Solve FSMVRP given the fleet for the minimum fleet acquisition cost (Eq. (22)).
3) Given the routing solution, generate a set of flight missions flown by each UAV.
4) Perform multi-mission design optimization of each UAV for the assigned set of missions to fine-tune the designs.
5) Perform single-mission design optimization for each mission (not for a set of missions) to exploit the VRP

solution.
6) Introduce exploratory UAV designs to escape from local minima.
7) Repeat Step 2) with the new fleet composed of the UAVs from Steps 4), 5), and 6).
Figure 7 shows the XDSM of the sequential heuristic algorithm. In Step 2), we solve FSMVRP using heuristics

while fixing the UAV designs in the fleet, i.e., fixing the designs variables Wtotal, Wbattery, Phover, and Pcruise. The VRP
here is equivalent to solving Eqs. (22)–(35), whereas we use a different form of the energy constraints instead of Eq. (35)

(1) Initial fleet

(2) Vehicle routing (3) Routes (missions) (3) Routes (missions) Lift of previously-used UAVs

(4) Multi-mission

UAV design optimization
UAVs set 1 (fine-tuned)

(5) Single-mission

design optimization
UAVs set 2 (exploited)

(6) New design exploration UAVs set 3 (explored)

(7) New fleet Merge and select

Fig. 7 Data flow and processes of the proposed sequential heuristic algorithm.
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New design generation

in range-payload space
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Sub-VRP Routes (missions)

UAV design optimization Exploratory UAVs

Fig. 8 Procedure of new design exploration in the sequential heuristic algorithm.

as follows:
Phover,k

(
(2(nc,k + 1)

)
thover + Pcruise,k

Rk

V∞,k
≤ ρbWbattery,k ∀k ∈ K . (42)

The left-hand side is the energy consumed, and the right-hand side is the battery energy capacity of the vehicle. We use
heuristics to solve VRP because they are the only practical way to tackle large-scale problems, given VRP is NP-hard.
In the current work, we use heuristic solvers implemented in the Google OR-Tools package [39], specifically, the
combination of local cheapest insertion (LCI) to find an initial feasible solution, and guided local search (GLS) to
escape from local minima and improve the solution globally. LCI and GLS were the most robust and accurate for our
FSMVRP among the other algorithms available in Google OR-Tools.

The UAV design optimization in Step 4) achieves same-route improvement, or local improvement, by fine-tuning the
design of each UAV for the assigned routes. In designing a fleet, it is not practical to have a distinct specialized design
for each of the routes; otherwise, we may have to have hundreds of different UAV designs. Instead, we prefer a fleet with
a limited number of different designs while allowing to have multiple same-design UAVs in the fleet. This leads to
the multi-mission design optimization, which designs a UAV given a set of missions assigned to it. We use efficient
gradient-based optimization as described in Section 3.3 for the design subproblem, which is summarized in Table 1.

In Step 5), we perform a series of single-mission design optimization for all missions ignoring the previous
assignments by VRP (i.e., regardless of the mission grouping). This step intends to improve the solution by exploiting
the routes generated by the previous VRP. For example, suppose UAV type-A served routes 1, 2, and 3 in the previous
VRP solution. Then, Step 4) optimizes the design of UAV type-A while requiring it to fly all of route 1, 2, and 3.
Whereas in Step 5), we optimize three new UAVs for each of the routes and generate new UAVs type-B, C, and D. The
fleet acquisition cost would become lower if we use UAV type-B, C, and D instead of three UAVs type-A because
type-B, C, and D are specialized for each route. However, it may be infeasible to actually use all type-B, C, and D in the
fleet when we limit the maximum number of different UAV designs.

