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Abstract In this paper we present a novel laminate parametrization technique for layered
composite structures that can handle problems in which the ply angles are limited to a dis-
crete set. In the proposed technique, the classical laminate stiffnesses are expressed as a
linear combination of the discrete options and design-variable weights. An exact ¢, penalty
function is employed to drive the solution toward discrete 0—1 designs. The proposed tech-
nique can be used as either an alternative or an enhancement to SIMP-type methods such
as discrete material optimization (DMO). Unlike mixed-integer approaches, our laminate
parametrization technique is well suited for gradient-based design optimization. The pro-
posed laminate parametrization is demonstrated on the compliance design of laminated
plates and the buckling design of a laminated stiffened panel. The results demonstrate that
the approach is an effective alternative to DMO methods.

1 Introduction

The parametrization of laminated composite structures for design optimization is a challeng-
ing problem. Often, due to manufacturing limitations, the allowable ply angles are restricted
to a discrete set of values. This discrete problem is not, in its most natural form, amenable
to gradient-based optimization. On the other hand, methods for nonlinear mixed-integer
programming are almost inevitably computationally expensive, especially for large design
spaces. Here, we present a laminate parametrization that takes into account the discrete na-
ture of the ply angles. To avoid solving a large nonlinear, mixed-integer program, we use
a relaxation approach where the original discrete problem is transformed into a continuous
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analog of the original problem. We then obtain solutions to the modified problem using
gradient-based optimization.

Many different authors have developed laminate parametrization techniques. These tech-
niques generally fall into two categories: direct parametrizations that provide an explicit
description of the physical laminate, and indirect parametrizations in which intermediate
variables are employed and the lamination sequence is available only in a post-processing
calculation. There are difficulties with both of these approaches. Direct techniques often
introduce many local minima in the design space, while indirect methods make it difficult
to impose manufacturing constraints on the physical construction of the laminate. Here we
use a direct parametrization of the laminate and accept the possibility of local minima; this
approach allows us to impose manufacturing requirements on the lamination sequence.

The remainder of the paper is structured as follows. In Section 2 we review the relevant
literature on laminate parametrization techniques, and in Section 3 we describe our pro-
posed technique. In Section 4 we describe additional manufacturing constraints that may be
required for certain laminate design problems. In Section 5 we present the results from two
compliance minimization studies, verifying our approach against previous work and demon-
strating the approach in a novel application. In Section 6 we present the results from a series
of buckling design problems that incorporate important manufacturing constraints.

2 Literature review

The use of ply-angle variables and the integer number of plies is the most direct parametriza-
tion of a lamination sequence. However, this type of parametrization suffers from several
drawbacks. First, it necessitates mixed-integer programming techniques [Haftka and Giirdal,
1992]. Second, it is well known that the parametrization using ply-angle variables, for a fixed
number of plies, introduces many local minima [Stegmann and Lund, 2005]. Authors have
developed various techniques to address these issues. For instance, Bruyneel and Fleury
[2002] and Bruyneel [2006] developed an effective gradient-based optimization approach
for composite structures parametrized with ply angles, for stiffness, strength, and weight
design criteria. Despite these successful applications, these parametrizations cannot directly
address manufacturing constraints that limit the available ply angles to a discrete set.

Another common technique is to use the lamination parameters first introduced by Tsai
and Pagano [1968]. In this approach, the constitutive matrices in classical lamination theory
(CLT) or in first-order shear deformation theory (FSDT) are expressed in terms of the ma-
terial invariants and the lamination parameters, which are twelve integrals of trigonometric
functions of the ply-angle distribution through the thickness of the laminate. Because of the
relationship between these integrals, not all combinations of the lamination parameters rep-
resent physically realizable laminates. As a result, constraints must be imposed to restrict
the values of the parameters to a physically realizable domain [Hammer et al., 1997]. An
expression for the full feasible space of lamination parameters is not known explicitly, so
often a subset of the variables is used for the design.

Lamination parameters have often been used as a parametrization for stiffness and buck-
ling design. Fukunaga and Vanderplaats [1991] performed a buckling optimization of cylin-
drical shells with symmetric orthotropic laminates using two in-plane and two flexural lam-
ination parameters. They also solved the inverse problem to obtain the explicit lamination
sequences. Later, Fukunaga and Sekine [1992] performed a stiffness design of laminates
and obtained explicit expressions for the feasible space of symmetric laminates. Miki and
Sugiyama [1993] used lamination parameters for the compliance and buckling design of
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symmetric orthotropic laminates. Hammer et al. [1997] presented an extensive theoretical
development of the mathematical properties of lamination parameters and used them for
the compliance design of symmetric laminates subject to single and multiple loading con-
ditions. Liu et al. [2004] designed simply supported symmetric plates for buckling using
lamination parameters. They imposed constraints on the number of plies at 0°, +45°, and
90° and mapped these constraints into a hexagonal region in the lamination parameter space.

Other authors have extended the use of the lamination parameters beyond stiffness and
buckling design applications. Foldager et al. [1998] used lamination parameters to avoid
local minima while performing compliance minimization using ply-angle design variables.
[Jsselmuiden et al. [2008] performed strength-based design studies using lamination pa-
rameters by incorporating the Tsai—Wu failure criteria [Jones, 1996] into the lamination
parameter space to obtain a conservative failure envelope.

