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The aerodynamic shape optimization ofwings in transonic flow is an inherently challenging problem. In addition to

the high computational cost of solving the Reynolds-averaged Navier–Stokes equations, there is a complex

interdependence between the cross-sectional shape, wave drag, and viscous effects. Furthermore, it is necessary to

perform multipoint optimizations to ensure good performance for a range of flight conditions. The choice of which

flight conditions should be considered in amultipoint optimization and howmany of these should be considered is still

not well understood. This paper addresses this issue by solving a series of seven benchmark optimizations developed

by the AIAA Aerodynamic Optimization Discussion Group. These optimization cases include a single-point

optimization, four three-point optimizations, a nine-point optimization, and a five-point optimization. The

optimizations consist in minimizing the weighted drag coefficient subject to lift, moment, thickness, and volume

constraints. The optimizations were performed with respect to 768 shape design variables and an angle of attack for

each flight condition. The single-point optimization was able to achieve an 8.1% drag reduction relative to the initial

design, but it exhibited poor off-design performance. All the optimized designs were compared using a contour plot of

ML∕cD to evaluate the wing performance over the complete transonic flight operating envelope. Each of the four

three-point optimizations successfullymitigated the poor off-design performance of the single-point design.However,

the three-point optimization with widely spacedMach numbers yielded a muchmore complexML∕cD contour with

two distinct local maxima. Finally, the five- and nine-point optimizations yielded similar performance and the most

robust off-design performance.

I. Introduction

R ECENT advances in high-performance computing have
enabled the deployment of full-scale physics-based numerical

simulations and optimization in academia and industry. Computa-
tional fluid dynamics (CFD) tools and numerical optimization
techniques have been widely adopted to shorten design cycle times
and to explore design spaces more effectively. High-fidelity methods
enable engineers to perform detailed designs earlier in the design
process, allowing them to better understand the design tradeoffs and
to make more informed design decisions. In addition, advances in
sensitivity analysis via the adjoint method [1–5] have dramatically
reduced the computational effort required for aerodynamic shape
optimization.
Despite more than two decades of research, we still do not fully

understand which problem formulations should be used to obtain
practical aerodynamic designs and the best strategies for solving
aerodynamic shape optimization problems. Also, performing
aerodynamic shape optimization based on the Reynolds-averaged
Navier–Stokes (RANS) equations on a large grid remains a challeng-
ing task. To encourage a collective effort toward a better under-
standing of aerodynamic shape optimization, the Aerodynamic
Design Optimization Discussion Group (ADODG) has developed
a series of benchmark problems that range from two-dimensional
airfoil optimization based on the Euler equations to three-
dimensional wing shape optimization based on the RANS
equations.‡

The results for the single-point RANS-based aerodynamic shape
optimization of the Common Research Model (CRM) wing were
previously presented, and optimal geometries and meshes were made
publicly available [6].§ These results were obtained using the
aerodynamic shape optimization framework that was previously
developed [7,8], which uses gradient-based optimization togetherwith a
discrete adjoint to compute the gradients efficiently. The aerodynamic
shape optimization framework has also been coupled to a structural
finite element solver to enable aerostructural design optimization
[9–11].
When solving the single-point aerodynamic shape optimization of

the CRMwing, we studied multiple local minima. We found that they
do exist, but the differences in the optimal drag coefficients and the
design shape are negligible: the differences in the drag coefficients
were within 0.1 counts (0.05% of the minimum drag), whereas the L2

norms of the differences in the shape were less than 1% of the mean
aerodynamic chord [6]. In addition to solving the single-point
optimization problem developed by the ADODG, we solved a
five-point optimization. This resulted in a much more robust
aerodynamic design, as demonstrated by the evaluation of the
performance of all the optimal designs inM − CL space. Finally, Lyu
et al. [6] also presented amultilevel optimization technique, studied the
effect of the number of design variables, and solved a version of the
ADODG problem with larger thickness constraints. Other researchers
presented their solutions to the single-point CRMwing optimization in
the same ADODG special session at the AIAA SciTech 2014
conference [12–14].
To further exploremultipoint aerodynamic shape optimization, the

ADODG developed a series of six multipoint cases for the RANS-
based optimization of the CRM wing. We solve all six cases in the
present paper, as well as an additional case, and we compare the
performance of the resulting designs by making contour plots of
ML∕cD. Our optimized geometries and meshes for this case are
available as Supplemental Materials (Supplemental Data S1–S16)
for this paper.
The numerical tools used in this work are described in Sec. II. The

problem formulation, mesh, and initial geometry are described in
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Sec. III. The results of the seven multipoint optimizations are
presented in Sec. IV, followed by the conclusions.

II. Methodology

We now briefly describe the computational framework used for
aerodynamic shape optimization. The tools used herein are a subset of
the multidisciplinary design optimization of aircraft configurations
with high-fidelity (MACH) framework [9,11], which has been
successfully employed to solve aerodynamic design optimization
[6,15–17] and aerostructural design optimization problems [9–11,18].