We also seek new-route improvement, or global improvement, in addition to the same-route improvement. Here,
we propose a method for new design exploration in Step 6) to achieve the global improvement. The procedure of
Step 6) is summarized in Fig. 8. In this step, we first generate a set of new UAVs whose designs are different from the
previously-searched UAVs. For the design exploration purpose, we represent UAV design by the payload capacity and
the range on a single-customer delivery, i.e., X = [Wpayload, R|nc=1], where X is a vector representing the UAV design.
We then choose a new exploratory design by repeatedly solving the following optimization subproblem:

Xnew = argmax
X

[
min
i
‖X − Xi ‖

]
, (43)

where Xi is a previously-used UAV. This subproblem finds a point that is most isolated from the previously-used
designs in the range-payload 2D space. For the UAVs with nc > 1, we compute an equivalent single-customer range
using Eq. (8) to map the design into the range-payload space. After generating a set of new UAVs, we compute
[Wtotal,Wbattery, Phover, Pcruise] for each UAV using Eq. (1) and prepare an exploratory fleet. We then solve a sub-VRP
using this exploratory fleet. In this sub-VRP, we allow the routing solution not to serve all the customers because the
exploratory fleet is not necessarily capable of satisfying all the demands. This setting is different from the original VRP
in Step 2), where we require the fleet to serve all customers. The exploration step is completed by optimizing the UAV
designs for the mission outputs from the sub-VRP.
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We now have a pool of candidate UAV designs for the next iteration generated from Steps 4), 5), and 6). At this
point, we may need to select UAVs from the pool when the maximum number of different designs is limited. The
selection rule, i.e., the portion of the UAVs from each step to be used in the next fleet, is a tunable hyperparameter. In
this work, we use the following strategy: in the early sequential iterations, we prioritize the fine-tuned designs as elitism
while keeping 30–50% of the spots for exploratory designs; we then reduce the exploration portion and focus more on
the local improvement and exploitation toward the end.

5. Benchmark Results of the Optimization Approaches
We compare the accuracy, robustness, and computational cost of the two optimization approaches proposed in

Section 4 by solving a set of benchmark problems. In this chapter, we use the linearized surrogate models for UAV
sizing due to the limitation in the MINLP solver.

5.1 Benchmark problems
We created a benchmark set of the design-routing optimization problems with various problem sizes of 5, 10, 15, 30,

and 60 customers. For each problem size, we generate 20 problem instances by randomly locating the customers in a
30 km × 20 km region. Figure 9 shows examples of 10 and 60-customer instances. Each customer has either 1 kg or
2 kg demand in 5, 10, and 15-customer problems, and 0.5 kg or 1 kg demand in 30 and 60-customer problems. The
depot is located at the center of the region.

For the fleet settings, the maximum number of UAVs in the fleet is equal to the number of customers. Since the
linearized design surrogate was trained based on a single-mission design model and cannot take multi-mission into
account, we allow each UAV to have its own design (i.e., the number of different designs is equal to the number of UAVs
in the fleet).

5.2 Accuracy and Robustness of the Sequential Heuristics
We first benchmark the accuracy and robustness of the sequential heuristic algorithm we proposed. We measure the

accuracy by computing the errors of the optimized objective value as

Objective error =
f ∗heuristics − f ∗global

f ∗global
, (44)

where f ∗global is the proven global optimal value obtained by the Gurobi MINLP solver.
Figure 10 shows the objective errors in the 5, 10, and 15-customer benchmark problems. Note that the 15 customers

were the practical limit of the problem size on which we can fully converge the MINLP solver: until the optimality gap
converges to less than 0.001%, it took up to 48 hours in parallel on a 48-core 1.4–3.7 GHz computing node. We solved
each of the 60 test problems from 20 different randomly-generated initial fleets; for each run, we continued optimization
for 30 sequential iterations. Each translucent dot in Fig. 10 corresponds to the optimized objective value starting from
each fleet. The opacity in the plot indicates that multiple optimization runs converged to a similar value: the more
frequent runs converged to a point, the more opaque the point becomes.