While lamination-parameter-based techniques have been used effectively in many ap-
plications, one of the primary disadvantages of these approaches is that they do not pro-
vide a direct description of the laminate construction. This makes it difficult to impose the
constraints on the ply angles that may be required by manufacturing considerations. Fur-
thermore, lamination parameters by themselves do not provide a lamination sequence and
therefore can be viewed only as an intermediate design result.

Often, for manufacturing reasons, the ply angles available to the designer are restricted
to a discrete set of options such as 0°, +45°, and 90°. With this restriction, the laminate
sequence design problem becomes a mixed-integer programming problem. Various authors
have used either mixed-integer programming techniques or genetic algorithms (GAs) to
solve laminate stacking sequence problems with a discrete set of ply angles. Haftka and
Walsh [1992] formulated a buckling-load maximization of a simply supported plate, with
and without ply-contiguity constraints, as a linear integer programming problem and ob-
tained globally optimal designs using a branch and bound algorithm. Le Riche and Haftka
[1993] used a GA to perform a buckling-load maximization of a simply supported plate
with strength and ply-contiguity constraints. Later, Liu et al. [2000] used a permutation GA
to perform a buckling-load maximization for a simply supported plate with a constraint on
the number of plies at each available angle. Adams et al. [2004] used a GA for a realistic
composite wing-box design problem with a thick guide laminate and blended plies.

The main advantage of using GAs for laminate design problems is that they have the
ability to work directly with integer variables. Furthermore, GAs may obtain the global
optimum, regardless of whether the underlying design space is multimodal or discontin-
uous. However, GAs usually require many more function evaluations than gradient-based
approaches do, especially for large design spaces. This property of GAs is especially prob-
lematic when employing high-fidelity computational methods that require significant com-
putational time for a single analysis.

Discrete material optimization (DMO) approaches can be used as either multimaterial
parametrizations or as direct laminate sequence parametrizations. DMO was first proposed
by Stegmann and Lund [2005] as a generalization of the approach of Sigmund and Torquato
[1997]. When the DMO approach is applied to laminate design, the stiffness contribution
from every discrete ply angle in each layer is multiplied by a weighting function. Instead
of a linear interpolant, a SIMP-type penalization is employed such that the stiffness-to-
weight ratios of the intermediate designs are less favorable. Stegmann and Lund [2005] and
later Lund [2009] applied the DMO approach to compliance and buckling optimization for
composite shells.

Other authors have extended the SIMP and DMO approaches. Bruyneel [2011] devel-
oped an approach similar to DMO for selection from a discrete set of four plies via bilinear
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shape function weights. This approach, called the shape function with penalization (SFP)
parametrization, reduces the number of design variables compared to DMO approaches.
Bruyneel et al. [2011] extended the SFP approach to material selection from different num-
bers of plies by using different interpolation functions. Recently, Gao et al. [2012] devel-
oped a bi-value coding parameterization (BCP) that extends the SFP approach and is par-
ticularly well suited for problems with large numbers of discrete ply angles or candidate
materials. Using a different approach, Hvejsel et al. [2011] developed a technique for lam-
inate parametrization that, in a similar manner to DMO, uses a weighted sum of contri-
butions to the stiffness. In a departure from the DMO approach, they employed an exact
quadratic concave penalty constraint function, first used by Borrvall and Petersson [2001],
to force the design toward a discrete solution. They demonstrated their approach on a se-
ries of compliance minimization problems. Hvejsel and Lund [2011] extended the SIMP
interpolation scheme to multimaterial selection problems, including ply-angle selection. In
a departure from DMO-type methods, many sparse linear constraints are required within the
parametrization.

One of the main advantages of DMO and DMO-type parametrizations is that they can
be used with gradient-based optimization techniques. As a result, DMO parametrizations
can be used on very large problems that might not otherwise be amenable to gradient-free
methods such as GAs. However, DMO approaches may produce only a locally optimal
solution. Furthermore, DMO and DMO-type approaches may fail to converge to a fully
discrete design, especially for objectives other than compliance, and it may be difficult to
assess the merits of an intermediate solution.

In this paper, we present a direct laminate parametrization technique that is a continu-
ous regularization of a discrete mixed-integer laminate formulation. Similarly to the DMO
approach of Stegmann and Lund [2005], we interpolate between a discrete set of possible
angles using a linear combination of material stiffnesses. In a departure from previous work,
we add an exact £ penalty function to the objective to force the design toward a discrete
solution. The ¢; penalty function is not differentiable, so we use an elastic programming
approach that produces the effect of the ¢; norm in a differentiable manner within the opti-
mization problem. We show that simplifications to the penalization can be made if certain
linear constraints are satisfied exactly at all optimization iterations. We demonstrate, with
numerical examples, that this penalization is very effective for both compliance and buckling
design optimization problems. In a departure from previous papers on DMO-type methods,
we introduce additional constraints on the ply angles that may arise from manufacturing
considerations. These constraints are imposed using a complementarity constraint formu-
lation handled through a regularization technique proposed by Scheel and Scholtes [2000]
and Scholtes [2001].

