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Abstract

The conceptual design process of aircraft starts by deciding the representative mission require-
ments, followed by optimization of design variables to satisfy the given requirements. However,
the appropriate mission requirements are not obvious, especially when designing package delivery
UAVs (also called drones). The UAVs must accommodate various combinations of package weights
and delivery distances. The complexity increases further when designing a heterogeneous fleet of
UAVs that serves a large number of customers. This work addresses this problem by solving cou-
pled design-operation optimization to find optimal mission requirements and optimal UAV designs
simultaneously. We formulate this problem as mixed-integer nonlinear optimization and propose a
sequential heuristic algorithm to solve the coupled problem. The benchmark study of the proposed
algorithm against a nonconvex branch-and-cut solver shows that the sequential heuristics are effec-
tive. We also demonstrate that the simultaneous UAV design and routing optimization reduces the
UAV weight across the fleet by more than 12% on average compared to the conventional baseline.

Nomenclature

UAYV Conceptual Design Parameters

A = rotor disk area, m?
AR = wing aspect ratio
Cp = drag coefficient

CL = lift coefficient

Cr = thrust coefficient

D = drag, N

Ereq = energy required, J

e = Oswald efficiency

fsizing(-) = sizing model as a function mapping
J = propeller advance ratio

Ne = number of customers

Nrev = rotor revolution, 1/s

Trotor = number of rotors

P = power, W
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rotor profile power, W

flight range, m

rotor radius, m

body reference area, m?
wing area, m?

thrust, N

duration, s

cruise speed, m/s

rotor induced velocity, m/s
weight, N

rotor shaft tilt angle, rad
hover figure of merit
induced power factor

rotor inflow ratio

rotor edgewise advance ratio
air density, kg/m?

battery energy density, Wh/kg
rotor solidity

rotor angular velocity, rad/s

Vehicle Routing Parameters and Sets

dij =
M =

Ndesign =

nuav =
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distance between node ¢ and j, m

large constant

number of different UAV designs in the fleet
maximum number of UAVs available in the fleet
number of the UAVs of each design in the fleet
demand by customer i, kg

binary variable relating arcs and vehicles
binary variable relating nodes and vehicles
binary variable indicating vehicle activity

set of customers

subset of customers

set of customers and depot

set of arcs between nodes

set of all vehicles

set of hexarotor UAVs

set of QBiT UAVs

Vehicle Routing Indices, Subscripts, and Superscripts

i,j =
k —
o,d =
pc =
ph =
A% =
H =
Q —
UB =

node index, 7,5 € V
vehicle index, k € K
depots

power in cruise
power in hover
weight

hexarotor

QBiT

upper bound

Other Parameters

=
foooo=
X

optimized objective value
baseline objective value
UAV design vector in payload-range space



1 Introduction

Unmanned aerial vehicles (UAVSs) are viable for transporting commercial packages and medical supplies.
The advantages of UAVs—also known as drones—over conventional ground vehicles include rapid last-mile
delivery and potentially lower impact on the environment [1]. In particular, electric vertical takeoff and
landing (eVTOL) UAVs are a potential means for lightweight package delivery. The electric propulsion is
essential to build lightweight UAVs, and the hovering and vertical flight capability enable direct delivery to
customers’ backyards or rooftops.

One of the active research fields on the eVTOL UAV is the conceptual design methodology, which
is not yet established and not readily available in the open literature because of the lack of statistical
data on existing vehicles as opposed to fixed-wing aircraft. For package delivery applications, Sridharan
et al. [2] performed a conceptual sizing study of quadrotor biplane tail-sitter (QBiT) configuration [3] for
various payload weights and mission ranges. Govindarajan and Sridharan [4] presented an optimization-based
conceptual design approach and applied it to four eVTOL configurations, including QBiT and hexarotor.
Several researchers also investigated multirotor designs with no wing [5-7].

Regardless of the model or aircraft configuration, the conceptual design process starts by setting appro-
priate mission requirements, for which engineers optimize the sizing variables. The research question here
is the following: How should engineers choose appropriate mission requirements? This is a challenging task
for a package delivery UAV because the UAV needs to perform delivery missions of various package weights
and delivery distances. The problem becomes even more complicated when we design a fleet of UAVs that
serves a large number of customers. In this work, we address this challenge using multidisciplinary design
optimization (MDO) to optimize the mission and UAV designs simultaneously. We achieve this goal by op-
timizing the UAV fleet design and delivery operations concurrently to reduce fleet acquisition and operating
costs.

The operational optimization of package delivery is known as the vehicle routing problem (VRP), which
is an integer optimization problem that seeks the optimal routes of vehicles. The VRP has traditionally
been studied for truck delivery. Recently, there have also been research efforts on UAV routing [8-10]. The
recent literature includes truck-UAV collaborative delivery [11-13] and the UAV-only delivery [14-17]. One
crucial aspect of UAV routing problems is energy consumption modeling. Because of the limited energy
capacity of UAVs, the range or endurance is a limiting factor for UAVs, unlike conventional trucks. Dorling
et al. [14] solved a UAV routing problem using a linearization of an energy consumption model based on
the momentum theory in hover. They approximated the hovering power to be linear with respect to the
vehicle weight. Cheng et al. [17] extended their work by incorporating a nonlinear energy model into UAV
routing. Coelho et al. [15] assumed that the UAV power consumption is linear with respect to the flight
speed and constant with respect to the weight in their routing model. Other authors did not explicitly
compute the energy consumption to simplify the routing problem formulation; instead, they replaced the
energy capacity constraint with a flight range constraint [11, 12] or endurance constraint [13, 16]. Zhang
et al. [18] summarized the energy consumption models used in the recent UAV literature. The energy models
also serve as a means to evaluate the environmental aspect of UAV delivery. Chiang et al. [12] assessed the
sustainability impact of delivery by solving the UAV routing problem. Stolaroff et al. [1] and Kirschstein
[19] compared UAV delivery with ground delivery, but these studies did not include UAV routing.

The literature mentioned above solved VRPs to make short-term tactical decisions, i.e., to decide on an
upcoming delivery schedule using an existing fleet. Instead of tactical decisions, our goal in this paper is
to make a long-term strategic decision on the UAV fleet design via VRP. This type of VRP for a strategic
decision is categorized as fleet size and mixz VRP (FSMVRP) [20, 21], which aims to find the optimal number
and composition of vehicles in the fleet to maximize long-term profit. Accordingly, the customer information
on which an FSMVRP is solved should represent the demand over the fleet life cycle. Compared to the rich
literature on ordinary VRPs for tactical routing, the FSMVRP has drawn less attention from the research
community. There has been a limited number of UAV FSMVRP literature [22, 23] that only performed
homogeneous fleet sizing. In the current work, we expand the scope of FSMVRP by coupling it to the UAV
conceptual design optimization. To the authors’ best knowledge, there has been no literature on the truck or
ship FSMVRP that includes the vehicle or vessel design variables. This is not a surprise, given that delivery
or transportation companies do not usually have the freedom to design vehicles or vessels by themselves.
However, because of the low unit cost of UAVs, the delivery service providers may decide to design the



UAVs for their own use. The only previous work addressing the UAV design-routing optimization is by Choi
[23]. They performed sequential optimization of multi-trip VRP and UAV design on a 20-node problem with
up to 3 homogeneous UAVs. In the current work, we aim to expand the problem scope by considering a
heterogeneous fleet, including more UAV design variables (such as cruise speed and payload capacity), and
solving larger-scale problems.

Although the application is not package delivery, there have been several efforts on simultaneous opti-
mization of commercial aircraft design and operations. Taylor and de Weck [24] used simulated annealing in
combination with a linear programming solver to optimize the aircraft conceptual design and cargo network
flow. Mane et al. [25] proposed a sequential decomposition approach to solve the aircraft sizing and air-
line allocation optimization, and they compared their approach to a mixed-integer nonlinear programming
(MINLP) exact solver. Davendralingam and Crossley [26] used the decomposition method by Mane et al.
[25] to perform robust optimization of aircraft design and airline network design. Jansen and Perez [27] also
optimized the aircraft design and fleet allocation by decomposing the design-allocation coupled problem.
In contrast to the decomposition-based approaches in the literature cited above, Hwang et al. [28] used a
monolithic MDO architecture [29] to solve the coupled optimization of computational-fluid-dynamics-based
aircraft design, airline allocation, and flight trajectory. They used continuous relaxation of the allocation
problem to enable large-scale optimization. Roy et al. [30] proposed a surrogate-based monolithic optimiza-
tion framework to solve mixed-integer design-allocation problems.