Most of the dots converged to the zero error on 5-customer problems, which indicates that most optimization runs
found the global minimum. In 10-customer problems, some optimization runs resulted in a few percent of errors,

Table 3 Design-routing optimization problem formulation

UAV sizing model incorporated
Function/Variable Surrogate (Sec. 5) Design optimization (Sec. 6)

minimize fleet acquisition cost (
∑

Wtotal) X X

with respect to routing and allocation variables X X

number of different UAV designs, ndesign X X

total number of UAVs in the fleet, nUAV nUAV = ndesign ndesign ≤ nUAV ≤ nmax

config., Wtotal, Wbattery, Wpayload, Phover, Pcruise X X

V∞, r , µ or J, Sw fixed X
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Fig. 9 Examples of the benchmark problem instances. The black points show the customer; the green square
at the center is the depot; the blue and orange lines show the routes flown by hexarotors and QBiTs, respectively.

although the majority converged to the global minimum. In 15-customer problems, fewer points converged to the global
minimum, and the majority of the runs resulted in 0–1% errors. The worst-case error in the 15-customer problems was
no more than 3%.

Figure 11 shows the probability of finding an acceptable solution within a given tolerance when performing the
multi-start sequential heuristics. We computed the probability of success based on the multi-start optimization results

0

1

2

3

4

5-node                  
 objective error, %

0

1

2

3

4

10-node                 
 objective error, %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Problem ID

0

1

2

3

4

15-node                 
 objective error, %

Fig. 10 Errors between the global minimum and the objective value found by the multi-start sequential
heuristics.
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Fig. 11 Probability of finding an acceptable solution within a given tolerance when using the multi-start
heuristics.

shown in Fig. 10. For example, suppose we will solve a new instance of the 10-customer problem. When we run
the sequential heuristics once, Fig. 11 estimates that the probability of finding the global minimum is 42%; if we
compromise and allow an error less than 0.3% with respect to the global minimum, then the probability of finding
a solution within the 0.3% tolerance is 63%. When we run the sequential heuristics ten times from different initial
fleets, the probability of finding the global minimum rises to 77%. If we allow an error less than 0.3% and perform ten
multi-starts, then the probability of finding a solution within the 0.3% tolerance is 97%.

To summarize, the sequential heuristics can almost always find the global minimum in 5-customer problems. The
algorithm is also robust on 10-customer problems if we accept an error of 0.3%. The probability of finding the global
minimum in 15-customer problems is lower; however, it still is reliable in finding a near-optimal solution if we allow an
error of 0.3-1.0%. Although it is impossible to validate the accuracy on larger-scale problems because the MINLP
solver never converges, these benchmark results demonstrate the accuracy and robustness of the sequential heuristic
algorithm we propose.

5.3 Scalability
We also benchmark the scalability of the optimization approaches with respect to the problem size. Here, we solve

each benchmark problem by the two approaches under the same amount of the computational resource, and compare
the best solutions found within the given resource. Table 4 lists the wall time limit for each problem size. For a fair
comparison, we run both the sequential heuristics and Gurobi MINLP solver in series. Table 4 summarizes the resource
allocation strategy of the sequential heuristics, i.e., the number of multi-start and sequential iterations that can be done
within the time limit. Since the MINLP solver is not benefitted from a multi-start, we run a single optimization until
the time limit. Note that on 30 and 60-customer problems, we provide a manual initialization to the MINLP solver;
otherwise, the solver fails to find a feasible solution within the time limit. The initial solution we set is the simplest
feasible routes where all customers are directly connected to the depot. An example of the initial solutions is shown in
Fig. 9b. The MINLP solver fully converged on all of the 5 and 10-customer problems, whereas it did not converge on 15,
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Table 4 Scalability benchmark study settings

No. of customers Max. no. of UAVs Wall time limit, s Heuristics resource allocation MINLP initialization
5 5 250 5 multi-starts, 10 iterations No
10 10 1,000 10 multi-starts, 10 iterations No
15 15 2,250 10 multi-starts, 10 iterations No
30 30 9,000 15 multi-starts, 15 iterations Manual initialization
60 60 36,000 20 multi-start, 20 iterations Manual initialization

30, and 60-customer problems. The optimality gap achieved within the given time limit was 6.1–10.4%, 17.6–32.9%,
and 31.1–36.3% on 15, 30, and 60-customer problems, respectively.

