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Abstract High-fidelity computational modeling and optimization of aircraft configurations have
the potential to enable engineers to create more efficient designs that require fewer unforeseen mod-
ifications late in the design process. Although aerodynamic shape optimization has the potential
to produce high-performance transonic wing designs, these designs remain susceptible to buffet.
To address this issue, we present a separation-based constraint formulation that constrains buffet
onset in an aerodynamic shape optimization. The separation metric developed in this work is ver-
ified against a common buffet prediction method and validated against experimental wind tunnel
data. A series of optimizations based on the AIAA Aerodynamic Design Optimization Discussion
Group wing-body-tail case are presented to show that buffet-onset constraints are required and to
demonstrate the effectiveness of the proposed approach. Although both single-point and multipoint
optimizations without separation constraints are vulnerable to buffeting, the optimizations using
the proposed approach move the buffet boundary to make the designs feasible.

1 Introduction
Numerical optimization is a powerful tool that can complement more traditional design methodolo-
gies. Design optimization based on high-fidelity, physics-based simulations, such as computational
fluid dynamics (CFD) and computational structural mechanics, is especially promising [1, 2]. By
capturing the relevant physics of the underlying system, performance improvements predicted by
numerical simulations are more likely to be realized in the real world. Effective optimization
algorithms, however, invariably exploit limitations in the numerical models or in incomplete for-
mulations of the optimization problems by violating important design constraints that are not
included.

CFD-based aerodynamic shape optimization dates back to Hicks et al. [3], who first tackled
airfoil design optimization problems, and has steadily evolved over the last few decades. One of
the major advancements in this field was the development of adjoint methods [4, 5, 6], which
in conjunction with gradient-based optimization has enabled optimization with respect to large
numbers of shape parameters, enabling the aerodynamic shape optimization of wings [7, 8, 9,
10, 11, 12, 13, 14] and full configurations [15, 16, 17]. Recently, a series of benchmarks that
include airfoil, wing, and wing-body cases was developed by the AIAA Aircraft Design Optimization
Discussion Group (ADODG). These cases allow researchers to compare the results of different
design methods and to evaluate their relative strengths and weaknesses [12, 18, 19, 20, 21, 13]. The
adjoint technique used in aerodynamic shape optimization has also been extended to simulations
that couple aerodynamics and structures, enabling the simultaneous design optimization of outer
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mold line shape and structural sizing, while accounting for wing flexibility and aerostructural design
trade-offs [2, 1, 22, 23]. Considering multiple disciplines in design optimization is the basic principle
of multidisciplinary design optimization (MDO) [24], and the coupled adjoint technique has been
extended to general MDO problems [25].

Buffet is a critical aspect of transonic wing design and has yet to be explicitly considered in
aerodynamic shape optimization. Buffet may be broadly defined as a high-frequency aerodynamic
instability caused by flow separation. This instability is undesirable because the resulting unsteady
aerodynamic loads compromise the ability to comfortably control the aircraft and the aerodynamic
performance.

In the transonic regime, as the Mach number or lift coefficient increases, shocks on the wing
gradually increase in strength. The interaction of the shock-induced separation at the foot of
the shock with the oscillation of the shock causes transonic buffet, which limits the maximum
aircraft lift coefficient and Mach number. Because jet transport aircraft are most efficient when a
combination of cruise Mach number and lift-to-drag ratio is maximized, buffet is often an active
design constraint. The maximum lift coefficient at a given Mach number decreases with increasing
Mach number, effectively limiting the aircraft altitude, i.e., the aerodynamic ceiling. This ceiling
is also known as the “coffin corner,” because, although the Mach number may be decreased to
increase the lift coefficient and therefore achieve a higher altitude, the stall speed also increases
due to the decrease in density, which reduced the difference between the stall speed and maximum
speed. Ultimately, the stall and buffet boundaries intersect at a sufficiently high altitude, making
the aircraft impossible to fly—hence the “coffin corner.”

Given that buffet crucially affects transport aircraft performance, a need exists for an effective
way to formulate buffet as a design constraint. Although buffet has been considered in a few design
optimization studies, it has yet to be considered as a constraint in CFD-based design optimization.
Wakayama et al. [26] performed MDO of a wing using a low-fidelity method calibrated against
CFD to estimate buffet onset based on Mach number, local wing sweep, thickness-to-chord ratio,
and lift coefficient. The method was calibrated against flight test and CFD calculations, and it
was also used in the MDO of a blended-wing body configuration [27]. More recently, Bérard and
Isikveren [28] have developed another inexpensive approach to enforce a buffet onset constraint in
aircraft conceptual design optimization. Buffet has been mentioned in the context of CFD-based
aerodynamic shape optimization as a requirement to verify after optimization [29, 30], and it has
also been implicitly considered in airfoil optimization by the addition of the drag at off-design
conditions to the objective function [31]. Thus, a need exists to develop a CFD-based method to
explicitly enforce a buffet onset constraint.