Our work shares the same overarching goal as the literature [23-26, 28, 30]: We concurrently optimize
the vehicle design and fleet operation to achieve better system design. Our new contribution is that we solve
VRP as an operation problem instead of solving resource allocation problems. The VRP, which is essential for
UAV delivery, is more complicated than the resource allocation problem because the VRP decision variables
include route selection from a network that often has an overwhelming number of possible combinations. In
contrast, resource allocation problems do not typically include routing variables.

The outline of the paper is as follows. Section 2 provides the problem statement of the design-operation
optimization for package delivery UAVs. Section 3 summarizes the eVTOL conceptual design model used in
this study. In Section 4, we present an MINLP formulation for the design-operation optimization problem,
and we propose an effective sequential heuristic algorithm (SHA). We then perform a benchmark study
of the optimization approaches in Section 5. Section 6 compares the baseline and optimized solution to
demonstrate the benefit of the coupled optimization. Section 6 also presents an optimization result for a
delivery case with battery recharging.

2 Problem Description
2.1 Simultaneous Optimization of UAV Design and Operations

We propose to minimize the summation of the UAV takeoff weight across the fleet that serves a given
set of customers by varying fleet design and operation variables. Minimizing the fleet weight reduces both
the fleet acquisition cost and operating cost because (1) smaller vehicles likely cost less to manufacture,
and (2) lighter vehicles likely consume less energy. Further discussion on the objective function selection is
provided in Section 3.5. The operational optimization variables determine the allocation and routing; more
precisely, the allocation of each UAV to a subset of customers and the sequence of the visit within the subset.
The fleet design variables consist of the number of UAVs in the fleet and the design of each UAV. This work
considers a heterogeneous fleet composed of multiple designs and two configurations, which are described in
Section 3.

The design-operation optimization is a mixed-integer optimization problem because it has both discrete
routing and continuous design variables. Furthermore, the UAV design optimization is generally nonlinear,
making the coupled optimization an MINLP problem [31, Ch. §].

Figure 1 shows the coupling structure of the design-operation optimization. The UAV fleet determines
the optimal operations because the routing solution is subject to each UAV’s payload and energy capacity
constraints. The operational optimization outputs a set of routes, which gives the flight mission requirements
for UAV design optimization. In this work, we parametrize the missions in terms of the delivery distance,
total package weight, and the number of customers on each route. The UAV design optimization outputs a
set of UAV designs, which compose a fleet, given the mission requirements. In summary, there is a cycle of



/ Customer locations and demands/

Operation (VRP) /Routes (missions)/

UAV fleet design / Optimal fleet (a set of UAVs) /

Figure 1: Coupling of UAV fleet design and operations.

information between the operation and design optimization; thus, we need coupled optimization to find the
optimal fleet design.

2.2 Vehicle Routing Problem

This work solves an FSMVRP [20, 21] as an operational optimization problem for package delivery. The
goal of FSMVRP is to make a strategic decision on the size and composition of a yet-to-be-deployed fleet.
The FSMVRP solver determines the optimal UAV selection out of various UAV candidates for anticipated
delivery services. Because of its long-term objective, FSMVRP requires representative customer information
over the life cycle of the fleet, which we assume to be available. Specifically, the customer information
consists of the customer locations and the amount (weight) of each customer’s demand.

The key assumptions and constraints in our VRP model are as follows:

1. The fleet is heterogeneous.

2. Not all UAVs in the fleet need to be used unlike conventional VRP; the FSMVRP solver finds the
optimal number and composition of UAVs.

3. Each UAV must satisfy the payload capacity and energy consumption constraints.
4. Customer locations and demands are deterministic and known a priori.

5. All customers must be served by exactly one UAV. Customers cannot be dropped or served more than
once (i.e., we prohibit splitting the demand between multiple vehicles).

6. We only consider a single depot. Fach route must be a closed loop that starts and ends at the depot.

7. Each UAV is used only once; multi-trip of a vehicle is not allowed. For the problem instance in
Section 6.4, we allow UAVs to recharge batteries at recharging stations.

Assumptions 1-3 are essential for designing an effective UAV fleet, whereas 4-7 are adopted to simplify the
routing problem.

3 UAV Conceptual Design Model

This section presents an eVTOL UAV sizing model used in this study. We consider two different con-
figurations, a hexarotor and a QBIiT [2], as shown in Fig. 2. Both configurations are capable of vertical
climb, descent, and hover. For cruise, the hexarotor performs the edgewise flight, whereas the QBiT uses
wings to generate the lift. The sizing models and parameters in this study were mainly based on the work
of Govindarajan and Sridharan [4].

The sizing model aims to find the minimum-weight UAV design given mission requirements. We
parametrize the mission in terms of range R, total payload weight Wpyayioad, and the number of customers
ne on the route. Figure 3 shows an example of the mission profile. We optimize a UAV for multiple mis-
sions, i.e., the optimizer finds a single UAV design that can fly multiple delivery scenarios. In such cases,
the mission inputs R, Wpayload, and n. are vectors. The sizing outputs are the UAV takeoff weight Wigtal,
battery weight Whastery, and power consumption in hover Phover and cruise Peryise-



(a) Hexarotor (b) Quadrotor biplane tail-sitter (QBiT)

Figure 2: Delivery UAV configurations considered in this study [4].*
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Figure 3: Example of the mission profile for a 2-customer delivery, where n. = 2, the range is R = do1 + di2 + da2o,
and the payload weight is Wyayload = g1 + @2-

The inputs and outputs of the sizing module are summarized as follows:

(Wtotala Wbatteryv Phovera Pcruise) = fsizing (R7 Wpayloada nc) . (1)

Inside the above function fsising(-), we perform the UAV design optimization.
Figure 4 shows the extended design structure matrix (XDSM) [32] of the QBiT sizing model. The
hexarotor sizing model also has a similar structure.

3.1 Weight Estimation
The UAV total weight consists of the payload, battery, and empty weight as follows:

Wtotal = Wpayload + Wbattery + Wempty . (2)

The empty weight is further broken down into motor, electronic speed controller (ESC), rotor, and frame
weight. The weights of each component are given by the following regression models:

Wempty = Winotor + WEsc + Wrotor + Wiwing + Wirame »
Winotor = (2.506 x 10™1)P |

Wese = (3.594 x 1071 P,

Wiotor = 0.748472 — 0.0403r ,

Wying = —0.0802 + 2.28545,, ,

Weame = 0.5+ fWiotal -

0¢)
e D D D

~ N~~~
(=)



The motor and ESC weights are estimated using Eqs. (4) and (5) [4], where P is the installed power of the
motor. We assume a 50% power margin on top of the maximum power required during the missions. The
rotor weight is given by Eq. (6) [5], where r is the rotor radius. For the wing of the QBiT configuration, we
assume the wing weight to be linear with respect to the wing area as Eq. (7). The frame weight in Eq. (8)
consists of the structural weight and various weights such as wires and recovery parachutes. We also assume
that the frame weight is linear to the takeoff weight, and we use 8 = 0.20 for the hexarotor and 5 = 0.18 for
the QBiT. We determined the linear coefficients in Egs. (7) and (8) using a least-squares linear regression to
fit the weight estimation results by Govindarajan and Sridharan [4], where they used finite element analysis
and sizing optimization to estimate the component weights. The smaller value of 3 for the QBiT accounts
for the wings for which we compute the weight separately, which also carry the structural load. Egs. (4)—(8)
use SI units, i.e., Newtons for the weight, Watts for the power, and meters for length.

The battery weight is computed based on the battery energy density and the total energy required for the
mission. We assume a simple mission profile composed of vertical takeoff, cruise, and landing. Furthermore,
we approximate the power in vertical climb and descent to be the same as the power in hover on average, as
suggested by Dorling et al. [14]. The energy required for the mission is then

Ereq = Phover (2(nc + 1)thover) + —Pcruisei 3 (9)
Voo

where V, is the cruise speed; Phover and Peryise are the power consumption in hover and cruise, respectively.
The first term is the energy for takeoff and landing, and the second is the energy for cruise. We assume
the hovering time tpover of 60s for a takeoff or landing operation; therefore, a UAV hovers for 120s at each
customer or the depot. We also assume that Pjover and Pepyise are constant across the mission, which means
that we ignore the UAV weight change after unloading the payload. This implies an extra margin on the
UAV energy capacity. This simplification was necessary to reduce the routing model complexity and keep the
problem solvable using an MINLP solver and routing heuristics. Once the energy is computed, the battery
weight is given by Whattery = Freq /0.85pp. The battery density pp is assumed to be 158 Wh/kg, which is
conservative but a typical value in commercial battery packs, including the safety casing [4]. The factor of
0.85 accounts for the losses in battery and transmission as well as the power required by onboard systems
other than motors.

