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Abstract

A Timoshenko beam theory for layered orthotropic beams is presented. The theory
consists of a novel combination of three key components: average displacement and
rotation variables that provide the kinematic description of the beam, stress and strain
moments used to represent the average stress and strain state in the beam, and the use
of exact axially-invariant plane stress solutions to calibrate the relationships between
all these quantities. These axially-invariant solutions, which we call the fundamental
states, are also used to determine a shear strain correction factor as well as corrections
to account for effects produced by externally-applied loads. The shear strain correction
factor and the external load corrections are computed for a beam composed of isotropic
layers. The proposed theory yields Cowper’s shear correction for a single isotropic layer,
while for multiple layers new expressions for the shear correction factor are obtained.
A body-force correction is shown to account for the difference between Cowper’s shear
correction and the factor originally proposed by Timoshenko. Numerical comparisons
between the theory and finite-elements results show good agreement.
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1. Introduction

The equations of motion for a deep beam that include the effects of shear deformation
and rotary inertia were first derived by Timoshenko (1921, 1922). Two essential aspects of
Timoshenko’s beam theory are the treatment of shear deformation by the introduction of
a mid-plane rotation variable, and the use of a shear correction factor. The definition and
value of the shear correction factor have been the subject of numerous research papers,
some of which are discussed below. Shames and Dym (1985, Ch. 4, pg. 197) provide
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an excellent overview of the classical approach to Timoshenko beam theory. This paper
however, draws primarily from research and theories which refine Timoshenko’s original
approximations.

Prescott (1942) derived the equations of vibration for thin rods using average through-
thickness displacement and average rotation variables. He introduced a shear correction
factor to account for the difference between the average shear on a cross section and the
expected quadratic distribution of shear.

Cowper (1966) presented a revised derivation of Timoshenko’s beam theory starting
from the equations of linear elasticity for a prismatic, isotropic beam in static equilibrium.
Cowper introduced residual displacement terms that he defined as the difference between
the actual displacement in the beam and the average displacement representation. These
residual displacements account for the difference between the average shear strain and
the shear strain distribution. Cowper introduced a correction factor to account for this
difference and computed its value based on the three-dimensional solution of a cantilever
beam subjected to a tip load.

Stephen and Levinson (1979), developed a beam theory along the lines of Cowper’s,
but recognized that the variation in shear along the length of the beam would lead to a
modification of the relationship between bending moment and rotation. This variation
had been neglected by Cowper.

Following the work of Cowper (1966) and Stephen and Levinson (1979), in this paper
we seek a solution to a beam problem based on average through-thickness displacement
and rotation variables. In a departure from previous work, we introduce strain mo-

ments, which are analogous to the stress moments used in the equilibrium equations.
These strain moments remove the restriction of working with an isotropic, homoge-
neous beam. This is an essential component of the present approach, as sandwich and
layered orthotropic beams are often used for high-performance, aerospace applications
(Flower and Soutis, 2003).

Another important feature of our theory is the use of certain statically determinate
beam problems that we use to construct the relationship between stress and strain mo-
ments, and to reconstruct the stress and strain solution in a post-processing step. We
call these solutions the fundamental states of the beam. The present theory was first
pursued by Hansen and Almeidia (2001) and Hansen et al. (2005), and an extension of
this theory to the analysis of plates was presented by Guiamatsia and Hansen (2004),
Tafeuvoukeng (2007) and Guiamatsia (2010).

This paper begins with a brief discussion of two classical methods used to calculate
the shear correction factor in Section (2). Section (3) describes the proposed theory
and Section (3.2) introduces the fundamental states. In Section (4), calculations are
presented for a beam composed of multiple isotropic layers. Section (5) briefly presents
the modified equations of motion for an isotropic beam. In Section (6), comparisons
are made with finite-element calculations. Section (7) outlines conclusions based on the
theory presented herein.

2. The shear correction factor

One of the main difficulties in using Timoshenko beam theory is the proper selection
of the shear correction factor. Many authors have published definitions of the shear
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correction factor and have proposed various methods to calculate it. Most of these
approaches fall into one of two categories. The first approach is to use the shear correction
factor to match the frequencies of vibration of various beam constructions with exact
solutions to the theory of elasticity. The second approach is to use the shear correction
factor to account for the difference between the average shear or shear strain and the
actual shear or shear strain using exact solutions to the theory of elasticity.

Timoshenko (1922) developed the frequency-matching approach. He calculated the
shear correction factor by equating the frequency of vibration determined using the plane
stress equations of elasticity to those computed using his beam theory. Although not
explicitly written in the paper, the shear correction factor obtained in this manner for a
rectangular beam is

kxy =
5(1 + ν)

6 + 5ν
. (1)

Cowper (1966) calculated the shear correction factor using an approach from the
second category described above. Using residual displacements designed to take into
account the distortion of the cross sections under shear loads, Cowper was able to derive
a formula for the shear correction factor based on solutions of a cantilever beam subjected
to a tip load. For a rectangular isotropic homogeneous beam, Cowper found the following
shear correction factor:

kxy =
10(1 + ν)

12 + 11ν
. (2)

Following Cowper’s approach, Stephen (1980) computed the shear correction factor
for beams of various cross sections by using the exact solutions for a beam subject
to a uniform gravity load. He employed a modified form of the Kennard–Leibowitz
method (Leibowitz and Kennard, 1961), to obtain the shear correction factor by equating
the average centerline curvature of the exact result with the Timoshenko solution. He
obtained a modified form of Timoshenko’s shear correction factor for rectangular sections
that approached Equation (1) for thin cross-sections.