3 The proposed laminate parametrization

In the following laminate parametrization technique, we consider a structure that is split into
a series of M design segments. Each design segment is composed of a single laminate with N
layers, where in each layer the ply angles must be selected from a discrete set of K allowable
angles, ® = {60, 65,...,0k}. For ease of presentation, we have fixed the number of layers
and the number of allowable ply angles to N and K for all segments. This restriction is not
required, and in general the number of plies and number of available ply angles may vary
between design segments.
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Each design segment of the structure is modeled using an FSDT approach, where the in-
plane, bending-stretching coupling, bending, and transverse shear constitutive matrices are:
A® BO DD AY Here the superscript i indexes the i design segment, where i =1,...,M.

In the following description, we first outline the proposed laminate parametrization us-
ing a mixed-integer formulation. We then proceed to relax the discrete problem to a continu-
ous formulation. In the proposed technique, we express the constitutive matrices, A(i>, B@,

DU, and Aﬁi), in terms of a series of discrete ply-identity variables &;x € {0, 1}:
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where there are N plies in the laminate, Q(0) and Q,(0) are the laminae in-plane and shear
stiffnesses in the global coordinate system [Jones, 1996], and A;; is the through-thickness
coordinate of the j™ layer-interface in the i design segment.

An active ply-identity variable, & = 1, indicates that the k™ ply angle, 6, in the jo
layer of the i design segment has been selected. To avoid selecting multiple ply angles in
the same layer, we impose the following constraint:

K
Zéijk:17 i:17"'7N7 J:17’M (2)
=1

This discrete formulation is equivalent to the linear mixed-integer approach of Haftka and
Walsh [1992]. Equation (2) ensures that one and only one ply is active in each layer, i.e.,
&ijp =1 for some p, while &;j = 0 for k # p.

The number of possible designs increases rapidly as the numbers of ply angles, layers,
and design segments increase. Evaluating all possible designs quickly becomes computa-
tionally intractable since there are KN possible combinations.

Instead of using the discrete variables &;j € {0, 1}, we relax the mixed-integer problem
and use continuous variables: x;;; € [0, 1]. We refer to these variables as ply-selection vari-
ables and refer to continuous designs that satisfy x;;x € {0, 1} as 0-1 solutions. The stiffness
can now be expressed in terms of the continuous ply-selection variables as follows:
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where x;j; are continuous over the interval [0, 1]. Note that we have introduced a SIMP
penalty parameter P as an exponent on the continuous ply-identity variables, and as a result
this formulation is equivalent to the multimaterial formulation of Hvejsel and Lund [2011].
The purpose of the parameter P is to penalize the stiffness of intermediate designs such
that 0—1 points have more favorable stiffness-to-weight ratios. Often, a continuation ap-
proach is employed where a series of optimization problems is solved for increasing values
of P [James et al., 2009, 2008]. However, a 0—1 solution is not guaranteed in general when
using SIMP penalization, even for large values of the parameter P [Stolpe and Svanberg,
2001b,a]. To demonstrate that the proposed parametrization is effective without additional
SIMP penalization, we set the parameter P = 1 for all the results presented in this paper.
However, it must be emphasized that setting P > 1 would not affect the following develop-
ment.

As in the mixed-integer formulation, we impose the following constraint on the contin-
uous ply-angle selection variables:

K
injk:17 i:17"'7M7 .]:177N (4)
k=1

This constraint ensures that the weights are a partition of unity and that the design variables
may be used to obtain a reasonable interpolation of the material properties. In the discrete
case, this constraint is sufficient to ensure that a single material is active. However, in the
continuous case, this constraint forces the design variables only to remain on a plane inter-
secting the coordinate axes at unity.

In the design problem, we collect all the design variables into the vector x € RMNK,
We also collect all the linear constraints (4) for each design patch and each layer into the
following expression:

A,x=e, )

where A,, € RMNXMNK i 3 matrix and all the entries in the vector e € RMN are 1.
In the proposed approach, we augment the SIMP penalization with an exact penalization
technique. To force the design toward a 0—1 solution, we introduce the following constraint:

K
Zx% =1, i=1,....M, j=1,...,N. (6)

The conditions that the design variables are in the interval [0, 1], sum to unity, and are on
the unit (K — 1)-sphere are sufficient to ensure that only one ply-selection variable, x; , is
active in each layer. In fact, the upper limit on the design variables x; j is redundant and may
be dropped. These criteria are shown graphically in Fig. 1, for K = 3, as the intersection of
a 2-sphere and a plane for x1,x7,x3 > 0.

For ease of presentation, the spherical constraints for all layers in all design segments
are collected into a single vector constraint as follows:

¢(x) —e =0, )

where ¢s(x) € RMY and e € RMV,
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Fig. 1: Illustration of the spherical constraint, forcing the selection of a single ply-angle
variable for each layer. This generalizes to arbitrary dimensions beyond K = 3.

