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Abstract

This paper presents a homogenization-based theory for three-dimensional anisotropic
beams. The proposed beam theory uses a hierarchy of solutions to carefully-chosen beam
problems that are referred to as the fundamental states. The stress and strain distribution
in the beam is expressed as a linear combination of the fundamental state solutions and
stress and strain residuals that capture the parts of the solution not accounted for by the
fundamental states. This decomposition plays an important role in the homogenization
process and provides a consistent method to reconstruct the stress and strain distribution
in the beam in a post-processing calculation. A finite-element method is presented to
calculate the fundamental state solutions. Results are presented demonstrating that the
stress and strain reconstruction achieves accuracy comparable with full three-dimensional
finite element computations, away from the ends of the beam. The computational cost of
the proposed approach is three orders of magnitude less than the computational cost of
full three-dimensional calculations for the cases presented here. For isotropic beams with
symmetric cross-sections, the proposed theory takes the form of classical Timoshenko
beam theory with Cowper’s shear correction factor and additional load-dependent cor-
rections. The proposed approach provides an extension of Timoshenko’s beam theory
that handles sections with anisotropic construction.

1. Introduction

Beam theories are developed based on a set of assumptions used to reduce the com-
plex behavior of a slender, three-dimensional body to an equivalent one-dimensional
problem. The usefulness of a beam theory is judged by its range of applicability, the
accuracy of its results, and the effort required for analysis. In this paper we present a
homogenization-based beam theory that takes a form similar to classical Timoshenko
beam theory (Timoshenko, 1921, 1922), but is specifically designed for composite beams.
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In our approach, we calibrate the stiffness properties, shear strain correction matrix, and
load-dependent corrections within the theory based on a hierarchy of solutions that we
call the fundamental states. The fundamental states are accurate sectional stress and
strain solutions to a series of carefully-chosen, statically determinate beam problems.
Since it is difficult to obtain exact solutions for the fundamental states for an arbitrary
section, we formulate a finite-element solution technique to obtain approximate solutions.

This paper is structured as follows: In Section 2 we review some important contribu-
tions from the relevant literature. In Section 3 we outline the present theory. In Section 4
we present the finite-element based technique for the determination of the fundamental
states. Finally, in Section 5 we present some results from the theory and present compar-
isons with full three-dimensional approximate solutions obtained using the finite-element
method.

2. Review of relevant contributions

In this section we present a review of various contributions that are most relevant to
our proposed beam theory. A comprehensive review of all beam theories is not practical
here due to the volume of literature that has been produced on the subject over several
decades.

In two influential papers, Timoshenko (1921, 1922) developed a beam theory for
isotropic beams based on a plane stress assumption. Timoshenko’s theory takes into
account shear deformation and includes both displacement and rotation variables. In
addition, Timoshenko introduced a shear correction factor that modifies the relationship
between the shear resultant and the shear strain at the mid-surface. The definition and
value of the shear correction factor have been the subject of many papers, some of which
are discussed below.

Later, Prescott (1942) derived the equations of vibration for thin rods using average
through-thickness displacement and rotation variables. Like Timoshenko, Prescott intro-
duced a shear correction factor to account for the difference between the average shear
on a cross-section and the expected quadratic distribution of shear.

Cowper (1966), independently from Prescott, developed a reinterpretation of Tim-
oshenko beam theory based on average through-thickness displacements and rotations.
Using these variables and integrating the equilibrium equations through the thickness,
Cowper developed an expression for the shear correction factor, which he evaluated us-
ing the exact solution to a shear-loaded cantilever beam excluding end effects. Cowper
obtained values for the shear coefficient for beams with various cross-sections, but his
approach was limited to symmetric sections loaded in the plane of symmetry. Mason and
Herrmann (1968) later extended the work of Cowper to include isotropic beams with an
arbitrary cross-section.

Stephen and Levinson (1979) developed a beam theory along the lines of Cowper’s,
but recognized that the variation in shear along the length of the beam would lead to a
modification of the relationship between bending moment and rotation. Therefore, they
introduced a new correction factor to account for this variation, and obtained its value
based on solutions to a cantilever beam subject to a constant body force given by Love
(1920).

More recently, Hutchinson (2001) introduced a new Timoshenko beam formulation
and computed the shear correction factor for various cross-sections based on a compar-

2



ison with a tip-loaded cantilever beam. For a beam with a rectangular cross-section,
Hutchinson obtained a shear correction factor that depends on the Poisson ratio and the
width to depth ratio. In a later discussion of this paper, Stephen (2001) showed that the
shear correction factors he had obtained in earlier work (Stephen, 1980) were equivalent
to Hutchinson.

Various authors have developed analysis techniques specifically for composite beams.
Capturing shear deformation effects is, in general, more important for a composite beam
than for a geometrically equivalent isotropic beam, due to the significantly lower ra-
tio of the shear to extension modulus exhibited by composite materials. As a result,
Timoshenko-type beam theories are often used to model composite beams. This type
of approach is presented by many authors, such as Librescu and Song (2006) or Car-
rera et al. (2010b). Other authors have developed extensions to Cowper’s approach.
Dharmarajan and McCutchen (1973) extended Cowper’s work to orthotropic beams,
obtaining results for circular and rectangular cross-sections. Later, Bank (1987) and
Bank and Melehan (1989) used Cowper’s approach to develop expressions for the shear
correction for thin-walled open and closed section orthotropic beams.

Numerous authors have developed refined beam and plate theories that are designed
to better represent the through-thickness stress distribution behavior for both isotropic
and composite plates and beams. For instance, Lo et al. (1977a,b) developed a higher-
order plate theory for isotropic and laminated plates using a cubic through-thickness
distribution of the in-plane displacements and quadratic out-of-plane displacements.
Reddy (1987) developed a high-order plate theory for laminated plates based on a cubic
through-thickness distribution of the in-plane displacements and obtained the equilib-
rium equations using the principle of virtual work. More recently, Carrera and Giunta
(2010) developed a refined beam theory based on a hierarchical expansion of the through-
section displacement distribution. This theory, which presents a unified framework, is
more accurate than classical approaches (Carrera and Petrolo, 2011) and can be used for
arbitrary sections composed of anisotropic materials. A finite-element approach using
this refined beam theory has also been developed for both static (Carrera et al., 2010a)
and free-vibration analysis (Carrera et al., 2011).

Although these higher-order theories are more accurate than classical Timoshenko
beam theory, one drawback is their additional analytic and computational complex-
ity. Furthermore, for laminated plates and beams, these theories predict a continuous
through-thickness shear strain and discontinuous shear stress, whereas the expected dis-
tribution is discontinuous shear strain and continuous shear stress. Zig-zag theories
address these through-thickness compatibility issues by employing a C°, layer-wise con-
tinuous displacement. These types of theories were first developed by Lekhnitskii (1935).
An extensive historical review of these theories was performed by Carrera (2003).

Many authors have used three-dimensional elasticity solutions as a way to improve
the modeling capabilities of beam theories. Following the variational framework of
Berdichevskii (1979), Cesnik and Hodges (1997) and Yu et al. (2002a) developed a
variational asymptotic beam sectional analysis approach for the analysis of nonlinear
orthotropic and anisotropic beams. In their approach, cross-sectional solutions contain-
ing all stress and strain components are used to calibrate the stiffness properties and
reconstruct the stress distribution for a Timoshenko-like beam. The stiffness properties
are recovered using an asymptotic expansion of the strain energy. Popescu and Hodges
(2000) used this approach to examine the stiffness properties of anisotropic beams, focus-
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ing in particular on the shear correction factor. Yu et al. (2002b) validated the approach
of Cesnik and Hodges (1997) and Yu et al. (2002a) using full three-dimensional finite-
element analysis.

Ladevéze and Simmonds (1998) and Ladevéze et al. (2002) presented an “exact”
beam theory that uses three-dimensional Saint—Venant and Almansi-Michell solutions
for the calibration of the stiffness properties of the beam and stress reconstruction. Using
the framework set out by Ladevéze and Simmonds (1998) and Ladevéze et al. (2002),
El Fatmi and Zenzri (2002) and El Fatmi and Zenzri (2004) developed a method for
determining the Saint—Venant and Almansi—Michell solutions required by the “exact”
beam theory using a computation only over the cross-section of the beam. EIl Fatmi
(2007a,b) developed a beam theory based on non-uniform warping of the cross-section,
using the framework of Ladevéze and Simmonds (1998). Their theory incorporated the
Saint—Venant and Almansi—-Michell solutions obtained by El Fatmi and Zenzri (2002,
2004).

Dong et al. (2001), using the techniques presented by Iesan (1986a,b), developed a
technique to solve the Saint—Venant problem for a general anisotropic beam of arbitrary
construction. Kosmatka et al. (2001) determined the sectional properties, including the
stiffness and shear center location, based on the finite-element technique of Dong et al.
(2001).

