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In this paper we examine the design of metallic and composite aircraft wings in order to assess how the
use of composites modifies the trade-off between structural weight and drag. In order to perform this
assessment, we use a gradient-based aerostructural design optimization framework that combines a
high-fidelity finite-element structural model that includes panel-level design variables with a medium
fidelity aerodynamic panel method with profile and compressibility drag corrections. In order to
examine the effect of the choice of the objective, we obtain a Pareto front of designs by minimiz-
ing a weighted combination of the mission fuel burn and take-off gross-weight of the aircraft over a
multi-segment mission profile. The structural model includes both strength and buckling constraints
and includes a detailed laminate parametrization that is used to obtain the optimal lamination stack-
ing sequence and impose manufacturing requirements for composites including matrix-cracking and
minimum ply-content constraints. We show that the composite wing designs are between 34% and
40% lighter than the equivalent metallic wings. Due to this large structural weight savings, the com-
posite aircraft designs exhibit a fuel burn savings of between 5% and 8% and a take-off gross-weight
savings of between 6% and 11%.

I. Introduction
In preliminary aircraft design studies, aircraft weight estimates are often obtained based on simplified models

that are calibrated with historical data. These types of weight models are often correlations, sometimes enhanced
with physical reasoning, that are computationally inexpensive to use and usually provide sufficiently accurate weight
predictions within a limited design space. However, such weight prediction methods have several drawbacks. First,
when using these types of methods, it may be difficult to assess the relative benefits of novel structural technologies
that may reduce the structural wing weight compared to conventional designs. Second, these types of models may
not provide sufficient accuracy for new materials, new structural arrangements, unconventional aircraft configurations
or novel wingtip devices. In this paper, we use high-fidelity structural analysis methods to predict the structural
wing weight and compare results for metallic and composite wing constructions. In addition, we examine the wing
design for both composite and metallic constructions as a function of a weighted objective of fuel burn and takeoff
gross-weight. This enables us to make a comparison between metallic and composite constructions over a range of
objectives that place emphasis on either drag or structural weight.

It has long been understood that there is a fundamental trade-off between drag and aircraft weight. This trade-off
has been examined by many authors. For instance, Jones [1] presented an analysis of wings with minimum induced
drag for fixed lift and root bending moment. Jones found that a 15% reduction in the induced drag could be obtained
by increasing the span 15% for a fixed root bending moment. Later, Jones and Lasinski [2] presented an analysis
of nonplanar lifting surfaces using an integrated bending moment constraint. They found that winglets and wing
tip extensions provided approximately equal reduction in the induced drag for a given integrated bending moment
constraint. More recently, Ning and Kroo [3] performed an analysis and optimization of wings with various wing tip
devices. They used a weight model that included a historical weight correlation and an integrated bending moment
over wing thickness to predict relative changes in weight of different designs.

Other studies have used structural analysis techniques to obtain the flying shape of the wing, and to size a portion
of the aircraft structure and thus predict a partial wing-weight. Haftka [4], compared the trade-off between structural
weight and induced drag for both composite and isotropic wings of a fighter aircraft. Haftka obtained the displaced
shape through an iterative procedure and used stress constraints to size the aircraft wing skins. More recently, Jansen
et al. [5] presented optimizations of various nonplanar configurations using a gradient-free optimization method. They
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used a calibrated lifting line method and obtained the displaced shape of each design. this paper a bit more. They
obtained a box wing, a wing with winglets, a C-wing, and a wing with raked wingtips, depending on the design
formulation, whether structures was considered, and which types of drag were included in their drag model.

Many authors have developed techniques for sizing either isotropic or composite wing-box structures for strength,
buckling, and manufacturing constraints. Liu et al. [6] performed a global-local optimization of a composite wing with
unstiffened panels. The formulation included a global optimization problem to minimize structural weight, subject to
failure constraints, while the local optimization problem included a stacking sequence design for maximum buckling
load. A response surface model was used within the formulation to construct an approximation of the locally optimum
designs as a function of the global design variables. Later, Liu and Haftka [7] performed a single-level optimization
using lamination parameters and showed that their results were identical to the two-level formulation of Liu et al. [6].
In order to place the two-level optimization approach on a more rigorous foundation, Haftka and Watson [8] developed
a decomposition theory for a class of quasi-separable optimization problems. Liu et al. [9] applied this quasi-separable
approach to a beam-frame weight-minimization problem.

High-fidelity aerostructural analysis and design optimization methods have also been applied to aircraft design
problems. Martins et al. [10] used an Euler CFD solver coupled to a linear finite-element solver to design a business
jet using a linearized range objective with an adjoint-based gradient evaluation method that enabled optimization with
respect to hundreds of design variables that included aerodynamic shape and structural sizing variables [11]. More
recently, Kenway et al. [12], used an Euler CFD solver coupled to a parallel finite-element solver to design a transport
aircraft for minimum fuel burn and minimum takeoff gross-weight.

In this paper we combine a high-fidelity finite-element structural model that includes panel-level design variables
with a medium fidelity aerodynamic panel method. Our goal is to assess the trade-off between structural weight and
drag and to determine how the use of composite materials modifies these trade-offs. In this study, the use of gradient-
based optimization techniques is essential, since the structural panel-level parametrization requires thousands of design
variables. Our framework is based on the high-fidelity aerostructural optimization approach developed by Martins et
al. [10] and the aerostructural implementation of Kennedy and Martins [13], and is part of the framework presented
by Kenway et al. [12].

The remainder of this paper is organized as follows: In Section II we briefly describe the aerostructural analysis
and optimization framework used in this work. In Section III we discuss the details of key components of the analysis
that are of significance to this study. In Section IV we outline the aerostructural design optimization problem for both
the composite and metallic wings. In Section V we present the aerostructural design cases and compare the composite
and metallic designs.

II. Aerostructural analysis and gradient-evaluation methods
In this work, all constraint functions and the objective are evaluated using converged aerostructural solutions, and

therefore, an efficient aerostructural solution method is required to obtain results within reasonable computational
time. Furthermore, due to the large dimensionality of the design space and the computational cost of the analysis,
we exclusively use gradient-based design optimization methods with an efficient adjoint-based gradient evaluation
method. The following section outlines the aerostructural analysis and adjoint-based gradient evaluation techniques
used within this work. Additional details about the solution methods and the efficiency of the approach can be found
in Kennedy and Martins [13].

A. Aerodynamic analysis
The aerodynamic analysis is performed using TriPan, an unstructured, three-dimensional parallel panel code for cal-
culating the aerodynamic forces, moments and pressures for inviscid, incompressible, external lifting flows using the
Prandtl–Glauert equation [13]. TriPan uses constant first-order source and doublet singularity elements distributed
over the lifting surface and doublet elements distributed over the wake [14]. The source strengths are determined
based on the onset flow conditions while the boundary conditions for the doublet strengths constitute a dense linear
system, represented here by

RA(w,u) = 0, (1)

where u and w are vectors of the structural and aerodynamic state variables, respectively. The linear system repre-
sented by Equation (1) is solved in parallel using PETSc [15, 16]. A dense matrix format is used for the matrix-vector
products, while a sparse approximate-Jacobian is used to form a incomplete LU (ILU) preconditioner. The linear
system is solved using the Krylov subspace method GMRES.
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B. Load transfer
The load and displacement transfer scheme follows the work of Brown [17]. The displacements from the structures are
extrapolated to the aerodynamic nodes using rigid links. These rigid links are formed by locating the closest point on
the structural surface to each of the aerodynamic nodes. The structural surface is determined by interpolating between
structural nodes using the finite-element shape functions. The displacements uS and rotations θS on the structural
surface, and the rigid links r are used to determine the displacements of the aerodynamic nodes uA as follows:

uA = uS + θS × r. (2)

Note that this formula uses a small angle approximation. Equation (2) can be used, in conjunction with the method of
virtual work, to form the consistent force vector for the aerodynamic forces at the structural nodes. More details of the
approach are outlined in Kennedy and Martins [13].