By using unsteady CFD, a number of researchers have made strides towards modeling the
physics of transonic buffet of airfoils [32, 33, 34, 35, 36, 37, 38]. However, unsteady CFD is currently
too computationally intensive to serve as a constraint in a design optimization because it requires
hundreds of objective and constraint function evaluations. To address this issue, Thomas and
Dowell [39] used the frequency domain approach to model the unsteady aerodynamics; a technique
that was previously used in design optimization involving unsteady phenomena [40, 41]. They also
implemented a discrete adjoint to obtain gradients and demonstrated the use of this approach in
the optimization of an airfoil. Although they did not implement buffet onset as a constraint, they
minimized the peak of the unsteady loading for an NACA 0012 airfoil.

In the present work, we are not interested in modeling actual unsteady transonic flow shock
buffeting. Instead, our goal is to predict the transonic buffet onset lift coefficient for fixed Mach
and Reynolds numbers, so that we can add a design constraint that keeps the wing design within
the buffet boundary at 1.3g. If this constraint were implemented correctly, the optimization would
minimize the drag at the design lift coefficients, subject to buffet constraints. It is particularly
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important to implement the buffet requirement as a true optimization constraint, as opposed to
adding buffet off-design points in the drag minimization because (1) the optimal solution might not
actually satisfy the buffet requirement, and (2) the solution will be suboptimal with respect to the
properly constrained formulation.

To quantify buffet onset in aerodynamic shape optimization, we develop a new prediction
method that is based on the extent of separated flow present on the wing in a steady Reynolds-
averaged Navier–Stokes (RANS) CFD computation. We then use this method constrain the extent
of separated flow near the buffet onset boundary, which ensures that the optimized design has a
sufficient buffet margin, while simultaneously improving the performance at the design operating
conditions. The constraint function is smooth and its gradient with respect to the wing shape
variables is computed by using a discrete adjoint method. We demonstrate the effectiveness of
the proposed approach by applying it to the multipoint drag minimization of the wing-body-tail
geometry defined by ADODG Case 5 [21].

This paper is organized as follows: We begin by outlining the key aspects of the computational
methods used in this work, following which we describe the separation constraint formulation and
how it is used to enforce the buffet onset constraint. We verify the proposed approach by comparing
it with the results of an alternate numerical approach, and we also validate it by comparing it with
the results of a wind tunnel experiment. Finally, we present a sequence of numerical aerodynamic
optimization studies based on the ADODG wing-body-tail case to evaluate how the buffet-onset
constraints affect in transonic wing aerodynamic shape optimization.

2 Computational Methods
In this work, the aerodynamic shape optimization is done with the MDO of Aircraft Configuration
with High Fidelity (MACH) framework. This framework was developed for the aerostructural design
optimization of aircraft configurations [2, 1], and it integrates modules for CFD, structural analysis,
geometry parametrization, and numerical optimization. MACH has been used extensively for both
aerodynamic shape [11, 12, 42, 17, 14] and aerostructural design optimization [43, 23, 44, 45] of
aircraft and hydrofoils [46]. Herein, we use only the aerodynamic capabilities of MACH, which we
describe in the remainder of this section.

1 Computational Fluid Dynamics Solver

The flow solver in MACH is ADflow, which solves the RANS equations in either steady, unsteady,
or time spectral modes [47, 48]. ADflow applies the finite-volume method to structured, body
fitted, multiblock grids. The discretization scheme uses central fluxes with artificial dissipation
and the Spalart–Allmaras turbulence model [49]. A matrix dissipation scheme [50] is used herein
except where explicitly noted. A fully coupled Newton–Krylov method is used to simultaneously
solve the mean flow and turbulence equations. A discrete adjoint method is implemented by using
a combination of reverse-mode automatic differentiation and analytic methods for the efficient
computation of the gradients of functions of interest. Lyu et al. [51] describe the CFD adjoint
implementation in more detail.

2 Geometric Parametrization

In this work, we use a free-form deformation (FFD) volume approach [52] that we implemented [53]
and have used extensively in the past for aerodynamic [10, 54, 11, 12, 17, 55] and aerostructural
optimization studies [2, 43, 1, 23]. The FFD approach may be visualized as embedding the spatial
coordinates that define a geometry inside a flexible volume. The parametric locations corresponding
to the baseline geometry are found by using a Newton search algorithm. Once the baseline geometry
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is embedded, perturbations made to the FFD volume propagate within the embedded geometry by
evaluating the nodes at their parametric locations.

3 Mesh Movement

The FFD approach used to parametrize the geometry applies deformations only to the surface mesh;
that is, the part of the volume mesh that lies on the physical surface. A separate procedure is then
required to propagate surface perturbations throughout the remainder of the volume mesh. The
mesh movement algorithm used in this work is an efficient analytic inverse distance method similar
to that described by Luke et al. [56]. Updating the mesh for a new configuration is fast, typically
requiring less than 0.1% of the CFD solution time. Sensitivities required for the adjoint method
are provided by a combination of reverse-mode automatic differentiation and analytic methods.