Using the frequency matching approach, Hutchinson (1981) computed the shear cor-
rection factor by performing a comparison between Timoshenko beam theory and three
solutions from the theory of elasticity, the Pochhammer–Chree solution in Love (1920),
a Fourier solution due to Pickett (1944) and a series solution computed by Hutchinson
(1980). Hutchinson found that the best shear correction factor was dependent on the
frequency and Poisson’s ratio of the beam, but that Timoshenko’s value was better than
Cowper’s.

Later, Hutchinson (2001) introduced a new Timoshenko beam formulation and com-
puted the shear correction factor for various cross sections based on a comparison with
a tip-loaded cantilever beam. For a beam with a rectangular cross section, Hutchinson
obtained a shear correction factor that depends on the Poisson ratio and the width to
depth ratio. In a later discussion of the paper, Stephen (2001) showed that the shear
correction factors he obtained in Stephen (1980) were equivalent.

More recently Dong et al. (2010), presented a semi-analytic finite-element technique
for calculating the shear correction factor based either on the Saint–Venant warping
function or the free vibration of a beam.

Some experimental studies have been performed to try and measure the shear correc-
tion factor based on the original equations proposed by Timoshenko. Spence and Seldin
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(1970) obtained experimental values of the shear correction factor for a series of square
and circular beams composed of both isotropic and anisotropic materials by determining
their natural frequencies. Kaneko (1975) performed an extensive review of the shear
correction factors for rectangular and circular cross sections obtained by various authors
using either experimental techniques or analysis. Experimental studies have generally
used a natural frequency approach to determine the shear correction factor and have
generally found that Timoshenko’s value is superior to Cowper’s. This is perhaps not
surprising, since Timoshenko’s correction was obtained by matching frequencies in the
same manner in which the experiments are performed. However, the frequency matching
approach fails to provide a theoretical explanation as to why the value of a factor that
modifies the relationship between the shear resultant and the average shear strain should
be determined by the natural frequency of vibration. It is this deficiency that motivates
the work presented here.
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Figure 1: The geometry of the beam composed of layers of different materials.

3. The theory

The geometry of the beam under consideration is shown in Figure 1. The beam
extends along the x-direction subject to forces on the top and bottom surfaces in the
y-direction. The reference axis is placed at the centroid of the cross-section. The half-
thickness in the y-direction is c, while the length of the beam in the x-direction is L. The
beam is of uniform composition in both the x and z-directions and so consists of a series
of layers with different material properties. We assume that each layer is composed of an
orthotropic material, with material properties aligned with the coordinate axes. These
assumptions eliminate the possibility of twisting and allow the beam to be modeled using
a plane stress assumption in the z plane. In each layer k, numbered from the bottom to
the top of the beam, the following constitutive law holds:

σ(k) = C(k)ǫ(k),

where σ(k) =
[

σx σy σxy

]T

(k)
and ǫ(k) =

[

ǫx ǫy γxy
]T

(k)
. Since the beam is

composed of an orthotropic material, there is no coupling between shear and normal
stresses. Although variation in the Poisson’s ratio between layers would lead to a violation
of the plane stress assumption, we include this possibility and ignore the edge effects in
the cross-section in such situations.
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These assumptions are an extension of the conditions originally used by Timoshenko,
who limited his analysis to plane stress beams composed of a single isotropic mate-
rial (Timoshenko, 1922).

3.1. The displacement representation

Following Prescott (1942) and Cowper (1966), the average through-thickness displace-
ments and average rotation are defined as follows:

u0(x, t) =
1

2c

∫ c

−c

u(x, y, t) dy,

u1(x, t) =
3

2c3

∫ c

−c

yu(x, y, t) dy,

v0(x, t) =
1

2c

∫ c

−c

v(x, y, t) dy,

(3)

where u and v are the displacements in the x and y directions, respectively. The average
displacements and rotation are defined regardless of the through-thickness behavior of u
and v, which are piecewise continuous through the thickness of the beam in this problem.
The average displacements are an incomplete representation of the total displacement
field in the beam, in the sense that the average quantities do not capture the point-wise
behavior of the exact displacement. In order to capture this behavior, it is necessary to
introduce residual displacements that account for the difference between the average and
point-wise quantities in the following manner:

u(x, y, t) = u0(x, t) + yu1(x, t) + ũ(x, y, t),

v(x, y, t) = v0(x, t) + ṽ(x, y, t),
(4)

where ũ and ṽ are the residual displacements in the x and y directions, as introduced by
Cowper (1966). Given the definitions of the average displacements (3), the zeroth and
first moments of ũ, and the zeroth moment of ṽ through the thickness, must be zero:

∫ c

−c

ũ(x, y, t) dy = 0,

∫ c

−c

yũ(x, y, t) dy = 0,

∫ c

−c

ṽ(x, y, t) dy = 0.

The average displacements and displacement residuals may be used to determine the
strain at any point in the beam. In this approach however, we are interested in the average
through-thickness strain. To this end, we introduce the following strain moments:

ǫ0(x, t) =

∫ c

−c

∂u

∂x
dy = 2c

∂u0

∂x
, (5a)

κ(x, t) =

∫ c

−c

y
∂u

∂x
dy =

2c3

3

∂u1

∂x
, (5b)

γ(x, t) =

∫ c

−c

[

∂u

∂y
+

∂v

∂x

]

dy = 2c

[

u1 +
∂v0
∂x

]

+

∫ c

−c

∂ũ

∂y
dy, (5c)
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that represent the axial, bending and shear strain moments, respectively. These strain
moments are analogous to the stress moments that are used to define the equilibrium
equations for a beam. Note that these strain moments are not normalized and as a re-
sult have different dimensions than the point-wise strain. The main advantage of using
the strain moments (5) over point-wise strain variables is that they are always defined,
regardless of the through-thickness distribution of the strain. This is an important prop-
erty, since the point-wise shear strain can be discontinuous at material interfaces.