C. Structural analysis
The structural analysis is performed using the Toolkit for the Analysis of Composite Structures (TACS), a parallel,
finite-element code developed by the authors, designed specifically for the analysis of stiffened, thin-walled, composite
structures using either linear or geometrically nonlinear strain relationships [13]. We typically use higher-order finite-
elements as we have found that these provided better stress prediction capability. The residuals of the structural
governing equations are

RS(w,u) = Sc(u)− F(w,u), (3)

where u is a vector of displacements and rotations, Sc are the residuals due to conservative forces and internal strain
energy and F are the follower forces due to aerodynamic loads.

The Jacobian of the structural residuals involves two terms: the tangent stiffness matrix K = ∂Sc/∂u and the
derivative of the consistent force vector with respect to the structural displacements. This results in the following
expression for the Jacobian of the structural residuals:

∂RS

∂u
= K− ∂F

∂u
. (4)

While the matrices involved in structural problems are typically symmetric, the term ∂F/∂u is non-symmetric due
to the non-conservative nature of the aerodynamic forces. These non-symmetric matrices require different solution
algorithms than those typically employed in structural finite-element codes. We use GMRES [18] to solve the non-
symmetric, linear systems involving the matrix in Equation (4).

D. Approximate Newton–Krylov method
The aerostructural residuals are the concatenation of the aerodynamic and structural residuals, represented by:

R(q,x) =

[
RA(w,u,x)
RS(w,u,x)

]
= 0, (5)

where RA and RS are the aerodynamic and structural residuals, w and u are the aerodynamic and structural state
variables, q is the full set of aerostructural state variables qT = [wT ,uT ], and x is a vector of design variables.

Newton’s method applied to Equation (5) results in the following linear system of equations for the update ∆q(n),

∂R

∂q
∆q(n) = −R(q(n)). (6)

In the Newton–Krylov approach, the linearized system (6) is solved inexactly using a Krylov subspace method. Here
we use a preconditioner based on generic discipline-level preconditioners that ignores the off-diagonal coupling terms.
The off-diagonal matrix-vector products are computed using a product-rule implementation that is discussed in further
detail in Kennedy and Martins [13].

E. Adjoint-based gradient-evaluation
Efficient gradient-based optimization requires the accurate and efficient evaluation of gradients of functions of interest.
In the aerostructural optimization problem there are typically far fewer objective and constraint functions than there
are design variables. Therefore, compute the required gradients using the adjoint method is advantageous. We have
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developed an aerostructural adjoint that is based entirely on analytic derivatives without the use of finite-difference
computations. The coupled aerostructural adjoint equations can be written in the following form:

∂R

∂q

T

ψ =
∂f

∂q

T

, (7)

where ψ is the adjoint vector and f(q,x) is either an aerodynamic or structural function of interest. Once the adjoint
vector has been determined using Equation (7), the total derivative is determined using the additional computation:

∇xf =
∂f

∂x
−ψT ∂R

∂x
. (8)

We use a Krylov method to solve the linear coupled aerostructural adjoint equations (7) in an analogous manner to
the Krylov method applied to the linearized Newton system. In the Krylov approach, the matrix-vector products are
computed using the exact Jacobian-transpose of the coupled aerostructural system. One iteration of a transpose block
Jacobi iteration is used as the preconditioner.

III. Design problem components
The aerostructural analysis enables the prediction of the displacements, stresses and aerodynamic forces on the

displaced, aerostructural system. Within the context of aerostructural design optimization, these results must be com-
bined into a consistent objective and constraint formulation that reflects the most important aspects of the aircraft
design problem. In this section, we describe in detail the analysis used to predict the drag and maximum lift of the air-
craft, as well as the composite parametrization method used for the structural wing design and the panel-level analysis
used to size the structure for buckling.

A. Drag analysis
TriPan is an inviscid code that can be used to accurately compute the induced drag, but is unable to account for wave
and profile drag contributions that are important considerations in wing design. Here, we model these additional drag
contributions using semi-empirical methods.

The profile drag is computed based on a quadratic model of the sectional drag coefficient:

cdp = cd0 + cd2c
2
l , (9)

where cdp is the profile drag. The coefficient cd0 is based on the skin friction estimate

cd0 = Fccf ,

where Fc is a profile drag form-factor, and cf is the turbulent skin-friction coefficient determined using the van Driest
II method [19]. The form-factor, Fc, is computed using the thickness to chord ratio, t/c, as follows:

Fc = 1 + 2.7

(
t

c

)
+ 100

(
t

c

)4

.

Finally, based on the method presented by Wakayama and Kroo [20], the quadratic coefficient in Equation (9), is
computed based on the expression:

cd2 =
0.38

cos2 Λ
cd0.

The compressibility drag is computed based on a crest-critical Mach number computed using the Korn equation,

Mcrit =
κA

cos Λ
− t/c

cos2 Λ
− cl

10 cos3 Λ
−
(

0.1

80

)1/3

, (10)

where κA is a technology factor that we set to κA = 0.95, which is suitable for supercritical airfoil sections commonly
used on transport aircraft. The sectional contribution to the compressibility drag is then computed using

cdc = 20(M −Mcrit)
4 (11)

for M > Mcrit.
Figure 1 shows the variation of CD, including induced, profile and compressibility drag, with increasing Mach

number for fixed CL, for the reference configuration described in Section II. The decreasing CD values for increasing
Mach number are due to Reynolds number effects, while the drag divergence behavior due to wave drag can clearly
be seen above M = 0.8.
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Figure 1: CD for increasing Mach number at constant CL

B. Maximum lift prediction
The maximum lift capability of a wing is an important factor in wing design. In this work, we employ a critical
sectional analysis approach in which the maximum lift capability of a wing is determined when any one airfoil sec-
tion reaches its maximum lift capability. In order to assess the maximum lift for each section, we use the Valarezo
criterion [21]. The Valarezo criterion is based on the absolute value of the difference between the peak leading edge
pressure coefficient and the trailing edge pressure coefficient, which we label ∆Cp. Valarezo and Chin [21] compared
a large collection of Cp data for sections at maximum lift and found that the ∆Cp values for all sections collapsed to
an allowable ∆Cp that depends on Mach and Reynolds number, but is independent of the airfoil shape or on the ar-
rangement of any high-lift devices. Using a large collection of sectional pressure data, they were able to predict, within
reasonable bounds, the maximum lift capability of several aircraft wings, with and without high-lift devices [21].
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Figure 2: The sectional Cp and ∆Cp values for an untwisted wing.

We have implemented the Valarezo criterion within TriPan to predict the maximum lift capability for clean aircraft
wings, without high-lift devices. Figure 2 shows the Cp distribution at maximum lift for an untwisted wing that is a
linear loft of RAE2822 airfoil sections, at a Mach number of M = 0.25 and an altitude of 20 000 ft. This wing is
described in more detail in Section II. The Cp distribution shown in Figure 2 corresponds to a CLmax = 1.03, where
the critical section occurs at a span-wise station of approximately η = 0.9. The largest allowable ∆Cp is uniform
value of 14 independent of chord-wise Reynolds number. However at slower speeds and lower Reynolds numbers, the
allowable ∆Cp would vary span-wise.

One of the advantages of the Valarezo constraint is that it is capable of predicting the variation of CLmax with
geometry changes. In the present study, we are primarily concerned with design variables that exhibit strong coupling
between both aerodynamics and structures. One of the most important variables in this category is the thickness-to-
chord ratio. Figure 3 shows the variation of cl distribution at CLmax, and the CLmax variation with t/c ratios between
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Figure 3: CLmax as a function of t/c predicted using the Valarezo stall condition.

9% and 15%. The present analysis predicts a linear relationship between decreasing t/c ratio and decreasing CLmax,
whereas typically a nonlinear relationship would exist, peaking between 12% and 20% t/c ratio. This discrepancy
is due to the lack of a boundary-layer correction within TriPan. However, this linear variation is sufficient for a
preliminary estimate and captures the overall trend of decreasing maximum lift capacity with decreasing t/c ratio.

In order to be useful within the context of an optimization problem, the Valarezo criterion must be formulated as a
constraint. To formulate this constraint we use the ∆Cp margin, defined as follows:

∆Cpmargin(η) = ∆Cpallow −∆Cp. (12)

Using the Valarezo criterion the minimum ∆Cp margin is zero at CLmax, such that

min ∆Cpmargin(η) = 0.