Other authors have also used full three-dimensional solutions within the context of a
beam theory. Gruttmann and Wagner (2001), following the work of Mason and Herrmann
(1968), performed a finite-element-based analysis of isotropic beams with arbitrary cross-
sections. Dong et al. (2010) used a semi-analytical finite-element formulation to compare
shear correction factors for general isotropic sections computed using the methods of
Cowper (1966), Hutchinson (2001), Schramm et al. (1994) and Popescu and Hodges
(2000).

In this paper we extend our earlier work (Kennedy et al., 2011), which focused on
layered orthotropic beams limited by a plane stress assumption. Here we examine three-
dimensional, anisotropic beams. This is not a straightforward extension of our earlier
work (Kennedy et al., 2011), as the coupling between shear and torsion adds an additional
level of complexity.

An important feature of the present theory is the use of the fundamental states. The
fundamental states are obtained from solutions to certain statically determinate beam
problems. We use the fundamental state solutions to construct a relationship between
stress and strain moments, and to reconstruct the stress and strain solution in a post-
processing step. The fundamental states are the axially invariant components of the
Saint—Venant and Almansi-Michell solutions. The key components of our theory include:

e The use of normalized displacement moments as a representation of the displace-
ment in the beam, as used by Prescott (1942) and Cowper (1966).

e The use of strain moments as a representation of the strain state in the beam, as
presented in (Kennedy et al., 2011) for plane stress problems.

e The homogenization of the relationship between stress and strain moments as used
by Guiamatsia (2010) for plates.

e The representation of the full stress and strain field by an expansion of the solution
using the fundamental state solutions.
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e The strain moment correction matrix that corrects the strain predicted from the
displacement moments.

e The use of load-dependent strain and stress moment corrections that modify the
relationship between stress and strain moments in the presence of externally applied
loads, as derived for plane stress problems by Kennedy et al. (2011).

Hansen and Almeida (2001) and Hansen et al. (2005) developed a theory with these
same ideas for laminated and sandwich beams, using a plane stress assumption. An
extension of this theory to the analysis of plates was presented by Guiamatsia and Hansen
(2004) and Guiamatsia (2010).

These features of the present theory allow us to address several issues commonly en-
countered in conventional beam theories. The proposed theory contains a self-consistent
method to obtain the equivalent stiffness of the beam and any correction factors re-
quired. In addition, all results from the theory, including the predicted strain moments,
can easily be compared with three-dimensional results. This is due to the fact that all
components of the theory rely on an averaging process that is well-defined for a beam of
any construction, which is not always the case with conventional beam theories. These
properties, in addition to the relatively inexpensive cost of analysis, make the proposed
theory a powerful technique for analysis and design.

3. The homogenization-based beam theory

We present the theoretical development of the homogenization-based beam theory in
this section. We start with a description of the geometry of the beam under consideration.
Next, we develop a kinematic description of the beam using averaged displacement and
rotation-type variables, based on the work of Prescott (1942) and Cowper (1966). We
then introduce the fundamental states and use the properties of these solutions to develop
expressions for the homogenized stiffness, stress and strain moment correction matrices,
and load-dependent corrections. We conclude with a discussion of the benefits of the
present approach.

The geometry of the beam under consideration is illustrated in Figure 1. The beam
is aligned with the x-axis and the geometry and construction of the cross-section do not
vary along the length of the beam. In this paper, we are primarily interested in layered
composite beams with arbitrarily oriented plies. This type of beam construction results
in an anisotropic constitutive relationship that exhibits coupling amongst all stress and
strain components. The constitutive equation is expressed as

where o (z,y, z) and €(x,y, z) are the full states of stress and strain, and C(y, z) is the
constitutive relationship.

The beam of length L is subject to distributed surface tractions applied in the plane
perpendicular to the z-axis and is subject to axial forces, bending moments, shear forces
and torques at its ends. Shearing tractions applied on the surface of the beam in the x
direction are excluded from consideration.

The reference axis is located at the geometric centroid of the section and the coordi-
nate axes are aligned with the principal axes of the section. As a result, the moments of
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Figure 1: Geometry and reference coordinates for the beam composed of arbitrarily oriented composite
layers.

area are defined as follows:
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The restriction to principal coordinate axes simplifies many of the expressions that are
required below.

3.1. The displacement representation

Following the work of Prescott (1942) and Cowper (1966), the exact displacement
field can be expressed in terms of an average representation of the displacement field
and residual displacements. The residual displacements capture the part of the displace-
ment field that deviates from the average representation. This decomposition of the



displacement field is expressed as

u(x,y,z) u0($)+zuz(x) +yuy(m)+ﬂ’($7yvz)
u(z,y,2) = | v(z,y,z) | = vo(x) — 20(x) + v(z,y, 2) , (2)
w(xayvz) wO(I) +y9($) —‘y—’LT](J?,y,Z)

where u(z,y, z), and w(z,y,z) = [ o 0 W ]T are the displacements and residual dis-
placements, respectively. The z-component of the residual displacement @(x, y, z) repre-
sents the warping of the section in the axial direction. For convenience, we collect the
variables, ug, vg, 0, u, and u, in a vector uo(z), defined as follows:

wo(@)=[u vo wo O u. wuy ]T
T
/[u vow woz) o ozuoyu ) g (3)
“Jol A A4 A4 I+ I 1,
= L:Ou(xvya Z)

Here, ug, vg, and wy are average displacements in the x, y and z directions. The terms
Uz, Uy and 6 are normalized first-order displacement moments about the z, y and z
directions, respectively. Note that u., u, and 0 represent rotation-type variables, but are
not equal to the average rotations of the section. We refer to the vector of variables uo(x)
as the normalized displacement moments, since these variables represent zeroth and first-
order normalized moments of the displacement field u(z,y, z). In Equation (3), we have
also introduced an operator Ly that takes the full three-dimensional displacement field,
u(x,y, z), and returns the normalized moments of displacement. Note that the action of
this operator removes the y-z dependence of the displacement field.

At this point it should be emphasized that the displacement field decomposition (2)
ensures that the normalized displacement moments of the residual displacement field are
identically zero, i.e.,

Lou(x,y,z) =0.

This property of the residual displacement field will be required later to simplify expres-
sions for the strain moments.
The strain produced by the displacements (2) is:

€z U,z + YUy,x + Uz, 2 + a,w
€y Uy
€z W
€(z,y,2) = = - (4)
s Vy= Uzt Wy ’
Yzz Uy + wo,z + ye,z + U, + W,z
Yoy Uy + V0, — 200+ Uy + 0

where the comma convention has been used to denote differentiation. Note that the exact
pointwise strain distribution requires knowledge of the residual displacements @(z,y, z).

Instead of using the pointwise strain directly in our theory, we choose to use moments
of the strain distribution. This choice has the advantage that the strain moments are
defined regardless of the through-thickness behavior of the pointwise strain, even when
certain pointwise strain components are discontinuous at material interfaces. It is im-
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portant to recognize that these interfaces are always parallel to the x direction. As a
result, differentiation with respect to x can commute with integration across the section
in the regular manner.

The strain moments are defined as follows:

e(x):[em K: Ky € €. €y ]T
T
:\/Q[fx 2 Yy (yp)/zz_z’y:ry) Yz ’Y:r:y] dS) (5)
= £3€(l‘, Z%Z)

Here we have introduced another operator £, that takes the full strain field e(x, y, z) and
returns the moments of strain e(x).

The next step in the development of the theory is to express the strain moments in
terms of the displacement representation (2). Using the strain-displacement relation-
ships (4), the definitions of the displacement moments (3), and the moments of area, the
strain moments can be written as follows:

A'Ll/oyz

Izuz,:r

_ Lyuy »
“w=1 1, +1)0,
A(uy +wog)
A (uy +v0.2)

+é(z) = ALoug(z) + é(x), (6)

where é(z) are the moments of the strain produced by the residual displacement. Here
A is a diagonal matrix given by

A = diag {A, I, 1, (Iy +1.), A, A}

The operator L, takes the vector of average displacements and normalized displacement
moments uo(x), such that AL.ug produces the first term on the right hand side of Equa-
tion (6). Note that action of the operator L. on the normalized displacements, L. ug(z),
produces terms that are identical in form to the center-line strain used in classical Tim-
oshenko beam theory. However, the variables ug(x) are interpreted here as normalized
displacement moments taken from Equation (3), not as center-line displacements and
rotations.

The term é(x) in the strain moment expression (6), is a function of the axial residual
displacement u(x,y, z) and is defined as follows:

Uz 0
AT 0
- YU,y 0
é(x) = - - ’ - dQ) = / - - ds)
(@) /Q Y (U, + W) —2(Uy +04) Q| Yl — 2y (7)
U, + Wy U,
Uy + Uy Uy



where the relationship Lou = 0 is used to simplify the expression on the right-hand
side of the above equation. We have also introduced a linear operator £ that takes the
residual axial displacement %(z,y, z) and returns the moments é(x).