A. Geometric Parametrization

Many different geometric parameterization techniques have been
successfully used for aerodynamic shape optimization. These include
mesh coordinates (with smoothing) [12], B-spline surfaces [19],
Hicks–Henne bump functions [20], camber-line-thickness parame-
terization [14], and freeform deformation (FFD) [21]. The only
requirement specified by the ADODG for the parameterization is that
the planform must remain fixed and changes in shape may be made
only in thevertical (z) direction.All of the aforementioned techniques
can satisfy these requirements if implemented correctly. In this work,
we use an FFD volume approach that we implemented [21] and used
extensively [16,9–11,15–18].
The FFD approach can be visualized as embedding the spatial

coordinates defining a geometry inside a flexible volume. The
parametric locations (u, v, w) corresponding to the initial geometry
are found using aNewton search algorithm.Once the initial geometry

Fig. 1 Fine FFD (right) with four times the number of control points in the coarse FFD (left).

Fig. 2 Initial geometry scaled by its mean aerodynamic chord.

Fig. 3 O-grids of varying sizes were generated using a hyperbolic mesh generator.

Table 1 Drag differences between the initial and optimized meshes

Mesh level
Chordwise

cells
Spanwise

cells
Offwall

cells y�max

Total cells InitialCD,
counts

Optimized
CD, counts

ΔCD,
counts CL

Optimized
CM

h � 0 — — — — ∞ 198.92 182.56 −16.36 — —

L0 480 368 160 ∼0.5 28,835,840 199.59 183.24 −16.35 0.500 −0.169
L1 240 184 80 ∼1.0 3,604,480 201.59 185.28 −16.31 0.500 −0.170
L2 120 92 40 ∼2.2 450,560 210.99 197.03 −13.96 0.500 −0.172
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has been embedded, perturbations made to the FFD volume
propagate within the embedded geometry via the evaluation of the
nodes at their parametric locations. We use trivariate B-spline
volumes for the FFD implementation, andwe use the displacement of

the control point locations as design variables. The sensitivity of the
geometric location of the geometry with respect to the control points
is computed efficiently using analytic derivatives of the B-spline
shape functions [22].

Table 2 Operating conditions for each optimization

Case Point Weights T i Mach CL Reynolds number M − CL plot

4.1 1 1.0 0.85 0.500 5.00 × 106

Mach

C
L

0.8 0.85 0.9
0.4

0.45

0.5

0.55

0.6

4.2 1 1∕4 0.85 0.450 5.00 × 106

Mach

C
L

0.8 0.85 0.9
0.4

0.45

0.5

0.55

0.6

2 1∕2 0.85 0.500 5.00 × 106

3 1∕4 0.85 0.550 5.00 × 106

4.3 1 1∕4 0.84 0.500 5.00 × 106

Mach

C
L

0.8 0.85 0.9
0.4

0.45

0.5

0.55

0.6

2 1∕2 0.85 0.500 5.00 × 106

3 1∕4 0.86 0.500 5.00 × 106

4.4 1 1∕4 0.82 0.500 5.18 × 106

Mach

C
L

0.8 0.85 0.9
0.4

0.45

0.5

0.55

0.6

2 1∕2 0.85 0.500 5.00 × 106

3 1∕4 0.88 0.500 4.83 × 106

4.5 1 1∕4 0.82 0.537 4.82 × 106

Mach

C
L

0.8 0.85 0.9
0.4

0.45

0.5

0.55

0.6

2 1∕2 0.85 0.500 5.00 × 106

3 1∕4 0.88 0.466 5.18 × 106

4.6 1 1∕16 0.82 0.483 4.82 × 106

Mach

C
L

0.8 0.85 0.9
0.4

0.45

0.5

0.55

0.6

2 1∕8 0.82 0.537 4.82 × 106

3 1∕16 0.82 0.591 4.82 × 106

4 1∕8 0.85 0.450 5.00 × 106

5 1∕4 0.85 0.500 5.00 × 106

6 1∕8 0.85 0.550 5.00 × 106

7 1∕16 0.88 0.442 5.18 × 106

8 1∕8 0.88 0.466 5.18 × 106

9 1∕16 0.88 0.513 5.18 × 106

4.7 1 3∕16 0.82 0.537 4.82 × 106

Mach

C
L

0.8 0.85 0.9
0.4

0.45

0.5

0.55

0.6

2 3∕16 0.85 0.450 5.00 × 106

3 1∕4 0.85 0.500 5.00 × 106

4 3∕16 0.85 0.550 5.00 × 106

5 3∕16 0.88 0.466 5.18 × 106
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Two FFD volumes are used in this work. The first is a coarse FFD
with 192 control points arranged in a 12 × 8 × 2 pattern,
corresponding to the chordwise, spanwise, and vertical directions,
respectively, as shown on the left side of Fig. 1. This FFD is used for
the initial optimization based on a coarse mesh (named the L2mesh),
described in Sec. IV. The second FFD is based on a finer pattern
(24 × 16 × 2), shown on the right side of Fig. 1, and this FFD is used
for the fine (L1) mesh optimizations. A linear least-squares
minimization is used to interpolate the optimized result from the
coarse FFD to the fine FFDbefore the optimization begins. Both FFD
volumes are shown in Fig. 1.