If the objective of interest is f(x), and any additional design constraints are written as
h(x) > 0, the design optimization problem with the constraints (5) and (7) is:

minimize f(x)

wrt. x>0
s.t. h(x)>0 ®)
c(x)—e=0
A, x—e=0

The difficulty with this problem is that the spherical constraints (7) are highly nonlinear and
introduce many local minima. To control this effect, we introduce the spherical constraint (7)
through an exact ¢ penalty function with penalty parameter y. The objective of this modified
problem is f(x)+¥]||c;(x) —e||; where |||} is the £; norm. However, this modified objective
is not differentiable. Instead, we use an elastic programming technique [Nocedal and Wright,
1999] that creates the effect of the £; norm in a differentiable manner by adding additional
slack variables to the optimization problem. Using the elastic programming approach, we
introduce the vectors of slack variables s, s_ € RMN guch that

c(x) —e=s —s_, ©)

where we impose s ,s_ > 0. The slack variables s; and s_ represent the positive and neg-
ative constraint violation of Eq. (7).
The modified optimization problem becomes:

minimize f(x)+ ye’ (s; +s_)

w.rt. X,Sy,s- >0

st. h(x)>0 (10)
c(x)—e=s; —s_
Ay,x—e=0

where the parameter y > 0 is a penalty parameter. For a feasible problem, with a sufficiently
large but finite value of 7y, Problem (10) admits solutions, x*, s = s* = 0, that are also
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solutions to Problem (8). However, as ¥ — 0, Problem (10) admits solutions that are not
solutions to Problem (8) and do not satisfy the O—1 criterion. Our approach will be to solve
the /1 penalized optimization problem (10) for increasing values of the penalty parameter.
For small 7, this will allow greater freedom in exploring the design space, and with increas-
ing 7y the solution will tend toward a local minima with intermediate design-variable values
or a 0—1 solution. As with DMO and other direct laminate parametrizations, the proposed
approach can guarantee convergence only to a local minimum.

A further simplification of Problem (10) can be achieved when the summation con-
straints (5) are satisfied exactly at every iteration. Starting from Eq. (5), the sum of the
squared design variables must be less than or equal to one, i.e.,

K 2 K )
1= injk > injk'
k=1 k=1

As a result, when the linear constraint (5) is satisfied exactly, the constraint violation of
Eq. (7) is negative, i.e., ¢;(x) — e < 0. Therefore, the values of the slacks at the solution are:

This result can also be observed geometrically. Whenever the design lies on the plane, the
distance from the origin to the sphere is always greater than the distance from the origin to
the plane, unless the design is at a 0—1 point when the difference is precisely zero; see Fig. 1.
Using this result, the optimization problem Opt(y) can be written as follows:

minimize f(x)+ e (e — ¢s(x))
wrt. x>0
st. h(x) >0
Ax=e

an

where the final constraint is written as A,,x = e to indicate that it is satisfied at every iteration.

We use a continuation approach and solve Opt(7,) for a sequence of increasing 7, start-
ing each subsequent optimization problem from the previous solution. We terminate the
sequence once the design satisfies the 0—1 criterion. For all design problems, we begin the
continuation sequence with an initial penalty parameter of zero, ¥ = 0, and set the initial
design-variable values to x;j = 1/K, so that the linear constraints (5) are satisfied. We have
found that for the optimization problems presented below, the continuation history and the
optimal solution are insensitive to the starting point. We attribute this behavior to the setting
of the initial penalty parameter to zero which eliminates the spherical constraints from the
initial optimization problem. In this paper, we solve Opt(%,) using the sequential quadratic
optimization code SNOPT [Gill et al., 2005], through the Python-based wrapper in the op-
timization package pyOpt [Perez et al., 2012]. SNOPT is designed to satisfy all the linear
constraints exactly at every iteration.

4 Adjacency constraints

Frequently the designer is not given complete freedom to choose a lamination sequence.
Manufacturing requirements may place additional restrictions on the lamination sequence
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that must be reflected in the optimization problem. To model some of these requirements,
we introduce adjacency constraints, which impose limitations on the set of allowable ply
angles in one layer based on the active ply-angle variable in an adjacent layer.

For the formulation of these constraints, consider the first layer, j = 1, of the design
segments, i = 1 and i = 2, with design variables xx and x1,, respectively. If the design
variable x| is active at the solution, then the purpose of the adjacency constraint is to re-
strict the available choices in the adjacent layer to some reduced set of options. To formulate
the adjacency constraint, we introduce sets of indices %, for k =1,..., K, that represent the
indices of the angles that cannot be used in an adjacent layer when the k™-ply is active.
Using these sets, the adjacency constraint can be imposed as follows:

X11kX21p < 07 k= la'“aKa

12
p € Y. 12)

This type of constraint, in combination with the condition x;jx > 0, is a complementar-
ity constraint, where the < condition is used to conform to the standard complementarity
constraint formulation. Unfortunately, complementarity constraints violate all conventional
constraint qualifications such as the linear independence constraint qualification (LICQ) and
the Mangasarian—Fromovitz constraint qualification (MFCQ) [Nocedal and Wright, 1999].
As aresult, these types of constraints may not admit Lagrange multipliers at the solution, and
gradient-based optimizers may encounter difficulties [Scheel and Scholtes, 2000, Scholtes,
2001].

Instead of using the complementarity constraint (12) directly, we use a regularization of
the constraint due to Scholtes [2001]. In this regularization technique, the original comple-
mentarity constraint is perturbed in the following manner:

X11kX21p < T, k= 17"'7K7

13
P €I, (3

for T > 0. A series of optimization problems is then solved for decreasing values of T using
a conventional SQP-based optimizer, with each new problem starting from the previous
solution. This series of perturbed problems converges to a solution of the original problem
with some conditions on the linear independence of the constraint gradients excluding the
complementarity constraints [Scholtes, 2001].