3.2 Power Consumption

3.2.1 Power in hover and vertical flight

Based on the momentum theory, the shaft power required by each rotor is,

I
B hover = )
Thover V 2pA

where T is the thrust of each rotor, p is the air density, and A is the rotor disk area. The trim condition in
hover yields T = Wiotal/Tirotor- We assume the hovering figure of merit of npover = 0.75 for hexarotors and
0.65 for QBiTs; we set lower efficiency for the QBiTs because we assume that the QBiT rotor (propeller)
design is tailored for an efficient cruise at the sacrifice of hover efficiency. The hexarotor’s rotor operates in
similar conditions in hover and edgewise forward flight, which allows it to have hover-efficient rotors.

(10)

3.2.2 Power in cruise

In forward flight, we use the relation based on the momentum theory to compute the power required as
follows [33]:
Peruise = TVoosin 8+ TV, + Iy (11)

where V, is the freestream velocity, V; is the induced velocity, 3 is the shaft tilt angle, and Py is the profile
power. Accordingly, V. sin 5 is the component of the freestream velocity normal to the rotor disk. Following
the method of Govindarajan and Sridharan [4], the induced velocity V; and induced power factor x are given



Vi =XQr — Vysing
1 V2pA 12
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where the rotor inflow ratio A is given by solving the inflow equation
Cr
2./ 12+ N2 ’

The key non-dimensional parameters are defined as follows:

A= ptan + (13)

~ Vocosf
o
T
“r = atne .

MyevT

where p is the rotor advance ratio in edgewise flight, Cr is the thrust coefficient, and J is the propeller
advance ratio for the winged cruise of the QBiT.
The profile power is given by the following formula [4]:

00y,

Py (14 4.65u%) (pA)(Qr)® | (15)

where Cy, is the airfoil zero-lift drag coefficient and o is the rotor solidity; we use Cyq, = 0.012 and o = 0.13 [4].

3.2.3 Trim conditions in cruise

The trim conditions determine the thrust and shaft tilt angle. For the hexarotor without wing,

1
T= n Wt20tal + Dgody ’
rotor (16)
[ = arctan (DbOdy) ,
Wtotal

where Dyoqy is the body drag, and n,ot0r is the number of rotors, which is six for the hexarotor. For the body
drag estimation, we use the method of Sridharan et al. [2] and Govindarajan and Sridharan [4]. Their method
assumes the UAV body to be a cylinder whose radius is 58% of the rotor radius, and the length-to-diameter
ratio is 2.5. Then the drag is given by

1
Dbody = ipvozoSbCD,b P

(17)
Cpp=014+0.2 cos® 3,
where the body reference area Sy, is the cylinder frontal area, i.e., the radius times the length.
The trim conditions for the QBiT with wings are n,otor = D and L = W. The drag is
D= Dbody + Dwing
(18)

1
= Dyody + ipVQQOSw (Cp,.., +Cb,)

where Sy, is the wing area, Cp, , is the zero-lift drag coefficient of the wing (set to 0.01), and Cp, is the
induced drag coefficient given by Cp, = C% /rARe. We assume a fixed aspect ratio of AR = 8 and Oswald
efficiency of e = 0.8 [4]. For the body drag, we use the same method as the hexarotor, with the angle of
attack of 5deg (i.e., f = 85deg) assumed.
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Table 1: UAV conceptual design optimization problem

Function/variable Description Bounds
Minimize Wiotal Takeoff weight, kg
given R, Whayload; e One or multiple mission requirements
with respect to  Wigtal Takeoff weight, kg [0.5, 50]
Voo Cruise speed, m/s [10, 50]
r Rotor radius , m [0.05, 1.0]
I Edgewise advance ratio, hexarotor only [0.01, 0.5]
J Propeller advance ratio, QBiT only [0.01, 1.3]
Sw Wing area, m?, QBiT only [0.05, 5.0]
subject to Wiotal — Wpayload — Whattery — Wempty = 0 Equality constraint to satisfy Eq. (2)
T/A < 250 N/m? Disk loading
Cr/o <0.14 Blade loading
Cr <06 Cruise lift coefficient, QBiT only

3.3 Sizing Optimization Problem

Given the mission requirements, we minimize the takeoff weight with respect to the cruise speed, rotor
radius, edgewise or propeller advance ratio in cruise, and wing area (only in QBiT cases). The UAV sizing
optimization problem is summarized in Table 1. We impose the upper limit on disk loading, blade loading,
and the cruise lift coefficient to avoid poor maneuverability and gust response. The upper bound values are
the same as those of Govindarajan and Sridharan [4], who explains these constraints.

The sizing model has three implicit variables that need an iterative solver: the rotor inflow ratio A in
Eq. (13); shaft tilt angle 8 in Eqgs. (16) and (17); and takeoff weight Wiota in Eq. (2). We use a Newton
solver for A and 3, whereas we impose the weight residual as an equality constraint instead of solving Eq. (2).

We implemented the sizing models using the OpenMDAO framework [34] with analytic derivatives. We
also used the SNOPT [35] optimizer, which is an implementation of the sequential quadratic programming
algorithm, via the pyOptSparse wrapper [36].

3.4 Characteristics of Hexarotor and QBiT

This section explains the key characteristics of the UAV models in the context of the design-routing
coupled problem. A detailed discussion about the UAV conceptual design and its design space is provided
by Sridharan et al. [2], Bershadsky et al. [5] and Govindarajan and Sridharan [4].

The most crucial distinction between the hexarotor and QBiT is their different suitability in various
mission settings. The hexarotor is more efficient in hover than the QBiT. Therefore, it is preferable for
short-range flights and multi-customer delivery. The QBIT is more efficient in cruise because of its wings,
making it a viable option for long-range delivery with a few customers.

Figure 5 shows the optimized takeoff weight of each configuration for single- and 4-customer delivery
with various payload weights and mission ranges. The takeoff weight was smaller with hexarotors for shorter
ranges, whereas the hexarotors became heavier than QBiTs on longer-range missions. For single-customer
delivery, the “switch” of the takeoff weight occurred between 30 and 50 km range, depending on the payload
weight. For 4-customer delivery, the hexarotor weight was smaller for all payload weights up to 55 km range,
whereas the weight difference between the hexarotor and QBiT became smaller for longer-range missions.
This is because the hexarotor is less efficient in long-range missions than the QBiT. As we increase the
number of customers, the total hovering time for a mission becomes longer. This implies that the hover
performance becomes a more dominant factor than the cruise performance in deciding the optimal design.
In other words, the optimal design is tailored for better hover performance when the number of customers is
large; the design is tailored for better cruise performance when the number of customers is small or it serves
long-range delivery.

Figure 6 shows the power consumption, cruise speed, and rotor radius of the optimized UAVs with a
single customer with 3kg payload. The QBiT consistently required more power in hover than the hexarotor
because of its smaller rotor radius, fewer rotors, and lower hover figure of merit. In cruise, the QBiT
consumed less power than the hexarotor when the mission range was longer than 43 km, which led to the
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Figure 6: Optimized design variables and power performance for single-customer missions with 3 kg payload. In
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smaller takeoff weight, as shown in Fig. 5. In cruise, the wings achieve a low thrust-to-weight ratio, reducing
the cruise power.

For the hexarotor, the optimized rotor radius increased as the UAV’s total weight increased for longer
ranges, but the cruise speed was nearly constant regardless of the range. The optimal speed implies the best
balance between the two competing factors: (1) the lower cruise speed results in a longer cruise duration,
which increases energy consumption; (2) the lower speed reduces the profile power because the profile power
is proportional to V2 under the constant advance ratio, as shown by Egs. (14) and (15). The optimal advance
ratio was constant because the blade-loading constraint always constrained it; the detail of the blade-loading
constraint is discussed by Govindarajan and Sridharan [4]. The lower power consumption in cruise than in
hover is mainly because of the translational lift.

The optimal cruise speed and power performance of the QBiT were more sensitive to the mission range
than that of the hexarotor because of a trade-off between hover and cruise performance. For the QBiT
configuration, the lower cruise speed reduces the energy required for cruise, thus reducing the battery weight.
The cruise energy is reduced because the cruise power reduction achieved by the slower cruise is more
significant than the increased cruise duration. At the same time, the lower cruise speed increases the wing
weight because it requires a larger wing area. In longer-range missions, the lower cruise speed was preferable
in minimizing the total weight because the battery weight reduction was more significant than the increase
of the wing weight. For short-range missions, the optimizer chose the higher cruise speed and smaller wing
area because a lighter wing reduces the hover energy, which was more beneficial than reducing the cruise
energy by equipping a larger wing and flying slower.

For the rotor radius variable, a smaller radius improves the cruise efficiency by reducing the profile
power and the empty weight, whereas in hover, a larger rotor is preferable to reduce the power, according
to Eq. (10). As a result of this trade-off, the optimizer chose a smaller rotor radius for long-range missions
where the cruise performance is dominant. In contrast, it preferred a larger radius for short-range missions
where hovering is more critical than cruise.