B. Mesh Perturbation

The FFD approach just described applies deformations only to the
surfacemesh: that is, the part of the volumemesh that lies on thewing
surface. A separate operation is performed to propagate these
perturbations to the remainder of the volume mesh. Because the
surface changes to the fixed planform are relatively small, a simple
algebraic method based on transfinite interpolation was found to be
sufficient. This method is a simplification of the more complex
hybrid algebraic-linear elasticity method described by Kenway et al.
[21], which can handle larger shape changes.

C. Computational Fluid Dynamics Solver

The flow solver used in this work is SUMad [23], a second-order
finite volume cell-centered structured multiblock solver for the
compressible RANS equations. The Jameson–Schmidt–Turkel artifi-
cial dissipation scheme [24] is employed with coefficients of 1∕64
and 1∕4 for the fourth- and second-order terms, respectively. Al-
though this is not the most accurate dissipation scheme available, its
robustness is desirable from the optimization point of view, and the
hyperbolically smoothed mesh mitigates the accuracy issue, as we
will see in the grid convergence study. The Spalart–Allmaras
turbulence model [25] is used and, with a fully coupled Newton–
Krylov method, solves the mean flow and turbulence equations
simultaneously. A discrete adjoint method implemented using
algorithmic differentiation is used for the efficient computation of the
gradients of the functions of interest. More details on this adjoint
implementation are provided by Lyu et al. [8].

D. Optimization Algorithm

The high computational cost of RANS CFD solutions dictates that
the optimization must perform a reasonably low number of function
calls. Some gradient-free methods, such as genetic algorithms, have a
higher probability of getting close to the global minimum for cases
with multiple local minima and relatively few design variables. How-
ever, as previouslymentioned, our experiencewith the optimization of
the CRM wing has failed to show significant local minima; thus, the
use of gradient-based optimization is justified [6,26].
We use the sparse nonlinear optimizer (SNOPT) [27] through the

Python interface pyOpt [28] for all the results presented here. SNOPT
is a gradient-based optimizer that implements a sequential quadratic
programming method; it is capable of solving large-scale nonlinear
optimization problems with thousands of constraints and design
variables. SNOPTuses an augmented Lagrangianmerit function, and
the Hessian of the Lagrangian is approximated using a quasi-Newton
method.

III. Problem Description

The ADODG currently defines four optimization problems of
increasing computational complexity (see footnote ‡):

1/Grid size2/3

C
D

0 5E-05 0.0001 0.00015 0.0002
180

190

200

210

220
L2

L1
L0

Zero-grid spacing

Initial

Case 4.1

Fig. 4 Grid convergence study showing that the difference between the
L1 and zero-mesh spacing value is 2.7 drag counts for the initial design.

Fig. 5 The coarse grid optimum is a good starting point for the fine-grid optimization.
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Case 1: This optimization problem consists of a two-dimensional
(2-D) Euler-based dragminimization of the NACA0012 profile
in transonic flow.

Case 2: This optimization problem consists of a 2-D RANS-based
drag minimization of the RAE2822 profile in transonic
flow.

Case 3: This optimization problem consists of a three-dimensional
(3-D) inviscid drag minimization of the = 6 wing NACA
0012 cross section in subsonic flow.

Case 4: This optimization problem consists of a 3-D RANS-based
drag minimization of the CRM wing in transonic flow (single
point and multipoint).
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Fig. 6 Merit function and optimality evolution for each optimization case.
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We focus on Case 4, which is the most physically realistic and the
most demanding in terms of computational cost. Despite the in-
creased computational cost of analyzing three-dimensional turbulent
RANS flow, we have found that this case tends to be easier from an
optimization perspective than when using the Euler equations
because the optimization algorithm is less likely to exploit physical
shortcomings of the underlying numerical model.

A. Initial Geometry

The initial geometry is a wing with a blunt trailing edge extracted
from the CRM geometry. The geometry and specifications are given
by the ADODG [19]. The fuselage and tail are deleted from
the original CRM, and the root of the remaining wing is moved to the
symmetry plane. The initial geometry is shown in Fig. 2. All the
coordinates are scaled by the mean aerodynamic chord (275.8 in.).
The reference wing area is 3.407014, and the point about which the
pitching moment is taken is �x; y; z� � �1.2077; 0.0; 0.007669�.