The strain moments corresponding to torsion e; and shear e;, and e, involve terms
from both the normalized displacement moments and the residual axial displacement,
u(x,y,z). These extra terms cannot be evaluated unless @(z,y, z) is known. Our ap-
proach is to account for the effect of the residual displacements while formulating the
theory in terms of the average displacement variables, ug(z). The details of this approach
are outlined in the following sections.

3.2. The equilibrium equations

The equilibrium equations are formulated based on the classical approach of integrat-
ing moments of the three-dimensional equilibrium equations over the cross-section of the
beam. The axial, bending, torsion and shear resultants are defined as follows,

s@)=[N M, M, T Q. Q,]"
:/ [ Oy Z0g YOy (yo—mz - ZJzy) Ozz Ogxy }T dQ (8)
Q
- Lsa(x,y,z).

Here, L; is the same operator that was introduced for the strain moments (5). We refer
to the variables s(x) as the stress resultants (also known as stress moments). Integrating
moments of the three-dimensional equilibrium equations over the section results in the
following equilibrium equations:

N, 0

My,;c - Qz O

Mz,r - Qy 0 _
T, +{ p | =0 (9)
Qy,m Py
Qz,w Pz

The torque P,(z) and forces Py(z) and P,(z) are defined as follows:
P.(z) = / yt, — zt, dS,
s
P, (x) = /S ¢, dS, (10)
P.(z) = / t,dS,
s

where ¢, and t, are the y and z components of the surface traction. The integrals above
are carried out over the boundary of the cross-section S.

3.3. The fundamental states

In this section we present a decomposition of the stress and strain distribution within
the beam. This stress and strain decomposition is based on a linear combination of
9



axially-invariant stress and strain solutions that we call the fundamental states. The
use of the fundamental states leads to a consistent method for deriving the constitutive
relationship between the stress resultants and the strain moments. Furthermore, the fun-
damental states can be used to reconstruct the approximate stress and strain distribution
in the beam in a post-processing step. Our representation of the solution is similar to the
stress representation presented by Ladevéze and Simmonds (1998) and used by El Fatmi
(2007a,b), however, unlike these authors, we also use an analogous representation of the
strain solution that is later used to construct the homogenized stiffness relationship. In
this section we describe the properties of the fundamental states and how they are used
in the present theory.

Primary fundamental states Stress resultants

z
i\ Y
T

First <—‘
Second j

Third

S

Fourth «—‘

Fifth ’

Q.=1 M.=z

Qy=1 My,=x

~N w P Nw

Sixth /
i
Load-dependent fundamental state

bt
P.=1 Q.=—x
First
’ /ﬁj M, = —z%/2
7 I3

Figure 2: An illustration of the primary fundamental states and the distribution of the stress resultants.
Forces are denoted by a single arrow and moments by a double arrow.

The fundamental states are the axially-invariant, or z-independent, stress and strain
solutions. These solutions are obtained from specially-chosen, statically determinate
beam problems. The loading conditions leading to the fundamental states are shown in
Figure 2. These beam problems are sometimes referred to as the Saint—Venant prob-
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lem (Iesan, 1986a), for axial, bending, torsion, and shear loads, and the Almansi—Michell
problem (Iesan, 1986b), for a beam subject to a distributed surface load. The beam used
to calculate the fundamental states has the same cross-section and construction as the
beam under consideration, but must be long enough that the end effects do not alter the
solution at the mid-plane of the beam. The fundamental states are extracted from these
solutions by taking the distribution of stress and strain at the mid-plane of the beam.
As a result, the fundamental state stress and strain distributions are solutions in the y-z
and have no z-dependence.

We distinguish between two types of fundamental state solutions: primary funda-

mental states, which we label agf)(y, z) and esf)(y, z), and load-dependent fundamental

states, which we label a'(L }(y, z) and e(L}(y» z). The six primary fundamental states

correspond to axial resultant, bending moments about the y and z axes, torsion, and
shear in the z and y directions, respectively. The load-dependent fundamental states are
associated with loads applied to the beam. The fundamental states are used here to form
an approximation of the stress and strain field within the beam. To complete the stress
and strain representation, we also introduce stress and strain residuals, &(z,y, z) and
€(z,y, z), that account for the discrepancy between the approximate stress and strain
representation and the exact distribution.

Using these definitions, the stress and strain in the beam may be expressed as follows:

N

o(x,y.z Zsk y,2)+ Y Pe(@)o )l (y,2) + 5(w,y,2),  (1la)
k=1
N

€(z,y, 2 Z sp(x Y,2) + Z Pr(2)e¥) (y, 2) + &z, y, 2). (11b)
k=1

The magnitudes of the primary fundamental states are given by the components of the
vector s(x) and represent axial force, bending moments, torsion, and shear resultants. In-
dividual components of s(z) are written as si(x). The magnitudes of the load-dependent
fundamental states Pj(x) are known from the loading conditions. The fundamental state
magnitudes link the stress and strain distribution.

For consistency between the stress resultants and the stress distribution, the primary
fundamental states must satisfy the relationship,

Loy, 2) =i, k=1,...,6, (12)

where 1 is the k-th Cartesian basis vector. This relationship ensures that the stress
resultants of the stress distribution (11a) are equal to si(z). Furthermore, the load-
dependent fundamental states must satisfy

Esagl)/(ya ) 0, k:].,...,N. (13)

The load-dependent fundamental states do not contribute to the stress resultants. In
addition, the stress moments of the stress residuals must be zero, i.e.,

Li6(x,y,2z) =0.
11



An important benefit of the stress and strain distributions (11) is that they can
capture all components of stress and strain. Typically, beam theories retain only a
few components of the stress and strain and assume that the remaining components
are negligible. These neglected components can sometimes be determined using a post-
processing integration of the equilibrium equations through the thickness. For composite
materials, however, it can be important to retain all components of stress and strain, since
singularities can arise at ply interfaces and both strength and stiffness vary significantly
between material directions (Pagano and Pipes, 1971).

3.4. The constitutive relationship

With these definitions, we are now prepared to derive the relationship between the
stress resultants and the strain moments. To do so, we examine the moments of the
strain field (11b). Using the moment operator L, the strain moments of Equation (11b)
become,

6
@)= o )Laep (u:2 +2Pk Coepp(v:2) + LE(wy.2). (14)

Note that the strain moments have contributions from all fundamental states and the
strain residuals.

Next, we introduce a square flexibility matrix £ whose k-th column contains the strain
moments from the k-th primary fundamental state. The components of the matrix E
are:

E..=L.e¥(y,2), k=1,...,6, (15)

where E,j is the k-th column of the matrix E. Note that the matrix FE is constant for
a given beam construction and is independent of x.

The contributions to the strain moments from the primary fundamental states are
the product of the matrix E and the primary fundamental state magnitudes s(x). Re-
arranging the strain moment relationship (14) and using the flexibility matrix E yields

N
Es(z) =e(z) — ZPk(:U)Ese%%(y,z) — Lsé(x,y,2). (16)
k=1

The stiffness form of the constitutive relationship can be found by inverting the matrix
of strain moments D = E~ ', to obtain

N
s(x)=D (e(x) — ZPk(x)E egfz(;% z) — Esé($7y7z)> . (17)

For a section composed of a single isotropic material the relationship between stress and
strain moments simplifies to

D =diag{E,E,E,G,G,G}.

Equation (17) is exact in the sense that the stress moments can be determined exactly
if the strain moments, load-dependent strain moments and strain residuals €(x,y, z) are
12



known. Unfortunately, evaluating the strain residuals €(z,y, z) requires a full three-
dimensional solution of the equations of elasticity.

At this point, an assumption must be made about the contribution to the strain
moments from the term L£¢€. Since three-dimensional solutions are typically not available,
we assume that the contribution from term L€ is small and can thus be neglected. This
assumption introduces an error in the predicted strain moments, and as a result, also
introduces an error in the predicted stress resultants. Typically, the magnitude of L4€
is highest near the ends of the beam where the solution must adjust to satisfy the end
conditions. In situations where these disturbed regions require precise modeling, a beam
theory is not appropriate. However, at a sufficient distance from the ends of the beam,
the strain representation (11b) is accurate and thus L€ should be small.

3.5. The stress and strain moment corrections

Next, we seek a relationship between strain moments and the normalized displace-
ment moments. We initially limit the analysis to conditions where no external loads are
applied to the beam. Starting from the stiffness form of the constitutive equations (17),
and assuming that the strain residual moments are negligible £;€ = 0, the stress mo-
ments may be expressed in terms of the normalized displacement moments ug(x) and
the moments of the warping strain é(x) using Equation (6),

s(x) = D (AL.ug(z) + é(x)) . (18)

To proceed, an expression for é(z) must be obtained. Following the arguments pre-
sented by Cowper (1966), we argue that this term should be linearly dependent on the
magnitudes of the primary fundamental states in regions sufficiently far removed from
end effects or rapidly varying loads. We write this dependence as

é(z) = Es(z) + é,, (19)

where E is a flexibility matrix defined below. Here é,., is a warping residual term that
accounts for the deviation of the warping moment in disturbed regions of the beam. We
refer to e, as the strain correction error.