The propeller advance ratio always reached its upper bound of J = 1.3. Because J x V, and J o 1~
by definition in Eq. (14), the upper bound of J prevented too small a rotor in the long-range missions or too
high a cruise speed in the short-range missions.

1

3.5 Selection of Objective Function

In this work, the optimization objective is to minimize the sum of takeoff weights of active UAVs in
the fleet. The objective function is given by Eq. (19). We intend to reduce fleet acquisition and operating
costs by minimizing this objective function. This section discusses the objective function selection and its
implication.

Figure 7 shows the difference in the UAV designs and performance between two objective functions. One
is the minimum-weight design, and the other is the minimum-energy design that minimizes the total energy
required to fly the given mission. Here, we assume that the acquisition cost is proportional to the UAV
takeoff weight, and the operating cost is correlated closely to the energy consumption. For the hexarotor,
the energy consumption of the minimum-weight and minimum-energy designs is almost identical. Therefore,
we conclude that minimizing the hexarotor weight approximately minimizes both acquisition and operating
costs.

For the QBiT, the difference between the two objective functions is noticeable, and minimizing the QBiT
weight does not imply minimizing the operating cost. However, a downside of the minimum-energy QBiT
design is the significantly lower cruise speed than the minimum-weight design. The lower cruise speed reduces
the cruise drag and hence the energy consumption at the sacrifice of increased wing area and weight. This
result is not preferable, considering that UAVs are expected to enable rapid delivery. This is particularly
true for the winged QbiTs. To avoid the low cruise speed, we exclude the energy consumption from the
objective function and only minimize the UAV takeoff weight in the remainder of this paper.

3.6 Linear Surrogate Models

The sizing model, which is a mapping from the mission inputs to the sizing outputs as summarized
in Eq. (1), is nonlinear because the design optimization performed as a part of the mapping assesses the
nonlinear requirements as constraints. When solving the coupled design-routing optimization, the heuristic
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Figure 7: Comparison of the UAV takeoff weight, energy consumption for a mission, and optimal cruise speed
between the minimum-weight and minimum-energy designs. We swept the mission range with a 3 kg payload and a
single customer. The left column shows the hexarotor results, and the right column shows the QBiT results.
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Table 2: Additional constraints and assumptions for design model linearization

Variable Description Additional constraint or assumptions to fix the variable

Voo Cruise speed Constant at 18 m/s for hexarotor, 33 m/s for QBiT

r Rotor radius Fixed hover disk loading of 120 N/m? for hexarotor, 180 N/m? for QBiT
1 Edgewise advance ratio Fixed at 0.3, hexarotor only

J Propeller advance ratio Fixed at 1.3, QBiT only

%

Wing area Constant lift coefficient of 0.6 in cruise, QBiT only

approach (which will be described in Section 4.2) can directly incorporate this nonlinear design optimization.
However, the MINLP approach (in Section 4.1) is not compatible with the design nonlinearity. This section
builds linear surrogates of the sizing model to enable the coupled optimization by an MINLP branch-and-cut
solver.

We first introduce new equality constraints on the disk loading and lift coefficient to determine the rotor
radius and wing area. We also fix the cruise speed and advance ratio; the fixed values are summarized in
Table 2. The values in Table 2 were based on previous conceptual design optimization results [4]. The sizing
optimization now has zero degrees of freedom with these new assumptions.

Next, we train the linear fitting models for Wiotal, Phover; and Peryise i the (R, Wyayload, ) three-
dimensional space. The input domains are 10 < R < 40 km, 1 < Wyayload < 10 kg, and 1 < n. < 9.
Here, we set the range upper bound at 40 km to reduce the linearization error by excluding the increasing
nonlinearity above 40 km, as shown in Fig. 5. We then build the surrogate models by solving least-square
problems with non-negativity constraints on the weight and power predictions. A surrogate for Whagtery is
not necessary because the MINLP formulation directly incorporates the energy capacity constraint. On the
nonlinear sizing model, the switching points of the lower-weight UAV configuration were above 40 km range
for most missions, as shown in Fig. 5. After linearization, the switching points shifted toward the shorter
ranges (typically below 40 km), but the overall behavior remains the same: the hexarotor is lighter for the
ranges shorter than the switching point, whereas the QBIiT is lighter for the longer ranges. This implies that
the design-routing solution with the linear surrogate model still includes both hexarotor and QBiT in the
optimal fleet, even though we set the range upper bound to 40 km.

We evaluated the surrogate prediction error using 100 random test points. The average and maximum
errors were 6.0% and 24.6% for the hexarotor, and 3.4% and 12.1% for the QBiT, respectively. Although
the linear surrogates are not particularly accurate, it is not our primary purpose to have accurate and
inexpensive surrogates. The purpose of linearization in this work is to enable the optimization benchmark
studies in Section 5, where the MINLP solver is restricted to a linear design model. For benchmarking the
optimization approaches, the surrogate accuracy is not crucial as long as we use the consistent design model
for both MINLP and heuristic approaches.

4 Optimization Approaches

This section first presents an MINLP formulation and evaluation of the design-operation coupled opti-
mization using a commercial branch-and-cut solver. Because the MINLP solver cannot incorporate nonlinear
UAYV design models, the formulation requires linearized surrogates instead. The MINLP solver is also limited
to a small problem size. To address these challenges, in Section 4.2, we propose a novel approach called the
sequential heuristic algorithm (SHA) that can efficiently solve large-scale problems and incorporate nonlinear
design models.

4.1 Mixed-Integer Nonlinear Programming (MINLP)

The first approach solves the coupled design-routing optimization using a mathematical MINLP solver.
This monolithic optimization approach corresponds to the simultaneous analysis and design (SAND) MDO
architecture [29]. This approach formulates the coupled optimization as a nonconvex mixed-integer quadratic
constrained program (MIQCP) using the three-index vehicle flow model [37] for routing. The approach allows
us to consider a heterogeneous UAV fleet. We use the nonconvex branch-and-cut solver by Gurobi 9.5.0 [38],
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Table 3: Definitions of the sets, variables, and other parameters for the MINLP formulaiton

Sets N Set of customers, N' = {1,2,...,n}
S Subset of customers, S C N
V Set of nodes, which consists of customers and the depot, V = N |J{o, d}
A Set of arcs between nodes, A = (V\{d}) x (V\{o})
K Set of all UAVs, K = {1,2, ..., npav}, K = KCH=a | J LQBIT

JcHexa Set of hexarotors
KCQBIT Set of QBITs
Indices i, ] Node index, i,7 € V
k Vehicle index, k € K
Variables w1 xijr = 1 if UAV k travels from node 7 to j, 0 otherwise
Yik yi = 1 if node 7 is served by UAV k, 0 otherwise
ay ar =1 if UAV k is active (i.e., serves at least one customer), 0 otherwise
Nej; Number of customers served by UAV k
Ry, Range flown by UAV k, km

Wiotal,k Total weight of UAV k, kg
Whayload,k  Payload capacity of UAV k, kg
Piover i Power consumption in hover by UAV k, W

Pervise,k Power consumption in cruise by UAV k, W
Others Ne total Total number of customers
NUAV Mazximum number of UAVs available for delivery
o,d Depot: we consider a single depot but distinguish the start point o and endpoint d
qi Demand by customer i, kg
dyj Distance between node ¢ and j, km
thover Hovering time for takeoff or landing, set to 60s
Voo Cruise speed of UAV k, set to 18 m/s for hexarotor, 33 m/s for QBiT
Rus Upper bound of single-customer range, set to 40 km
M Large constant, M > ng iotal

which uses the bilinear transformation and spatial branching to handle nonconvex quadratic constraints.

The sets, variables, and other constant parameters used in the MINLP formulation are summarized in
Table 3. In the MINLP formulation, we assume that each UAV has its own design variables. Therefore, the
fleet may have up to ndesien = nuay different designs of UAVs. Since each UAV serves only one route, the
number of routes in the solution equals the number of distinct designs. In FSMVRP, the number of UAVs
used in the routing solution is an optimization variable, and nyay serves as the upper bound of the number
of UAVs.

We impose upper bounds on the payload and energy capacity to avoid unrealistically large-sized UAVs.
For the energy capacity, we impose an upper bound on the single-customer range, which is the range of
a UAV when it serves only one customer, i.e., a round-trip flight from the depot to a customer. This is
equivalent to imposing an upper bound to the energy capacity because of Eq. (9). When a UAV is designed
for a multi-customer mission, we compute an equivalent single-customer range of the UAV and constrain it.
The range for a multi-customer mission is always shorter than the equivalent single-customer range because
UAYV hovers longer in a multi-customer case. The upper bound value is 60 km for design-routing problems
with the nonlinear design model in Section 6. For the problems with the linearized design model in Section 5,
we reduced the range upper bound to 40 km to improve the linear surrogate accuracy. The upper bound of
the payload capacity is 10 kg for both linear and nonlinear cases. The selection of these upper bound values
is based on the QBiT conceptual design literature [2, 39], which reported electric QBiT designs as large as
9.9 kg payload weight and as long as 56 km range.