B. Computational Grids

We generated a sequence of CFD meshes using an in-house
hyperbolic mesh generator. The computational technique used in the
meshing scheme follows thework ofChan andSteger [29]. The three-
dimensional multiblock mesh is generated by marching a multiblock
patching on the wing surface a sufficient distance away from the
wing, thus automatically generating an O-type topology. For all the

cases, the far-field boundary is located at a distance of 25 times the
wing semispan. We set the offwall spacing to ensure a maximum y�

value of less than one for the L1 mesh at the nominal operating
condition of Re � 5 million and a Mach number of 0.85.
Wegenerated a family of three uniformly refinedmesheswith sizes

ranging from450,000 cells to over 28million cells (see Table 1 for the
exact numbers). The surfacemesh and symmetry plane for each of the
meshes are shown in Fig. 3. Only the two coarser meshes (L2 and L1)
are used for optimization; the finer one (L0) is used for the grid
convergence study only.
We performed a grid convergence study using the initial geometry

and the optimized geometry from the single-point optimization of
Case 4.1 (see Table 2 and Fig. 4). For the optimized configuration, we
use the shape from the L1 optimized geometry with the L0 and L2
meshes. For this reason, the L2 drag for the optimized configuration
is slightly higher than the result from the actual L2 optimization (see
Fig. 4). We compute the zero-grid spacing result by extrapolating the
two finest grid results, which are assumed to liewithin the asymptotic
convergence region. The difference between the extrapolated zero-
grid spacing value and the L1 mesh is 2.7 counts (1.4%). The low
slope of this grid convergence plot and the near second-order
convergence indicates that the lack of wake refinement due to the
O-grid is not a concern.
Given the large increase in the computational cost when

optimizingwith theL0mesh,we decided that theL1meshwas a good
compromise between computational cost and fidelity [17]. This

Fig. 7 Case 4.1 has the highest performing design at the nominal operating condition. The drag divergence curves show a large drop near the on-design
condition.
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decision is justified by the observation that the drag reductions from
the single-point optimization on the L0 and L1 meshes are nearly
identical. This indicates that the drag improvement predicted by the
L1 mesh is entirely realized on the L0 mesh.

C. Optimization Cases

For the CRM wing geometry, the ADODG defines a total of six
optimization cases. Case 4.1 is the baseline single-point optimiza-
tion. Results for this case have been reported previously by the Lyu
and Martins, and the resulting geometries and meshes are publicly
available [17]. Cases 4.2 through 4.5 are a series of multipoint
optimizations, each consisting of three different operating condi-
tions. Various combinations of Mach number, CL, and Reynolds
number are considered. Case 4.6 is a nine-point optimization
combining the operating conditions of Cases 4.2 and 4.5, with the
addition of the “corners” of the resulting 3 × 3 pattern in M − CL
space.We also add an additional problem, Case 4.7, by removing the
corner points of Case 4.6. A complete description of each of the cases
is given in Table 2.
The design point weights T i for the multipoint cases 4.2 through

4.5 are derived from a one-dimensional quadrature rule and from a 2-
D quadrature rule for Case 4.6. These weights correspond to
performing the numerical integration of CL over the M − CL space
with a uniform continuous weighting function. This choice of
weights would be logical if we valued all flight conditions equally.
However, this is usually not the case, as the probability distribution
over the flight condition space is nonuniform with a higher
probability near the nominal flight condition [10].

To investigate if we can obtain a similar result with a lower number
of points, we created Case 4.7, where we eliminate the corner points
fromCase 4.6, resulting in a five-point cross. Theweights assigned to
the four corner points are reassigned evenly to the four remaining off-
design points, yielding similar weights for all flight conditions. This
distribution of weights puts more relative emphasis on the nominal
flight condition, around which the aircraft is more likely to fly.
The general form of each L1 optimization problem statement is

shown in Table 3, where N is the number of flight conditions
considered:

Fig. 8 Case 4.2 has a weak shock at the on-design condition and flatter drag divergence curves.

Table 3 Design optimization problem statement for N flight
conditions

Function/variable Description Quantity

minimize
P

N
i�1 T iCDi Weighted average drag

with respect to xshape z perturbation in FFD
control points

768

αi Angle of attack N
Total design variables 768� N

subject to CLi − C
�
Li
� 0 Lift constraints N

CM ≥ −0.17 Moment constraint
at nominal condition

1

V ≥ Vinit Volume constraint 1
tj ≥ 0.25tjinit Thickness constraints 750

Total constraints 752� N
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The coarse grid (L2) optimization problem statements are similar,
except that there are only 192 FFD control points. The designvariables
correspond to those stipulated by the ADODG description. The shape
design variables in our case are the z-coordinate displacements of the
FFD volume control points, i.e., these points are allowed tomove only
in the vertical direction. In addition, each operating condition has an
independent angle-of-attack variable. Equality constraints for the lift
coefficient are enforced at each operating condition. A single pitching
moment inequality constraint is enforced only at the nominal flight
condition (M � 0.85, CL � 0.5) for each optimization.
Finally, two types of geometric constraints are imposed: the

internal volume of thewingmust be greater than or equal to the initial
volume, and the thickness of thewingmust be greater than or equal to
25% of the initial thickness at any point. We approximate the wing
internal volume by discretely adding the volume from a grid of
24 × 29 hexahedral volumes distributed from the 1 to 99% chord
locations for which the nodes are projected onto the wing upper and
lower surfaces. We compute the thickness constraints in a similar
manner: a grid of 25 × 30 nodes from the 1 to 99% local chord
locations are projected vertically onto the upper and lower surfaces.
The length of each line segment is then constrained to be greater than
25% of the initial length.