There are many possible choices for the index sets, .#,. We exclusively use a formulation
in which the active ply-selection variable may shift by no more than L indices between plies.
In this case the index sets, .#; are defined as follows:

k<L  {k+L+1,.. K+k—L—1}
Io=L k>K—L{k—K+L+1,... k—L—1} . (14)
otherwise {1,2,...,K}\{k—L,...,k+L}

The total number of adjacency constraints can be reduced by combining groups of the
constraints (12) into a single equivalent constraint. Here, we use the equivalent constraint:

X ), 2p ST, k=1,..K, (15)
PEI

which produces one constraint per pair of constrained plies. For ease of presentation, we
write all of the grouped adjacency constraints (15) in the following form:

d(x) <, (16)
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where d € R", where n, is the number of adjacency constraints in the form of Eq. (15).

Opt'(7,7), the original optimization problem (11) with the additional adjacency con-
straints, can be written as follows:
min f(x) + e’ (e —¢s(x))
w.rt. x>0

s.t. h(x)
d(x
A, X

a7

IN IV

0
T
e

We solve the optimization problem Opt (¥, 7,) for a series {¥;,7,} with nondecreasing ¥,
and nonincreasing 7,.

4.1 Using complementarity constraints to avoid intermediate designs

The penalization approach presented in Section 3 ensures that, for sufficiently large 7, so-
lutions to the optimization problem with the full set of spherical constraints (8) are also
solutions to the optimization problem (11). However, the converse is not true. That is, so-
lutions of the modified ¢; penalty problem (11) may not be solutions to the original prob-
lem (8), even for large values of . Thus, for optimization problems with certain constraints,
the sequence of solutions to Opt(%,) may converge to a point at which ||cs(x}) —e||; #0
even for large 7,. These solutions are local minima since for a sufficiently large value of
the penalty parameter, ¥,, any feasible 0—1 point, X, with ||c;(x;) —e||; = 0, will have an
objective value, f(xy), lower than the penalized objective, f(x}) + 1x|es(x}) —e||1, even if
%) < £(xp).

We have found that Opt(},) may fail to converge to a O—1 solution for problems in
which additional constraints are imposed on the ply-selection variables. These additional
constraints impose conditions such that any feasible path away from the local solution yields
a higher value of the penalized objective. As a result, the continuation sequence does not
move away from the intermediate design, and the solution does not proceed to a 0—1 point.
To obtain a 0—1 solution in these cases we impose an additional constraint that forces the
optimum away from the intermediate design. For each ply we add the following comple-
mentarity constraint:

K—1 K
Y xip Y xmp<t, i=1...M, j=1,..N.
k=1 p=k+1

This constraint ensures that as T decreases, only a single ply-selection variable will be
nonzero in each layer. However, by itself, this constraint does not force the design toward
a 0-1 solution. We collect these constraints for each ply in every design segment into the
following vector of constraints:

g(x) <, (18)
where g(x) € RMN_As 7 — 0, points at which more than one ply-selection variable is
nonzero will become infeasible. While it would be possible to include this constraint for
all optimization problems, we have found that optimization problems with constraint (18)
tend to require more function and gradient evaluations. As a result, we include this com-
plementarity constraint only when the infeasibility with respect to the spherical constraints
les(x) —e]|1 is not reduced on subsequent continuation iterations for large values of the
penalty parameter ¥,.
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Property Value
E 54 GPa
E2, E3 18 GPa
G2, G13, Gos 9 GPa
Vi2 0.25

Table 1: Material properties used for the single-layer plate compliance minimization prob-
lem

5 Compliance minimization studies

In this section, we present a series of compliance minimization problems for plates subject to
pressure loading. These compliance minimization problems, which we denote by the generic
label CompOpt(7, T), are formulated as follows:

L 1
minimize aEuTKu + 7el (e — ¢5(x))

wrt. x>0

governed by Ku=f 19

st. dx) <7
Ax=e

where u are the nodal displacements, K is the stiffness matrix, f is the consistent force
vector, and ¢ is a scaling parameter that ensures that the compliance is scaled to a value
close to unity. In all cases, the finite-element analysis is performed using the Toolkit for
the Analysis of Composite Structures (TACS) [Kennedy and Martins, 2010], an advanced
parallel finite-element code that includes an adjoint method for computing derivatives and
has been successfully applied to aerostructural design optimization [Kennedy and Martins,
2012, Kenway et al., 2012].

For all the compliance cases, we do not use SIMP penalization and set P = 1. At each
continuation iteration, we solve the optimization problem to an optimality and feasibility
tolerance of 10~°. Each case presented here converges to a 0—1 solution such that the infea-
sibility of the spherical constraint ||cs(x) — e||; is less than 10710

5.1 Single-layer plate

In this section, we give the results of our proposed laminate parametrization for Problems
9 and 10 presented by Hvejsel et al. [2011]. The objective of these problems is to ob-
tain the ply-angle distribution in a fully clamped square plate with the dimensions 1 m x
1 m x 0.05m, subject to a 100 kPa pressure load. The material properties associated with the
plate are shown in Table 1. The plate is split into 20 x 20 design segments and the number
of allowable ply angles is set to either K = 4 with @ = {0°, +45°,90°} or K = 12 with
O ={0°, £15°, £30°, £45°, £60°, £75°, 90°}. We use a finite-element model of the plate
consisting of 20 x 20 third-order MITC9 shell elements, with just over 10000 degrees of
freedom. The design problem consists of 1600 design variables for the K = 4 case and 4800
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Fig. 2: Number of function and gradient evaluations as a function of the continuation history
for the single-layer compliance minimization problem proposed by Hvejsel et al. [2011].
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Fig. 3: Compliance and infeasibility in the spherical constraint as a function of the contin-
uation history for the single-layer compliance minimization problem proposed by Hvejsel
etal. [2011].