15



The MINLP formulation is summarized as follows:

minimize Z axWhotal k (19)
kel
w.rt. Tijk, Yik, o € {0,1}, nex €1 Vi,j €V, Vke K, (20)
Wtotal,k: Wpayload,lw Phover,ka Pcruise,ka Rk €ER vk € IC7 (21)
subject to Z Yir = 1 VieN, (22)
kel
Soowige— Y, =0 Vie N, Vke Kk, (23)
Fj€V\{i,o} FjE€V\{i,d}
Z Tk =1 i=o0, Vkek, (24)
jeV\{io}
> wik =y Vi e W{d}, VkeKk, (25)
JEV\{i,0}
Z Tjik = Yik i=d, Ykek, (26)
JEV\{i,d}
Z Yikqi = Wpayload,k VEe K, (27)
ieN
Z J}ijkdij = Ry, Vk € IC, (28)
1,jEA
> yik = ek VEeK, (29)
iEN
> ik <M Vke K, (30)
iEN
> mi <[S]-1, VSCWN, VkeKk, (31)
Vi,je€S
Ry, Rup
2(nc,k + 1)Phover,kthover + Pcruise,kﬁ < 4Phover,kthover + Pcruise,kﬁ Vk € IC: (32)
Wtotal,k = fVI;I (Rka Wpayload,k; nc,k) Vk € ICHexa7 (33)
Phover,k = II)_Ih (Rk, Wpayload,k7 nc,k:) Vk € ’CHeX&, (34)
Pcruise,k = f;{c (Rk7 Wpayload,ka nc,k) Vk € ICHexa7 (35)
Wtotal,k = fv%2 (Rka Wpayload,k7 nc,k:) Vk € K:QBiTa (36)
Phover,k = fII?h (Rka Wpayload,lm nc,k) Vk € KQBiTa (37)
Pcruise,k = fl()QC (le Wpayload,kv nc,k) vk € ICQBiT' (38)

As a problem setup, we generate a set of customers with known locations and demands ¢;, which can be
non-uniform. We then compute the distance of each arc d;; based on the customer locations before running
the MINLP solver.

The objective Eq. (19) minimizes the summation of the active UAV weights, which we assume reduces
the fleet acquisition cost and operating cost. Constraints Eq. (22) impose that each customer is served by
only one vehicle. Constraints Eqgs. (23) and (24) ensure the vehicle flow conservations, that is, each route is a
closed-loop. Constraints Eqgs. (25) and (26) are for the consistency between z;; and y;,. Constraints Eq. (27)
are the vehicle capacity constraints. Constraints Eq. (28) relate the active arcs and the flight range of each
route. Constraints Eq. (29) impose the consistency between y;, and n. . Constraints Eq. (30) let the solver
determine oy, from y;i, where M is a large constant (called “big M”) that needs to satisfy M > n ota1. This
big M formulation is valid under condition Wigtalx > 0, which is imposed in the surrogate training process
for Eq. (33).
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Constraints Eq. (31) are the subtour elimination constraints (SECs), where S is a customer subset. The
SECs prohibit subtours, which are the infeasible closed loops that do not include the depot. The number
of constraints Eq. (31) is exponential with respect to the number of customers, which is prohibitive for
large-scale problems. Therefore, we employ the separation procedure [37] for SECs to avoid imposing an
exponential number of constraints. This procedure first solves a relaxation problem without SECs, and every
time the optimizer finds a feasible solution to the relaxation problem, it identifies all the subtours in the
solution and adds the corresponding SECs. The optimizer then returns to the updated relaxation problem
with new SECs, and repeats the process until no subtour is found in the solution.

Constraints Egs. (32) are the energy capacity constraints. The right-hand side is the energy consumed
by vehicle k if it performed a single-customer 40 km-range delivery. The left-hand side is the energy required
by vehicle k to serve n.j customers in the route of distance Rj. The energy constraint requires the energy
consumption (left-hand-side) to be less than the maximum energy capacity (right-hand-side). Eq. (32) is
linear in conventional routing problems with fixed vehicle designs (i.e., Phover; Peruise; and Voo are constant).
However, in design-routing coupled problems, Eq. (32) becomes nonlinear and nonconvex because Phover,
Ney Peruise, Ri, and Vo are optimization variables. In other words, the design-routing coupling makes the
energy constraints nonconvex. To deal with the nonconvexity, we fixed V,, as described in Table 2 and
reduced Eq. (32) to bilinear inequalities. The bilinear inequality constraints are still nonconvex, but the
Gurobi solver can handle them via the bilinear transformation.

Finally, constraints Eqgs. (33)—(38) are the design surrogate models from Section 3.6. These constraints
are linear because we use linear surrogates. If we used the original nonlinear design model directly instead,
the constraints would become general nonlinear equalities. To the authors’ best knowledge, no existing
mixed-integer programming solvers, including Gurobi 9.5.0, can practically deal with such general nonlinear
constraints.

4.2 Decomposition and Sequential Heuristics

The second optimization approach, a new approach we propose, decomposes the design-routing problem
into design optimization and VRP, then solves them sequentially. Such decomposition has been successful in
the coupled optimization of aircraft design and network flow [24—26]. Furthermore, we propose a modification
to the conventional sequential optimization [23] to avoid local minima and increase the probability of finding
a coupled optimal solution.

Figure 8 shows the XDSM of the proposed SHA. The optimization procedure is summarized as follows:

1. Prepare an initial fleet. The fleet is parametrized by variables [Wtotal, Whattery » Phovers Pcmise} of each
UAV.

(1) Initial fleet

(2) Vehicle routing — (3) Routes (missions) /77 /(3) Routes (missions) //_7 / Lift of previously-used UAVs/

]
4) Multi-missi
@) _u I m{55|.on . / UAVs set 1 (fine-tuned)
UAV design optimization =

(5) Single-mission

/ UAVs set 2 (exploited) /77

T

design optimization

(6) New design exploration >—/ UAVs set 3 (explored) //—7
’ )

(7) New fleet L Merge and select

Figure 8: Data flow and processes of the proposed sequential heuristic algorithm (SHA).
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2. Solve FSMVRP given the fleet for the minimum fleetwise takeoff weight (Eq. (19)).
3. Given the routing solution, generate a set of flight missions flown by each UAV.

4. Perform multi-mission design optimization of each UAV for the assigned set of missions to fine-tune
the designs.

5. Perform single-mission design optimization for each mission (not for a set of missions) to exploit the
VRP solution.

6. Introduce exploratory UAV designs to escape from local minima.
7. Repeat Step 2 with the new fleet composed of the UAVs from Steps 4, 5, and 6.

In Step 2, SHA solves FSMVRP using heuristics while fixing the UAV designs in the fleet, i.e., fixing the
designs variables Wiotal, Whatterys Phover; and Peruise. The VRP here is equivalent to solving Eqgs. (19)—(32),
whereas it uses a different form of the energy constraints instead of Eq. (32) as follows:

Ry,
2(nc,k: + 1>Phover,kthover + Pcruise,kv»ilf < pbWbattery,k Vke K. (39)
o0,
The left-hand side is the energy consumed, and the right-hand side is the battery energy capacity of the
vehicle. SHA employs heuristics to solve VRP because they are the only practical way to handle large-
scale problems, given VRP is non-deterministic polynomial-time hard. In the current work, we combine the
local cheapest insertion (LCI) algorithm to find an initial feasible solution and the guided local search (GLS)
algorithm to escape from local minima and improve the solution globally. Both LCI and GLS are implemented
in the Google OR-Tools package [40], and this combination was the most robust and accurate for our
FSMVRP among the other algorithms available in Google OR-Tools.

The UAV design optimization in Step 4 achieves same-route improvement, or local improvement, by
fine-tuning the design of each UAV for the assigned routes. In designing a fleet, it is not practical to have a
distinct specialized design for each route; otherwise, we may have to have hundreds of different UAV designs.
Instead, we prefer a fleet with a limited number of designs to reduce the cost of vehicle development and
certification. This requires a UAV to be able to serve various missions, i.e., the design requirements for a
UAV span multiple missions. Therefore, SHA performs multi-mission design optimization to determine one
UAV design given a set of missions assigned to it. SHA uses gradient-based optimization as described in
Section 3.3 for the design subproblem. The UAV design optimization subproblem is summarized in Table 1.