To compare the two optimization approaches, we define the objective ratio

Objective ratio =
f ∗heuristics, best
f ∗MINLP, best

, (45)

which is the ratio of the best objective value found by the heuristics to the best objective value found by the MINLP
solver (i.e., incumbent solution). The objective ratio of 1 means the heuristics and MINLP solver found the same
solution. The objective ratio greater than 1 means the MINLP solver is more accurate, while the ratio less than 1
indicates that the heuristics finds a better solution.

Figure 12 shows the scatter plot of the objective ratio on all 100 benchmark problems. Each translucent dot in
Fig. 12 corresponds to each problem. The opacity indicates that multiple benchmark problems resulted in a similar
objective ratio. All 20 problems with five customers converged to the objective ratio of 1. On 10 and 15-customer
problems, the objective ratio was 1 for most problems, although the heuristic solutions were slightly inferior to the
MINLP solution for some problems. These results are consistent with the benchmark results shown in Fig. 10, where
we observed a few percent of errors. On 30 and 60-customer problems, the sequential heuristics always results in
a better objective value than the MINLP solution. The difference was 3–20% on 30 customers and 18–23% on 60
customers. The Gurobi MINLP solver showed poor performance even with the manual route initialization because of
the NP-hardness of VRP and the non-convexity of the UAV energy constraints. To summarize, the sequential heuristic
algorithm we proposed is scalable for large-scale design-routing problems as opposed to the MINLP branch-and-cut
solver, which is limited to the problem size of 15 customers or less.

6. Results with Nonlinear UAV Design Optimization
This section shows the coupled design-routing optimization results that incorporate the UAV sizing optimization

described in Section 3.3. We only use the sequential heuristics in this section because the MINLP solver cannot handle
the nonlinearity of sizing optimization.

The differences of the optimization setup with and without the UAV sizing optimization is summarized in Table 3.
We now include the cruise speed, rotor radius, cruise advance ratio, and wing area as design variables, which were fixed
in Section 5. The other difference is that we now limit the number of different UAV designs to be less than the total
number of UAVs in the fleet: in practice, it is preferable to have a small number of different designs considering the cost
for the development, certification, and manufacture. Therefore, we seek to find the optimal fleet with potentially a large
number of UAVs but a limited number of different designs.

6.1 Conventional Baseline
We first describe the procedure to obtain a baseline solution, which will be compared to the optimized solution. As

a conventional design process, we assume a sequence of design optimization followed by a routing problem with no
further iterations. The baseline design process is summarized as follows:

1) Generate m representative missions.
2) Optimize UAV designs for each mission. This generates m different designs.
3) Prepare p UAVs of each design and add them to the fleet; the total number of UAVs in the fleet is mp.
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Fig. 12 Comparison of the best objective values found by the MINLP solver and sequential heuristics under
the same wall time limit.

4) Solve VRP to determine the number of UAVs required to serve the customers.
5) Compute the baseline objective value f0 by Eq. (22).
In this work, we generate five hexarotors and five QBiT designs, in a total of m = 10 different designs regardless of

the number of customers. As representative missions, we assume the 40 km single-customer delivery with 1, 2, 5, 8, or
11 kg payload by the hexarotor, and the 60 km single-customer delivery with the same payload weights by the QBiT. We
set p = 2 on 5, 10, and 15-customer problems, p = 3 on 30-customer problems, and p = 6 on 60-customer problems.

6.2 Comparison of Optimized and Baseline Objective Values
Figure 13 shows the comparison of the baseline solutions and the optimized objective values. We solved the same

benchmark problems from Section 5, except we now extend the upper bound of the single-customer-trip range to 60 km
and the delivery domain to 45 × 30 km. This modification intends to include the “switch point” of the takeoff weight
between the hexarotor and QBiT (as shown in Fig. 4), which occurs at 30–50 km depending on the payload weight and
number of customers on a route.

On each problem, we continue the sequential iterations starting from the baseline fleet until it satisfies the following
convergence criteria: 1) at least 30 sequential iterations; 2) maximum of 100 iterations; 3) if the best objective value is
unchanged for ten consecutive iterations. After the convergence, we evaluate the relative improvement of the optimized
objective value with respect to the baseline, given by | f ∗ − f0 |/ f0. The scatter plot in Fig. 13 shows the distribution of
the improvement for all benchmark problems. The mean improvement was 12–14% on 5, 10, and 15-customer problems,
21.8% on 30-customer problems, and 19.0% on 60-customer problems. This improvement in the objective value, which
means the reduction of the fleet acquisition cost, demonstrates the importance of the design-routing coupling compared
to the conventional baseline method.