design variables for the K = 12 case. In both cases, we use the design problem formula-
tion (19), without the adjacency constraints, and we set the parameter & = 1/9 and use the
sequence of parameters y; =0, , = 102" 2,

For the case K = 4, our approach requires 9 continuation iterations, with a total of 215
function evaluations and 127 gradient evaluations, and the final value of the compliance is
9.013J. For the case K = 12, our approach requires 9 continuation iterations, with a total of
482 function evaluations and 278 gradient evaluations, and the final value of the compliance
is 8.822 J. Figure 2 shows the number of function and gradient evaluations required to solve
the optimization problem over the course of the continuation history. In both instances,
the first optimization is the most costly, and the subsequent optimizations require fewer
iterations. Overall, the optimization cost for K = 12 is far higher than the cost for K = 4.

Figure 3 shows the compliance and infeasibility of the spherical constraint as a function
of the continuation history. In both cases the infeasibility decreases as the penalty parameter
increases, and both of the final designs exhibit 0—1 solutions with ||cs(x*) —e|[; < 10710,
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Fig. 4: Optimal ply angles for the single-layer compliance minimization problem proposed
by Hvejsel et al. [2011].

Property Value
Ey 164 GPa
E22 8.3GPa
Glz,G13 21.0GPa
Gy 12 GPa
Vi2 0.34
Iply 0.125 mm

Table 2: Representative IM7/3501-6 stiffness and strength properties.

Figure 4 shows the optimal ply distributions for K = 4 and K = 12. For the K = 4 case,
the ply distribution shown in Fig. 4a is identical to the result obtained by Hvejsel et al.
[2011]. For the K = 12 case 16 plies have a discrepancy of £15°, representing only 4% of
the plate. Overall the designs exhibit the same trends, with the ply angles creating concentric
circles around the center of the plate, while the plies in the outer regions are pointed toward
the center of the plate.

5.2 Eight-layer plate

In this section, we consider a fully clamped, 8-layer square plate subject to a surface pressure
load. The plate is subdivided into 9 x 9 design segments, and the ply angles are restricted to
0°, £45°, and 90° resulting in 4 ply-selection variables per design ply. Instead of designing
all the angles independently, we link the plies in the middle four layers of the plate. We
write this lamination sequence as [Cy, Ca, 63, 64, 05, 06, C7, Cg], where the design segments
in the bottom layers, C;, and C,, and the top layers, C; and Cg, represent distributions of
ply angles. The representative composite material properties used for this plate are listed in
Table 2.
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The plate is 0.9m x 0.9m and is subjected to a 1 kPa pressure such that the bottom layer
of the laminate is in compression and the top layer of the laminate is in tension in the middle
of the plate. The 9 x 9 design patches are modeled using 4 x 4 third-order MITC9 shell
elements [Bathe and Dvorkin, 1986, Bucalem and Bathe, 1993]. The finite-element model
contains 1296 elements, 5329 nodes, and just over 30 000 structural degrees of freedom.
Here we use a scaling factor of @ = 1/20 to ensure that the scaled compliance function
takes on values close to unity.

We solve this problem with and without the adjacency constraints introduced in Sec-
tion 4. We use the formulation of the adjacency constraints (14), with L = 1 so that the
ply angles are permitted to change by only 45° between plies. We apply the adjacency con-
straints between the plies in adjoining design segments along the coordinate directions of the
plate but not along the diagonal. This scheme results in a total of 576 adjacency constraints.

We solve a sequence of problems CompOpt(yy,T,), starting each new problem from
the solution of the previous iteration. For the first iteration we select the penalty parameter
7 = 0, and for all subsequent iterations we take 7y, = 2"=210~3 for n > 2, while for the
regularization parameter, 1,, we use the sequence 7, = 1/ 2(0.9)”’1.
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Fig. 7: Ply-angle distributions for the compliance minimization problem without the adja-
cency constraint.
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Fig. 8: Ply-angle distributions for the compliance minimization problem with the adjacency
constraint.

Figure 5 shows the continuation convergence history and the function and gradient eval-
uations required to solve the compliance minimization problem without the adjacency con-
straints. The compliance minimization problem converges to a 0—1 point in 9 continuation
iterations with a final compliance value of 20.545 J. The entire optimization requires a total
of 563 function evaluations and 329 gradient evaluations. The main computational cost is
incurred in the first two continuation iterations, while the remaining continuation optimiza-
tions are less expensive.

Figure 6 shows the convergence history and the function and gradient evaluations re-
quired to solve the compliance minimization problem with the adjacency constraints. The
compliance problem with adjacency constraints requires 13 continuation iterations and con-
verges to a 0—1 solution with a final compliance value of 21.250. The entire optimization
process requires 1057 function evaluations and 437 gradient evaluations.