In Step 5, SHA performs a series of single-mission design optimization for all missions ignoring the
previous assignments by VRP (i.e., regardless of the mission grouping). This step intends to improve the
solution by exploiting the routes generated by the previous VRP. For example, suppose two UAVs of design A
served route X (20 km, 4 kg payload) and route Y (15 km, 4 kg payload) in the previous VRP solution. Step 4
first optimizes the design of UAV-A while requiring it to fly both routes X and Y; we name the optimized
design as A. In this simple case, the route X requirements determine design A because route X requires more
energy than route Y does, which means UAV-A will have an extra energy margin when serving route Y.
Whereas in Step 5, the proposed method optimizes UAV designs for each route separately, generating new
UAV-B for route X and UAV-C for route Y. The design of UAV-B is identical to UAV-A, but UAV-C is
lighter than UAV-A because it only needs to fly the shorter route. Therefore, the objective function would
be reduced if the fleet adopts UAV-A and UAV-C instead of two UAV-As. However, it may not be feasible
to include both UAV-A and UAV-C in the fleet when there is a limit on the maximum number of different
UAYV designs. The VRP solver in the next iteration of SHA will determine whether to adopt the new designs
or not. This example comparing Step 4 and Step 5 is illustrated in Fig. 9.

SHA also seeks new-route improvement, which means the global search for better solutions in the design
space, in addition to the same-route improvement. Here, we propose a method for new design exploration in
Step 6 to achieve global improvement. The procedure of Step 6 is summarized in Fig. 10. In this step, SHA
first generates a set of new UAVs whose designs differ from the previously-searched ones. For the design
exploration purpose, we represent UAV design by the payload capacity and the range on a single-customer
delivery, i.e., X = [Wpayload, R|n.=1], where X is a vector representing the UAV design. SHA then chooses
a new exploratory design by repeatedly solving the following optimization subproblem:

Xpew = argmax |min|X — X ||] , (40)
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Step 4: Multi-point design optimization Step 5: Single-point design optimizations

UAV design A

Route Y Q{f‘ Route Y UAYV design C

/ | \/;ﬂiesbmmndy. / M —

Figure 9: Example of the multi-mission optimization in Step 4 and single-mission optimizations in Step 5 of SHA.

/List of previously-used UAVS/

New design generation
) — Exploratory fleet /
in range-payload space

Sub-VRP Routes (missions) '
QAV design optimizatio@ Exploratory UAVs ,

Figure 10: Procedure of new design exploration in SHA.

where X () is a previously-used UAV. This subproblem finds the most isolated point from the previously-used
designs in the range-payload two-dimensional space. For the UAVs with n. > 1, we compute an equivalent
single-customer range, R|,.—1, using Eq. (9) to map the design into the range-payload space. After generating
a set of new UAVs, SHA computes [Wiotal; Whatterys Phover, Peruise] for each UAV using Eq. (1) and prepare
an exploratory fleet. SHA then solves a sub-VRP using this exploratory fleet. In this sub-VRP, the routing
solution does not have to serve all the customers because the exploratory fleet cannot satisfy all the demands.
This setting is different from the original VRP in Step 2, where we require the fleet to serve all customers.
The exploration step is completed by optimizing the UAV designs for the mission outputs from the sub-VRP.
SHA now has a pool of candidate UAV designs for the next iteration generated from Steps 4, 5, and
6. At this point, SHA may need to select UAVs from the pool when the maximum number of designs is
limited. The selection rule, i.e., the portion of the UAVs from each step to be used in the next fleet, is
a tunable hyperparameter. In this work, we use the following strategy: in the early sequential iterations,
SHA prioritizes the fine-tuned designs as elitism while keeping 30-50% of the spots for exploratory designs,
which increases the chance of avoiding local minima in the design space. This strategy is essential for the
proposed sequential method to balance exploitation and exploration. The setting of the 30-50% allocation
was determined by trial and error on the benchmark problems presented in the next two sections. SHA then
reduces the exploration portion and focuses more on local improvement and exploitation toward the end.

5 Benchmark Results of the Optimization Approaches

This section compares the accuracy, robustness, and computational cost of the two optimization ap-
proaches proposed in Section 4 by solving a set of benchmark problems. The design-routing optimization
problem is summarized in Table 4. In this chapter, we use the linearized surrogate models for UAV sizing
due to the limitation of the MINLP solver.
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Figure 11: Examples of the benchmark problem instances. The black points show the customer; the green square
at the center is the depot; the blue and orange lines show the routes flown by hexarotors and QBiTs, respectively.

5.1 Benchmark Problems

We created a benchmark set of the design-routing optimization problems with various problem sizes of 5,
10, 15, 30, and 60 customers. We generate 20 problem instances for each problem size by randomly locating
the customers in a 30 x 20km region. Figure 11 shows examples of 10 and 60-customer instances. Each
customer has either 1kg or 2kg demand in 5, 10, and 15-customer problems, and 0.5kg or 1kg demand in
30 and 60-customer problems. The depot is located at the center of the region.

For the fleet settings, the maximum number of UAVs in the fleet is the same as the number of customers.
Since the linearized design surrogate was trained based on a single-mission design model and cannot take
multi-mission into account, we allow each UAV to have its own design (i.e., the number of different designs is
equal to the number of UAVs in the fleet). We applied this condition to both the MINLP and SHA approaches
to have a consistent problem setup for the comparison. However, Step 4 (multi-mission design optimization)
of SHA is not included in the benchmark study in Section 5; Step 4 will be included in Section 6.

5.2 Accuracy and Robustness of the Sequential Heuristic Algorithm

We first benchmark the proposed sequential heuristic algorithm’s accuracy and robustness. We measure
the accuracy by computing the errors of the optimized objective value as

* *
" Jreuristics — Jglobal
Objective error = ———2 Sl

. : (41)
global

where fif istics 15 the objective value optimized by SHA, and fg*lobal is the proven global optimal value
obtained by the Gurobi MINLP solver.

Figure 12 shows the objective function errors in the 5, 10, and 15-customer benchmark problems. A
maximum of 15 customers was the practical limit of the problem size on which we can fully converge the
MINLP solver. Until converging the optimality gap to less than 1.0 x 107>, the solver ran for 48 hours

Table 4: Summary of design-routing optimization problems

UAV sizing model incorporated

Function/Variable Surrogate (Sec. 5) Design optimization (Sec. 6)
Minimize fleetwise takeoff weight (> Wiotal) — —
with respect to routing and allocation variables optimized optimized
total number of UAVs in the fleet, nyay NUAV = Ndesign Ndesign < MUAV < MUAV, UB
config., Wigtal, Wbattery: Wpayloa.d» Phovers Peruise optimized optimized
Voo, 7y por J, Sy, fixed optimized
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in parallel on a 48-core 2.1 GHz computing node for 15-customer problems. We solved each of the 60 test
problems from 20 randomly-generated initial fleets; the optimizations ran for 30 sequential iterations for
each initial fleet. This multistart strategy from multiple initial fleets increases the probability of finding the
global minimum [31, Tip 4.8]. Each translucent dot in Fig. 12 corresponds to the optimized objective value
starting from each fleet. The opacity in the plot indicates that multiple optimization runs converged to a
similar value: the more frequent runs converged to a point, the more opaque the point becomes.

Most of the dots converged to the zero error on 5-customer problems, which indicates that most opti-
mization runs found the global minimum. In 10-customer problems, most optimization runs converged to
the global minimum, whereas some runs resulted in an error of less than 3%. In 15-customer problems, fewer
points converged to the global minimum, and most runs resulted in 0-1% errors. The worst-case error in
the 15-customer problems was no more than 3%.

Figure 13 shows the probability of finding an acceptable solution within a given tolerance when per-
forming the multistart SHA. We computed the probability of success based on the multistart optimization
results shown in Fig. 12. For example, suppose we want to solve a new instance of the 10-customer problem.
When we run SHA once, Fig. 13 estimates that the probability of finding the global minimum is 42%. If
we compromise and allow an error less than 0.3% with respect to the global minimum, the probability of
finding a solution within the 0.3% tolerance is 63%. When we run SHA 10 times from different initial fleets,
the probability of finding the global minimum rises to 77%. If we allow an error less than 0.3% and perform
ten multistarts, the probability of finding a solution within the 0.3% tolerance is 97%.

To summarize, SHA almost always finds the global minimum in 5-customer problems. The algorithm
is also robust on 10-customer problems if we accept an error of 0.3%. The probability of finding the global
minimum becomes lower when the number of customers increases to 15. However, it still is reliable in finding
a near-optimal solution if we allow an error of 0.3-1.0%. Although it is impossible to validate the accuracy
on larger-scale problems because the MINLP solver never converges, these benchmark results demonstrate
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Figure 12: Errors between the global minimum and the objective value found by the multistart SHA.
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Figure 13: Probability of finding an acceptable solution within a given tolerance when using the multistart SHA.

the accuracy and robustness of the SHA approach we propose.