For the purposes of optimization, we examine the ∆Cp margin at a series of span locations and obtain an approximate
minimum value using the Kreisselmeier–Steinhauser (KS) aggregation function [22]. This aggregated constraint can
be written as follows:

KSmin

(
∆Cpmargin(ηk), ρ

)
= 0 (13)

where ηk are the span-wise locations and KSmin( · , ρ) is the KS aggregation function with parameter ρ, where we
typically use a value of ρ = 20.

C. Composite structural parametrization
In this work, we use a composite parametrization that includes the full through-thickness lamination sequence. In
order to obtain a feasible lamination sequence that includes common manufacturing constraints, we use an extension
of the technique developed by Kennedy and Martins [23] that can be used to construct a lamination sequences from
a set of discrete allowable ply angles. Like previous authors, we restrict the allowable ply angles to the set of angles
Θ = {−45o, 0o, 45o, 90o}. The laminate parametrization approach presented in Kennedy and Martins [23], is a
continuous relaxation of the laminate parametrization first developed by Le Riche and Haftka [24], coupled with an
exact `1 penalization to enable gradient-based design optimization. In the present approach, the lamination sequence
is expressed in terms of continuous ply-identity design variables over the interval xij ∈ [0, 1]. An active ply variable,
xij = 1, indicates that the jth discrete ply angle from the set Θ is active in the ith ply. Using the ply-identity variables,
the stiffness matrices, A and D, for a symmetric laminate can be expressed as follows:

A = 2
t

N

N∑
i=1

xij

4∑
j=1

Q̄(θj)

D =
2

3

(
t

N

)3 N∑
i=1

(i3 − (i− 1)3)

4∑
j=1

xijQ̄(θj)

(14)

where t is the total thickness of the laminate, and Q̄(θ) is the lamina thickness in the laminate reference frame.
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In order to obtain a feasible design, constraints must be imposed to ensure that only one ply-identity variable is
active at a time in a single layer. This condition can be imposed by enforcing two simultaneous constraints: that the
design lies on the unit hyper-plane

4∑
j=1

xij = 1, i = 1, . . . , N, (15)

and that the design lies on the unit sphere

M∑
j=1

x2ij = 1, i = 1, . . . , N. (16)

At feasible points only one ply-identity variable is active in a given layer while all other ply-identity variables are zero.
For ease of presentation we collect the linear constraints in Equation (15) for all N plies into the matrix expression:

Awx = e, (17)

where e ∈ RN is a vector of unit entries. We also collect the nonlinear spherical constraints from Equation (16) for all
N plies into the vector:

cs(x) = e. (18)

One issue with this formulation is that the second constraint introduces many local minima into the design problem.
To overcome this problem, we use an `1 penalization approach such that the original objective f(x) is replaced by
a modified objective f(x) + γ||cs(x) − e||1, where || · ||1 is the `1 norm. We solve a sequence of optimization
problems, while gradually increasing γ, until the spherical constraints are satisfied, i.e. cs(x) = e. The advantage of
the `1 penalty function is that it is exact such that solutions to the original problem are also solutions to the penalized
problem.

As shown in Kennedy and Martins [23], when the linear constraints (15) are satisfied exactly at every iteration, the
`1 norm can be replaced by the following expression:

||cs(x)− e||1 = eT (e− cs(x)). (19)

This simplification modifies the objective such that it is differentiable and amenable to gradient-based optimization.
In the present work we use the optimization code SNOPT [25], through the Python interface supplied by the pyOpt
optimization package [26]. SNOPT satisfies the linear constraints at every iteration, enabling the use of Equation (19).

While the laminate parametrization presented by Kennedy and Martins [23] can handle general non-symmetric
laminates, here we impose additional constraints on the lamination sequence as proposed by Baker et al. Chap. 12 [27]
for practical lamination sequences:

1. Each laminate must be balanced, containing equal numbers of ±45o plies,

2. Each laminate must contain at least 10% of plies in each of the directions Θ = {−45o, 0o, 45o, 90o},

3. At most four adjacent plies in each laminate can be in the same direction.

We enforce the balanced and 10% ply content constraint not just to the laminate as a whole, but within every sub-
sequence of 10 plies starting from the middle layer and proceeding outwards. If fewer than 5 plies are remaining in the
last sub-sequence, we remove the ply content constraint. Imposing the ply content constraint in this manner ensures
that all ply angles are distributed throughout the laminate.

The balanced laminate constraint is enforced as follows:

10k+1∑
i=10(k−1)+1

(xi1 − xi3) = 0, k = 1, . . . , N/10, (20)

where j = 1 and j = 3 correspond to the −45o and 45o plies respectively, and k indicates the index of the 10-ply
laminate sub-sequence. In a similar manner, the 10% ply content constraint is formulated as follows:

10k+1∑
i=10(k−1)+1

xij = 1, j = 1, . . . , 4 k = 1, . . . , N/10, (21)
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such that one of each ply from each member of the set Θ must be active in every sub-sequence of 10 plies.
To avoid lamination sequences with more than four contiguous plies at any given angle, we impose the following

constraint:
k+5∑
i=k

xij ≤ 4, j = 1, . . . , 4 k = 1, . . . , N − 5, (22)

and at the symmetry plane, we impose the following additional constraints:

k∑
i=0

xij ≤ k, j = 1, . . . , 4 k = 2, . . . , 4. (23)

These constraints ensure that over a 5-ply sequence, no more than four plies are active and that at the symmetry plane,
no more than two plies may be active.

In order to provide a parametrization scheme that includes a failure criterion, we adopt a conservative failure
envelope that includes contributions from all allowable ply angles θj ∈ Θ. We use the Tsai–Wu failure criterion,
which can be written as follows:

F (σl(θ)) ≤ 1, (24)

whereσl(θ) is the laminae stress at an angle θ to the laminate reference frame. To construct the overall laminate failure
envelope, we apply the failure criteria (24) at all angles θj ∈ Θ, at the upper and lower surfaces of the laminate. Instead
of applying each of these criteria independently, we aggregate them into a single function using the KS aggregation
technique [22]. This provides a conservative failure envelope, but does not account for the variation of ply angles
within the laminate. This conservative failure envelope can be written as follows:

F
(i)
KS (σ) = KS(F (σ

(p)
l ), ρ) ≤ 1, (25)

where the aggregation takes place over the range p = 1, . . . , 8. Here, σ(2j−1)
l and σ(2j)

l are the laminae stresses at
the angle θj on the top and bottom surfaces, respectively. Equation (25) provides a conservative failure envelope in
the sense that when the laminate stresses are within the envelope, all laminae within the layup are within the failure
envelope represented by Equation (24).

The preceding discussion has focused on a fixed-thickness laminate with a variable stacking sequence. However,
practical sizing problems require a variable thickness in order to size the structure so that it is not heavier than abso-
lutely necessary. To address this issue, we select an initial thickness distribution that we use to determine the number
of plies in each structural component. During the optimization we keep the number of plies in each component fixed,
but allow the laminate thickness to change by scaling the ply thicknesses by the same factor in all layers. As a result,
in the optimized design there is often a miss-match between the physical ply thickness, and scaled ply thickness. The
severity of this miss-match can be assessed by examining the discrepancy between the number of fixed plies selected
initially and the number of physical ply thicknesses required for each component. If this discrepancy is too large, the
optimization problem can be restarted using the optimized thickness distribution to predict the number of plies in each
component. We examine the effect of such a procedure in Section V.

D. Panel-level analysis
The finite-element model of the wing is constructed using a smeared stiffness approach where the stiffness contribution
from the stringers is added to the effective stiffness of the skin. Once the solution to the aerostructural system is
obtained, the internal loads from the finite-element model are used to evaluate failure and buckling constraints within
a series of local panel models. These local panel models are formed by the spar-rib intersections in the wing and
include discrete stiffeners. The failure constraints for each panel are evaluated using simple mechanics of materials
relationships, while the buckling constraints are evaluated using a buckling-interaction envelope that is calculated
using a finite-strip method.