Thus far, no assumptions beyond those of linear elasticity have been made. The
combination of the average and residual displacements can be used to capture an arbitrary
displacement field. Next, we examine the state of stress within the beam.

3.2. The fundamental states

The basic assumption made in the development of the present beam theory is that
the stress and strain state in the beam can be approximated using a linear combination
of axially-invariant solutions. We call these axially-invariant solutions the fundamental

states. The fundamental states can be used to capture the complex interaction between
the stresses in layered orthotropic beams, away from the ends of the beam. As is the
case in many beam theories, end effects cannot be captured using this approach. In this
section we address how to determine the fundamental states.

The fundamental states are determined from a hierarchy of statically determinate
beam problems. These beam problems are formulated using a series of self-equilibrating
loads applied to a beam with the same sectional properties as the beam under consid-
eration. Rigid body translation and rotation modes are removed from the solution by
imposing three displacement constraints so that no stress concentrations are present.
The first four loading conditions leading to the first four fundamental states are shown
in Figure 2. N , M and Q are the axial, bending, and shear resultants, defined as follows:

N(x, t) =

∫ c

−c

σx(x, y, t) dy,

M(x, t) =

∫ c

−c

yσx(x, y, t) dy,

Q(x, t) =

∫ c

−c

σxy(x, y, t) dy.

(6)

We also refer to these as the stress moments.
The beam in Figure 2 has the same cross-sectional properties as the beam under

consideration, but is extended between the coordinates x = −Lf to x = Lf . Lf is the
half-length of the beam for the fundamental state analysis, and must be sufficiently large
such that the end effects do not influence the state of stress or strain at the middle of
the beam.

The fundamental states are obtained from the solution of the beam problems illus-
trated in Figure 2 by taking the through-thickness stress and strain distribution at x = 0.
As a result, the fundamental states represent a distribution of stress and strain only in
the y direction. The loading conditions are constructed such that only one stress resul-
tant or load is non-zero at x = 0. For instance, in the third fundamental state, which
corresponds to a shear load, the bending resultant is zero at the mid-section and the
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Fundamental states
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Figure 2: An illustration of the loading conditions used to obtain the first four fundamental states.
The states are: axial loading, bending moment, shear and pressure load. The fundamental states are
extracted from the solution at the x = 0 plane. Lf , the half-length of the beam used to calculate the
fundamental states, must be large enough that the end effects do not influence stress distribution at
x = 0.

shear resultant is unity, while in the fourth fundamental state, which corresponds to a
pressure load, the shear resultant and bending moment are zero and the pressure load is
unity.

We label the fundamental states with a superscript for the corresponding condition:
N , M and Q for the axial resultant, bending moment, and shear resultant, and P for
any externally applied load. For instance, σM (y) and ǫ

M (y) is the fundamental state
corresponding to bending with strain moments ǫM0 , κM and γM . Note that the strain
moments of the fundamental states are scalar values independent of any coordinate.

In the present work, we obtain the fundamental states through a series of analytic
calculations presented below. In these calculations the beam used to calculate the funda-
mental states is essentially of infinite length since the stress resultants satisfy the loading
conditions illustrated in Figure 2 in an average sense for any length Lf . The fundamental
states could also be obtained approximately using a finite-element approach.

The stress and strain state in the beam can be written as a linear combination of
the fundamental states and stress and strain residuals, σ̃ and ǫ̃, respectively. Using this
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linear superposition, the stress and strain state in the beam is given by:

σ(x, y, t) = Nσ
N +Mσ

M +Qσ
Q + Pσ

P + σ̃(x, y, t), (7a)

ǫ(x, y, t) = Nǫ
N +Mǫ

M +Qǫ
Q + Pǫ

P + ǫ̃(x, y, t), (7b)

where the magnitudes of the fundamental states — the axial, bending, and shear resul-
tants and the pressure load — are functions of x and t while the fundamental states
are functions only of the through-thickness coordinate y. The stress and strain residuals
σ̃ and ǫ̃ represent deviations due to end effects and higher-order fundamental states.
For instance, a linear or quadratic pressure load would induce stresses and strains not
captured by the first four states discussed here. It is important to recognize that as a
result of Equation (6), the stress residuals σ̃ do not contribute to the axial, bending, or
shear resultants.

The assumption that the stress and strain state in the beam can be approximated
by a linear combination of the fundamental states is equivalent to assuming that the
terms σ̃ and ǫ̃ may be omitted in the analysis. As a result, end effects are not captured
within the theory. Furthermore, rapidly varying loads produce similar terms from linear,
quadratic, and higher-order polynomial loading fundamental states. If these higher-
order fundamental states are not included in the analysis, they will essentially produce
additional ǫ̃ terms.

The fundamental states also provide a self-consistent method for reconstructing the
stress and strain distribution within the beam in a post-processing step using Equa-
tion (7). This reconstruction includes stress and strain components that are not normally
considered in classical approaches without recourse to a post-analysis integration of the
equilibrium equations through the thickness. However, as is well known, this integration
procedure can introduce compatibility problems, whereas Equation (7) does not suffer
from this issue.