4 Optimization Algorithm

The high computational cost of RANS-based optimization demands an optimization algorithm that
minimizes the number of function evaluation calls. We use SNOPT (sparse nonlinear optimizer) [57]
with the Python interface pyOpt [58]. SNOPT is a gradient-based optimizer that implements a se-
quential quadratic programming method; it is capable of solving large-scale nonlinear optimization
problems with thousands of constraints and design variables. SNOPT uses an augmented La-
grangian merit function, and the Hessian of the Lagrangian is approximated using a quasi-Newton
method. We have already used the SNOPT algorithm to solve a wide variety of aerodynamic and
aerostructural optimization problems [1, 23, 42, 12, 10].

3 Buffet-Onset Prediction
In the broadest sense, buffet is any form of vibration caused by unsteady forces generated by
separated flow. There are three main types of flow separation: (1) separation at the foot of
a shock wave, (2) leading-edge separation, and (3) trailing-edge separation. Transonic (or high-
speed) buffet is caused by the first type: shock-induced separation. In transonic flow, at sufficiently
high lift coefficients and Mach numbers, instabilities in the interaction between the shock and the
separation bubble cause self-sustaining periodic oscillations in the shock position [38], which cause
large fluctuations in pressure with a frequency on the order of 10 Hz [59]. Buffet is primarily an
aerodynamic phenomenon because the frequencies of the shock-induced vibrations are at least one
order of magnitude greater than the natural frequencies of the wing’s primary elastic modes, so no
aeroelastic computations are required to predict it. Buffet develops gradually with increasing lift
coefficient or Mach number, and buffet onset refers to the conditions at which buffet first occurs. As
the Mach number increases, the buffet-onset lift coefficient decreases, defining the buffet boundary.

Buffet is undesirable because it affects the ability to control the aircraft and passenger comfort,
and, if severe enough, it may compromise the structural integrity of the aircraft. Therefore, Joint
Aviation Requirements stipulate that commercial transport aircraft maintain at least a 30% margin
from the cruise operating condition to buffet onset. This buffet margin provides a margin of
maneuverability for the aircraft. This allows the aircraft to perform a 1.3g maneuver in cruise
flight, which is equivalent to turning at a 40◦ bank angle. In addition to ensuring that maneuvers
can be executed free of buffet, this margin also ensures that disturbances due to turbulence and
upsets due to aircraft system failures can be handled safely. In this work, we seek a way to predict
the buffet onset numerically, so that our aerodynamic shape optimization can stay within the
boundary defined by the 30% margin.

Numerous researchers have modeled transonic buffet for airfoils with unsteady CFD using large
eddy simulations [35], detached eddy simulations [32] and unsteady RANS [33, 34, 36, 37, 38].
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Although such simulations have the merit of clarifying the physics, time-accurate CFD is currently
too computationally costly to include in a numerical optimization process, because hundreds of such
time-accurate simulations would be required to complete an optimization. On the low-fidelity side,
buffet constraints have been implemented in conceptual aircraft design optimization [26, 27, 28].
However, these low-fidelity methods do not consider how the detailed airfoil shape design affects
buffet onset, which is critical when performing CFD-based aerodynamic shape optimization.

Therefore, the goal of the present work is to develop a CFD-based method to explicitly enforce
a buffet-onset constraint. To achieve this, we do not need to model the unsteady transonic flow and
the physics beyond buffet onset. Instead, by using steady RANS data, we formulate a constraint
function that predicts if a design is within the buffet boundary . Although the literature is split
on whether or not steady RANS accurately models transonic buffet, Rumsey et al. [60] report
steady RANS predictions that are consistent with flight data through the buffet onset regime and
up to near the maximum lift coefficient. However, they stipulate that this agreement is not well
understood and might be case-dependent. To clarify this question, we present below verification
and validation results that confirm that steady RANS is well suited for our purposes.

To ensure that a gradient-based optimization algorithm can handle the buffet constraint, the
constraint function should be continuous and change smoothly upon approaching the buffet bound-
ary. Although the actual physical behavior is highly nonlinear, buffet onset is a gradual process,
so developing such a function should be possible.

A number of techniques have been developed over the years to correlate data, typically from
wind tunnel experiments, with buffet predictions from a flight testing program. These techniques
include correlations with the RMS signals from wind tunnel model strain gauges, trailing-edge
pressure divergence, axial force break, pitching moment break, and lift curve break [61, 62]. The
last two methods may be employed in numerical predictions by using CFD to integrate force and
moment values. One way to implement the lift curve-break method is the ∆α = 0.1 method [63].
Using this method, the linear portion of the lift curve is offset to the right by 0.1◦ . The intersection
of this line with the actual lift curve is used to estimate the buffet onset point, as illustrated in
Fig. 1. We could use this method to develop a buffet-onset constraint function, but in using global
aerodynamic coefficients, such as CL and CM , we would not make full use of the detailed flow
solution provided by CFD. In addition, the “linear” portion of the lift curve slope is not exactly
linear in transonic flow, and identifying the slope to be used introduces ambiguity. The use of
this approach with CFD requires at least two additional flow solutions (one for the slope and one
for the intersection). Finally, implementing a constraint based on this method would provide the
optimizer with the opportunity to artificially affect the buffet onset by manipulating the lift curve
at lower lift coefficients.