The panel-level design variables are shown in Figure 4. These variables include both panel geometry variables
and panel thicknesses. The panel geometry variables include the stiffener pitch, b, the stiffener height, hs, the base
width, wb, and the flange width, fw. The thickness variables are the skin thickness, ts, the stiffener thickness, tw, and
the base thickness tb. It is important to note that when composite materials are used, the laminate stacking sequence
parametrization also modify the stiffness of the different panel components and must be included as panel-level design
variables.

For the failure constraints, the strain from the global finite-element model is used in conjunction with strain simple
mechanics of materials relationships to obtain the strain at critical points within the section. These points include
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Figure 4: The panel dimensions and thicknesses used as design variables within the optimization problem. The
dimensions are: b, the stiffener pitch, hs, the stiffener height, wb, the base width, and fw, the flange width. The
thicknesses are ts, the skin thickness, tw, the stiffener thickness, and tb = ts + 1/2tw the base thickness.

the flange section, stiffener web, skin and base-web intersection. The strain at these points is used as input to the
failure criterion (25), or in the metallic case, the von Mises criterion. Finally, the failure envelope from each element
is aggregated over the global finite-element model using the KS function. The aggregated KS failure constraint can be
written as follows:

KS (FKS(σ), 30), 50) ≤ 1, (26)

where an aggregation parameter of ρ = 50 is used.
The buckling constraints are imposed by constructing a buckling-interaction envelope from the critical loads of

an equivalent panel computed using a finite-strip analysis. The critical loads are determined under the assumption
that the panels are nearly flat, and so no curvature effects are captured. We assume that the interaction between the
longitudinal and shear buckling modes collapses into the following buckling envelope:

B(N̄x, N̄xy) = F1N̄x + F2N̄xy + F22N̄
2
xy ≤ 1, (27)

where N̄x and N̄xy are the average longitudinal and average shear forces in a local reference frame where the x-
direction is aligned with the stringers. In this locally aligned axis, the ribs may not be perpendicular to the stringers
and the panels may be stiffened parallelograms. This effect is captured by the finite-strip model and results in unequal
positive and negative shear buckling modes. The parameters F1, F2 and F22 in Equation (27), are given by:

F1 = − 1

Nx,cr
,

F2 =
N+
xy,cr −N−

xy,cr

N+
xy,crN

−
xy,cr

,

F22 =
1

N+
xy,crN

−
xy,cr

,

where, Nx,cr is the compressive buckling load of the panel and N+
xy,cr and N−

xy,cr are the positive and negative shear
buckling loads. Note that the positive and negative shear buckling loads are not equal when the stringers are not
perpendicular to the ribs. The average longitudinal and shear resultants, N̄x and N̄xy , are obtained for each panel
using the following formula:

N̄x =
1

A

∫
Nx dA,

N̄xy =
1

A

∫
Nxy dA,

where A is the area of the local panel. As a result of this formulation, there is only one panel buckling constraint per
panel within the model. For typical finite-element problems, there are far fewer buckling constraints than there are
stress constraints.
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E. Inertial relief
Inertial relief from fuel weight and structural self-weight may produce significant loads on the wing. In the analysis and
optimization results presented here, we use both structural self-weight and inertial relief due to fuel in all aerostructural
calculations. All inertial relief loads are calculated based on an inertial vector, n, which is a scalar multiple of the
acceleration due to gravity. The structural self-weight is calculated in a straightforward manner using a consistent
self-weight load using the finite-element shape functions.

The inertial relief due to fuel is calculated using a set of compatibility variables and consistency constraints that
are added to the optimization problem. In this formulation, the mass of the fuel in the wing at an operating point is
determined from a mission analysis and is added as a variable within the optimization problem. This fuel mass variable
is denoted mfuel. The fuel load is calculated over either the upper or lower wing skin, depending on the direction of
the inertial vector n, using a mass-per-unit area variable ρk, where k denotes the kth rib-bay. A series of consistency
constraints are used to ensure that the total fuel load is applied to the wing, and that the local load is proportional to
the volume of fuel in the present bay. These consistency constraints are

Akρk = mfuel
Vk
Vfuel

, (28)

where Ak is the area of the skin for the rib-bay, Vk is the volume of the rib-bay and Vfuel is the volume over which the
fuel is distributed such that, Vfuel =

∑
k Vk. The advantage of this approach is that the total mass of the fuel is added

to structure regardless of the volume distribution in the wing. Thus, even at intermediate designs, the full fuel load is
applied to the wing. However, this constraint does not ensure that there is enough volume within the wing to fit the
required mission fuel. In order to ensure that the mission fuel fits within the wing, we also add a volume constraint to
the optimization problem such that the maximum range mission fuel will fit within the volume enclosed by the leading
and trailing edge spars of the wing.

F. Geometry parametrization
The geometric parametrization of the aerodynamic surfaces and structural surfaces and volumes, including all internal
structure, is a key component of aerostructural design optimization. Here, we use a CAD-free approach to manipulate
the underlying discipline-level meshes in a continuous and differentiable manner that is well-suited for aerostructural
design optimization problems [28]. The geometric parametrization uses a free-form deformation (FFD) [29] approach
that defines a modification or deformation of the initial geometry. In the FFD approach, the mesh points for each disci-
pline are embedded in a parametric volume. The control points that define the parametric volume are then manipulated
to modify the embedded mesh points to obtain smooth changes to the discipline-level meshes. The disadvantage of
the FFD approach is that the initial source geometry representation and the final geometry representation are not the
same. However, the FFD approach is very flexible and can be applied to any mesh without knowledge of the underly-
ing geometric representation. Furthermore, the FFD approach can be used to obtain efficient and accurate derivatives
of the mesh points with respect to the geometric design variables. Obtaining these derivatives efficiently and accu-
rately is crucial for multidisciplinary gradient computation, and is prohibitively expensive to achieve with CAD-based
approaches.

In the following section, we outline a systematic way to manipulate the FFD control points to obtain geometry
changes for an aircraft wing. In particular, we include changes to the local twist angle, span, chord, thickness-to-chord
ratio, dihedral and sweep. In this work, we use three-dimensional B-spline volumes as the FFD volumes. However,
the control point manipulation scheme presented here could be extended to other parametric volumes, such as radial
basis function volumes. In the proposed scheme, geometric modifications are applied to the initial set of FFD control
points, pijk ∈ R3, to obtain the final set of control points, Pijk ∈ R3, where all coordinates are given in a global
Cartesian reference frame. Chord, span and thickness-to-chord ratio are modified through an anisotropic scaling of the
geometry along different directions, while twist, dihedral and sweep changes are applied in a consistent manner that
avoids self-intersecting surfaces for large changes to sweep and dihedral and moderate changes to twist.

To apply these changes in a consistent manner, we employ a series of unit vectors that define a span-wise direction,
ts, a chord-wise direction, tc, and a vertical direction, tv . In addition, we also employ a series of reference points,
rn ∈ R3, for n = 1, . . . , N , connected by line segments. The geometry modification is divided into two steps:
first, the geometry changes are applied to the reference points, second the location of the initial FFD points, pijk,
relative to the initial reference line segments is used to determine the final position of the FFD control points. The
geometric variables are split into two groups: those given for each span-wise segment, and those given at each span-
wise station. The geometric variables given for each segment consist of the scaling along the span-wise direction, are
the sn, dihedral, Γn, and sweep, Λn, while the geometric variables given for each span-wise station consist of the
twist, θn, chord-wise scaling, cn, and vertical scaling, vn.
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The following rotation matrix is used extensively in the proposed FFD manipulation scheme:

C(a, ϕ) = cosϕI + (1− cosϕ)aaT − sinϕa×,

where a ∈ R3 is a unit vector such that aTa = 1, and ϕ is the angle of rotation about the unit vector a [30]. Note that
this rotation matrix is defined such that the components of the transformed vector are expressed in the transformed
reference frame.