3.3. The constitutive relation and pressure correction

We now develop a constitutive relationship between moments of stress and moments of
strain. A pressure correction is also introduced to account for the influence of externally
applied loads. To develop these relationships it is necessary to examine the stress and
strain moments in the context of the stress and strain decomposition in Equation (7).
By construction, the stress resultants found in Equation (6) are always equal to the
magnitudes of the fundamental states. On the other hand, the strain moments may have
contributions from all fundamental states and the strain residuals. Using Equation (7b),
the required moments of strain are,





ǫ0
κ
γ



 =





ǫN0 ǫM0 ǫQ0
κN κM κQ

γN γM γQ









N
M
Q



+ P





ǫP0
κP

γP



+





ǫ̃0
κ̃
γ̃



 , (8)

where ǫ̃0, κ̃ and γ̃ are the moments of the strain residuals. Note that the left-hand side of
Equation (8) is equal to the moments from Equation (5). Recall also that the moments
of the fundamental states are constant.

It is important to distinguish between the three different terms in the expression for
the strain moments (8). The first term is due to the stress resultants, the second term
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is due to the applied loads, and the remaining term is due to the strain residuals. The
final term is neglected based on the assumption that its contribution will be small.

Setting ǫ̃0, κ̃ and γ̃ to zero, and re-arranging Equation (8) results in the following
constitutive relation:





N
M
Q



 = D











ǫ0
κ
γ



− P





ǫP0
κP

γP











, (9)

where the components of the constitutive matrix D can be found as follows:

D =





D11 D12 D13

D21 D22 D23

D31 D32 D33



 =





ǫN0 ǫM0 ǫQ0
κN κM κQ

γN γM γQ





−1

. (10)

Note that this matrix is not necessarily symmetric. Due to the orthotropic construction
of the beam, γN , γM , ǫQ0 , and κQ are zero. As a result D13, D23, D31, and D32 are also
zero.

If only axial, bending and shear loads are applied to the beam, then there is no load-
dependent strain moment contribution. However, when external loads are applied to the
beam, the relationship between the strain moments and stress moments is modified as
follows:





N
M
Q



 = D





ǫ0
κ
γ



− P





NP

MP

QP



 , (11)

where NP , MP and QP are the product of the strain moments, ǫP0 , κ
P and γP , and the

constitutive matrix D. NP , MP and QP represent a load-dependent pressure correction
to the constitutive equations.

Note that the constitutive matrix D is derived using the strain moments from the
first three fundamental states. The only assumption used to derive this relationship is
that the moments of the strain residuals are small. The influence of externally applied
loads can be accounted for by including strain moment terms from the fundamental
state corresponding to pressure loading. Higher-order loading effects could be included
by taking into account the strain moments due to linear, quadratic, and polynomial
pressure distributions in general. Neglecting these effects is equivalent to introducing a
non-zero strain residual moment.

3.4. The shear strain correction

The additional integral in the expression for the shear strain moment in Equation (5c),
involves a correction from the residual displacements. The value of this integral depends
on the distribution of the shear strain through the thickness. Several authors have
suggested that this shear strain correction should be computed under different loading
conditions. For example, Cowper (1966) computes his value of the shear correction factor
for a beam subject to a constant shear load, while Stephen (1980) and Hutchinson (2001)
compute the correction for a beam subject to a gravity load.

In a similar approach to Cowper, we set the shear strain correction equal to the ratio
of the shear strain moment over the average shear strain computed using the fundamental
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state corresponding to shear:

kxy =
γQ

2c
[

u1 +
∂v0

∂x

]

Q

= 1 +

∫ c

−c
∂ũ
∂y

dy
∣

∣

∣

Q

2c
[

u1 +
∂v0

∂x

]

Q

. (12)

The subscript Q is used to denote that the expression is evaluated using the fundamental
state corresponding to shear.

The corrected shear strain moment is therefore:

γ = 2ckxy

[

u1 +
∂v0
∂x

]

.

It is important to realize that this is not a correction for the shear stiffness of the beam,
but rather a correction of the discrepancy between the average shear strain and the
displacement representation. It is therefore more correct to refer to it as a shear strain

correction.

3.5. Equilibrium equations

The equilibrium equations for the stress resultants are obtained by the standard
approach of integrating the two-dimensional momentum equations. When the density of
the material ρ is constant, these equations are:

∂N

∂x
= 2cρ

∂2u0

∂t2
, (13a)

∂M

∂x
−Q =

2c3

3
ρ
∂2u1

∂t2
, (13b)

∂Q

∂x
+ P = 2cρ

∂2v0
∂t2

. (13c)

If the density of the material varies in the through-thickness direction, these equations
would involve integrals of the residual displacements.

3.6. Discussion

Our proposed theory fits almost entirely within Timoshenko’s original beam theory
(Timoshenko, 1921, 1922). While the displacement variables involved have a different
interpretation, the equations themselves take essentially the same form, except for the
pressure correction. The pressure correction can be treated as an additional force arising
from the application of a pressure load. As a result, beyond the calculation of the
fundamental states, the theory does not require much more computational effort than
classical Timoshenko beam theory. In addition, the proposed theory can handle any
combination of boundary conditions typically imposed for classical Timoshenko beam
problems. Within the context of our theory, different boundary conditions result in
additional strain residual moment terms in Equation (8).

Not only does our proposed theory take a similar form to Timoshenko’s beam the-
ory, but the additional modifications proposed above have several important benefits.
As with Cowper’s theory, the proposed approach has a completely general displacement
representation (4). We have introduced a stress and strain decomposition (7), based on
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the fundamental states, that also provides a self-consistent method for the reconstruc-
tion of the through-thickness stress and strain distributions. Finally, the theory contains
a consistent method for predicting the shear strain correction (12), the pressure cor-
rection (11), and the stiffness (10) and using the fundamental states. These additions
enhance the capabilities of classical Timoshenko beam theory.