Using the operator £ from Equation (7), the matrix E can be written as

B =LiM(y,2), k=1,...,6 (20)
where ﬂg)(y, z) is determined from the residual displacement of the k-th primary fun-
damental state. Note that due to the nature of the operator L, the matrix E only has
entries in the last three rows. All other entries in E are zero.

An expression for the stress resultants in terms of the normalized displacement mo-
ments can be obtained by using the simplified form of the constitutive relationship (18),
and the moments of the strain due to warping (19), yielding

s(z) = (E — E) AL.uo(z) + (E — E)'e,. (21)

In the remainder of this section we assume that the strain correction error is negligible,
ie., e, =0.
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In order to isolate the effect of the terms E we define the strain moment correction
matrix as follows: R
C,=(I-ED)™", (22)

such that Equation (21), with &, = 0, simplifies to
s(z) = DC;AL up(x).

Here, the strain moment correction matrix (22) provides a correction to the strain mo-
ments predicted from the average displacements that accounts for é(z). Note that the
strain moment correction matrix C'; has a specific structure. The first three rows of C
are always equal to the identity matrix, while the last three rows may contain non-zeros
in any location due to the definition of the matrix E.

We also define a stress moment correction matrix as follows:

K,=(I-DE)™!, (23)
such that Equation (21), with &, = 0, simplifies to
s(z) = K;DAL ug(x).

The stress moment correction matrix (23) provides a correction to the stress moments
that accounts for é(x). In general, the stress moment correction matrix K, is fully
populated.

In the case of a doubly symmetric, isotropic section, the stress and strain corrections
matrices are diagonal and equal. In this case, C'; and K take the form

K, =C, = diag{l, 1, 17kt7km27kmy}v

where k, = J/(I, + I,) is the strain correction associated with torsion, and J is the
torsional rigidity of the section. The shear strain correction factors k.. and k., are
identical to those obtained by Cowper (1966) and Mason and Herrmann (1968),

21+ v) 1,

A
(I, —I.) — —/ 2297 + 2x, dS
Q

ka:z =

R

L.
2(1+v)I,

A
Z(Iz—Iy)——/z2y2+yxde
2 1, Jo

kny =

where x, and x, are classical Saint—Venant flexure functions (Love, 1920).

3.6. The load-dependent corrections

The constitutive relationship (21) derived above explicitly excluded the effect of ex-
ternally applied loads. At this point, we derive load-dependent corrections that account
for the effect of external loads. We start from the flexibility form of the constitutive equa-
tions (16), and neglect the moments of the strain residuals, assuming £,€ = 0. These
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assumptions result in the following expression for the strain moments:

N
e(z) = Es(z) + Y Pu(z)Loe) (y, 2). (24)
k=1

The next step is to obtain an expression for the strain moments e(x) as a function
of the normalized displacement moments ug(z). The externally applied loads produce
additional moments of the warping strain. In an analogous manner to the primary
fundamental state contributions, we assume that these moments of the warping strain
are predicted by the load-dependent fundamental states and are proportional to the
applied load. These assumptions result in the following expression:

e(r) = AL.ouo(z) + Es(z 4—2:P;C L’uFL Y, 2) + €. (25)

Here, ﬂ%cz(y, z) denotes the warping function associated with the k-th load-dependent

fundamental state and €,, is the strain correction error.

Again, assuming that &, = 0, the flexibility form of the constitutive equations (24) and
the strain moment expression (25) can now be combined into a constitutive relationship
that takes the following form:

N

s(z) = (B — B) ' ALoug(2) + Y Pula)sth), (26)
k=1

where the load-dependent stress moment corrections sgfz are defined as

s = (B - B)™ (Lafi) (v ) — Loty (v,2)) (27)

In a similar fashion, it can be shown that the strain moments take the modified form

e(z) = C,AL u0+ZPk (z)e') | (28)
k=1

(k)

where the load-dependent strain moment corrections ey; are defined as

eff) = . (Lalf) (v, 2) — Loefh(4,2)) + Loel) (v, 2). (29)

The load-dependent stress moment corrections (27) and the load-dependent strain
moment corrections (29) take into account the change in the relationship between the
stress and strain moments and the normalized displacement moments as a result of
externally applied loads. The externally applied loads do not directly produce stress
moments; rather, these loads produce strain moments that must be taken into account
in the constitutive relationship (26). The main assumptions required for the derivation
of the constitutive expression are that the moments of the strain residuals, L€, and the
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strain moment correction, e,, can be neglected. These assumptions are examined below
in the numerical results section.

3.7. The asymmetry of the constitutive relationship

In general, the homogenized stiffness matrix D, and the matrix product DC A are
not symmetric. This is not a classical result and deserves attention. Linear constitu-
tive relationships between pointwise stress and pointwise strain expressed in the form
of Equation (1) are symmetric due to the existence of the strain energy density. How-
ever, the homogenized stiffness matrix D that relates the stress resultants to the strain
moments cannot be derived from a strain energy density, since D relates integrated quan-
tities. The integral of the pointwise strain energy density across the section cannot be
related directly to the product of the integrals of stress and strain. As a result, D is not
guaranteed to be symmetric. The matrix product DC4A that relates the normalized
displacement moments to the stress resultants is not symmetric for the same reason.
Within the context of a finite-element implementation of the present beam theory, care
must be taken to ensure that symmetry of the constitutive relationship is not assumed.

4. A finite-element method for the determination of the fundamental states

The fundamental states play an important role within the beam theory presented
in the previous section. In principle, full three-dimensional solutions for each of the
fundamental states are required before any analysis can be performed. It is possible
to obtain some exact solutions to the fundamental states, as shown in Kennedy et al.
(2011). However, we anticipate that it is only possible to obtain these exact solutions
for a small set of geometries and beam constructions of interest. In order to solve more
general problems, we have develop a finite-element method for the determination of the
fundamental states for cross-sections of arbitrary geometry and construction.

It is possible to use conventional three-dimensional finite-elements to obtain the fun-
damental state solutions; however, this approach is computationally expensive due to the
large, three-dimensional mesh requirements. Instead, we develop a technique that only
requires computations in the plane of the section, eliminating the need to discretize the
axial direction. This approach is possible due to the fact that the fundamental states are
far-field solutions.

In developing the following finite-element method, we follow the work of Pipes and
Pagano (1970), who used a semi-inverse approach to obtain the stress and strain distri-
butions in a long beam subject to an axial load. We modify the form of the assumed
displacement field proposed by Pipes and Pagano (1970), but retain the terms that ac-
count for the effects of axial force, bending, shear, and torsion. El Fatmi and Zenzri
(2002) developed a similar technique to obtain the Saint—Venant and Almansi-Michell
solutions based on the work of Ladevéze and Simmonds (1998). Dong et al. (2001) de-
veloped a finite-element solution technique for the Saint—Venant problem based on the
work of Tesan (1986a).

In the following section, all variables refer to a single fundamental state calculation.
Relationships with the beam theory are described explicitly in Section 4.2. In this finite-
element approach, we develop a displacement-based solution to the three-dimensional

16



equations of elasticity based on the following expansion of the displacement field in the
axial direction:

M k k—1
x k k k T
u(z,y,2) = Z {k' (cg ) +cg )2+ c:(,, )y) + Ho1) 1),U<k)(y,2)} )
k=1 ’ ’
SRR AT
v = \le —d s g )tV w60
| k! !
[ W w mw AT
w(x,y,z)zz 21\ G +eyly—cy 1 +(k:—1)!W (y,2) ¢,

=
Il

1

where the displacements U®)(y, 2), V¥ (y,z) and W) (y, 2) are written as Uu* =

T .
[ vk vk k) } , and are only functions of y and z. The terms cgk) through cék)
are constant across the section, and we refer to these as the invariants. It is convenient to

(k) (F)
6

T
collect ¢} through ¢z into a vector denoted ¢*) = [ cgk) cék) } . The number of

terms M, retained in the expansion is discussed in more detail below. Pipes and Pagano
(1970) used a similar form of Equation (30) with M = 1 to determine the stresses in
the vicinity of the free edge of a laminated composite beam subjected to an axial force.
As we demonstrate below, the displacement field above can also be used to predict the
stress and strain fields due to bending, torsion, shear, and applied loads.

When M > 1, the representation of the displacement field (30) is not unique. The
invariants cgk) through cék) define displacements that can be represented by U*+1),
V&) and W*+ | Furthermore, displacement boundary conditions must be imposed
on the displacement field (30) to remove rigid body translation and rotation modes. In
order to handle both of these issues, we impose the constraint

LUP (y,2)=0, k=1,...,M, (31)

where L is the operator defined in (3). This constraint removes the rigid body translation
and rotation modes for £ = 1, and ensures that the displacements are uniquely defined
for £k > 1. A different method for imposing the boundary conditions could be applied,
but we have found that Equation (31) simplifies later results in relation to the beam
theory.