To develop a more direct way of constraining buffet onset, we focus on the physical mechanism of
shock-induced flow separation, which is responsible for the loss of lift and the subsequent lowering
of the lift curve slope. An example showing the typical progression of this type of separation
with increasing angle of attack is shown in Fig. 2. To obtain the results shown in this figure,
we performed a series of RANS solutions for the full Common Research Model (CRM) aircraft
configuration (wing, fuselage, and horizontal tail), which is the same geometry that was used in the
Fourth Drag Prediction Workshop (DPW) [64], and it is representative of a long-range transport
aircraft. The first row in Fig. 2 shows the friction lines and pressure coefficient, as well as the
Lovely–Haines shock sensor (in orange) [65].

To determine if the flow is separated at a given location on the surface, we check if the surface
flow velocity has a component in the negative freestream direction (which is approximately the
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∆α = 0.1◦

Lift curve
Buffet onset

Figure 1: Estimating the buffet boundary with the ∆α = 0.1 method.

negative x axis) direction, i.e., if

cos θ =
~V · ~V∞
|~V ||~V∞|

< 0, (1)

where θ is the angle between the local surface velocity and the freestream. We can then define a
separation sensor as

χ =

{
1 if cos θ ≤ 0

0 if cos θ > 0.
(2)

Thus, χ is specific to each surface location and is a Heaviside function: It is equal to one when
the flow is separated, and equal to zero when the flow is attached. The blue areas on the surface
for α = 3.00◦ and α = 3.29◦ in the bottom row of Fig. 2 show the regions where χ = 1, which
approximately coincide with the regions where the flow is separated.

Figure 2: Progression of separated flow for the CRM configuration at M = 0.85 with increasing
angle of attack. Top row shows the surface streamlines and pressure coefficient, as well as the
reversed flow (red) and the shock (orange). Bottom row shows the value of the separation area
integrand from Eq. (4).
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Our hypothesis is that the value of the area where χ = 1 correlates with buffet onset, which
is given by the integral of χ over the whole surface area of the wing. Since we need to use this
function as a constraint in a gradient-based optimization, we would like this function to be smooth.
However, because this integral will be discretized based on a CFD surface mesh, and χ is either
zero or one for a given cell, the value of this area does not change continuously with the design
variables. To address this issue, we use a smooth Heaviside function to blend the discontinuity as
follows:

χ̄ =
1

1 + e2k(cos θ+λ)
. (3)

In this equation, k and λ are free parameters, where k determines the sharpness of the transition,
and λ is a parameter that can be used to shift the smoothing function to the left or right as
a function of the angle. For our cell-centered solver, the values for ~V are taken from the state
variables at the cell center immediately adjacent to the wall, since the velocities at the wall are zero
when enforcing the no-slip condition. Figure 3 shows smooth Heaviside functions for λ = −0.1, 0, 1,
and k = 10. A value of k = 10 is used for all results in this paper. The bottom row of Fig. 2 shows
the value of the smoothed separation sensor (4) on the wing surface at M = 0.85. The smooth
Heaviside function smooths out Vx around the separated flow region. This area formulation can
also be applied to constrain other undesirable phenomena, including cavitation [66, 67].
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Figure 3: Smoothed separation sensor value (3) versus angle of surface flow. With k = 10, the
smooth transition occurs over ±15◦.

Next, we can integrate the smooth separation sensor (3) over the surface and normalize it by
the aircraft reference area to obtain the proposed separation metric:

Ssep =
1

Sref

∫
S
χ̄dS. (4)

This is equivalent to performing a weighted area integration of the sensor value shown in the bottom
row of Fig. 2.

To find out if the separation metric (4) is correlated to buffet onset, we used the ∆α = 0.1
method as a reference. We start by using the ∆α = 0.1 method to compute the buffet boundary
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for the baseline CRM configuration [64] at a flight altitude of 37 000 ft and for Mach numbers ranging
from 0.8 to 0.9. The resulting reference buffet boundary is shown as the orange line in Fig. 4. We
then plot the lines corresponding to various values of the separation metric, and determine that a
cutoff value of χ = 4% yields the best agreement when compared with the ∆α = 0.1 method.

3% cutoff

2% cutoff

Mach

C
L

0.8 0.82 0.84 0.86 0.88 0.9
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

=0.1 method

Separation ( =­0.1, 4% cutoff)

Figure 4: Results of the ∆α = 0.1 method compared with those of the proposed separation metric
method.

The overall shape of the buffet onset is consistent with the separation-based criteria, although
some discrepancy exists. The discrepancy can be explained by analyzing the slopes of the lift
curves for the baseline configuration, which we plot in Fig. 5. The figure also shows the application
of the ∆α = 0.1 method, where the line slopes are based on the first two analysis points at the
lowest CL values for each Mach number. The lift curves are close to linear, but the slope of the lift
curve increases for Mach numbers in the range 0.81–0.86. Therefore, at these Mach numbers, the
∆α = 0.1 method overpredicts buffet onset compared with the separation-based method, because
the slope of the lift curve must decrease more to intersect the offset line. For Mach numbers greater
than 0.86, the opposite effect occurs: The lift curves exhibit a reduced slope and intersect the linear
offset at lower CL values, underpredicting the buffet onset. The differences in Fig. 4 are consistent
with this effect. As we can see, the separation-based approach varies more smoothly with respect to
Mach number, which is beneficial for gradient-based design optimization. Because the separation-
based approach is more representative of the actual physics, we believe that it is the more accurate
of the two methods.