4. Isotropic layered beam

In this section we derive the fundamental states, the stress-strain moment constitutive
equation, the shear correction factor, and the pressure strain moment corrections for a
beam composed of K isotropic layers. Each layer has Young’s modulus Ek, Poisson’s
ratio νk, and is situated between y = hk and y = hk+1, where hk is defined relative to
the centroid of the cross section. It is often convenient to use the ratio of the Young’s
moduli αk, defined such that Ek = Eαk, where E may be chosen as the Young’s modulus
in any convenient layer. Furthermore, we use the non-dimensional ratio of the stations,
ξk = hk/c. For convenience in presenting various formula, we define ∆n

k = hn
k+1 − hn

k

and δnk = ξnk+1 − ξnk . The weighted area A, the weighted second moment of area I, and
a stretching-bending parameter tb, are defined as follows:

A ≡
K
∑

i=1

αi∆k, I ≡
K
∑

i=1

αi

3
∆3

k, tb ≡
1

A

K
∑

i=1

αi

2
∆2

k.

In the following formula, a subscript k is used to represent the stress or strain distri-
bution in the k-th layer, lying between hk ≤ y ≤ hk+1.

4.1. Axial and bending states

The first fundamental state solution corresponds to a beam subject to a unit axial
load that results in the following stress:

σN
x (k) =

I

A

1

I −At2b
αk (1− ry) ,

where r = tbA/I. The strain moments in this fundamental state are:

ǫN0 =
2cI

A

1

E(I −At2b)
, κN = −

2c3tb
3

1

E(I −At2b)
,

and γN = 0.
The second fundamental state solution corresponds to a unit bending moment that

results in the following stress:

σM
x (k) =

1

I −At2b
αk (y − tb) .

The strain moments in this fundamental state are:

ǫM0 = −2ctb
1

E(I −At2b)
, κM =

2c3

3

1

E(I −At2b)
,
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and γM = 0. Using Equation (10), the relationship between the strain moments and the
stress moments, can be determined as follows:

[

D11 D12

D21 D22

]

= E(I −At2b)

[

2cI/A −2ctb
−2c3tb/3 2c3/3

]

−1

=
3EA

4c4

[

2c3/3 2ctb
2c3tb/3 2cI/A

]

.

This equation defines the constitutive relationship for the first two fundamental states.

4.2. Shear state and shear strain correction

The third fundamental state corresponds to a constant unit shear load. The stresses
in the beam corresponding to this case are:

σ(k) =





σx

σy

σxy





(k)

=
1

2(I −At2b)





2αkx(y − tb)
0

αk(ck + 2tby − y2)



 , (14)

where the ck terms are determined to ensure a continuous variation of the shear stress
through the thickness. The ck coefficient in the first layer is c1 = h2

1 − 2tbh1, and can be
obtained for subsequent layers using the following formula:

ck =
(

(αk−1 − αk)(2tbhk − h2
k) + αk−1ck−1

)

/αk.

The fundamental state consists of only the stresses corresponding to the axial-invariant
components of the solution. These are obtained from Equation (14) by setting σQ(y) =
σ(x = 0, y).

The shear strain moment is determined by integrating the shear strain through the
thickness:

γQ =
K
∑

k=1

(1 + νk)

E(I −At2b)

(

ck∆k + tb∆
2
k −

1

3
∆3

k

)

.

The relationship between the shear stress resultant and the shear strain resultant is,
Q = D33γ, where

D33 = 1/γQ. (15)

This is not a simple average of the shear-modulus through the thickness, which is often
used in beam theories. Equation (15) is a weighted average dependent on the relative
distribution of shear through the thickness.

The shear correction factor for the multi-layer beam kxy, is determined from Equa-
tion (12). It is a dimensionless quantity that depends only on the Poisson ratio, the
relative position of the layers, and the relative magnitudes of the stiffnesses of each layer.
As such, it is expressed using dimensionless quantities.

The dimensionless bending-stretching coupling constant τ is given by

τ =
1

2

K
∑

k=1

αk

(

ξ2k+1 − ξ2k
)

/

K
∑

k=1

αk (ξk+1 − ξk).

We next introduce the constants Ck, Bk, and Ak, which are defined sequentially for each
layer. For k = 1, C1 = ξ21 − 2τξ1, B1 = −2(1 + ν1)C1 and A1 = 0. For each subsequent

12



layer,

Ck =
(

(αk−1 − αk)(2τξk − ξ2k) + αk−1Ck−1

)

/αk,

Bk = (νk−1 − νk)(ξ
2
k − 2τξk) +Bk−1,

Ak = 2ξk

(

(1 + νk−1)Ck−1 − (1 + νk)Ck +
1

2
(Bk−1 −Bk)

)

+ (νk−1 − νk)(τξ
2
k − ξ3k/3) +Ak−1.

The shear correction factor for the layered, isotropic beam is

kxy = D/F, (16)

where

D =

K
∑

k=1

(1 + νk)
{

Ckδk + τδ2k −
1

3
δ3k

}

,

F =

K
∑

k=1

{1

2
δ3k(2(1 + νk)Ck +Bk) +

1

40
(2 + νk)

(

15τδ4k − 4δ5k
)

+
3

4
Akδ

2
k −

1

2
Bkδk +

νk
2

(

τδ2k −
1

3
δ3k
)

}

.