The compliance minimization problem without adjacency constraints converges to the
design [Cy, C2, 0°, 90°, 90°, 0°, C7, Cg] where the ply distributions C;, C2, C7, and Cg are
shown in Fig. 7. The compliance minimization problem with adjacency constraints con-
verges to the design [Cy, C2, 0°, 90°, 90°, 0°, C7, Cg] where the ply distributions Cy, Ca, C7,
and Cg are shown in Fig. 8. The two solutions share some similar characteristics: the center
ply angles form roughly concentric circles, while the boundary plies are oriented toward the
center of the plate. In both cases, the laminate is nonsymmetric through the thickness.
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L, = 440 mm

wp, =35 mm b=110 mm

Fig. 9: Dimensions of the buckling optimization problem formulation.

6 Buckling optimization of a stiffened panel

In this section, we present the results from a series of optimizations of a stiffened panel
with various design constraints. The geometry of the stiffened panel is shown in Fig. 9. The
panel consists of four equally spaced stiffeners aligned along the x-direction. The panel is
subjected to a prescribed end-shortening in the x-direction such that u = —A at x = L,, and
u =0 at x = 0. The displacements along the y = 0 and y = L, edges of the skin are simply
supported, while the stiffeners are permitted to elongate in the z-direction at the ends x = 0
and x = L,. For this problem, we use the representative composite material data listed in
Table 2.

We model the stiffened panel using a finite-element mesh consisting of 15 840 third-
order MITC9 shell elements: 120 along the length, 128 in the transverse direction, and 5
through the depth of each stiffener. The finite-element model contains just over 383 000
degrees of freedom. We solve the linearized buckling eigenvalue problem on 16 processors
using the parallel capabilities of TACS [Kennedy and Martins, 2010]. The buckling calcu-
lation consists of two steps. The first step is to determine the initial solution path u,, due to
the forces caused by the prescribed end-shortening f,:

Ku, =f,.

Once the solution path u;, has been calculated, the second step is to solve the following
linearized buckling eigenvalue analysis to determine the critical end-shortening, A.,, at the
lowest buckling load:

Ku+ A, G(u,)u=0. (20)

Here G(u,) is the geometric stiffness matrix, which is a function of the initial load path.
The sensitivities of the eigenvalues dA.,/dx can be determined if the derivatives of the
stiffness matrix and the geometric stiffness matrices are known [Seyranian et al., 1994].
The most computationally expensive operation during the computation of dA.,/dx is the
calculation of the derivative of the geometric stiffness matrix with respect to the design
variables, which requires a contribution from the load-path computation. The derivative of
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the geometric stiffness matrix can be found as follows:

dG G JG du,

dx  ox Bup. dx’ 2
~dG  JG _ 0
—X‘l’aiup’K &[fp*K“p],

where the operator (-) is used to denote a tensor-vector inner product.

In this buckling problem, we assume that the geometry of the panel and the number of
plies at 0°, +45°, and 90° are fixed. This problem could arise during the buckling design of
a stiffened panel where the stiffness and strength requirements dictate the geometry and ply
content of the panel. The objective is to maximize the critical end-shortening of the panel
by varying the lamination-stacking sequence subject to various constraints on the sequence
of ply angles. Here, we fix the thicknesses of the skin, stiffener-base, and stiffener at 24, 30,
and 20 plies respectively. The number of plies in the skin and the stiffener at 0°, 45°, —45°,
and 90° are 8, 6, 6, and 4, and 10, 4, 4, and 2 respectively. The outer 6 plies on both sides
of the stiffener form the bottom 6 plies of the stiffener pad. An additional 8 plies are added
in the middle of the stiffener. Note that the laminates in the skin and stiffener are balanced,
while the laminate of the stiffener-base may be nonsymmetric.

To obtain laminates with the prescribed number of plies, we impose the following linear
constraint on the ply-selection variables:

N
Y xijg=pu, i=1,...3, k=1,....4 (22)
j=1

where pj; is the number of plies in component i at ply angle 6.

Matrix-cracking can occur in laminates when several contiguous plies are at the same
angle [Haftka and Walsh, 1992]. To obtain laminate sequences that do not contain more than
four repeated plies, we use the following complementarity constraint:

pt5
Hxijk§17 l:1773 p:l,,N—S (23)
j=pr

This constraint ensures that over a five-ply range, no more than four identical plies can be
active.

We examine four different lamination-stacking sequence problems:

Case A Nonsymmetric skin, symmetric stiffener

Case B Symmetric skin and stiffener

Case C Nonsymmetric skin, symmetric stiffener, and no more than four contiguous plies at
the same angle

Case D Symmetric skin and stiffener and no more than four contiguous plies at the same
angle.
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Case A CaseB CaseC CaseD

Design variables

Skin ply identity 96 48 96 48
Stiffener ply identity 40 40 40 40
Total 136 88 136 88
Constraints

Contiguity constraint (¢, (x) < 7) - - 120 88
Local minima constraint (g(x) < 7) - 22 - -
Ply content (Bx = p) 8 8 8 8
Linear weights (A, x = e) 34 22 34 22
Total 42 52 162 118

Table 3: Design problem summary for the buckling optimization studies

Each of these optimization problems can be expressed via the following formulation,
which we denote BucklingOpt(7y, 7):

maximize A, —ve! (e —cy(x))
wrt. x>0
governed by Ku, =f),
Ku+A,G(up,)u=0
st ¢p(x)< T
gx) <t
Bx=p

(24)

A, x=e

where Bx = p are the ply constraints (22) and ¢, (x) < 7 are the contiguous ply constraints (23).
Table 3 summarizes the design problems for the four buckling optimization cases. Note that
for Case B we have added the complementarity constraints, g(x) < 7, from Eq. (18) to avoid
local minima with intermediate designs. We have found that, because of symmetry and the
ply-content constraints, the +45° layers converge to a local minimum with equal weights of
1/2. Without this additional constraint, Case B does not converge to a 0-1 point, even for
large 7.