Figure 6 shows how the separation metric approach is used to construct the buffet-onset bound-
ary. For each α sweep at a fixed Mach number, the intersection of the separation curve with the
specified cutoff value determines the boundary. With nearly fully attached flow on the wing upper
surface, the sensor metric is close to zero. Next, as α increases, the sensor metric rapidly increases
as shock-induced flow separation becomes more severe. The large slope of the separation sensor
curve means that the CL value predicted for buffet is not particularly sensitive to the selected cutoff
value.
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Figure 5: Baseline configuration lift curves and ∆α = 0.1 linear offset for Mach 0.8–0.9. Successive
lift curves are offset by 0.5◦ .
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Figure 6: Separation sensor curves for α sweeps and for a range of Mach numbers. The cutoff value
indicates the estimated buffet boundary.

To validate the proposed separation metric as a way buffet-onset constraint, we compare the
results obtained by using this approach with experimental results by Balakrishna and Acheson [68],
who tested the CRM wind tunnel model. They estimated the buffet onset by making high-speed
measurements of the strain at the wing root. Buffet onset can be identified by the increase in
the strain gauge signal amplitude, which is caused by the shock oscillations interacting with the
separated flow. Based on this increase in signal amplitude, they define the buffet coefficient, CB.

Figure 7, which is reproduced from Fig. 4 in Balakrishna and Acheson [68], shows the evolution
of the buffet coefficient for two Mach numbers: a high subsonic Mach number (M = 0.70) and a
transonic Mach number (M = 0.85). We overlay lines at α values for which our method yields a
separation sensor value of 4%, with λ = −0.1. We see that the results of the separation sensor
method correlate well with the increase in CB, providing more evidence that the separation-metric
approach correctly predicts buffet onset.

Figure 8 shows the surface distribution of Cp and the smoothed separation sensor for the two
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Figure 7: Buffet coefficient CB obtained from wind tunnel data [68]. Vertical lines are the buffet-
onset locations predicted by the separation sensor.

flow conditions. Due to the differing freestream Mach numbers, the types of separation and the
corresponding separation locations are quite different. For the M = 0.70 case, a separation bubble
appears just aft of the small leading-edge sonic region, whereas for the M = 0.85 case, the separated
flow appears near the mid-chord position at the foot of a strong normal shock. Although more
comparison with experimental results are required, the separation sensor adequately predicts buffet
onset at both high subsonic and transonic flow conditions for this aircraft geometry.

4 Full Configuration Aerodynamic Shape Optimization Benchmark
We now demonstrate the need to consider buffet-onset criteria and the effectiveness of the proposed
approach for transonic aerodynamic shape optimization by solving a series of aerodynamic design
optimization problems based on the AIAA ADODG Case 5 benchmark [21].

1 Baseline Geometry

The baseline geometry defined in ADODG Case 5 is taken directly from the Fourth Drag Prediction
Workshops “Wing-Body-Tail iH = 0” aircraft configuration [69]. This configuration is known as
the Common Research Model (CRM) and is representative of a twin-aisle long-range transport.
The main reference parameters for the CRM are listed in Table 1.

Quantity Value

Reference area 594 720.0 in2

Reference chord 275.8 in
Moment reference (1325.90, 0, 177.95) in
Reynolds number (M = 0.85) 43× 106

Table 1: Reference quantities for CRM full configuration [69].
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Figure 8: Cp and smoothed separation sensor surface distribution for the two experimental buffet-
onset conditions. In both cases, the separation (red) appears behind the shock (orange).

2 Computational Meshes

We generated a sequence of four CFD meshes for the CRM wing-body-tail configuration using the
meshing software ICEM CFD. The meshes are divided into two families: the “1 series” and the
“0.5 series.” Each “0.5 series” mesh has approximately 2.5 times more cells than the corresponding
coarser “1 series” mesh below it and has approximately 3.3 times fewer cells than the next finer “1
series” mesh above it. The two coarsest grids—L2 and L1.5—are used for optimization, whereas
the two finest grids—L1 and L0.5—are used only for post-optimization verification purposes. The
mesh metrics are summarized in Table 2. Figure 9 compares the surface mesh resolution of the four
meshes. Grid convergence studies for the baseline mesh and all optimized configuration meshes are
presented in Section 3.5.

3 Optimization Problem Statement

A sequence of seven design optimizations are solved to study the aerodynamic shape optimization of
the ADODG full CRM configuration, and to demonstrate the effectiveness of the proposed approach
for satisfying buffet requirements. These cases—numbered 5.1 through 5.7—are summarized in
Table 3. Only cases 5.1 and 5.2 are currently specified by the ADODG [21]. We added the
other cases (cases 5.3 through 5.7) to further study the effects of including buffet-onset conditions
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Mesh level Chordwise Spanwise y+
max Total Baseline

cells cells cells CD (counts)

L0.5 224 144 ∼0.5 14 233 600 231.15
L1 168 108 ∼0.7 5 921 536 234.87
L1.5 112 72 ∼1.1 1 779 200 249.47
L2 84 54 ∼1.7 740 192 269.76

Table 2: Mesh characteristics and corresponding trimmed drag coefficient for baseline configuration.