The strain produced by the displacement field (30) is most clearly expressed in the
form,

Mo k=1
w2 =3 e 2) (32)
k=1

where €¥)(y, 2) is a strain distribution in the y-z plane. In Equation (32), the coefficient
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€'®) is given by,

[ e ] [ cgk) + cék)z + c(k)y LUk ]
e y )
(k) (k
(k) _ | €= — W k=1 M 33
6 5 Z e = 3 —_— PIRIEEEIEY
(y,2) %(/1;) V(k) I W(k) (33)
A o) 1 Py 4 U@ e
i %(CIZ) ] i cék) — flk)z + U,(yk) + VD

with UMHD = M+ — jy(M+D) —
From the expression for the strain (32), it is clear that the stresses in the beam take

the form
k—1

M
a(x,y,z>:l;(,f_ 5o %) (34)

Using this polynomial expansion for the stresses, the three-dimensional equilibrium equa-

tions are
(k) _|_ Ug(gk) + J(k‘H) =0,

( ) +o®) 4 O-(kJrl) =0, k=1,...,M (35)

Y2,z

ol + o8 4 ol o,

with a(M+1) = (. These are the same equations used by Love (1920) for the solution of
a tip-loaded cantilever, and a beam subject to gravity load. Here, the next highest-order
terms in the expansion appear as body forces for the current equilibrium equations. For
the k-th coefficient, the body force is equivalent to

(k+1)

Oz
pF) — Ua(sI;Jrl)
ot

Using the expressions for the strain (33) in conjunction with the constitutive relation-
ship (1) and the equilibrium equations (35) results in 3M partial differential equations
for the displacements U (k) The next task is to determine equations that can be used to
determine the values of ¢(*).

At this point, we use the property that the fundamental states are statically deter-
minate. As a result, the moment equilibrium equations (9) can be integrated to obtain
the stress moment distribution in the beam. Furthermore, we limit the load-dependent
fundamental states to loads that are polynomials in the z direction. (Note that this
restriction applies to the integrated pressure loads (10), but does not apply to the distri-
bution of the tractions across the section.) With this additional assumption, it is always
possible to obtain a solution for the stress moments in the form of a polynomial,

Z (k)7 (36)

k= 1
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where s&k) is the k-th coefficient in the polynomial. Clearly, the value of M must be

chosen such that M — 1 is equal to the degree of the polynomial stress-moment distri-
bution (36). The primary fundamental states corresponding to axial force, torsion and
bending moments can be determined with M = 1. The primary fundamental states cor-
responding to shear require a solution with M = 2 corresponding to a linearly varying
bending moment and constant shear. The load-dependent fundamental state correspond-
ing to a distributed surface loads requires M = 3, with a quadratically varying bending
moment and linearly varying shear.

For the moments of the stress expansion (34) to match the coefficients of the stress
moment polynomial (36), we impose the additional constraint,

Loo®(y,z) =5, k=1,... M. (87)

These constraints represent an additional 6M equations that are used to determine ¢(®).

To summarize, there are 3M, U (y, z) coefficients defined in the y-z plane, and an
additional 6M constants ¢(*¥) that are required in the displacement field (30). These vari-
ables can be determined from the 6/ moment constraints (37) and the 3M equilibrium
equations (35) used in conjunction with the strain expressions (33) and the constitutive
relationship (1).

It is important to note that this system of equations can be solved in a sequential
fashion. The coefficients of the highest order k = M, U (M )7 and ¢™), are independent
of the lower order coefficients k < M. The kK = M terms couple with the next terms, k =
M-—1, UM 71), and ¢™~1_ through the equivalent body-force terms in the equilibrium
equations (35). This sequential process continues until all the coefficients, U (k), and
c®) | have been determined. This same solution technique was used by Love (1920) for
isotropic beams.

4.1. Finite-element implementation

We use a straightforward finite-element implementation of the above equations. This
implementation shares many similarities with the approach of Dong et al. (2001). Here
we pose our problem in terms of the displacement of the beam under the action of a pre-
scribed load. Dong et al. (2001) seeks a solution in two steps: first obtaining the distribu-
tion of the warping displacements for axial, bending, torsion, and shear, then obtaining
the amplitudes of the Saint—Venant solution in a second calculation. Here we employ
conventional isoparametric displacement-based elements with bi-cubic Lagrangian shape
functions in the plane for the 3M displacement field components u® (y,2),k=1,..., M.
We write the nodal displacements of U*)(y, z) in the vector d*). It can be shown that
the constraints on the stress moments (37) arise naturally using the principle of sta-
tionary total potential energy. We impose the unconventional displacement boundary
conditions (31) by adding Lagrange multipliers and employ a Gauss quadrature approxi-
mation of the constraint (31). The discrete form of the displacement constraint is written
as

Lod™ =0,

where Ly is the discrete analogue of L£y. We denote the Lagrange multipliers associated
with the displacement constraints as AR
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The discrete approximation of the k-th coefficient of the strain expansion (33) is
written as

e® = Bd¥ + B.c® + B,d

€ )

where B, B. and B, take the nodal k-th displacements, k-th invariants and &k + 1-th
displacement and produce the pointwise strain. Here, the subscript e has been used to
denote the element displacements from the vector d"®. The matrices B and B, are
defined as follows:

0 0 0 Ny 0 0

0 Ny O 0 0 0

o 0 N 1o o0 o
B=| o nN. N, » Bu=1 g 0 0 ’

N. 0 0 0 0 N

Nl,y 0 0 0 N1 0

where N; are the shape functions, and the comma notation has been used for differenti-
ation. The pattern in the matrices B and B,,, repeats itself for each node. The matrix
B, is given by

1 2z y 0 0 0
0 00 0 00O
0 00 0 00O
B. = 0 00 0 00O
0 00 w 10
0 00 —2 01

For convenience, we introduce the element matrices in a block matrix form as follows:

K¢, B'CB
¢ K¢ = / B'cB B’CB. dQ.,  (38)
wi Koo Ki, ° | B"cB B!cB. B'CB,

where Q. is the element domain. The element matrices are denoted with a superscript
e. The superscript e is omitted for the assembled form of the matrix.
The assembled finite-element equations are:

Ku K&, LT[ d% F
K, K. 0 c® | = W | (39)
Ly 0 0 AR 0

Care must be exercised when solving equation (39), since the matrix K 44 is singular.
This is due to the fact that no conventional Dirichlet boundary conditions are applied to
K ;4. However, the final row of the system of equations (39) imposes a constraint that
removes this singularity.

The two terms on the right hand side of Equation (39) are

k .
f(k) _ fgk) +f1(7 ) Ki“dd(k-&-l),
5O = o) — KT,
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where terms with superscripts greater than M are zero. The term f, is the surface
traction contribution to the right hand side and f. is the right hand side for the invariants.
The force vector, fl()k), represents a body force associated with the k + 1-th fundamental
state, defined as follows:

P = Kgd®™ 4 K™D 4+ K, dE Y

Note that the left hand side of Equation (39) is the same for each coefficient k. Therefore,
only the right hand sides (40) needs to be recomputed in each subsequent solution.

4.2. Relation to beam theory

In this section we outline the connection between the finite-element approach de-
scribed above and the proposed beam theory.

The computations outlined above are performed for each fundamental state. First,
the polynomial stress resultant coefficients from Equation (36) are determined. These
polynomials are summarized for each of the fundamental states in Figure 2. Next, the un-
knowns d®) and ¢®), k = 1... M, are determined using Equation (39). The fundamental
state stress and strain solutions are the lowest-order terms of the polynomial expressions
for the stress in Equations (34) and (32), respectively. Therefore, the fundamental states
are oM®2) and €V (y, 2) in the y-z plane.

With this definition, the strain moments of the fundamental state can be computed
using

e=L.eV(y,z), (41)

where Ly is a discrete analogue of the operator £, computed using Gaussian quadra-
ture. The strain moments are required to compute the flexibility matrix E (15) and
for components of the stress and strain moment corrections in Equations (27) and (29),
respectively.

Another key quantity required for the beam theory is the axial warping @(z,y, z). The
z-independent component of axial warping is precisely U (y, z) due to the imposition
of the displacement moment constraint (31). The moments of the warping strain can be
evaluated using:

é= iU(l)(y, z), (42)
where L is the discrete analogue of £ and is computed using Gaussian quadrature. The
terms é are required for computing the flexibility matrix E (20), and the stress and
strain moment correction matrices K (23) and Cy (22), respectively.

5. Results

In this section we present results using the finite-element approach presented in Sec-
tion 4, and demonstrate the modeling capabilities of the beam theory. This section is
divided into three parts. In the first part we compare the present beam theory results to
results obtained by Cowper (1966) for rectangular and hollow cylindrical isotropic sec-
tions, and results obtained by Kennedy et al. (2011) for isotropic and layered isotropic
sections. In the second part we compare the beam theory to full three-dimensional finite-
element results. In the last part we present a parameter study to explore the behavior of
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the homogenized stiffness and the strain moment correction matrix C for an angle-ply
laminate.