5.3 Scalability

We also benchmark the scalability of the optimization approaches with respect to the problem size. Here,
we solve each benchmark problem by the two approaches under the same amount of computational resources
and compare the best solutions found within the given resource. Table 5 lists the wall time limit for each
problem size. For a comparison, we run both SHA and Gurobi’s MINLP solver on a single thread because
the VRP solver by Google OR-Tools does not support parallelization. Table 5 summarizes the resource
allocation strategy for SHA, i.e., the number of multistart and sequential iterations that can be done within
the time limit. Since the MINLP solver does not benefit from a multistart, we run a single optimization until
the time limit. For the 30- and 60-customer problems, we provide a manual initialization to the MINLP
solver; otherwise, the solver fails to find a feasible solution within the time limit. The initial solution consists
of the most straightforward feasible routes where all customers are directly connected to the depot. An
example of the initial solutions is shown in Fig. 11b. The MINLP solver fully converged on all 5 and 10-
customer problems, whereas it did not converge for 15, 30, and 60-customer problems. The optimality gap
achieved within the given time limit was 6.1-10.4%, 17.6-32.9%, and 31.1-36.3% for 15, 30, and 60-customer
problems, respectively. The non-convergence of these problems does not affect the scalability assessment
because we only compare the best objective values regardless of the gap convergence.

To compare the two optimization approaches, we define the objective ratio

b

Objective ratio = Ssma (42)

flT/[INLP

which is the ratio of the best objective value found by SHA to the best objective value found by the MINLP
solver (i.e., incumbent solution). The objective ratio of 1 means the SHA and MINLP solvers found the

22



Table 5: Scalability benchmark study settings

No. of customers Max. no. of UAVs Wall time limit, s SHA resource allocation MINLP initialization
5 5 250 5 multistarts, 10 iterations  No
10 10 1,000 10 multistarts, 10 iterations No
15 15 2,250 10 multistarts, 10 iterations No
30 30 9,000 15 multistarts, 15 iterations Manual initialization
60 60 36,000 20 multistart, 20 iterations = Manual initialization
1097 ® ® ¢ f I
Objective ratio  0-9 ] Q@ ]
(SHA / MINLP) =
=
0.8 1 . -
0.7 - T T T T 1 -
5 10 15 30 60
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Figure 14: Comparison of the best objective values found by the MINLP solver and SHA approach under the same
wall time limit.

same solution. The objective ratio greater than 1 means the MINLP solver finds a better objective value,
whereas the ratio less than 1 indicates that the SHA solution is better.

Figure 14 shows the scatter plot of the objective ratio on all 100 benchmark problems. Each translucent
dot in Fig. 14 corresponds to each problem. The opacity indicates that multiple benchmark problems resulted
in a similar objective ratio. All 20 problems with five customers converged to the objective ratio of 1. On 10
and 15-customer problems, the objective ratio was 1 for most problems. However, the SHA solutions were
slightly inferior to the MINLP solution for some problems. These results are consistent with the benchmark
results shown in Fig. 12, where we observed 0-3% errors. For 30- and 60-customer problems, SHA always
results in a better objective value than the MINLP solution. The difference was 3-20% for 30 customers and
18-23% for 60 customers. The Gurobi MINLP solver showed poor performance even with the manual route
initialization because of the NP-hardness of VRP and the nonconvexity of the UAV energy constraints. To
summarize, our SHA approach is scalable for large-scale design-routing problems. In contrast, the MINLP
branch-and-cut solver is limited to a problem size of 15 customers or less.

6 Results with Nonlinear UAV Design Optimization

This section shows the coupled design-routing optimization results that incorporate the UAV sizing
optimization described in Section 3.3. The size of the benchmark problems solved in this section ranges
from 5 to 1000 customers. We only use the SHA approach in this section because the MINLP solver cannot
handle the nonlinearity of the sizing optimization.

The differences in the optimization setup with and without the UAV sizing optimization are summarized
in Table 4. The optimization problem now includes the cruise speed, rotor radius, cruise advance ratio,
and wing area as design variables, which were fixed in Section 5. The other difference is that we now limit
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Table 6: Representative missions used for the baseline designs

Configuration  Payload, kg  Range, km
Hexarotor {1, 2, 5, 8, 10} 40
QBIT {1, 2, 5, 8, 10} 60

the number of different UAV designs to less than the total number of UAVs in the fleet. In practice, it is
preferable to have a small number of different designs considering the cost of development, certification, and
production. Therefore, we seek to find the optimal fleet with potentially a large number of UAVs but a
limited number of different designs.

6.1 Conventional Baseline

We first describe the procedure to obtain a baseline solution, which will be compared to the optimized
solution. As a conventional design process, we assume a sequence of design optimization followed by a
routing problem with no further iterations. The baseline design process is summarized as follows:

1. Generate ngesign representative missions.
2. Optimize UAV designs for each mission. This generates nqesign different designs.

3. Prepare p UAVs of each design and add them to the list of candidate UAVs; the total number of UAVs
on the list is the product of p UAVs and n designs, i.e., nuav = Pidesign-

4. Solve VRP to determine the optimal fleet that can serve the customers (i.e., select UAVs out of nyay
candidates such that the summation of takeoff weights across the fleet is minimized).

5. Compute the baseline objective value fy by Eq. (19).

In this work, we generate five hexarotors and five QBiT designs, in a total of ngesign = 10 different designs
for all problems regardless of the number of customers. Table 6 summarizes the 10 representative missions
we assumed to optimize the designs. We set p = 2 for 5, 10, and 15-customer problems. For 30-customer
problems or larger, we set p such that the maximum number of UAVs in the fleet is equal to the number of
customers, i.e., N¢, total = NUAV = PNdesign-

6.2 Comparison of Optimized and Baseline Objective Values

Figure 15 compares the baseline objective value and the optimized values on various sizes of benchmark
problems. We solved the same kind of benchmark problems from Section 5, but now we extend the upper
bound of the single-customer-trip range to 60 km and the delivery domain to 45 x 30 km. This modification
intends to include the “switch point” of the takeoff weight between the hexarotor and QBIiT (as shown in
Fig. 5), which occurs at 30-50km depending on the payload weight and number of customers on a route.
Furthermore, we also solved larger-scale problems with 120, 250, 500, and 1000 customers. For each size, we
prepared 20 problem instances with randomly-generated customer locations. The demand by each customer
was the same as Section 5 for problems with 30 or 60 customers; we set a uniform demand of 0.5kg for
problems with 120 or more customers.

SHA repeats the sequential iterations for each problem starting from the baseline fleet until it satisfies
the following convergence criteria: 1) a maximum of 100 iterations, and 2) the best objective value is not
improved for 20 consecutive iterations. With these criteria, the average wall time required for optimization
was 9.8 minutes for a 5-customer problem on a 3.4 GHz CPU, 87.7 minutes for a 60-customer problem on
the same CPU, and 83.8hours for a 1000-customer problem on a 2.1 GHz CPU. All computations were
performed on a single thread because the OR-Tools VRP solver (a component of SHA) does not support
parallel computation. The VRP solver accounts for most of the computational time: more than 90% of the
total wall time was spent on VRP for 60-customer or larger problems. The proportion of the VRP time was
less for smaller-scale problems, but it still dominates the overall computational cost. The design optimization
of each UAV converges within a few seconds because it is a simple continuous optimization problem solved
by a gradient-based optimizer with analytic derivatives.
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Figure 15: Reduction of the fleetwise summation of takeoff weight (top) and energy consumption (bottom) achieved
by optimization compared to the conventional baseline solution.

After convergence, we evaluated the relative improvement of the optimized objective value (summation
of takeoff weight across the fleet) with respect to the baseline, given by |f* — fo|/fo. We also computed the
reduction of the fleetwise total energy consumption between the baseline and optimized solutions. The scatter
plots in Fig. 15 show the distribution of the fleet weight and energy reduction for all benchmark problems.
The mean improvement of the objective value was 12% or more for all problem sizes. It achieved a 17%
mean improvement on large-scale problems with 500 and 1000 customers. We also observed a significant
reduction in energy consumption on medium to large-scale problems, even though the objective function
does not explicitly include the energy consumption. For 15-customer problems or larger, the mean energy
reduction was at least 17%. The reduction of both fleetwise takeoff weight and energy consumption, which
implies a lower fleet acquisition cost and operating cost, demonstrates the importance of the design-routing
coupling compared to the conventional baseline method.