Figure 9: Spatial resolution for each mesh size.

on the optimized geometries. The objective of all optimizations (except for Case 5.7, which is
discussed separately) is to reduce the weighted drag coefficient at the N operating conditions. The
optimization problem statement can be written as

minimize
∑N

i=1WiCDi Quantity
with respect to Wing cross-sectional shape 240

Wing twist 9
Angle of attack (αi) N
Tail rotation angle (ηi) N

subject to CLi − C∗Li
= 0.0 N

CMyi
= 0.0 N

tj ≥ tjCRM 750
Ssepi ≤ 0.04 N

(5)

Each flight condition i is assigned a weight Wi that specifies to what extent the drag of the
given flight condition influences the objective function. The lift and moment coefficient constraints
ensure that the aircraft is trimmed at each flight condition, which can be achieved by the appropriate
combination of angle of attack and tail rotation angle. The thickness tj is computed at 750 points
arranged in a 25 × 30 regular grid in the chordwise and spanwise directions, respectively. These
thicknesses are constrained to be greater than or equal to the original thicknesses of the CRM
geometry at the corresponding points. Because making the wing as thin as possible is desirable in
transonic flow [14], these constraints ensure that the wing does not become too thin, which would
result in a significant increase in structural weight. Imposing thickness constraints means that only
changes in the wing camber are available to the optimizer.

Only cases 5.4, 5.5, and 5.7 use the separation constraint to satisfy the buffet margin. In
these cases, the separation constraint is only enforced for the last two flight conditions, and the
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drag coefficient for these conditions does not contribute to the objective function (i.e., Wj = 0).
Therefore, the adjoint for CD is not evaluated for the buffet-onset conditions. Conversely, the
separation metric adjoint is not evaluated for the conditions where the drag coefficient weights are
nonzero. This results in a total of three adjoint solutions being required for for both the cruise and
buffet flight conditions, which is desirable from a computational load-balancing perspective.

The ADODG specification for Case 5 disallows the parameterization from modify the planform,
and any shape modification may only be made in the vertical direction. Additionally, twist rotation
is permitted for the wing, as is a solid-body rotation of the horizontal tail for trimming the aircraft.
We use the FFD approach described in Section 2. The FFD volume and the associated geometric
design variables are shown in Fig. 10.

Figure 10: CRM configuration showing the design variables for shape, twist, and tail rotation.

5 Results
1 Multilevel Approach

To reduce the overall computational cost of performing the optimizations, we employ the multilevel
optimization approach described previously by the authors [12, 14]. Optimizations are first carried
out on the coarsest mesh (L2), and the resulting optimum design becomes the starting design for
the next finer mesh (L1.5), and so on. In this work, only the first two grid levels are used for the
optimization. Because optimizing on the coarse grid costs less, we can afford to do more iterations
on this grid. For this approach to be effective, the coarse grid must capture the main characteristics
of the flow.

Figure 11 compares the baseline and optimized designs for Case 5.1. The aircraft planform views
show the baseline and optimized designs obtained by using the L2 grid, and the L1.5 optimization
obtained by using the L2 optimized shape as the starting point. Color-coded slices of the airfoil
shapes and the corresponding Cp distributions are shown for four spanwise locations at the bottom
of the figure. We see that the coarse optimization (using the L2 grid) successfully eliminates the
shock on the upper wing surface, resulting in parallel isobars. Even without further optimization,
almost all of the drag improvement predicted by the coarse grid is realized on the fine grid. A
comparison of the orange and black lines on the outer Cp distributions shows that the only significant
difference is the appearance of a weak shock on the refined grid. The fine optimization further
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Figure 11: Baseline design compared with optimized designs for Case 5.1. The coarse-grid optimum
is a good starting point for the fine-grid optimization.

improves the design, eliminating this shock and lowering the drag even further. This behavior is
consistent with our previous results, where we used three uniformly refined grid levels [12]. We
employ this multilevel approach for all optimizations in the present work.

2 Optimization Results

In this section we present the main results for each CRM aerodynamic shape optimization (cases 5.1
through 5.7). Figure 12 shows the evolution of the SNOPT merit function and optimality. The merit
function is the value of the augmented Lagrangian given by SNOPT, which becomes the same as the
objective function value once all the constraints are satisfied toward the end of the optimizations.
The optimality is the residual of the Karush–Kuhn–Tucker (KKT) optimality conditions, which
measures how well the optimization has converged [57].

The optimality tolerance was set to 10−5, which is achieved for most optimizations. The L2
optimizations are limited to 150 iterations, whereas the L1.5 optimizations are limited to a further
50 iterations. Case 5.7 uses a different objective function and is a maximization instead of a
minimization. Generally, the finer optimizations with the L1.5 mesh achieved the same convergence
tolerance as the coarse L2 mesh.