6.3 Optimized Routes and Designs
In this section, we illustrate the optimized routes and UAV designs on a 60-customer problem. This problem has the

same customer locations as one of the benchmark problems, whereas for better visualization, we now set the uniform
demand of 0.5 kg per customer; the maximum number of different UAV designs to 6 (m = 6); and the maximum number
of the same-design UAVs to 10 (p = 10).

Figure 14 shows the optimized routes. Each color corresponds to a different design; multiple routes of the same
color indicate that we had multiple UAVs of the same design that served different routes. The blue colors show the
routes flown by hexarotors, whereas the red colors represent QBiTs. Figure 15 shows the distribution of the routes in
terms of the distance and number of customers along each route. Since the customer demand is uniform at 0.5 kg, the
payload weight is obtained by multiplying 0.5 kg to the number of customers. The QBiTs served long-range missions
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Fig. 13 Improvement of the optimized objective value compared to the conventional baseline solution.

with one or two customers, whereas the hexarotors performed 2- to 4-customer delivery with shorter ranges. This trend
agrees with the mission suitability of each configuration discussed in Section 3.4.

Figure 16 shows the optimized design variables of all UAVs in the fleet. The optimized fleet has 27 UAVs (13
hexarotors and 14 QBiTs) of six different designs. The coordinates in the figure show the UAV takeoff weight and cruise
speed; the UAV illustrations visualize the rotor size and wing area. As we observed in the design-only optimization
study in Fig. 5, the hexarotors resulted in larger rotor radiuses than QBiT, whereas the QBiTs had higher cruise speeds.
The larger rotor radius implies the potential for carrying large-volume cargo, although this study does not consider the
cargo volume constraint.

On the 2-customer delivery with 28–37 km range, we observe the mixed pattern of the hexarotors (blue circles in
Fig. 15) and QBiTs (brown triangles) performing similar missions. Both UAV designs were capable of flying these
28–37 km missions, because the hexarotor was designed for the 2-customer 43 km-range mission (the rightmost blue
circle) that requires more energy; so as the QBiT, which was designed for the single-customer 49 km-range mission (the
rightmost brown triangle). However, the QBiT cannot perform the 2-customer with more than 37 km range because of its
inefficiency in hover. The takeoff weight was 3.16 kg for the hexarotor and 3.10 kg for the QBiT, therefore, the optimizer
preferred to use the QBiTs as much as possible. As a result, the optimizer used 10 brown QBiTs, which reached the
maximum number of the same-design UAVs. Then, the optimizer had to use the hexarotor for the remaining 28–37 km
missions, which resulted in 7 hexarotors in total. If we removed the upper bound on p and allowed to use more than 10
QBiTs, the optimizer would assign QBiTs for all 28–37 km-range missions instead of the heavier hexarotors. Once the
designs and number of each UAV were fixed, the assignment of UAVs to routes does not matter for the objective value, as
long as the solution satisfies the energy constraints. In other words, even if we shuffled the assignment of the hexarotors
and QBiTs within the 2-customer 28–37 km-range missions, the objective value would remain the same because the
objective is the summation of the UAV takeoff weight in the fleet. This explains the mixed pattern of the hexarotor
and QBiTs in the 2-customer 28–37 km missions. The additional factors that would narrow these assignments are the
cargo volume and delivery speed consideration, although the current work does not include these in the optimization
formulation.

6.4 Solution with Recharging Stations
The modularity of the proposed sequential heuristics allows us to upgrade the disciplinary models, i.e., the routing

model or conceptual design model, without changing the top-level algorithm. To demonstrate this advantage, we solve a
design-routing problem with an upgrade routing model with battery recharging. Here, we solve for the same customer
locations and demands as Fig. 14, and we now add four recharging stations in the region. A UAV can charge its battery
state to 100% every time it visits a recharging station to extend the range.
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Fig. 16 Optimized UAV designs for the problem in Fig. 14. The UAV illustration size scales to the rotor size
and wing area variables, and the number label corresponds to the number of each design of UAVs in the fleet.
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Fig. 18 Optimized UAV designs for the recharging problem.