For a single-layer beam, this expression simplifies to Cowper’s shear correction factor (2).

4.3. Pressure state and pressure strain correction

The fourth fundamental state corresponds to a pressure load applied to the beam.
The total force in the y-direction per unit length of the beam is distributed between a
traction on the top surface Pt, and a traction on the bottom surface Pb. Both tractions
act in the positive y direction. The total force is such that the contributions sum to
unity Pt + Pb = 1.

The pressure load causes a linearly varying shear and quadratically varying moment
in the beam, resulting in the following state of stress:

σ(k) =





σx

σy

σxy





(k)

=
1

2(I −At2)





−αk

(

x2y − tbx
2 − 2y3/3 + 2tby

2 + eky + fk
)

αk

(

dk + cky + tby
2 − y3/3

)

−αkx
(

ck + 2tby − y2
)



 .

(17)
The fundamental state is determined by taking only the axially-invariant components

of the stress state given in Equation (17): σP (y) = σ(x = 0, y).
The coefficients dk are determined from the inter-layer continuity of σy, while the

coefficients ek and fk are used to satisfy two equilibrium equations:
∫ c

−c
yσxdy = −x2/2

and
∫ c

−c
σxdy = 0, as well asK−2 inter-layer displacement continuity constraints. The dk

coefficients can be determined using the following relationship, d1 = −2(I−At2b)Pb/α1−
(c1h1 + th2

1 − h3
1/3) for the first layer, and in all subsequent layers using

dk = 1/αk

[

(αk−1 − αk)(tbh
2
k − h3

k/3) + hk(αk−1ck−1 − αkck) + αk−1dk−1

]

.
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The additional equations for the inter-layer continuity of the displacements are

(ek − ek−1)hk − (fk − fk−1) = (νk−1 − νk)
(

tbh
2
k − h3

k/3
)

− νk (dk + ckhk) + νk−1 (dk−1 + ck−1hk) ,

ek − ek−1 = ck(2 + νk)− ck−1(2 + νk−1) + (νk−1 − νk)(h
2
k − 2tbhk),

for k = 2, . . . ,K. The two additional equilibrium equations are

K
∑

i=1

αk

{

ek
3
∆3

k +
fk
2
∆2

k

}

=

K
∑

i=1

αk

{

2

15
∆5

k −
tb
2
∆4

k

}

,

K
∑

i=1

αk

{ek
2
∆2

k + fk∆k

}

=
K
∑

i=1

αk

{

1

6
∆4

k −
2tb
3

∆3
k

}

.

Using the values obtained by solving these for ek and fk with the above 2K equations,
the strain moments for this fundamental state can be written as

ǫP0 =
1

2E(I −At2b)

{

4

3
tbc

3 +

K
∑

k=1

(

ek
2
∆2

k + fk∆k + νk

(

dk∆k +
ck
2
∆2

k +
tb
3
∆3

k −
1

12
∆4

k

))

}

,

(18a)

κP =
1

2E(I −At2b)

{

−
4

15
c5 +

K
∑

k=1

(

ek
3
∆3

k +
fk
2
∆2

k + νk

(

dk
2
∆2

k +
ck
3
∆3

k +
tb
4
∆4

k −
1

15
∆5

k

))

}

.

(18b)

The shear strain moment for this fundamental state is zero, γP = 0.

5. Equations of motion for an isotropic beam

Before examining several static cases using the shear and pressure corrections derived
above, we will briefly examine the natural frequency of vibration of an isotropic beam
with a body-force correction. For this isotropic case, I = 2c3/3, A = 2c and tb = 0.

Under a constant body load with a value of 1/2c, the stress state in an isotropic beam
is,

σ =





σx

σy

σxy



 =
1

2I





−x2y + 2y3/3− 2c2y/5
(c2y − y3)/3
xy2 − xc2



 . (19)

The stresses have a linear varying shear and a quadratically varying bending moment,
as in the pressure state described above. From Equation (19), the fundamental state
corresponding to a body load is σB(y) = σ(x = 0, y). The strain moments corresponding
to this fundamental state are ǫB0 = 0, γB = 0, and

κB = −
1

2EI

ν

3

(

2c5

3
−

2c5

5

)

= −
νc2

15E
. (20)

The bending moment correction is MB = −νc2/15. Under conditions of free-vibration,
the magnitude of this body-force fundamental state is equal to the inertial force per unit
span. As a result, Equation (11) becomes

M = EI
∂u1

∂x
+ ρAMB ∂2v0

∂t2
. (21)
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Using this relationship, the equation of motion for a freely vibrating beam is

EI
∂4v0
∂x4

+ ρA
∂2v0
∂t2

− ρI

[

1 +
E

kxyG
+

AMB

I

]

∂4v0
∂t2∂x2

+
ρ2I

kxyG

∂4v0
∂t4

= 0. (22)

The classical equation of motion may be obtained by setting MB = 0. The equation
of motion for an isotropic beam, using the body-force correction (20) and Cowper’s shear
correction factor (2), is

EI
∂4v0
∂x4

+ ρA
∂2v0
∂t2

−
17 + 10ν

5
ρI

∂4v0
∂t2∂x2

+
12 + 11ν

5

(

ρI

A

)2
∂4v0
∂t4

= 0. (23)

While for the classical equation, with Timoshenko’s shear correction factor (1), the equa-
tion of motion is

EI
∂4v0
∂x4

+ ρA
∂2v0
∂t2

−
17 + 10ν

5
ρI

∂4v0
∂t2∂x2

+
12 + 10ν

5

(

ρI

A

)2
∂4v0
∂t4

= 0. (24)

Equations (23) and (24) differ only in the coefficient of the fourth term by 1/5ν(ρI/A)2.
The relative difference between these terms is 2% for ν = 0.3. This suggests that for
vibration problems, using the proposed theory with Cowper’s shear correction factor and
a body-force correction is essentially equivalent to using Timoshenko’s shear correction
factor and the equations of motion he originally derived. This agreement should be
expected, as experiments based on the natural frequencies of vibration have typically
demonstrated that Timoshenko’s shear correction factor is superior (Spence and Seldin,
1970; Kaneko, 1975).