P =4/5
r 1.1 1. 111
b/47 04
b| rb «C ) b ~ 0
\» 6,
e e e ) 6,
p=1/5 ¢ a
(a) Three layer section (b) Rectangular section

2b

2a

(¢) Hollow cylinder (d) Angle section

Figure 3: The section geometries used for comparison. The centroid of each section is marked with a C.

The various cross-sections used here are shown in Figure 3. Note that some of the
same variable names are used to refer to different dimensions for each cross-section.
The particular variable definition should be clear from the context. The rectangular
sections in Figures 3(a) and 3(b) have the same dimensions but have different material
distributions. The three layer isotropic section in Figure 3(a) is designed to model a
sandwich structure. The section has a core fraction r, and the ratio of the Young’s
modulus of the core to the face sheets is a. The four-layer beam shown in Figure 3(b)
is composed of four orthotropic layers oriented at an angles 6; through 6, with respect
to the z axis. The isotropic hollow circular section shown in Figure 3(c) has outer
radius @ and inner radius b. The angle section shown in Figure 3(d) is composed of four
orthotropic layers oriented at angles 8, through 6,.

5.1. Comparison with results from the literature

In this section we compare results from the beam theory-based finite-element ap-
proach presented above with results from the literature for an isotropic rectangular
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section, the hollow isotropic circular section (Figure 3(c)) and the three layer section

(Figure 3(a)).

5.1.1. Rectangular section

k:cz

kxz FE

0.1
0.2
0.3
0.4

0.839694656
0.845070423
0.849673203
0.853658537

0.839694656
0.845070423
0.849673203
0.853658537

b/a

ky

kirg

1.5

0.843477276
0.722815002
0.548839062

0.843462636
0.722809435
0.548836918

Table 1: Comparison of Cowper’s shear correction factor k. (44) and the torsion correction factor
ki = J/(Iy + I.), with finite-element calculations using a 31 X 31 node mesh with 10 x 10 bi-cubic
elements for the rectangular section.

For a rectangular section composed of a single orthotropic material, Dharmarajan
and McCutchen (1973) obtain a shear correction factors of

L 5E,
e 6Em - szGrz’

s, (43)
YT 6By — UayGay

where E, G, and G, are the material moduli in the beam axis and v, and v, are
the Poisson ratios. For an isotropic material these formula simplify to Cowper’s shear
correction factor (Cowper, 1966):

10(1 +v)

—_—. 44
12 +11v (44)

kzz = hgy =
This factor does not depend on the dimensions of the rectangular section. Table 1 shows
a comparison of the shear correction factor obtained from Cowper’s formula (44) and
finite-element based calculations for a range of Poisson’s ratio v = 0.1, 0.2, 0.3 and 0.4.
The finite-element calculations were performed on a 31 x 31 node mesh with 10 x 10
bi-cubic elements. Very good agreement was obtained.

The torsion strain correction factor k; for an isotropic section is k; = J/(I, + I,),
where J is the torsional stiffness of the section. Table 1 shows a comparison between the
analytic formula obtained from Timoshenko and Goodier (1969) and the torsional strain
moment correction, computed using the present approach with the previously described
mesh for a range of depth-to-width ratios b/a.
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Table 2: Comparison of Cowper’s shear correction factor for a hollow cylinder with the present approach
for a series of radius ratios. Finite-element calculations were performed on a 120 X 16 node mesh with

b/a k. ke-re

0.75 | 0.547851299 | 0.547851299
0.25 | 0.771774856 | 0.771776170
0.15 | 0.837998917 | 0.838010143

40 x 5 bi-cubic elements.

r ke ke2rp MT My
0.25 | 0.714966088 | 0.714966088 | 1.385478992 | 1.38554164
0.5 | 0.744974670 | 0.744974670 | 3.041345731 | 3.04139193
0.75 | 0.825732040 | 0.825732040 | 2.767575511 | 2.76760868

Table 3: Comparison of the shear correction factor and stress moment correction for the isotropic three
layer beam for a case with a = 0.1

5.1.2. Hollow circular section
For a hollow, circular section, Cowper (1966) obtained a shear correction value of

6(1+ v)(1 +m?)?
(74 6v)(1+m2)2 + (20 + 12v)m?’

foys = (45)

where m = b/a is the ratio of the inner to the outer radius. The geometry of the
hollow section is shown in Figure 3(c). Table 2 shows a comparison between Cowper’s
formula (45) and finite-element calculations performed on a 120 x 16 node mesh with
40 x 5 bi-cubic elements.

5.1.3. Three layer beam

Next, we consider a symmetric beam composed of three isotropic layers where the
ratio of the Young’s modulus of the core to the Young’s modulus of the outer layers is
«. The Poisson’s ratio v is the same in all layers. Using a plane stress assumption, the
authors in previously published work (Kennedy et al., 2011), obtained an expression for
the shear correction factor for beams of this construction as a function of core fraction
r, and the ratio a. The shear correction factor in this case is,

(14 v)(30r(s — 1) + 20)

Fa: = T )5 — (61 80) + (1 + V)1 = 5) 2+ 15 —31)

(46)

where s = (1 — (1 — a)r?)/a. The authors (Kennedy et al., 2011), also derived expres-
sions for the load-dependent axial and moment corrections that are too lengthy to report
here.

Finite-element calculations were performed with a rectangular section with a = 1
and b = 5 using a 13 x 61 node mesh with 4 x 20 bi-cubic elements. Table 3 shows a
numerical comparison for the case a = 0.1. Exact agreement was obtained for the shear
correction factor, and agreement to at least 4 digits was obtained for the stress moment
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Figure 4: Comparison of the shear correction factor for the isotropic three layer beam. Finite-element
results from the present approach are compared with Equation (46).

correction. Figure 4 shows a visual comparison between the shear correction factor (46)
for the three layer beam, and the finite-element approach for a = 0.5, 0.1, 0.01, and for
a range of core ratios r between 0 and 1. Figure 5 shows a visual comparison of the
load-dependent moment-correction obtained by the authors (Kennedy et al., 2011) and
the present finite-element approach.

These results are especially interesting because the current approach uses a full three-
dimensional through-thickness solution, while the authors (Kennedy et al., 2011) made
a plane stress assumption. The full three-dimensional stress and strain distributions
corresponding to shear and pressure loading are not constant in the direction transverse
to the z-z plane. However, the additional contributions from the full three-dimensional
solution cancel, and the plane stress formula (46) and present approach match.

5.2. Comparison with three-dimensional results

In this section we compare the beam theory results with calculations using a full
three-dimensional finite-element model for the angle section shown in Figure 3(d), both
for statically determinate and statically indeterminate boundary conditions. The beam
under consideration is loaded with distributed surface tractions and end loads that in-
clude axial force, torque, bending moments and shear loads.

There are three main objectives in performing this study:

1. To compare the accuracy of the stress and strain reconstruction based on beam
theory assumptions to the stress and strain distribution obtained using full three-
dimensional finite-element calculations.

2. To quantify the errors introduced by neglecting both the strain correction error,
é,, and the moments of the residual strain, £€.
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Figure 5: Comparison of the load-dependent moment correction for the isotropic three layer beam.
Finite-element results from the present approach are compared with results from Kennedy et al. (2011).

Property Value || Property Value
E1 164 GPa G127 G13 21 GPa
Eg, E3 8.3 GPa G23 12 GPa
V12, V13 0.34 V23 0.21

Table 4: The representative orthotropic stiffness properties used in the finite-element calculations. The
relative stiffnesses are chosen to be representative of a graphite/epoxy composite system.

3. To assess the accuracy of the homogenized stiffness D, the strain correction matrix
C, and the load-dependent corrections.

For this study, we use the angle-section geometry shown in Figure 3(d) with sectional
dimensions a = 3/2, b = 3/4, r = 1/2, and overall beam length L = 50. The ply angles
used for this case are 6 = [45°,—35°,35°, —45°], which is a balanced, anti-symmetric
laminate. The tip of the beam at x = L, is loaded with axial, bending, torque and
shear loads, s = [10, —625, 1250, 50, —25,12.5] x 10°%, and a constant traction is applied
to the beam such that P, = 1, P, = 0. The traction is distributed on the outer surface
of the section and is only applied in the z direction with t, = 2/(n(r 4+ b) + 4a) and
ty = 0. There is also a non-zero P, force due to the distribution of the traction on
the section. The material properties for the beam are listed in Table 4. The relative
magnitudes of the stiffnesses properties are chosen to be representative of a high modulus
graphite/epoxy system. Note that the dimensions of the beam are selected to facilitate
three-dimensional modeling using finite-elements and are not representative of a physical
beam. Using smaller, more realistic ply thicknesses would increase the computational
cost of the analysis, as more elements would be required to keep the element aspect ratio
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within a reasonable range. This test case should be viewed as a convenient model for
comparison purposes.