Figures 13 and 14 summarize the key features of the two ADODG optimizations (cases 5.1
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Figure 12: Merit function and optimality evolution for each optimization case.

and 5.2, respectively). The results of the baseline configuration are shown in red, whereas the
optimized results are shown in blue. The planform view of the wing and fuselage shows the Cp
contours of the baseline geometry (left) and the optimized geometry (right) under the nominal
operating conditions (M = 0.85, CL = 0.5). Just below the planform view, the front view also
shows the Cp contours and adds a visualization of the shock surface [70]. Below the front view, we
plot the spanwise distributions of lift, twist, and thickness-to-chord ratio (t/c). A reference elliptic
lift distribution is shown in gray. The right side of the figure displays the cross-sectional shapes
and Cp distributions at the five spanwise locations indicated by the labels A–E in the planform
view. Finally, the bottom-right plot shows the drag divergence behavior for three lift coefficients:
CL = (0.45, 0.50, 0.55).

The single-point optimization (Case 5.1) is similar to the wing-alone optimization done in
previous work [12], where it is referred to as “aerodynamic shape optimization without thickness
reduction.” In that case, the wing-alone configuration was optimized at the same Mach number and
lift coefficient, but at a much lower wind-tunnel Reynolds number of 5 × 106. The previous work
indicates that a 10.5 drag count reduction is possible for the CRM wing-alone configuration. This
compares well with the 8.6 count reduction that we obtain in the full wing-body-tail configuration
studied herein. The cross-sectional plots of the airfoils at various spanwise sections show how
little the shape needs to be modified to obtain a substantial change in performance. The drag
divergence curves highlight the single-point design nature of the optimized configuration. A drag
dip is present at the on-design condition, but the performance is worse at most other Mach numbers
and lift coefficients.

When we introduce the α = 0.1 method above for predicting buffet onset, we show the lift
curves for the baseline configuration in Fig. 5. We now compute the same curves for the optimized
configuration of Case 5.1, as shown in Fig. 15. The deviation from the linear slope observed in the
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Figure 13: Baseline analysis (red curves) compared to the Case 5.1 result (blue curves). This
single-point optimization leads to high performance at the nominal operating condition.

baseline is more pronounced for this optimized aircraft, which means that including a physics-based
buffet-onset constraint as we propose is all-the-more crucial; otherwise the optimizer will exploit
the lack of such a constraint and produce designs that are not realizable.

Case 5.2 adds two additional equally weighted operating conditions near the buffet-onset bound-
ary. Unlike Case 5.1, for which we obtain a shock-free wing, Case 5.2 results in double shocks at
the nominal operating condition. In this case, the drag at the nominal operating condition actually
increases by 2.8 counts, as shown in Fig. 14. The drag divergence curves indicate a significant drag
penalty across the lower Mach numbers, but this design does have a much higher drag divergence
Mach number than the baseline design.

Although drag-coefficient divergence curves yield useful insights into optimized designs, exam-
ining the performance in the full M -CL space is particularly instructive. In the context of transonic
transport wing design, ML/D is a better measure of performance because it includes the benefit
imparted on overall aircraft efficiency by a higher cruise speed. This overall performance can be
approximated by the Breguet range equation

R =
Ma

c

L

D
ln

(
W1

W2

)
, (6)

16



Figure 14: Baseline analysis (red curves) compared to the Case 5.2 result (blue curves). To obtain
a small improvement at the highest Mach numbers, performance is sacrificed across a large range
of Mach numbers.

where L/D is the lift-to-drag ratio, a is the speed of sound, c is the thrust-specific fuel consumption,
and W1 and W2 are the initial and final cruise weights, respectively. For a purely aerodynamic
optimization at fixed Mach number, only L/D varies if we assume a constant c and weight ratio
W1/W2, so we are left with ML/D.

The procedure for generating contour plots is detailed in Appendix A. The contour plots are
generated by using the L1.5 grid, and we ignore the additional drag associated with the nacelle,
pylon, and vertical stabilizer. Figure 16 shows contour plots for all seven optimizations and the
baseline design.

The contours in each figure extend up to the predicted buffet-onset curve shown in red. The
orange curve shows the buffet onset predicted by using the ∆α = 0.1 method described in Section 3.
Several regions appear where the orange curves are missing data, which we attribute to the failure
to find an intersection between the two lift curves. Overall, the separation-metric method continues
to produce results that are close to those of the ∆α = 0.1 method, despite the large changes in the
buffet-onset boundary.

The blue curve represents the 30% margin to buffet-onset boundary and is computed directly
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Figure 15: Lift curves for the Case 5.1 configuration with successive lift curves offset by 0.5◦. The
lift curves for the optimized configuration are more nonlinear.

from the red buffet-onset curve. For normal operation, only operating conditions below the buffet-
margin curve can be considered. The absolute maximum ML/D value for each configuration is
shown in pink. Two specific contours for the optimization configuration (one for the baseline
configuration) are highlighted: the contour of 99% (ML/D)max for the particular design is shown
in blue, and the contour of 99% (ML/D)max for the baseline configuration is shown in red. The
motivation for plotting these 99% contours is that airliners typically fly between the Mach number
yielding maximum range (approximated by the maximum ML/D value in the figures) and a higher
Mach number that yields a 1% fuel-burn penalty but decreases in the flight time. The area enclosed
by both of these contours is used to quantify the robustness of the design in these figures. The
areas are scaled by a factor of 1002 so that the area of the rectangle measuring 0.01 in M and 0.01
in CL has unit area.