In the proposed scheme, the geometric changes are first applied to the reference line segments. The difference
between adjacent reference line points is denoted, an = rn+1 − rn. The reference line segment is modified in
the following manner: first, the dihedral is applied, followed by a sweep modification and finally by a span scaling
operation. These operations can be written as follows:

An = snC(b,Λn)TC(tc,Γn)Tan,

where b = C(tc,Γn)T tv is the vertical direction vector rotated through the dihedral angle. The final reference point
locations, Rn, are determined from applying the update

Rn+1 = Rn + An, (29)

with R1 = r1, for n = 1, . . . , N − 1.
The twist axis, tθ, which defines the axis about which the twist rotation is applied, is determined by projecting the

segment direction, Ak, onto the plane defined by the span axis, ts, and vertical axis, tv , as follows:

tθ =
(tst

T
s + tvt

T
v )An

||(tstTs + tvtTv )An||2
. (30)

To obtain the final geometry, the vertical axis and the chord axis are scaled and rotated based on the values of the twist,
dihedral, chord and vertical scaling. In the final geometry, the modified vertical and chord axes are denoted vn and
cn, respectively. These vectors are defined for each segment as follows:

c1 = c1C(ts, θ1)T tc, v1 = v1c1C(ts, θ1)T tv,

cn = cnC(tθ, θn)T tc, vn = vncnC(tθ, θn)TC(tc, Γ̃n)tv,

where, Γ̃n = 1/2 (Γn + Γn+1), Γ̃N = ΓN .
After the final reference line locations and the transformed chord and vertical axes, cn and vn, have been calcu-

lated, the final FFD control point locations are determined based on the values of the following projections:

us =
tTs

tTs an
(pijk − rn),

uc = tTc (pijk − rn − usak),

uv = tTv (pijk − rn − usak),

where us is the projection onto the span direction, uc is the projection onto the chord direction and uv is the projection
onto the vertical direction. If 0 ≤ us < 1, then the following update is applied:

Pijk = Rn + usAn + uc((1− us)cn + uscn+1) + uv((1− us)vn + usvn+1). (31)

If us < 0 or us ≥ 1, then Pijk is unmodified by the segment. Figure 5 shows the FFD volume points and reference
points and line segments for an initial straight wing, and a modification of geometry to a swept C-wing with taper and
a crank.

IV. Aerostructural design problem formulation
In this work we consider the design of both a metallic and a composite wing. We compare the results of a series

of optimizations to understand the trade-offs that occur between the aerodynamic drag and structural weight and how
the use of composite structures shifts where these trade-offs occur.

The geometry of all cases presented in the following sections is based on the Boeing 777-200ER aircraft. The
main focus of the design problems is the wing geometry and structure. However other geometric data and aircraft
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(a) Initial FFD points (b) Final FFD points

(c) Initial shape (d) Final shape

Figure 5: A geometry modification from an initial straight wing to a swept C-wing with taper and a crank.
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parameters are required to obtain reasonable drag estimates and fuel consumption predictions. These additional data
are obtained in part from the Boeing 777-200ER publicly available performance data. All additional data required for
the design problem are listed in Table 1. The initial wing span is 60.9 m with a taper ratio of 0.2, a root chord of
13.2 m at the symmetry plane, and a sweep of 30o. The wing crank occurs at 30% of the semi-span. The initial wing
is a linear loft of RAE2822 airfoil sections without twist or dihedral. The wing structure consists of 44 ribs, and three
spars: a leading edge spar, a trailing edge spar, and landing gear sub-spar. The ribs before the wing crank are placed
chord-wise, while the ribs in the outer-portion of the wing are placed perpendicular to the rear spar. The landing gear
sub-spar extends from the nominal landing gear join to the symmetry plane.

Table 2 lists the material data for both the metallic, aluminum wing and the composite wing. In both cases we apply
a factor of safety of 0.8 to the material data in all calculations. The aluminum material properties are representative of
typical Al-7075 properties, while the composite properties are typical of a high-strength carbon-epoxy system.

Parameter Value Units

Cruise Mach number 0.84
Operating empty weight (OEW) 138 100 kg
Design payload 40 040 kg
Initial wing offset mass 30 000 kg
Fixed design mass (mfixed) 148 140 kg
Thrust-specific fuel consumption (TSFC) 0.53 lb/(lb hr)

Geometric parameter Value Units

Reference area (Sref ) 423 m2

Initial span (b) 60.9 m
Horizontal stabilizer area (Shstab) 90 m2

Horizontal stabilizer MAC (chstab) 4 m
Vertical stabilizer area (Svstab) 90 m2

Vertical stabilizer MAC (chstab) 5 m
Nacelle area (Snacelle) 150 m2

Nacelle reference length (cnacelle) 6 m
Fuselage area (Svstab) 1036 m2

Fuselage reference length (Svstab) 63 m

Table 1: A summary of additional data used during the analysis of the aircraft.

Parameter Value Units Parameter Value Units

Aluminum material data

E 70.0 GPa ν 0.3
σY S 380 MPa ρ 2780 kg/m3

Composite material data

E1 128 GPa E2 11 GPa
G12 4.5 GPa G13 4.5 GPa
G23 3.2 GPa ν12 0.25
Xt 1170 MPa Xc 1120 MPa
Yt 40 MPa Yc 170 MPa
S 48 MPa ρ 1522 kg/m3

Table 2: The metallic and composite material properties

A. Design objective
In order to assess the effect of different design objectives, we use a weighted combination of the takeoff gross-weight
(TOGW) and fuel burn (FB) over a 8000 nm mission. The rationale for this choice is that the fuel burn, at fixed cruise
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Mach number, is a significant contributor to the direct operating costs of the aircraft, while takeoff gross-weight is a
rough surrogate for the overall aircraft acquisition cost. The TOGW objective places larger emphasis on minimizing
the structural weight of the aircraft, while the fuel burn objective places more emphasis on increasing the lift-to-drag
ratio. By examining a weighted objective we are be able to assess a series of feasible designs that place an increasing
importance on the aerodynamic performance of the aircraft.

The mission profile used in the analysis is illustrated in Figure 6. Here the mission is split into three equal segments
at different altitudes with a constant cruise Mach number of M = 0.84. The total mission fuel weight is estimated
based on an analysis of each of these cruise segments. Fuel consumption during taxi, takeoff, climb and landing is not
included in the analysis. Over this long range mission, the fuel consumption over these secondary segments is a small
fraction of the overall fuel consumption, and a more detailed analysis of the off-design performance would be required
to accurately determine these contributions [31].

Altitude

Range

W0

W1

W2 W3

W0.5

W1.5

W2.5
32 000 ft

36 000 ft
40 000 ft

2666 nm 2666 nm 2667 nm

8000 nm

Figure 6: The mission profile illustrating the different cruise segments.

The mass ratio of each segment is calculated based on the Breguet range equation

Wi

Wi+1
= exp

(
Rici

Vi (L/D)i

)
, (32)

where ci, Ri and Vi are the thrust specific fuel consumption (TSFC), range, and cruise speed for the ith cruise segment.
The lift-to-drag ratio (L/D)i is evaluated at the mid-point of the cruise segment at the aircraft weight Wi+1/2, as
illustrated in Figure 6. The lift-to-drag ratio varies over the different cruise segments due to aerostructural effects
produced by changes in aircraft weight and the inertial fuel load distribution. Altitude changes also change the lift-to-
drag ratio through Reynolds number effects. The atmospheric conditions at each cruise segment are calculated using
the ICAO extended standard atmosphere. In order to simplify the analysis, we maintain a constant TSFC over all
altitudes, ci = 0.53 lb/(lb hr).

The fuel consumption over the entire mission is given by the difference between the takeoff gross-weight and the
landing weight of the aircraft:

FB = W0 −WN = WN

(
W0

WN
− 1

)
, (33)

where W0/WN can be obtained using Equation (32) as follows:

W0

WN
=

N−1∏
i=0

Wi

Wi+1

The objective we investigate is a weighted average of the fuel burned during the maximum range mission, and the
TOGW of the maximum range mission. This objective can be written as follows:

f(x) = βFB + (1− β)TOGW = WN

(
W0

WN
− β

)
(34)

where β is a weighting parameter such that at β = 0, results in a takeoff gross-weight objective, while β = 1
results in a mission fuel burn objective. At intermediate values of β ∈ (0, 1), the objective is to minimize a weighted
combination of the fuel burn and takeoff gross-weight. The effect of the β parameter is investigated in Section V.
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B. Structural design conditions
In addition to the mission analysis presented above, we also perform aerostructural analyses at several off-design
conditions in order to enforce structural constraints in compliance with parts of the FAR Part 25 regulations. In
particular, we impose constraints at the indicated points on the V-n diagram shown in Figure 7 at 100% of the mission
fuel load and at 10% of the mission fuel load, both at an altitude of 20 000 ft. The different fuel conditions result in
different inertial relief which in turn results in different wing-load distributions. The Mach number at the 2.5g and
-1g dive conditions is fixed at M = 0.88 with an angle of attack variable added to ensure that the lift is 2.5 times the
total mass of the aircraft. For the 2.5g stall condition it is necessary to add both an angle of attack variable, to ensure
sufficient lift and an air speed variable to ensure that CL = CLmax at the flight condition. The CLmax of the clean wing
is determined by using the Valarezo maximum lift condition presented in Section III.