IV. Results

A. Multilevel Optimization

In an effort to reduce the overall computational cost of performing
the multipoint optimizations, we employ the multilevel optimization

approach described previously by Lyu and Martins [17]. Thus, we
first optimize with a coarse mesh and then use the coarse result as a
starting point for the optimization based on a finer grid. This is
analogous to the grid sequencing startup technique often employed in
CFD solvers. Because of the much lower cost of optimizing on the
coarse grid, we can afford to do more iterations on this grid. For this
approach to be effective, the coarse grid must capture the main
characteristics of the flow. For the shape design optimizations
presented in this paper, this means capturing the shock strength and
location, as well as quantifying the drag reduction that is possible by
increasing the root thickness and decreasing the tip thickness.
A comparison of the initial and optimized designs for Case 4.1

is shown in Fig. 5. The first row shows the initial and optimized
designs using the L2 grid. The second row shows the L1 optimization
using the L2 optimized shape as the starting point. Slices of the
airfoil shapes and the corresponding Cp distributions are shown for
six spanwise locations on the right side of the figure. We see that
the coarse optimization (using the L2 grid) successfully eliminates
the shock on the upper wing surface, resulting in parallel isobars.
Even without further optimization, almost all of the drag improve-
ment predicted by the coarse grid is realized on the fine grid.
Comparing the lines on the Cp distributions, we see that the only
significant difference is the appearance of aweak shock on the refined
grid. The fine optimization further improves the design, eliminating
this shock and lowering the drag even further. This behavior is
consistent with previous results, where three grid levels were used
[17]. We employ this multilevel approach for all the optimizations in
this paper.

Fig. 9 Case 4.3, which is similar to Case 4.2, exhibits a weak on-design shock.
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B. Optimization Results

In this section, we present the main results for the seven CRM
wing cases summarized in Table 2. Figure 6 shows the evolution of
the SNOPTmerit function and optimality. The merit function is used
in the augmented Lagrangian formulation, and the optimality is a
measure of how well the Karush–Kuhn–Tucker conditions are
satisfied [27].
The lift, moment, thickness, and volume constraints are all

satisfied to a tolerance of 1 × 10−5 at the end of each optimization. A
200-iteration limit was imposed for the coarse-grid optimizations,
resulting in two to three orders of magnitude reduction in the
optimality. For the L1 optimizations, a fixed limit of 75 iterations was
imposed, resulting in another one to two orders of magnitude
reduction in the tolerance. For most of the optimizations, the final
tolerance of the L1 optimization is the same order ofmagnitude as the
L2 optimality but, on average, slightly higher. There may be a small
improvement that could be made in the fine-grid optimizations, but
we feel they are sufficiently converged for the purposes of com-
parison between the optimized designs.
Figures 7–13 show a summary of the key features of each

optimization. The initial configuration results are shown with the
optimized results, except for Fig. 13, which compares Cases 4.6 and
4.7. The planform view of the wing shows the Cp contours of the
initial geometry (left) and the optimized geometry (right) at the
nominal operating condition, along with the corresponding drag
coefficients. Just below the planform view, the front view also shows
theCp contours and adds a visualization of the shock surface [30], as
well as the physical thickness variation in the wing. Below this, we

plot the spanwise lift, twist, and thickness-to-chord ratio (t∕c)
distributions. A reference elliptic lift distribution is shown in gray.
The right side of the figure displays the cross-sectional shape andCp
distribution at the six spanwise locations stipulated in the ADODG
case description. The leftmost three plots on the bottom of the figure
show the polar resulting from an alpha sweep at the nominal Mach
number of 0.85. The lift, drag, and moment curves corresponding
to this alpha sweep are displayed. Finally, the bottom-right plot
shows the drag divergence behavior for three lift coefficients:
CL � �0.45; 0.50; 0.55�.
There are a few overall trends that are common to all seven

optimized results shown in Fig. 7–13. One of these trends is that all
the designs result in a significant increase in the t∕c near the root, and
a large reduction in t∕c near the tip. We have previously noticed this
behavior for Case 4.1 [17], and the same design tradeoff takes place
for the multipoint cases as well. Due to the minimum volume
constraint, and the fact that the drag increases with t∕c, it is better to
have the higher values of t∕c inboard of the Yehudi break, where the
chords are larger, and thus the trade between viscous pressure drag
and volume ismore favorable. Anotherway of looking at this tradeoff
is that a wing with higher t∕c inboard results in a smaller frontal area
for a given volume than a wing with constant t∕c.
Overall, there is no significant change in the twist between the

initial design and any of the optimized designs. As expected,
the optimized lift distribution for Case 4.1 is an elliptic distribution,
which yields the lowest induced drag. The optimizations with
closely spaced Mach numbers, Cases 4.2 and 4.3, also have lift
distributions that are close to elliptical. The remaining widely spaced