In Fig. 15, we observe several instances of 5- and 10-customer problems where the weight minimization
increased energy consumption. The following two factors caused the energy increase: 1) There is a difference
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between minimum-weight and minimum-energy designs for QBiT configuration, as discussed in Section 3.5.
Therefore, minimizing the weight does not necessarily mean reducing the energy consumption. 2) For
small-scale problems, the baseline method may find a “good” initial solution close to the minimum-energy
solution. In such cases, minimizing the weight is accompanied by an energy increase. The second factor is
only applicable to small-scale problems: On medium to large-scale problems, it is nearly impossible for the
baseline method to find such a good initial solution given the problem’s complexity. For this reason, the
weight minimization always resulted in reducing the energy on problems with 15 and more customers.

6.3 Optimized Routes and Designs

In this section, we illustrate the optimized routes and UAV designs on a 60-customer problem. Although
we solved larger-scale problems, we chose the 60-customer problem here for better readability of the figures.
This problem has the same customer locations as one of the benchmark problems in Section 6.2, but we
modified the demand and UAV fleet settings as follows to facilitate the discussion and visualization: We set
a uniform demand of 0.5kg per customer. The payload capacity of a UAV is obtained by multiplying the
number of customers it serves by 0.5. We also reduced the maximum number of different UAV designs to 6
(Ndesign = 6) so that each design is well distinguishable in Figs. 16-18. Correspondingly, we increased the
maximum number of the same-design UAVs to 10 (p = 10) to allow a maximum of 60 UAVs in the fleet.

Figure 16 shows the optimized routes. Each color corresponds to a different design; multiple routes of
the same color indicate that we had multiple UAVs of the same design that served different routes. The
blue colors show the routes flown by hexarotors, whereas the red colors represent QBiTs. Figure 17 shows
the distribution of the routes in terms of the distance and number of customers along each route. Since
the customer demand is uniform at 0.5kg, the payload weight is obtained by multiplying this demand by
the number of customers. The QBiTs served long-range missions with one or two customers, whereas the
hexarotors performed 2- to 4-customer delivery with shorter ranges. This trend agrees with the mission
suitability of each configuration discussed in Section 3.4.

Figure 18 shows the optimized design variables of all UAVs in the fleet. The optimized fleet has 27 UAVs
(13 hexarotors and 14 QBiTs) of six designs. The coordinates in the figure show the UAV takeoff weight
and cruise speed, and the UAV illustrations visualize the rotor size and wing area. As we observed in the
design-only optimization study in Fig. 6, the hexarotors resulted in larger rotor radii than QBiT, whereas
the QBiTs had higher cruise speeds.

On the 2-customer delivery with 28-37 km range, we observe the mixed pattern of the hexarotors (blue
circles in Fig. 17) and QBiTs (brown triangles) performing similar missions. Both UAV designs were capable
of flying these 28—-37 km missions because the hexarotor was designed for the 2-customer 43 km-range mission
(the rightmost blue circle) that requires more energy; the same applies to the QBiT, which was designed
for the single-customer 49 km-range mission (the rightmost brown triangle). However, the QBIiT cannot
perform the 2-customer with more than 37 km range because of its inefficiency in hover. The takeoff weight
was 3.16 kg for the hexarotor and 3.10 kg for the QBiT; therefore, the optimizer preferred to use the QBiTs as
much as possible. As a result, the optimizer used 10 brown QBiTs, which reached the maximum number of
the same-design UAVs. Then, the optimizer had to use the hexarotor for the remaining 28—-37 km missions,
which resulted in 7 hexarotors in total. If we removed the upper bound on p and allowed more than 10
QBiTs, the optimizer would assign QBiTs for all 28-37 km-range missions instead of the heavier hexarotors.
In the current study, we imposed this upper bound to limit the number of vehicles, hence the combinations in
the routing problem, to keep the problem solvable within a reasonable computational time. Once the designs
and number of each UAV were fixed, changing the assignment of UAVs does not change the objective value of
the FSMVRP as long as the solution satisfies the energy constraints. In other words, even if we shuffled the
assignment of the hexarotors and QBiTs within the 2-customer 28-37 km-range missions, the objective value
would remain the same because the objective is the summation of the UAV takeoff weight in the fleet. This
explains the mixed pattern of the hexarotor and QBiTs in the 2-customer 28-37 km missions. Additional
considerations of cargo volume, delivery speed, and time window may narrow down these assignments.
However, the current work does not include these factors in the problem formulation. The UAV assignment
discussed here is for the conceptual FSMVRP problem, which is used to determine the optimal fleet design.
The assignment for the actual delivery scenarios is determined by solving a more detailed VRP after the
fleet is manufactured and day-by-day customer demand becomes available.
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Figure 16: Optimized routes for a 60-customer problem without recharging. The colors correspond to the different
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Figure 18: Optimized UAV designs for the problem in Fig. 16. The UAV illustration size scales to the rotor size
and wing area variables, and the number label corresponds to the number of each design of UAVs in the fleet.
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Figure 20: Optimized UAV designs for the recharging problem.

6.4 Solution with Recharging Stations

The modularity of the proposed SHA approach allows us to extend the disciplinary models, i.e., the
routing model or conceptual design model, without changing the top-level algorithm. To demonstrate this
advantage, we solve a design-routing problem with an improved routing model with battery recharging.
Here, we solve for the same customer locations and demands as Fig. 16, and we now add four recharging
stations in the region. A UAV can charge its battery state to 100% every time it visits a recharging station
to extend the range.

Figures 19 and 20 show the optimized routes and UAV designs for the recharging problem. Compared
to the original problem without recharging, the solution with recharging had fewer UAVs in the fleet and
introduced larger-capacity hexarotors. The optimized fleet had only 10 UAVs in contrast to 27 UAVs for
the problem without recharging; the heaviest UAV was 12.64 kg with recharging, 4.95 kg without recharging.
Five of 10 UAVs used the recharging stations; three served 11-12 customers each by recharging twice. The
other two UAVs served four customers by recharging once. The other five UAVs served customers far from
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the recharging stations or near the depot without recharging. The objective function value, the summation
of the takeoff weights of all UAVs in the fleet, decreased by 26% compared to the original problem without
recharging. This result implies that recharging stations spread out across the delivery domain are effective
in downsizing the UAV fleet.

7 Conclusions

In this work, we solved the coupled optimization of UAV conceptual design and delivery operations to
reduce the fleet acquisition and operating costs via minimizing the fleetwise takeoff weight. This MDO
problem setup enabled us to find a set of optimal mission requirements for which the UAV fleet should be
designed and the corresponding optimal UAV designs.

We first presented the conceptual design and sizing model of two eVTOL configurations, the hexarotor
and QBIT, and investigated key design characteristics. The QBiT is efficient in cruise because of its wings;
therefore, it is suitable for long-range missions with a small number of customers. The hexarotor is efficient in
hover and preferable for short-range and multi-customer delivery. We then coupled the eVTOL sizing model
to FSMVRP to optimize the UAV fleet design considering delivery operations. We presented an MINLP
formulation and solved it using a branch-and-cut solver. The MINLP solver found the global minimum on
small-scale problems of up to 15 customers; however, it failed to find a feasible solution for a reasonable
computational resource on larger-scale problems. The MINLP formulation was also restrictive in the model
fidelity for UAV design, where we had to use the linear surrogate models.

To address these challenges, we proposed the sequential heuristic algorithm (SHA) to solve large-scale
problems and incorporate nonlinear design models. The proposed approach combines specialized heuristics
for VRP, gradient-based optimization for UAV design, and design exploration strategies to increase the prob-
ability of finding the global minimum. We benchmarked the accuracy and scalability of the SHA approach
against the MINLP solver on 100 benchmark problems with 5-60 customers. The proposed algorithm found
the global minimum in most 5- and 10-customer benchmark problems. It also converged to a near-optimal
solution within a 0.3-1.0% error with respect to the global minimum for most of the 15-customer problems.
Regarding the scalability with respect to the problem size, SHA consistently found a better solution than the
MINLP solver for all 30- and 60-customer problems. We also demonstrated the benefit of incorporating VRP
in the conceptual design process of a UAV fleet. Compared to the conventional baseline method, the design-
routing optimization reduced the summation of UAV weights across the fleet significantly: We achieved more
than 12% mean weight reduction for all problem sizes we tested, including large-scale problems with up to
1000 customers.

In addition to scalability, modularity is another advantage of the proposed SHA approach. Because VRP
and UAV design optimization are decomposed, SHA is flexible in model selection and can accommodate a
higher-fidelity design model or different VRP formulation as long as the coupling interface remains the same.
This paper demonstrated that SHA could switch between two design models, the linear surrogate and the
nonlinear sizing optimization, without modifying the top-level algorithm. We also showed the flexibility in
the VRP model: the same algorithm solved the design-routing problems with and without battery recharging.
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