-1

0

1

2

2.5

3

Load factor

Equivalent air speed

VDVS VA

CL = CLmax

2.5g stall 2.5g dive

-1g dive

Figure 7: The V-n diagram with the diagrams for a given fuel mass.

C. The design parametrization
The design variables can be partitioned into three groups: aerodynamic design variables, structural design variables
and geometric design variables. It should be emphasized that in the context of aerostructural analysis and design
optimization, the aerodynamic design variables affect the structural analysis and the structural design variables affect
the aerodynamic performance. Here we consider two design problems: the design of a metallic wing and the design
of a composite wing under identical sets of operating conditions and nearly identical sets of design constraints. The
geometric and aerodynamic design variables are common to both the metallic and composite design problems, while
the structural design parametrization is significantly different.

The aerodynamic design variables consist of the angle of attack at each of the 9 flight conditions and the air speed
at the two CLmax conditions. In addition, we use 4 fuel mass variables, 3 that represent the mid-points of the flight
segments illustrated in Figure 6, and an additional fuel burn variable that represents the full fuel load.

The geometric design variable parametrization is illustrated in Figure 8. For the geometric parametrization, we use
10 reference point locations positioned from the root to the tip at the trailing edge of the wing. The first 3 reference
points are positioned uniformly from the wing root to the wing crank, while the remaining points are positioned
uniformly from the wing crank to the wing tip. The chord scaling variables are linked such that cn = c1, for n =
2, . . . , 10. The span scaling variables are also linked such that sn = s1 for n = 2, . . . , 9. We also use the vertical
scaling variables over the range, 0.75 ≤ vn ≤ 1.25. Since the initial airfoil section has a t/c ratio of approximately
12%, these bounds ensure that the t/c ratio varies between 9% and 15%. A series of linear constraints are imposed on
the vertical scaling variables such that the variables v1, v3, v10, are independent, while all remaining vertical scaling
variables are interpolated linearly between these values. Finally, we use 9 twist design variables, θn, with the root-twist
fixed, θ1 = 0.

The structural design parametrization for the metallic wing consists of the thickness and panel geometry variables
shown in Figure 4. Each independent panel has 3 thicknesses and 3 geometric variables, where the stiffener pitch, b,
is fixed for all panels on the upper and lower surfaces, respectively. To reduce the number of variables in the design
problem, the designs of adjacent panels are linked in groups of two. As a result there are 138 thickness variables and
138 panel geometric variables. In addition to the panel variables, the thicknesses of spars, ribs and the leading edge for
each segment are also included as design variables, resulting in an additional 186 thickness variables. There are also
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Figure 8: A summary of the geometric design variables

114 fuel mass variables for the inertial fuel loading conditions and 46 panel-length design variables required for the
buckling calculations. As a result, there are 462 thickness and panel geometry variables, and 160 consistency design
variables, which include the fuel inertial mass and panel-length variables, resulting in 622 structural design variables.

For the composite wing design parametrization, the laminate parametrization variables described in Section III
are included in the design problem, in addition to the thickness and panel geometry design variables described above
that are also used for the metallic wing. The number of variables in the laminate parametrization depends on the
initial thickness distribution selection. If a total of n layers are required then 4n design variables are added to the
design problem. Typically the there are between 200 and 500 plies in the initial thickness distribution. As a result,
an additional 800 to 2000 design variables are required for the laminate parametrization. In total there are 658 + 4n
design variables, where n are the number of plies included in the laminate parametrization, with n = 0 for the metallic
wing.

D. Constraint formulation

Nonlinear constraints Linear constraints

Fuel burn compatibility 4 t/c linearity 7
Lift constraints 9 Thickness variation 126
2.5g dive KS 10 Stiffener height variation 44
-1g dive KS 10 Spar variation 86
2.5g stall KS 10 Stiffener dimension 184
Valarezo CLmax 2 Ply-identity summation n
Panel geometry compatibility 46 Balanced laminate condition m
Fuel volume 1 10% ply content p
Fuel mass-per-area compatibility 114 Ply contiguity constraint q

Total 206 477 + n + m + p + q

Table 3: Summary of the constraints for the aerostructural problem

The constraints for the aerostructural design problem are summarized in Table 3. There are at least 683 constraints:
206 nonlinear constraints and at least 477 linear constraints, depending on the number of plies in the parametrization.
There are four fuel burn compatibility constraints corresponding to the fuel burn calculations for the mid-points of
the flight segments illustrated in Figure 6, and the total mission fuel. There are a total of 30 KS failure and buckling
constraints at 6 separate flight conditions. At each flight condition there are 3 KS failure constraints: one aggregated
over each of the top skin, bottom skin, and spars and ribs, and 2 KS buckling constraints: one aggregated over each
of the top and bottom skins. For all cases, we use an aggregation parameter of ρ = 50. The Valarezo criterion
described above is also applied for the two 2.5g stall conditions. The panel geometry compatibility constraints ensure
that the physical panel lengths correspond to the variables that represent the dimensions of the panels. The fuel
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volume constraint ensures that the total mission fuel can fit inside the spar box and the full mass-per-area compatibility
constraints ensure that the correct inertial fuel load is applied to the structure.

The linear constraints consist of the constraints to impose the piecewise linearity of the t/c distribution. The
thickness variation, stiffener height variation and spar variation constraints ensure that the change in thickness and
spar height do not exceed 5 mm, or 1 cm between adjacent panels, respectively. Finally, a series of linear constraints
are imposed on the spar height and stiffener width to ensure that they remain within reasonable bounds. The size of
the remaining linear constraints that are applied to the laminate parametrization variables depends on the initial ply
distribution.

E. Summary of the proposed studies
The aerostructural optimization studies presented in the following sections can be written in the following manner:

minimize βFB + (1− β)TOGW
w.r.t. x

governed by R(qj ,x) = 0 j = 1, . . . , 9

s.t. Lj(qj ,x) = nj g (m(x) +mfixed) j = 1, . . . , 9

KSmin

(
∆Cpmargin(ηk), ρ

)
= 0 j = 7, 8

KSk (FKS(σ), 30), 50) ≤ 1 j = 4, . . . , 9 k = 1, . . . , 3

KSk (B(Nx, Nxy), 50) ≤ 1 j = 4, . . . , 9 k = 1, 2

h(x) ≥ 0

where x are the design variables, β is the weighting parameter, nj is the load factor for each of the 9 flight conditions,
and qj = 1/2ρjV

2
j is the dynamic pressure. Here, j indexes the flight condition, where j = 1, . . . , 3 correspond to the

mission flight segments, n1 = n2 = n3 = 1, j = 4, 5 correspond to the 2.5g maneuver condition with full fuel load
and 10% fuel load, respectively, n4 = n5 = 2.5, j = 6, 7 corresponds to the -1g maneuver condition with full fuel
load and 10% fuel load, respectively, n6 = n7 = −1, and j = 7, 8 corresponds to the 2.5g stall condition with full fuel
load and 10% fuel load, respectively, n8 = n9 = 2.5. Note that the KS constraints for material failure and buckling
are applied only at the 2.5g and -1g maneuver conditions. Finally, h(x) represents the remainder of the constraints
listed in Table 3.

We use a finite-element structural model with 46 360, 3rd order MITC9 shell elements with just over 1.088 million
degrees of freedom. There are a total of 46 local panel buckling models, each requiring two buckling calculations:
the axial buckling load and the shear buckling load. The buckling calculation for both cases require approximately
11 seconds of CPU time each, but are distributed across all processors assigned to the aerostructural optimization
problem. The aerodynamic model consists of 4200 surface panels and 60-streamwise wake panels.