Fig. 10 Case 4.4 has stronger shocks at the on-design condition; the drag divergence curves show multiple dips near the selected operating conditions.
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optimizations have a slightly less elliptical distribution, but they are
still closer to elliptical than that of the initial design.
The shock surface visualization highlights some of the tradeoffs

the optimization is making. Cases 4.2 and 4.3 exhibit weak shocks
at the design condition. For the remaining cases, stronger shocks
are present at the nominal design condition. Shocks can be seen in all
the cases except Case 4.1, which is an expected result of a single-
point optimization. The effect of the aforementioned t∕c reduction
can be clearly seen in the airfoils, especially in airfoils E and F.
The optimization has thinned out the airfoils at the tip, especially at
the leading edge. This effect is slightly less pronounced in the
multipoint designs. This characteristic is highly undesirable from a
practical design perspective because of poor low-speed CLmax

performance and increased structural weight or possible structural
infeasibility.
The preceding discussion has focused on the large-scale changes to

the design. In addition to these common changes, the optimizer has
made changes on a much smaller scale to improve the local flow
characteristics. One issuewith the initial CRM geometry is that there
is a small amount of trailing-edge flow separation on the outboard
span of the wing at the nominal flight condition. This was done by
design to provide an additional challenge for the Drag Prediction
Workshop [31]. Through very small shape modifications near the
trailing edge, the optimization is able to completely eliminate this
flow separation from the nominal operating condition for all seven
optimizations. This change is shown in Fig. 14 for Case 4.1. This

demonstrates that ourRANSmodel is able to account for the complex
turbulent boundary-layer interactions near the trailing edge and that
the numerical optimization can fix local issues in the pursuit of the
minimization of total drag.
The drag divergence curves for the optimized designs yield

interesting trends. The single-point optimized design has a significant
drop inCD around the nominal operating condition. This design does
not take into account nearby operating conditions, so CD is hindered
for off-design conditions. This undesirable characteristic is the
motivation for multipoint optimization. All of the multipoint optimi-
zations show considerably better off-design performance.
Even with multipoint optimization, it is possible to see the effects

of a particular operating condition. Case 4.5 and, to a lesser extent,
Case 4.4 show this clearly. There are three distinct dips in the
CL � 0.5 drag curve for Case 4.5 at Mach � �0.82; 0.85; 0.88�,
which coincide with the selected design Mach numbers. The drag
divergence curves for the closely spaced design points (Cases 4.2 and
4.3) do not show this effect as dramatically. However, the drag
divergence curves are lowered over a narrower range. Finally,
Cases 4.6 and 4.7 show a uniform reduction in the drag over the three
lift coefficients and over the full range of Mach numbers.
Although drag coefficient divergence curves can yield useful

insight into a particular optimized design, it is instructive to examine
the contours ofML∕cD as well. This is a two-dimensional extension
of the drag divergence curves but with an important distinction. In the
context of commercial transonic wing design, it is not the actual

Fig. 11 Case 4.5 result, which is similar to Case 4.4; stronger shocks are present at the on-design condition.
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maximumvalue ofL∕D that is important but rather the range factor in
the Breguet range equation:

R � L

D

V

c
ln
�
W1

W2

�
(1)

where L∕D is the lift-to-drag ratio, V is the velocity, c is the
thrust-specific fuel consumption, and W1 and W2 are the initial and
final cruise weights, respectively. The range factor is L∕D V∕c. We
make the assumption that the speed of sound is constant, which is a
good approximation for the typical cruise altitudes of modern
airliners. With this assumption, the velocity may be replaced by the
Mach number. For the thrust-specific fuel consumption, we use a
zero-dimensional engine model to estimate the thrust and thrust-
specific fuel consumption for a high-bypass-ratio turbofan similar to
a GE-90. The variation of the thrust-specific fuel consumption as a
function of Mach number and thrust at an altitude of 37,000 ft is
shown in Fig. 15. With fixed W1∕W2, ML∕cD may be used as a
surrogate for the aircraft range.
We evaluate a two-dimensional grid of samples inM − CL space.

Once the drag value is known, we can determine the required thrust
and the corresponding thrust-specific fuel consumption. Note that the
drag associated with the fuselage, horizontal stabilizer, vertical
stabilizer, and pylons is not included, contributing to an under-
estimation of the drag. On the other hand, the wing-only geometry

has a lower effective span than the full configuration, and our
computations use the wind-tunnel test Reynolds number (5 million)
instead of the flight Reynolds number (around 40 million), which
contributes to an overestimate of thewing drag. Therefore, the values
shown in these contours do not correspond to the real aircraft.
However, since the various optimization cases are consistent, these
contours are adequate for performing a qualitative comparison
between the different optimization formulations.
A comparison of the ML∕cD contours for the initial and opti-

mized designs is shown in Fig. 16. Two contour values are
highlighted: The contour that corresponds to 99% of the maxi-
mum value of the initial design and the contour that is the 99%
contour of the optimization’s own maximum value are shown.
The motivation for plotting these 99% contours is that airliners
typically fly between the Mach number, yielding maximum range
(approximated by the maximumML∕cD value in the figures) and a
higher Mach number that yields a 1% fuel-burn drag penalty but a
decrease in the flight time. In addition, the area enclosed by the 99%
contour is a measure of robustness for a given design: AnyM − CL
combination within the contour incurs no more than a 1% fuel-burn
penalty.
The performance differences resulting from the different optimiza-

tions are now evident. The sharp drag dip for Case 4.1 appears as a
small and narrow 99% contour around the nominal operating
condition. For this case, the area enclosed by the 37.63 contour is