6. Results

In this section, we examine the shear strain and pressure corrections, and the con-
stitutive relationship obtained above, for two cases: a three-layer symmetric beam, and
a multi-layer beam composed of alternating materials. Results from a finite-element
analysis are used to compare with the formulas derived above.

The first beam considered is composed of three layers, where the middle layer is made
of a material that has a lower Young’s modulus than the outer layers. This problem is
designed to model a sandwich structure in which the inner core material is less stiff than
the outer material. The outer two layers have Young’s modulus E and Poisson’s ratio
ν, while the inner core has Young’s modulus αE and Poisson ratio ν. The depth of the
beam is 2c and the inner core extends from y = −rc to y = rc, where r is the fraction of
the beam that is composed of the core material. For this beam, simplifications from the
general formulas above are possible. The average shear stiffness (15) simplifies to

D33 =
3EI

2(1 + ν)(2c3 − 3c3r(1− s))
, (25)

where s = (1− (1− α)r2)/α and the shear correction factor (16) becomes

kxy =
(1 + ν)(30r(s− 1) + 20)

30(1 + ν)s− (6 + 8ν) + 15(1 + ν)(1− s)(2 + r3 − 3r)
. (26)
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As the ratio of the Young’s modulus of the core decreases, it is interesting to note
that a limiting case is reached that is independent of the Poisson’s ratio. This limit as
α → 0 is,

kxy =
2

3− r2
. (27)

The second beam considered is composed of alternating isotropic layers that have
relative Young’s modulus E1/E2 = 10 and Poisson’s ratios of ν1 = 0.2 and ν2 = 0.4. For
this case, we vary the number of layers, keeping the depth of the beam constant, c = 1/2
while altering the thickness of the layers to match. As a result hk = −c+ 2c(k − 1)/K.
The plies are composed of alternating material starting from the bottom layer. The beam
is symmetric for odd K.

For finite-element calculations, we use bi-cubic Lagrange plane stress elements with
a standard formulation. We choose these high-order elements because they capture the
piecewise parabolic shear stress accurately through the thickness of the beam.

The finite-element model is constructed with L/2c = 10 with 50 elements along the
length of the beam. For the three-layer beam, we take 20 elements through the thickness
resulting in 18422 degrees of freedom. For the multi-layer beam the number of through-
thickness elements varies so that the number of elements in each layer is the same, while
the total number of elements through the thickness does not fall below 20. The number
of elements through the thickness is K⌈20/K⌉.

In order to compare the value of the shear correction factor derived above with finite-
element results, we use results from a beam subject to a shear load at the tip, with
the root fully fixed. An approximate shear correction factor is computed from the finite-
element solution based on Equation (12). This approximate shear correction factor, kFE

xy ,
is computed as follows

kFE
xy (x) =

∫ c

−c
γxy dy

2c
[

u1 +
∂v0

∂x

] , (28)

where numerical integration is used to evaluate u1 and v0 from the finite-element results
based on Equation (3), and the derivative is performed using a central-difference calcu-
lation with ∆x = 10−5. kFE

xy is calculated at every Gauss point along the x-direction.
For comparison with the pressure corrections, we calculate a solution of a cantilevered

beam subject to a pressure load distributed on the top and bottom with Pb = 1/5 and
Pt = 4/5. The pressure correction is evaluated using a combination of finite-element and
beam theory values where the total strain and stress moments are computed from the
finite-element method, while the constitutive relation is used from Equation (9). This
gives the following equation for the pressure correction to the axial resultant:

NP
FE = 2cD11

∂u0

∂x

∣

∣

∣

∣

FE

+
2c3

3
D12

∂u1

∂x

∣

∣

∣

∣

FE

−NFE . (29)

Similar expressions are used for the bending and shear corrections.
Typical results for the variation of the approximate shear correction factor, shear

stiffness and approximate pressure corrections with axial direction are plotted in Figure 3
for the multi-layer beam with K = 5. These show that there is a strong variation of these
approximations close to the ends of the beam but that these variations quickly settle to
a constant value over most of the length of the beam. For all comparisons that follow,
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Figure 3: The variation of the approximate shear correction factor, k̃xy , homogenized shear stiffness D33

and the pressure corrections NP and MP per unit length of the multi-layer beam with K = 5. These
results clearly show the end effects.

we average the approximate shear correction factor (28), the shear stiffness and the
approximate pressure corrections (29) obtained from the finite-element method over the
span x = 4 to x = 6.

Figure 4 shows the variation of the shear correction factor and the average shear
stiffness computed using Equations (26) and (25) respectively. The finite-element calcu-
lations were performed at a core ratios of r = 0.2, 0.5, 0.8, 0.9, 0.95, 0.98 and at relative
stiffness ratios of α = 1, 0.5, 0.1, 0.01. Good agreement is obtained at all values. Figure 4
shows the limiting case from Equation (27) for zero core stiffness.