For all the cases, we use a sequence of penalty parameters ¥, = 0, ¥, = 22107 for
n > 2 and a regularization parameter sequence of 7, = (1/2)(0.9)""!,

The lamination sequences for all cases are shown in Fig. 10, for the skin, stiffener-base,
and stiffener laminates respectively. The nonsymmetric skin design, Case A, converges to a
slightly better result than the symmetric skin design, Case B. Likewise, the nonsymmetric
skin design with ply-contiguity constraints, Case C, converges to a slightly better design
than the symmetric skin design with ply-contiguity constraints, Case D. In both the sym-
metric and nonsymmetric designs, the redistribution of the ply angles results in about a 1%
reduction in the critical end-shortening.

For the skin layup of both Case A and Case B, the 0° plies are placed in the middle, the
90° plies are placed on the exterior, and the +45° plies are placed in between. The difference
between Case A and Case B is that for Case A the 0° plies are offset from the middle and the
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Fig. 10: Optimal ply-angle sequences for the buckling optimization problems. Each solution
shows the skin, stiffener-base, and skin layups, respectively.

arrangement of the +45° plies is altered. This arrangement of ply angles is used to suppress
the overall buckling mode that involves both the skin and stiffeners.

Case C and Case D converge to solutions similar to those for Cases A and B. However,
the ply-contiguity constraint forces Cases C and D to include additional —45° plies in the
middle of the stiffener and skin to break up the large segment of 0° plies in the original
designs. These requirements have a small negative impact on the buckling performance.

Figure 11 shows the continuation history of the objective for all the cases. They all
converge to a 0—1 design within 10 to 14 continuation iterations. Cases A and C and Cases B
and D arrive at the same design after the first continuation iteration. For Cases C and D, with
the ply-contiguity constraints, the objective drops significantly between the first and second
continuation iterations, while for Cases A and B, without the ply-contiguity constraints, the
objective decreases only near the end of the continuation iterations. Note that only the final
objective value represents a physically realizable laminate. All prior continuation iterations
represent intermediate designs.

Figure 12 shows the continuation history of the infeasibility of the spherical constraints,
as measured by ||e;(x) — e||;. Note that the infeasibility falls below 10~'% on the final itera-
tion for all cases. The infeasibility for Cases A and B does not change between the first and
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eighth iterations, and then it decreases rapidly in both cases. The infeasibility for Cases C
and D decreases more slowly; this behavior is due, in part, to the ply-contiguity constraints.

Figure 13 shows the number of function evaluations required for each continuation it-
eration for all the cases. The number of gradient evaluations and the overall optimization
cost is approximately proportional to the number of function evaluations and is not shown
here. Case A requires a total of 265 function evaluations and 72 gradient evaluations, Case
B requires a total of 368 function evaluations and 94 gradient evaluations, Case C requires
a total of 821 function evaluations and 218 gradient evaluations, and Case D requires a to-
tal of 575 function evaluations and 127 gradient evaluations. Clearly the optimizations for
Cases C and D require significantly more function and gradient evaluations than do those
for Cases A and B, where the main additional cost is incurred in the first three continuation
steps. On the other hand, Cases A and B are less computationally expensive and require far
fewer function and gradient evaluations.

7 Conclusions

In this paper, we have presented a novel laminate parametrization technique that can be
used to determine the laminate-stacking sequence of a layered composite structure. In this
approach, the laminate stiffness is expressed in terms of ply-selection variables. Instead of
using discrete variables in the optimization problem, which leads to a nonlinear mixed-
integer formulation, we use a continuous relaxation of the discrete problem and impose an
additional spherical constraint so that the solution to the continuous problem satisfies the 0—
1 criterion. Instead of introducing these constraints directly into the problem, we add them
through an exact /|-penalty function so that the solutions to the relaxed problem are also
solutions to the penalized problem, for sufficiently large values of the penalty parameter
7. Additional simplifications can be achieved if the linear constraints on the ply-identity
variables are satisfied exactly at every iteration in the optimization problem. This approach
can be used as an independent penalization or as an additional penalization for discrete
material optimization (DMO) parametrizations that use a SIMP approach.

We have applied the proposed parametrization technique to both compliance minimiza-
tion and buckling design problems with up to 4800 design variables. We presented a compar-
ision of our method with the approach presented by Hvejsel et al. [2011]; we demonstrated
exact agreement for one problem and only small discrepancies for a second problem. We
then applied our parametrization to the design of an eight-ply laminate with and without
adjacency constraints. Finally, we applied the parametrization to the design of a laminated
stiffened panel for buckling. The results demonstrate that our parametrization method can
be applied effectively to both compliance and buckling design problems. Future work will
be devoted to incorporating strength-based design criteria into the parametrization.
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