All aerostructural optimization cases are distributed across 72 processors, which are subdivided into 3 aerostruc-
tural analysis and gradient evaluation groups of 24 processors each. The 9 flight conditions are assigned to the 3
groups: 1 cruise flight condition, and 2 off-design structural conditions per aerostructural group. This division di-
vides the computational effort for the objective and constraint evaluation and gradient evaluation into roughly equal
portions. The solution of all the aerostructural flight conditions and the evaluations of the objective and constraints re-
quires roughly 3 minutes and 30 seconds of wall time, while the gradient evaluation of all constraints and the objective
requires 5 minutes and 15 seconds of wall time.

V. Results
A. Structural optimization results
Before beginning an aerostructural optimization, we solve a preliminary structural mass-minimization problem with
fixed aerodynamic loads and use the structural design as the starting point for the aerostructural problem. The structural
design obtained from this preliminary structural optimization provides a much better starting point than a constant-
thickness wing or other arbitrary design. Aerostructural optimizations started from the structurally-optimized design
typically require fewer optimization iterations than an initial arbitrary structural design point. Furthermore, the struc-
turally optimized wing satisfies the structural constraints, which makes for a useful comparison between the initial and
final aerostructural results.

To generate the aerodynamic forces for the structural mass-minimization problems, we use a metallic wing with
a constant thickness distribution, and obtain a converged aerostructural solution, for each of the flight conditions
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described above using the approximate Newton–Krylov method. We use the aerodynamic forces from this converged
aerostructural solution to obtain the fixed structural loads. In the aerostructural case, changes in the stiffness of
the wing would produce changes in the deflection and, in turn, different aerodynamic loads. In the context of this
optimization, these effects are ignored. For both the metallic and the composite wing, the constraint formulations
follow the formulation presented in Table 3, without the fuel burn, lift, Valarezo or fuel volume constraints.
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Figure 9: The thickness distribution for the metallic wing

We solve the metallic wing structural optimization problem on 48 processors on the General Purpose Cluster (GPC)
at SciNet [32]. Each node of the GPC is an Intel Xeon E5540 with a clock speed of 2.53GHz, with 16GB of dedicated
RAM and 8 processor cores. All calculations are performed on the SciNet system with the same configuration. The
total mass of the structurally-optimized metallic wing is 32 660 kg. The thickness distribution for the upper and lower
wing skins and the stiffener heights are shown in Figure 9. The optimization requires 256 objective and constraint
evaluations and 159 gradient evaluations. The wall time to update the panel-level models including all buckling
calculations is approximately 22 seconds, while the wall time to set up and solve the global finite-element model is 14
seconds. The wall time to evaluate the total derivatives of the objective and constraints is approximately 15 seconds.
As a result, the total structural optimization time is roughly 3 hours 15 minutes.
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Figure 10: The thickness distribution for the composite wing
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For the composite wing optimization case, we use the optimized metallic wing to obtain an initial estimate of the
number of plies in each component. We label this distribution of plies, “Ply distribution 1”. In order to adjust the
thickness along the wing span, we use a ply-blending scheme in which the initial thickness distribution is obtained by
adding or removing the outer-most plies from the laminate. As a result, the middle ply in the laminate runs from the
wing root to the wing tip, while the outer-most plies extend only over the thickest portion of the wing. As described
in Section III, we solve a series of optimization problems for an increasing sequence of penalty parameter values with
γ1 = 0, and γp = 10−52p−2, for p > 1, where p indicates the optimization problem sequence. In each case, we
start the next optimization problem from the previous solution. This sequence of problems forces the infeasibility with
respect to the spherical constraints (18) to zero, and produces a lamination sequence in which only one ply-identity
variable is active in each layer [23].

Top Bottom

Skin Stringer Skin Stringer

T1 T2 B1 B2

(a) Ply distribution 1

Top Bottom

Skin Stringer Skin Stringer

T1 T2 B1 B2 B3

(b) Ply distribution 2

−45o

0o

45o

90o

Figure 11: Lamination sequences for the structural-only optimization problem. Only the top half of the symmetric
laminate is shown. The stacking sequences are split where T2 is stacked on top of T1 and B3 is stacked on top of B2,
which is stacked on top of B1.

The mass of the wing obtained from the optimization problem outlined above using Ply distribution 1 is 21 298 kg.
The optimized thickness distribution is shown in Figure 10a. This thickness distribution is significantly different than
the metallic distribution of plies, shown in Figure 9. As a result, there is a significant discrepancy between the number
of plies in the design and the physical number of plies required. In order to assess the severity of this discrepancy,
we obtain the number of plies using the optimized thickness distribution shown in Figure 10a. We label this new
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distribution of plies “Ply distribution 2” and perform the same optimization with this new ply distribution. Figure 10b
shows the results of the structural optimization using Ply distribution 2. The new optimized mass of the wing is
21 177 kg. There is only a 121 kg difference between the wing masses, despite the original ply miss-match. Note
also that discrepancy between the thickness distributions for Ply distribution 2, Figure 10b, and Ply distribution 1,
Figure 10a, is much smaller than between the metallic distribution and the Ply distribution 1 results. This suggests
that by updating the ply thickness distribution, and performing a second optimization, we can come much closer to the
actual ply thickness distribution. However, these results also suggest that the weight will not vary significantly between
the two designs. Based on this assessment, we do not perform a secondary optimization step for the aerostructural
optimization results.

Figure 11 shows the stacking sequence results for the structural mass-minimization problem for both ply distribu-
tions. The top and bottom lamination sequences are too large to fit on a single page, and have been split, where the
sequences labeled T2 is stacked on top of the sequence labeled T1, and the stacking sequence B3 is stacked on top
of B2 which is stacked on top of B1. The balanced ply constraint, 10% ply content constraint, and 4-ply adjacency
constraint can be checked by inspection. The Ply distribution 2 case contains 4 plies which have not fully converged.
These plies have intermediate ±45o ply-identity variables while all other variables in these layers are zero. The two
designs share some common attributes. Specifically, the top and bottom stringer are predominantly 0o plies, with the
minimum ply content. The top skin has more ±45o plies than the bottom skin, which has more 0o plies. These results
suggest that the ply distribution in the different components will be similar between designs with different initial ply
distributions, even if the number of plies is incorrect.

B. Metallic and composite wing aerostructural optimization
In this section we present a series of aerostructural optimization results obtained with β = 1, 0.875, 0.75, 0.5 and 0, for
the metallic and composite wings. This uneven distribution of weights was selected based on preliminary optimization
studies which found that the designs vary most rapidly over the range β ∈ [0.5, 1]. This should be expected, given that
the fuel burn is roughly one third of the takeoff gross-weight of the aircraft.

For all optimization studies we use the nonlinear optimization code SNOPT [25], through the Python interface of
the pyOpt optimization package [26]. For all cases, we use an optimality tolerance of 10−5 and a feasibility tolerance
of 10−5. The aerostructural optimizations take between 32 hours and 48 hours on 72 processors.

β

m
a
s
s
[m

e
tr
ic

to
n
s
]

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

TOGW [kg]

Fuel burn [kg]

Structural mass [kg]

metallic

composite

metallic

metallic

composite

composite

(a) Full mass

β

m
a
s
s
fr
a
c
ti
o
n

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

TOGW

Fuel burn

Structural mass

metallic

composite

metallic

metallic

composite

composite

(b) Normalized mass

Figure 12: The TOGW, fuel burn and structural wing mass as a function of the parameter β for the metallic and
composite wings. Note that the mass fraction results are normalized to the fuel burn result for the metallic wing.

Figure 12 shows the optimized takeoff gross-weight, fuel burn and structural wing weight of the metallic and
composite aircraft as a function of the parameter β. For the metallic wing, the TOGW and fuel burn vary between
278 888 kg and 102 062 kg, respectively for β = 0, and 305 056 kg and 93 055 kg, respectively for β = 1. For
the composite wing, the TOGW and fuel burn vary between 261 664 kg and 96 176 kg, respectively for β = 0, and
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272 679 kg and 86 101 kg, respectively for β = 1. The fuel burn designs place a much higher importance on the
aerodynamic performance with a structural weight and TOGW penalty. The structural weight for the metallic wing
varies from 28 686 kg for β = 0 to 63 861 kg for β = 1, while the structural weight for the composite wing varies
from 17 348 kg for β = 0 to 38 438 kg for β = 1.