Figure 5 shows the variation of the shear correction factor computed using the gen-
eral form from Equation (16) and the homogenized shear stiffness computed using Equa-
tion (15) for the multi-layer beam. Finite-element calculations were performed for the
first 10 beams with K = 1, . . . , 10, while the analytic formulas are used up to K = 50
to show the trend. As previously mentioned, for odd K the beams are symmetric, and
for even K the beams exhibit bending-stretching coupling. As K becomes larger, the
coefficients tend towards a limiting case. Excellent agreement is obtained. The average
relative error for K = 1, . . . , 10 is 3.3×10−6 and 1.7×10−5 for the shear strain correction
and shear stiffness respectively, while the maximum errors are 1.0×10−5 and 9.3×10−5,
respectively.

Figure 6 shows the pressure corrections for the axial resultant and bending moment
for the multi-layer beam. The theoretical results were computed by first finding the
strain moment corrections from Equation (18a) and Equation (18b) and multiplying by
the average constitutive relation from Equation (9). The average relative error for the
pressure corrections are 3.6 × 10−5 and 4.6 × 10−5 for NP and MP , respectively, while
the maximum errors are, 1.8× 10−4 and 1.2× 10−4. These results demonstrate that the
constitutive equation is modified by the presence of an externally applied pressure load,
otherwise the predicted correction would be zero. In addition, these results show that
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Figure 4: A comparison between the shear correction factor kxy and homogenized shear stiffness D33

computed using the theory and the finite-element method for the three-layer beam.

these corrections are correctly predicted by Equation (18).

6.1. Impact of the corrections

We have demonstrated good agreement between the shear strain correction factor and
the pressure correction when compared with finite-element computations. To put these
results in perspective, it is necessary to assess the relative importance of these values in
predicting the stress or strain distribution and the deflection of a beam. This is a complex
task that is highly problem-dependent. To make a concrete comparison, we examine two
cases: the deflection of a tip-loaded cantilever beam and the stress distribution in a
clamped-clamped pressure loaded beam.

For the case of the tip-loaded beam, we assess the importance of the shear correction
factor and homogenized shear stiffness. With no stretching-bending coupling, D12 and
D21 are zero and the tip deflection is

v0(L) = Q

[

(

L

2c

)3
4

D22
+

(

L

2c

)

1

D33kxy

]

.

The two terms in this expression represent a contribution to the deflection from the
bending stiffness and a contribution from the shear stiffness. The ratio of these two terms
is,

rsb =

(

2c

L

)2
D22

4D33kxy
,

where rsb is the shear to bending displacement ratio. Clearly the slenderness ratio,
Sr = L/2c, is the most important single factor. For an isotropic beam, D22 = E and
D33 = G, with kxy equal to Cowper’s shear correction factor (2). For a Poisson ratio of
ν = 0.3, this results in rsb = 0.765S−2

r . For a reasonable slenderness ratio of Sr > 10,
the shear contributes very little to the deflection. On the other hand, for the three-layer
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Figure 5: A comparison between the shear correction factor kxy and homogenized shear stiffness D33

computed by theory and the finite-element method for the multi-layer beam.

symmetric beam discussed above, with ν = 0.3, α = 0.01, and a core ratio r = 0.95,
the shear to bending displacement ratio is rsb = 10.14S−2

r . This suggests that the
shear stiffness plays a much more important role in beams of this construction. Correct
determination of the shear strain correction factor and homogenized shear stiffness is
much more important for beams that have low shear stiffness such as sandwich beams.

We now examine a clamped-clamped beam subject to a distributed pressure load on
the top and the bottom surfaces, Pt = 4/5 and Pb = 1/5. The beam is composed of
alternating layers as described above for the K = 5 case. The dimensions of the beam
are L = 10 and c = 1/2.

The pressure correction causes two effects: a modification of the constitutive relation,
and additional contributions to the stress reconstruction (7). Using the constitutive
Equation (9) and the force method, the stress resultants can be determined:

N(x) = −PNP ,

M(x) = P

(

x

2
(L− x)−

L2

12
−MP

)

,

Q(x) = P

(

L

2
− x

)

.

Note that even though the beam is symmetric, there is a non-zero axial compressive force
and moment offset. This is due to the strain moments caused by the pressure on the top
and bottom surface of the beam.

Figure 7 shows a comparison of σy and σxy predicted by the stress reconstruction
and the finite-element method over the length of beam at a location y = 0.6c. These
results show very good agreement between the stress reconstruction and the finite-element
results. Neglecting the fundamental state corresponding to pressure would result in
σy = 0.
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7. Conclusions

A Timoshenko beam theory for layered orthotropic beams has been presented in this
paper. Following the work of Prescott (1942) and Cowper (1966), the beam kinematics
are developed in terms of average through-thickness displacement and rotation variables.
The proposed theory includes a consistent method for calculating the stiffness of the
beam, the shear strain correction factor, and the strain-moment corrections for exter-
nally applied loads. These values are based on the axially-invariant fundamental state
solutions. We have demonstrated that the present approach easily handles layered beam
constructions through the use of both stress and strain moments that admit solutions
where components of stress and strain may be discontinuous across interfaces. The exter-
nal load corrections proposed in the theory modify the constitutive relationship and the
equations of motion. The analysis presented suggests that for vibration problems, using
the proposed theory with Cowper’s shear correction factor and a body-force correction
is essentially equivalent to using Timoshenko’s shear correction factor with the original
equations of motion he derived. On the other hand, numerical comparisons using static
analysis demonstrated the accuracy and the consistency of the definitions of the shear
strain correction factor and the external load corrections. Both static and dynamic sit-
uations are treated by the theory without inconsistency, as a result of the external load
correction terms.
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