Fig. 12 Case 4.6 has stronger on-design shock waves; however, the drag divergence curve shows more consistent behavior over a wider range of Mach
numbers.
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approximately the same as in the initial design, although it has been
shifted to an overall higher Mach number. As expected, the absolute
maximum ML∕cD value is obtained by the single-point optimized
design (Case 4.1). The next highest values are from the closely spaced
design point optimizations (Cases 4.2 and 4.3). For a reduction of less
than 0.6% in maximum ML∕cD, a significantly enlarged 99%
contour is obtained.
We can also see how the choice of design points influences the

shape of the resulting contours. The three CL values at fixed Mach
numbers in Case 4.2 result in a narrower and taller 99% contour than
for Case 4.3, which is wider and shorter, closely matching the
selected operating conditions. For conciseness, we plot only
Case 4.5, but Case 4.4 exhibits similar characteristics. In this case, a
multimodal operating envelope emerges, as the 99% contour exhibits
two distinct regions. One region, containing the overall maximum, is
near the nominal operating condition. The second is a small high-
performance region near the high-Mach-number design point.
Case 4.5 has the lowest maximum of the optimized designs,
presumably due to difficulties in reducing the drag at the high-Mach-
number operating condition.
The nine-point optimization (Case 4.6), despite containing the

same three operating conditions as Case 4.5, has much more robust
behavior. Although this design does have the second lowest
maximum value, it is the most robust of the optimized designs when
considering the area enclosed by the 99% contour, and this contour is
fairly close in size to the 99% contour of the initial design. The five-

point optimization (Case 4.7) produces an equally robust design as
Case 4.6, but it uses about 55% of the computational resources.
Figure 17 shows that all the optimized designs are markedly less

robust than the initial design, as indicated by the size of the 99%
contour. However, the nine-point design of Case 4.6 and the five-
point design of Case 4.7 achieve a robustness that is almost as good as
that of the initial design. Furthermore, these optimizations achieve
this performance at a Mach number much closer to the desired
nominal value.
Although the optimal design for Cases 4.6 and 4.7 appears to be

robust, the comparison in Fig. 17 is not entirely fair, since the
maximumvalue forCase 4.6 is only 99.08%of themaximumvalue of
Case 4.2. For a more appropriate comparison, we compare the 99%
contour value from Case 4.6 (ML∕cDmaximum of 39.11) for all the
optimized designs. This is shown in Fig. 18. The optimizations with
closely spaced flight conditions (Cases 4.2 and 4.3) now compare
much more favorably with the nine-point optimization. Case 4.2,
which includes threeCL values at the sameMach number, appears to
be more effective than the case with three different Mach numbers at
the same CL. Unsurprisingly, only the cases that include design
points at the M � 0.88 operating condition (Cases 4.4 through 4.7)
show consistently good performance up to and includingM � 0.88.
From this set of optimization problems, we can draw a few general

conclusions with respect to the number and distribution of the
operating conditions. It is clear that the single-point optimization
results in a design with poor robustness with a higher peak perfor-

Fig. 13 Cases 4.6 and 4.7 yield similar characteristics, especially for the inboard wing sections

124 KENWAYAND MARTINS

D
ow

nl
oa

de
d 

by
 L

IB
R

A
R

Y
 o

n 
Fe

br
ua

ry
 5

, 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
41

54
 



mance. All the three-point optimizations remedied this situation with
the widely spaced flight conditions (Cases 4.4 and 4.5), yielding
larger 99% contours (although the multimodal performance is
undesirable). At least five design flight conditions forming a cross in
M − CL space are required to produce a robust design. However, if a
smaller operational envelope is acceptable, as defined by Cases 4.2
and 4.3, three more closely spaced flight conditions may be suf-
ficient. The nine-point optimization (Case 4.6) yields the most robust
result, but it incurs the largest computational cost. The five-point
optimization (Case 4.7) is the best compromise: With four fewer
design points, we can obtain a design with slightly higher peak
performance and practically the same off-design performance.
We must caution, however, that all these optimization cases are of

only academic interest and are not representative of real aerodynamic
shape optimization for an actual transonic aircraft configuration for
several reasons. First, the lack of the fuselage results in an incorrect
lift distribution. In fact, the lift distribution of the initial CRM
combined with the fuselage is closer to elliptic than that of the wing
alonewithout the fuselage [11,32]. Second, the analysis is performed
at a wind-tunnel Reynolds number of 5 million, as opposed to the
flight Reynolds number of about 40million. It is currently not known
what effect this would have on the optimal design. Third, the 25%

lower bound on the thickness constraints is impractical. In reality, an
internal structurewould be required to support thewing loads, and the
optimized thickness distributions would result in structural issues. In
addition, an aircraft wing is not rigid and deforms according to the
actual flight loads. This bends and twists the wing, resulting in a
different spanwise lift distribution, shock structure, and induced drag.
Previouswork has addressed the shortcomings of these aerodynamic-
only optimizations via aerostructural optimization [9–11,33], but this
is currently beyond the scope of the ADODG benchmarks.
We have shown through this series of optimizations that a