Figure 12b shows the variation of the TOGW, fuel burn, and structural wing weight normalized to the metallic fuel
burn minimization result. Clearly the TOGW, fuel burn and structural weight of the composite aircraft are less than the
equivalent metallic design for all values of β. The weight of the composite wings are between 34% and 40% lighter
than the equivalent metallic wings. Despite this large structural weight savings, the difference in fuel burn between
any pair of metallic and composite designs is between 5% and 8%. The TOGW of the composite aircraft are between
6% and 11% lower than the TOGW of the equivalent metallic aircraft.
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Figure 13: The span and average L/D ratio for the metallic and composite wings as a function of the parameter β.
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Figure 14: The wing wetted area and aspect ratio for the metallic and composite wings as a function of the parameter
β.

As the parameter β is increased from 0, the structural weight and TOGW of both the metallic and composite
aircraft increase significantly. The benefit of this large increase in wing weight is significantly higher aerodynamic
performance. Figure 13, Figure 14 and Figure 15 show the change in aerodynamic performance and geometric vari-
ables as a function of β for both the metallic and composite cases. Figure 13 shows the average L/D ratio from the
three cruise flight segments shown in Figure 6, as well as the wing span as a function of the parameter β for both the
metallic and composite designs. For the metallic wing, the average L/D improves from a value of 19.3 at β = 0 to
a value of 23.8 at β = 1. This 23% improvement is primarily achieved through an extension to the wing span, also
shown in Figure 13a. For the composite wing, the average L/D improves by 18% from 19.2 at β = 0 to a value of

21 of 31

American Institute of Aeronautics and Astronautics



β
s
p
a
n
e
ff
ic
ie
n
c
y

0 0.2 0.4 0.6 0.8 1

0.94

0.96

0.98

1

composite

metallic

Figure 15: The span efficiency e during the first flight segment as a function of the parameterβ for the metallic and
composite wings

22.7 at β = 1. This improvement is also achieved through a span extension. Despite the lower average L/D ratio,
the composite aircraft burns less fuel than the metallic aircraft. This poorer L/D performance is due to the lower CL
values required by the lighter composite aircraft. Due to the fixed flight segment altitudes, the aircraft cannot fly at
their optimal L/D values. Permitting a variable altitude would result in a higher L/D for the composite aircraft. For
comparison, Figure 15 shows the span efficiency of the metallic and composite designs. At the design for β = 0.75,
the span efficiencies of the wings are nearly equal, while at all other points, the composite wing exhibits a better span
efficiency than the metallic wings.

The increase in span, L/D and wing weight is also accompanied by an increase in the wetted area and the aspect
ratio of the metallic and composite wings. Figure 14 shows the wetted area and aspect ratio as a function of the
parameter β. For the metallic wing, the aspect ratio increases from 7.5 to 12.8, and the wetted wing area increases
from 901 m2 to 1034 m2. For the composite wing, the aspect ratio increases from 8.3 to 13.7 while the wetted area
increases from 829 m2 to 1013 m2. As before, the larger aspect ratios of the composite designs, and the larger wetted
area of the metallic designs would suggest that the composite wings should exhibit superior aerodynamic performance.
As discussed above, this is due to the sub-optimal cruise CL values required by the lighter composite aircraft, which
produces poorer L/D values than the equivalent metallic designs.

(a) β = 1 (b) β = 0.875 (c) β = 0.75 (d) β = 0.5 (e) β = 0

Figure 16: The planform of each of the metallic wings for β = 1, 0.875, 0.75, 0.5, and 0.

Figure 16 shows a comparison between the different wing planforms for the metallic wing with β = 1, 0.875,
0.75, 0.5, and 0. Figure 17 shows a comparison between the different wing planforms for the composite wing with
β = 1, 0.875, 0.75, 0.5, and 0. The large changes in wing span, aspect ratio and wetted area are evident. The trend
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(a) β = 1 (b) β = 0.875 (c) β = 0.75 (d) β = 0.5 (e) β = 0

Figure 17: The planform of each of the composite wings for β = 1, 0.875, 0.75, 0.5, and 0.

between the metallic and the composite wings are similar, where the largest discrepancy occurs for the wing spans of
the β = 0.875 pair of cases, where the composite wing being 6% longer span than the metallic wing.

Figure 18 and Figure 19 show the aerostructural and jig twist distributions for the metallic designs at the different
operating points as well as the sectional Cl distributions at all operating points for β = 1, 0.875 and 0.75, and 0.5 and
0, respectively. Figure 20 and Figure 21 show the aerostructural and jig twist distributions for the composite designs at
the different operating points as well as the sectional Cl distributions at all operating points for β = 1, 0.875 and 0.75,
and 0.5 and 0, respectively. In all cases there is a significant difference between the jig twist and the twist distributions
at the cruise and maneuver conditions. Furthermore, for all cases the maneuver conditions exhibit more wash-out
resulting in lower tip loads than the cruise conditions.

Figure 22 and Figure 23 show the top and bottom skin thickness distributions as well as the top and bottom stiffener
height distributions for the metallic and composite wing design problems, respectively. All designs exhibit increasing
thicknesses near the wing crank. This is due to the large running-loads carried in the top and bottom skins in this
location. In all cases, as the parameter β increases, the structural thicknesses, and structural weight increase. This is
due in part, to the larger spans of these designs. These larger spans require thicker structures and larger stiffeners to
support the aerodynamic loads applied to these wings.

VI. Conclusions
In this paper, we presented a framework for aerostructural optimization of metallic and composite aircraft. In order

to perform a fair comparison between the metallic and composite designs, we optimized the aircraft using an equivalent
problem formulation where the primary difference in the formulations were the material properties and the detailed
laminate parametrization variables. The extra design freedom provided by the detailed laminate parametrization and
the superior strength-to-weight ratio of the composite enabled the composite wings to achieve spans up to 6% larger
than the metallic wing spans. In addition, we found that the composite wing designs were between 34% and 40%
lighter than the equivalent metallic wings. Due to this large structural weight savings, the composite aircraft designs
exhibit a fuel burn savings of between 5% and 8% and a take-off gross-weight savings of between 6% and 11%.
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Figure 18: The twist and Cl distributions for the aerostructural optimization of a metallic wing with β = 1, 0.875, and
0.75.

24 of 31

American Institute of Aeronautics and Astronautics



spanwise station [m]

tw
is
t

0 10 20 30 40

4

2

0

2

4

jig

cruise 1

cruise 2

cruise 3

2.5g 1

2.5g 2

1g 1

1g 2

C
L
max 1

C
L
max 2

spanwise station [m]

C
l

0 10 20 30 40
0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

cruise 1

cruise 2

cruise 3

2.5g 1

2.5g 2

1g 1

1g 2

C
L
max 1

C
L
max 2

(a) β = 0.5

spanwise station [m]

tw
is
t

0 10 20 30 40

4

2

0

2

4

jig

cruise 1

cruise 2

cruise 3

2.5g 1
2.5g 2

1g 1

1g 2

C
L
max 1

C
L
max 2

spanwise station [m]

C
l

0 10 20 30 40
0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

cruise 1

cruise 2

cruise 3

2.5g 1

2.5g 2
1g 1

1g 2

C
L
max 1

C
L
max 2

(b) β = 0

Figure 19: The twist and Cl distributions for the aerostructural optimization of a metallic wing with β = 0.5, and 0.
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Figure 20: The twist and Cl distributions for the aerostructural optimization of a composite wing with β = 1, 0.875,
and 0.75.
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Figure 21: The twist and Cl distributions for the aerostructural optimization of a composite wing with β = 0.5, and 0.
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Figure 22: The skin thickness and stiffener height for the metallic wings for β = 1, 0.875, 0.75, 0.5, and 0.
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Figure 23: The skin thickness and stiffener height for the composite wings for β = 1, 0.875, 0.75, 0.5, and 0.
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