To test different aspects of the present beam theory, we impose two different sets
of boundary conditions on the same finite-element model. These two sets of boundary
conditions result in two separate finite-element problems, which we denote B1 and B2.
The boundary conditions for case B1 are statically determinate. All displacements at the
beam root, z = 0, are completely fixed, while the displacements at the tip, x = L, remain
free. The boundary conditions for case B2 are statically indeterminate. In this case, the
beam root is completely fixed, while at the tip only the axial displacement u = 0 is fixed.
For case B2, the axial force and bending moments at the tip are not applied.

To model the beam using three-dimensional finite-elements, we use a mesh with 289 x
97 x 25 nodes, where the three dimensions are the z-direction, the direction along the
contour of the section, and through the thickness, respectively. This results in a problem
with 2 102 475 degrees of freedom. We use 96 x 32 x 8 tri-cubic elements resulting
in two elements through the thickness of each ply. This large high-order finite-element
model is employed to accurately model the through-section stresses and limit the effect
of discretization error. Such a large high-order finite-element problem must be solved by
a specialized finite-element code. To solve these beam problems, we use the Toolkit for
the Analysis of Composite Structures (TACS) (Kennedy and Martins, 2010), a parallel
finite-element code specially designed for the analysis of composite structures. We solve
these beam problems using 48 processors. The total solution time is approximately 10
minutes of wall time corresponding to 8 hours of CPU time.

To model the beam described above using the present beam theory, we employ a fun-
damental state analysis with a sectional nodal mesh of 97 x 25 nodes along the contour of
the section and through the thickness, with a 32 x 8 bi-cubic element mesh. This problem
contains 7 287 degrees of freedom for the section, including nodal degrees of freedom,
invariants, and the Lagrange multipliers. For the beam analysis, we use 96, displacement-
based, Timoshenko-type cubic elements along the length of the beam. These elements
have been modified to use load-dependent strain and stress moment corrections and to
accept the non-symmetric stiffness relationship. All beam theory computations, includ-
ing the determination of the fundamental states and solution of the beam problem, take
less than 15 seconds on a desktop computer with a single processor. This is a vast differ-
ence in computation effort: the full three-dimensional problem requires approximately
1920 times more computational effort compared to the beam theory calculations.

For the angle section described above, the homogenized stiffness matrix D, normalized
by the Young’s modulus Ej is,

0.415965 0 0.0213894 0.0811495 —0.0517882 O
0 0.407744 0 0 0 —0.0254769
D | 0.00488284 0 0.396857  0.00914746 0.00971687 O
E, | 0.0107402 0 0.0402207 0.157807 0.0516136 0O
0.00482657 0 0.0519170 0.0318435  0.193637 0
0 —0.00577706 0 0 0 0.191402

Note that the y components of bending x, and shear e,, are decoupled. This decoupling
is due both to the geometry of the section and the layup of the beam. The strain
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correction matrix C' is,

1 0 0 0 0 0
0 1 0 0 0 0
c_ |0 0 1 0 0 0
* = | 0.0670449 0 —0.0202593  0.399008 0.396402 0
—0.0351000 0 —0.0891052  0.311563 0.595588 0

0 0.00225714 0 0 0 0.542370

Note again that there is coupling between the y component of shear and bending and
the z component of shear and torsion.

. . 1 . 1
The strain moment correction e%% and stress-moment correction s%% are,

e =[0 0 0 0 0 447333376 x10°¢ |",

(1)

SELL —[0 712433x10™* 0 0 0 —3.87965x 104 ]".
1

While the stress and strain moment corrections are small in magnitude, ignoring these
terms produces measurable errors when the beam theory calculations are compared with
finite-element results.

5.2.1. Statically determinate beam

In this section we examine the results from the problem B1. Since this case is statically
determinate, the stress moments can be determined from the equilibrium equations (9)
alone. Therefore, the results in this section must be interpreted from the point of view
of known stress resultants, but unknown strain moments.

First, we examine the accuracy of the stress and strain reconstruction from Equa-
tion (11). Instead of plotting the error in each of the 12 components of stress and strain,
we use the following quantity to concisely present a single error measure per unit length
of the beam:

ASE,(z) = .
5 1(33) fQ €3D * O3D dQ)

(47)
In the above equation, o3p and e€3p are the stress and strain solutions from the three-
dimensional finite-element problem, while 3p and €sp are the differences between the
three-dimensional solution and the beam theory reconstruction, and therefore represent
approximations of the true stress and strain residuals, & and €, in Equation (11). The
quantity ASE, is the strain energy of the difference between the beam theory and the
full three-dimensional solution, per unit length of the beam, normalized by the sectional
strain energy at the current x position. An error in one component of the stress and
strain produces a measurable error in ASE,. As a result, ASE, shows the accuracy of
all components of the stress and strain reconstruction.

Figure 6 shows ASE, as a function of z-location for the case B1. ASE, is largest at
the ends of the beam and decreases rapidly towards the center of the beam. This result
demonstrates the high degree of accuracy of the stress and strain reconstruction just a
few thicknesses away from the ends of the beam.

Next, we compare the strain moments computed from the full three-dimensional
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Figure 6: The integrated strain energy of the difference between the beam theory reconstruction and the
three-dimensional, finite-element solution. The results show excellent agreement away from the ends of
the beam.

theory to those computed using the beam theory. This study tests how accurately the
strain moments can be determined from the known stress moments. The accuracy of the
strain moments, in turn, depends on the accuracy of the flexibility matrix E (15) and the
load-dependent strain corrections (29). Figure 7(a) shows a comparison of the e, x, and
ky components of the strain moments between the beam theory and three-dimensional
finite-element results. The relative error between beam theory and three-dimensional
finite-element results for the e,, x, and k, components are shown in Figure 7(b), where
each variable is normalized by the maximum absolute value of the corresponding strain
moment over the length of the beam. Figure 8(a) shows a comparison between the ey, e,
and ez, components of the strain moments for the beam theory and three-dimensional
finite-element results. Figure 8(b) shows the relative error between the beam theory
and the three-dimensional finite-element results, normalized by the maximum absolute
value of the strain moment component over the length of the beam. The strain moment
comparisons in Figures 7 and 8 demonstrate agreement to a relative tolerance of 1076
between the full three-dimensional finite-element results and the present beam theory,
over the middle portion of the beam. The differences near the ends of the beam cannot
be predicted without recourse to full three-dimensional calculations.

Moments of the strain residuals. One of the key assumptions in the beam theory pre-
sented above is that the moments of the residual strains, £,€ are small. Here we test
this assumption using the full three-dimensional finite-element solution to problem B1.
To evaluate L€ we first use the beam theory to determine the flexibility matrix £ and
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the strain moment contributions from the externally applied loads:

ep = Psteg,lz(y, z),

where P, = 1 is the magnitude of the applied load and L, is the discrete analogue of L.
Based on Equation (16), the discrete analogue of £;€ can be determined using

LsélgD = Ls€3D - ELSO'3D — €ép, (48)

where the esp and o3p are the three-dimensional finite-element stress and strain fields
respectively.

Figure 9 shows the e;, k, and e,, components of LS%|3D normalized by the maximum
absolute value of the strain moment component over the domain. The remaining com-
ponents of the moments of the residual strain exhibit similar behavior. At the edges of
the beam the contribution of the moments of the strain residuals are significant, however
their influence decreases rapidly away from the ends of the beam. Note that in Figure 9
the oscillations at the center of the beam in the e, and e, components are due to the
finite precision of the finite-element solutions. In these regions, the moments of the strain
residuals are essentially zero.

Strain correction error. The strain correction error &, from Equation (25) represents the
difference between the actual strain moments and the corrected strain moments. Here,
we examine an approximation of the strain correction error obtained from the full three-
dimensional finite-element solution of problem B1l. This case verifies the accuracy of
the correction flexibility matrix E and the load-dependent strain correction contribution
Eﬂ%kg terms. Note that no correction is required for the strain moments e,, s, and ry,
so here we examine the behavior of the components e, e,. and eyy.

In order to obtain an approximation of e,, we first compute the flexibility correction
matrix E (20) and the load-dependent strain correction iUI(,lL) using the present beam
theory. Rearranging Equation (25), we obtain,

&rlsp = Le€sp — AL ugsp — ELosp — P.LU) (y, 2), (49)

where €,|, is the finite-element approximation of &,. Here, ugsp is the finite-element
approximation of the normalized strain moments uo(x) and esp is the finite-element
strain distribution.

Instead of plotting &, |4, directly, we plot the relative values in Figure 10, normalized
by the maximum absolute value of the strain moment along the length of the beam. The
results shown in Figure 10 are similar in many respects to the moments of the strain
residuals shown in Figure 9. The strain correction error is greatest near the ends of the
beam and quickly decays towards the middle of the beam. The largest relative error is
in the e;, component of the relative strain correction error, however all components fall
below 1075 over the center portion of the beam. This suggests that it is reasonable to
neglect €, at a sufficient distance from the ends of the beam.