multipoint formulation with at least three points is necessary for
robust off-design performance. Note that, in this paper, “off-design”
refers to flight conditions that are different from the nominal
condition but still within the nominal operating envelope. However,
there are a number of truly off-design conditions that are not meant to
occur in normal flight operations. One example is the buffet onset
margin: a 1.3 g margin relative to the first perception of buffeting that
determines the range of Mach numbers and lift coefficients at which
the aircraft may be safely operated. Recent work by the authors has
shown that this is an important consideration for transonic wing
design optimization [34]. Other off-design performance consid-
erations include the L∕D at intermediate Mach numbers for climb
performance, as well as the low-speed CLmax

of the wing, both with
and without the high-lift system deployed.
When examining the results of the present work, a natural question

arises: Which set of flight conditions and associated weighing
constants best represent the actual performance we want to maxi-
mize?We did not attempt to completely answer this question here but
instead compared the results from various multipoint formulations
that are based on intuition. To answer this question, we must first
decidewhat is the true objective function. In aircraft design, the actual
objective is a combination of takeoff weight (which includes the fuel
weight and structural weight) and fuel burn [35]. When considering
the aircraft performance, we would ideally consider all the missions
flown by the aircraft accounting for the frequency of each mission
and minimize the objective function evaluated for all those missions.
To this end, Liem et al. [10] developed a method for finding the flight
conditions and corresponding weighing constants based on actual
mission data.

C. Computational Cost

Multipoint three-dimensional RANS-based aerodynamic shape
optimizations are costly from a computational perspective, and we
make every effort to reduce the total cost of the optimizations. Table 4
lists the total CPU cost, in processor hours, required to generate the
results presented in this paper. All the computations were performed
on the Stampede Compute Cluster at the University of Texas [36].

Fig. 14 Shape optimization eliminates the trailing-edge flow separation present in the original CRM wing.

Fig. 15 Thrust-specific fuel consumption (c) contours given by the
engine model.
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Each computational node consists of two Intel E5-2680 CPUs
running at 2.7 GHz with 32 GB of DDR3-1600 MHz RAM. The
nodes are connected with FDR InfiniBand. The analyses for the L2
grid used 16 cores (one node) for each flight condition, whereas the
analyses for the L1 grid used 64 cores (four nodes) for each flight
condition.

Approximately 60% of the total computational cost is allocated to
the optimizations, and the remainder is used for postprocessing. The
ML∕cD contour plots are particularly costly, since each requires 399
individual CFD evaluations. These are evaluated by performing 19
angle-of-attack sweeps for different Mach numbers, each with 21
angle-of-attack values. Since successive angles of attack are close
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Fig. 16 ML∕cD contours for the initial and optimized geometries, where the contour lines are spaced at 0.5 intervals. The maximum is shown by the
square, whereas the diamonds represent the flight conditions that were considered.
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together, each solution is started from the solution at the previous

angle of attack, so each solution takes substantially less time to

converge than a solution from a freestream initial condition.

V. Conclusions

A series of seven optimizations of increasing complexity from the
CRM wing shape optimization benchmark defined by the ADODG
have been presented. Theweighted average dragwasminimizedwith
respect to 768 shape design variables, subject to lift, pitching mo-
ment, volume, and thickness constraints. A two-level optimization
approach was used: a coarse-grid optimization was carried out on a
450,000-cell mesh (L2) with 192 shape variables, followed by a
second and final optimization using a 3.6-million-cell mesh (L1) and
768 shape variables.
At the nominal design operating condition of M � 0.85 and

CL � 0.5, the single-point optimization reduced the drag coefficient
by 8.1%, from201.59 to 185.28 counts. Themultipoint optimizations

traded drag improvement at the nominal condition for increased
performance over a wider range of operating conditions.
To compare the performance of the optimized designs, we plotted

ML∕cD in theM − CL plane. This is a good way to compare wings
designed for transonic flow conditions, because it approximates
the range factor in the Breguet range equation. The 99% contour of
the maximum ML∕cD value was used to give an indication of the
robustness of each optimized design. The single-point design had
the highest range factor, but it was the least robust of the optimized
designs. The closely spaced three-point optimizations (Cases 4.2 and
4.3) increased the robustness of the design while lowering the
maximum value by less than 0.5%. One of the two widely spaced
design point optimizations (Case 4.5) showed two peaks inML∕cD,
indicating multimodal performance. In essence, this optimization
combined three single-point designs in the same geometric shape.
The most robust performance was obtained by the nine-point
optimization (Case 4.6). The increased number of operating condi-
tions at differentCL values mitigated the effects of the widely spaced
operating conditions of Cases 4.4 and 4.5. The robustness of this
design was determined by the area enclosed inside the 99% contour,
which compared favorably with that of the initial design. Finally, the
additional five-point optimization (Case 4.7) provided the best
compromise: The peak performance was higher than the nine-point
case and was almost as robust, but it required a much lower com-
putational effort.
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