Figures 17 and 18 show the optimized routes and UAV designs for the recharging problem. Compared to the original
problem without recharging, the solution with recharging had fewer UAVs in the fleet and introduced larger-capacity
hexarotors. The optimized fleet had only 10 UAVs in contrast to 27 UAVs for the problem without recharging; the largest
UAV weight was 12.64 kg with recharging, 4.95 kg without recharging. Five out of 10 UAVs utilized the recharging
stations; three UAVs served 11–12 customers each by recharging twice, and the other two UAVs served four customers
by recharging once. The other five UAVs served customers far from the recharging stations or near the depot without
recharging. The objective function value, which is the summation of the takeoff weights of all UAVs in the fleet,
decreased by 25.6% compared to the original problem without recharging.

7. Conclusions
In this work, we solved the simultaneous optimization of UAV conceptual design and delivery operations to minimize

the fleet acquisition cost. This MDO problem enabled us to find a set of optimal mission requirements for which the
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UAV fleet should be designed, and the corresponding optimal UAV designs.
We first presented the conceptual design and sizing model of two eVTOL configurations, the hexarotor and quadrotor

biplane tailsitter (QBiT), and investigated their key characteristics. The QBiT is efficient in cruise because of its wings,
and therefore, it is suitable for long-range missions with a small number of customers. The hexarotor is efficient in hover
and preferable for short-range and multi-customer delivery. We then coupled the eVTOL sizing model to a fleet size and
mix VRP (FSMVRP) to optimize the UAV fleet design considering delivery operations. We presented a mixed-integer
nonlinear programming (MINLP) formulation and solved it using a branch-and-cut solver. The MINLP solver found the
proven global minimum on small-scale problems of up to 15 customers; however, it failed to find a feasible solution
for a reasonable computational resource on larger-scale problems. The MINLP formulation was also restrictive in the
model fidelity for UAV design, where we had to use the linear surrogate models.

To tackle large-scale problems and design nonlinearity, we proposed an effective sequential heuristic algorithm
that combines specialized heuristics for VRP, gradient-based optimization for UAV design, and design exploration
strategies to increase the probability of finding the global minimum. We benchmarked the accuracy and scalability
of the sequential heuristics against the MINLP solver on 100 benchmark problems of the size of 5 to 60 customers.
The proposed algorithm found the global minimum in the majority of 5- and 10-customer benchmark problems. It
also converged to a near-optimal solution within a 0.3–1.0% error with respect to the global minimum for most of the
15-customer problems. On the scalability with respect to the problem size, the sequential heuristics consistently found a
better solution than the MINLP solver for all of the 30- and 60-customer problems. We also demonstrated the benefit of
incorporating VRP in the conceptual design process of a UAV fleet. Compared to the conventional baseline method,
the design-routing optimization reduces the fleet acquisition cost by 21.8% on average for 30-customer problems; and
19.0% on average for 60-customer problems.

In addition to the scalability, modularity is another advantage of the proposed sequential heuristics. Because VRP
and UAV design optimization are decomposed, the selection of the disciplinary models (i.e., an operational model or
design model) is flexible. In other words, the sequential heuristics can accommodate a higher-fidelity design model or
different VRP formulation, as long as the coupling interface remains the same. As an example, this paper demonstrated
that the sequential heuristics can switch between two design models, the linear surrogate and the nonlinear sizing
optimization, without modifying the top-level algorithm. We also showed the flexibility in the VRP model: the same
algorithm solved the design-routing problems with and without battery recharging.

The simultaneous design-routing optimization is useful in two ways. First, it provides a model-based estimate
of the minimum fleet size and the investment required for a prospective UAV delivery service. Second, the coupled
optimization outputs a set of flight missions, which may be used as target mission requirements in the following
preliminary and detailed design processes.
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