5.2.2. Statically indeterminate beam
In this section, we examine the results from the statically indeterminate case B2.
This case demonstrates the overall capabilities of the beam theory and quantifies the
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errors introduced by neglecting both the strain correction error €,., and the moments of
the strain residual L €.

Figure 11 shows the strain-energy based error measure (47) for the statically inde-
terminate beam problem. The error measure decreases rapidly away from the ends of
the beam, but only falls to between 10~* and 1075 over the center portion of the beam.
Clearly, the beam theory reconstruction and the finite-element results do not match as
closely as the statically determinate case B1. This small error in ASE, is due to an error
in the prediction of the stress and strain moments due to neglecting the contributions &,
and L €.

Figure 12(a) shows a comparison between the beam theory results and the three-
dimensional finite-element results for the strain moment components e;, k., and k.
The results match closely to plotting precision. However, Figure 12(b) shows the relative
error between the beam theory and the finite-element results normalized by the maximum
absolute value of each component of the strain moment over the length of the beam. This
relative error decreases away from the ends of the beam but reaches a constant value over
the middle portion of the beam. Figure 13 shows similar behavior for the e;, e,, and
ey components of the strain moments. Based on the previous results for the statically
determinate beam that were used to verify the present approach, we can conclude that
these errors must be a product of the assumptions that both the moments of the strain
residuals and the strain correction error can be neglected. The result of the violation
of these assumptions near the end of the beam produces a small but measurable error
between the beam theory and the three-dimensional results. The largest relative error
occurs for e, and is roughly 2%.

Figure 14 shows a comparison of the volumetric strain for the three-dimensional and
beam theory solutions at the middle of the beam, x = 25. While there are some small
differences between the beam theory and full three-dimensional solution resulting in non-
zero ASE,., these differences are not significant from an engineering perspective.

5.8. Angle-ply study

Next, we examine the behavior of the homogenized stiffness matrix D, and the strain
correction matrix Cy for a four ply rectangular beam with a = 4, b = 2, and with an
angle-ply layup: [0, —0,6,—0]. Here we use the material properties listed in Table (4).
All calculations below are performed on a 31 x 25 mesh with 10 x 8 bi-cubic elements.

In this case, D has non-zero components along the diagonal and off-diagonal compo-
nents at Dyy, D14, Dga, Dog and D35. The strain correction matrix C'; has non-zero
diagonal components with additional off-diagonal components Cs4; and Cggz. Figure 15
shows the variation of the D4, Ds; and Dgg with respect to ply angles in the range
0 = 0° to 90°, normalized by the shear modulus Gy2. D44, D355 and Dgg represent the
torsional, shear, and transverse shear components of the homogenized stiffness matrix
respectively. The homogenized values all start from the value G15 at 8 = 0. The com-
ponent Dgg increases from G2 to a maximum at 45° and returning to a value of G5 at
0 = 90°. The transverse shear component D55 reaches the value Gaoz at 8 = 90°. The
torsional component D44 takes an intermediate value between G5 and Gag at 6 = 90°.
Figure 16 shows the off-diagonal components of the homogenized stiffness D4y, D14,
D¢, Dog and D3s. It is important to note that the off-diagonal stiffnesses are of similar
magnitude to the diagonal stiffness.
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Figure 17 shows the variation of the diagonal components of Cy corresponding to
shear, transverse shear, and torsion. The strain moment corrections for the shear and
transverse shear take on values between about 0.83 and 0.89. The shear strain correction
for torsion takes on much lower values between about 0.55 and 0.68. At § = 0° and § =
90°, the beam is orthotropic, the matrix C is diagonal, and the shear correction factors
match the formula (43) derived by Dharmarajan and McCutchen (1973). Figure 18
shows the off-diagonal components of the strain correction matrix C as a function of 6.
The non-zero components Cg41; and Csgo represent a coupling between axial strain and
torsional strain, and bending about the y-axis and transverse shear. These values are
between 0 to 18% of the strain corrections applied to the diagonal components.

6. Conclusions

In this paper we presented a homogenization-based theory for three-dimensional
beams. The theory uses a kinematic description of the beam based on normalized dis-
placement moments. The stress and strain distribution in the beam is approximated
based on a linear combination of a hierarchy of axially-invariant stress and strain solu-
tions called the fundamental states. The fundamental state solutions are used to con-
struct a constitutive relationship between moments of stress and moments strain. The
fundamental states are also used to determine a strain correction matrix that modifies the
strain moments predicted by the normalized displacement moments. For isotropic beams
with symmetric cross-sections, the present beam theory takes the form of classical Tim-
oshenko beam theory with additional load-dependent stress and strain corrections. For
arbitrary, anisotropic sections, the homogenized stiffness matrix becomes fully populated
and all components of the stress resultants are coupled.

In addition, we presented a finite-element based method for the calculation of the fun-
damental state solutions, and verified this approach with three-dimensional finite-element
calculations. We demonstrated excellent agreement between the stress and strain dis-
tributions for statically determinate and statically indeterminate problems, achieving
extremely high accuracy away from the ends of the beam. For statically determinate
problems, the relative error of all strain moment components at the center of the beam
was less than 1076, while for the statically indeterminate beam, the maximum relative
error was 1072, The larger error for the statically indeterminate case was attributed to
the moments of the strain residuals and the strain correction error. Despite this error, the
stress and strain reconstruction remains sufficiently accurate for engineering purposes.
In addition, the finite-element based beam theory calculations required three orders of
magnitude less computational time compared to three-dimensional finite-element compu-
tations. These characteristics make the beam theory an attractive approach for accurate
through-thickness stress and strain prediction in composite beams.
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Figure 7: The first three components of the strain moments and the relative error between the beam
theory prediction and the full three-dimensional calculations.

le — esp|/max(|esp]).

36

The relative error is defined as e =



[2]
-
5
E/QQ | A\\\‘
o T~
£ i T~
X Bk
=N - .
- QI ~l
B | € e
‘(7)' T exz “x\.\'
oF exy <
St . e 3D -
JNRE B t
-0 . e, 3D .
oF . e, 3D
St .
Q- . P I P i 1
0 10 20 30 40 50
X

10°
10°®

107

strain moment relative difference

10°®

(b) Relative error

Figure 8: The last three components of the strain moments and the relative error between the beam
theory prediction and the full three-dimensional calculations. The relative error is defined as ey =

le — esp|/max(|esp]).
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Figure 9: Components of the relative moments of the strain residual Ls&|;p normalized by the max-
imum absolute values of the strain moment over the domain. These quantities are computed from a
combination of the finite-element solution and the beam theory using Equation (48). These components
are representative of the remaining components.
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Figure 10: Components of the relative strain correction error. The strain correction error is normalized
by the maximum absolute values of the strain moment over the domain.
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Figure 11: The integrated strain energy of the difference between the beam theory reconstruction and
the three-dimensional, finite-element solution. The results show excellent agreement away from the ends
of the beam.

39



Figure 12: The first three components of the strain moments and the relative error between the beam
theory prediction and the full three-dimensional calculations.
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Figure 13: The last three components of the strain moments and the relative error between the beam

theory prediction and the full three-dimensional calculations.
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Figure 14: A comparison of the through-thickness volumetric strain ey = ez +€y 4 €. at the cross-section
z = L/2. The beam theory solution is shown on the left, while the full three-dimensional solution is
shown on the right.
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Figure 15: The variation of the diagonal components of the homogenized stiffness D representing the
torsion, Dy4, and shear stiffnesses, D55 and Dgg, relative to the shear modulus G12. The results are
shown for the angle-ply beam over a range of ply angles from 6 = 0° to 8 = 90°.
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Figure 16: The variation of the off-diagonal components of the homogenized stiffness matrix D normal-
ized by the shear modulus G12. The results are shown for the angle-ply beam over a range of ply angles

from 6 = 0° to 6 = 90°.
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Figure 17: The variation of the diagonal components of the strain correction matrix C's representing the
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Figure 18: The variation of the off-diagonal components of the strain correction matrix Cs. The results
are shown for the angle-ply beam over a range of ply angles from 6 = 0° to 6 = 90°.

44



	1 Introduction
	2 Review of relevant contributions
	3 The homogenization-based beam theory
	3.1 The displacement representation
	3.2 The equilibrium equations
	3.3 The fundamental states
	3.4 The constitutive relationship
	3.5 The stress and strain moment corrections
	3.6 The load-dependent corrections
	3.7 The asymmetry of the constitutive relationship

	4 A finite-element method for the determination of the fundamental states
	4.1 Finite-element implementation
	4.2 Relation to beam theory

	5 Results
	5.1 Comparison with results from the literature
	5.1.1 Rectangular section
	5.1.2 Hollow circular section
	5.1.3 Three layer beam

	5.2 Comparison with three-dimensional results
	5.2.1 Statically determinate beam
	5.2.2 Statically indeterminate beam

	5.3 Angle-ply study

	6 Conclusions