The design operating conditions listed in Table 3 are shown as diamonds. The operating condi-
tions considered for the objective function are shown in black, whereas the buffet-onset constraint
conditions are shown in red. The first buffet point (M = 0.85, CL = 0.65) is at the nominal
cruise Mach number and the CL value corresponding to a 1.3g maneuver. The second buffet point
(M = 0.89, CL = 0.456) is 0.04 higher in Mach number, which is a typical margin between a nom-
inal cruise Mach number and the maximum Mach number (MMO) condition. The lift coefficient
for this condition is adjusted to give the same dimensional lift as the nominal cruise condition at
the same altitude.

Two additional regions are highlighted in black and orange, which we refer to as integration
regions. They are constructed as follows: The Mach range is from 0.83 to 0.86, which corresponds
to the typical range of operating Mach numbers for an aircraft such as the CRM. The upper
line corresponds to the buffet-margin boundary, which is equivalent to specifying the maximum
altitude the aircraft can fly for a particular weight. The bottom line corresponds to the reduced
CL for a 4000 ft decrease in altitude. To put it in another way, the integration region contains all
operating conditions within 4000 ft of the buffet-constrained ceiling and at all normal operating
Mach numbers. It is likely that the aircraft spends the vast majority of cruising flight in this
region. The black integration region corresponds to the baseline design, whereas the orange regions
are adjusted to reflect the actual buffet-margin boundary for each design. In addition, the upper
edge of the black region indicates how the buffet-onset boundary changes for each design relative
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to the baseline configuration for the specific Mach range of integration.
Figure 17 displays a different visualization of the data already shown in Fig. 16. Here, we plot

the percent change of each design relative to the baseline configuration. Note that the plot region
is limited to flight conditions below the buffet boundary corresponding to each design. The color
of the boundary indicates which is one active: The black boundary indicates the baseline buffet
boundary is active, meaning that the optimized design boundary is higher than the baseline. The
orange boundary means that the optimized boundary is active and thus lower than the baseline
buffet boundary. The integration region for each configuration is also shown in orange.

The contour plots give a much more complete understanding of the optimized designs. Un-
surprisingly, the single-point optimization—Case 5.1—produces the highest ML/D value, which is
almost exactly matched to the design operating condition. However, with no way to constrain the
buffet-onset boundary, the value of (ML/D)max is now above the buffet-margin boundary, which
means that this high-performance point cannot be achieved in practice because it falls outside the
normal flight envelope. The 99% (ML/D)max contour (blue) is small, indicating a highly localized
point design. Despite the high ML/D value, the average ML/D in its own integration region
(orange) is 4.6% worse than that for the baseline design.

For Case 5.2, the addition of operating conditions at the edge of the buffet-onset envelope
substantially improves the buffet boundary over the entire range of Mach numbers. This case
results in the most robust buffet-onset behavior of all cases. However, the value of (ML/D)max

barely improves over that of the baseline design (17.18 vs 17.13). Worse still, as in Case 5.1,
the high-performance region lies almost entirely outside the buffet-margin boundary, rendering the
high-performance region unattainable. Even for this case, the average ML/D in the integration
region is slightly worse (−0.5%) than for the baseline design. Note that the increased performance
afforded by the higher buffet boundary is only possible if the baseline aircraft is buffet limited in
altitude over the specific range of Mach numbers, as opposed to thrust limited. If the aircraft were
thrust limited over the integration range, the obtainable performance would be the integral over
the black integration region..

In Case 5.3, we attempt to improve upon Case 5.2 by reducing the weighting factor for the
near-buffet conditions. For this case, the nominal operating condition has a weight of 2/3, whereas
the remaining two points each have weights of 1/6. The adjusted weightings yield a much more
useful design. This is the first case where a significant portion of the 99% (ML/D)max contour
falls within the integration region. In addition, the design is robust, as evidenced by the larger
area enclosed by the blue contour when compared to the baseline design. As with the two previous
cases, the increased performance is only possible if the aircraft can operate at higher altitudes. The
other problem with this case is that the specific weightings are picked arbitrarily. Although these
particular weights yield acceptable results, these weight values are not guaranteed to work well for
another configuration or optimization problem.

Case 5.4 is the first optimization to use the separation sensor directly as an optimization con-
straint. Case 5.4 retains the same operating conditions as cases 5.2 and 5.3, but instead of having
the drag from the flight conditions near the buffet boundary contribute to the drag objective func-
tion, it uses the buffet-onset flight conditions to compute the separation sensor and constrain its
value. Note that a slight discrepancy exists between the operating conditions (red diamonds) and
the buffet-onset boundary itself. The reason for this result is that the buffet-onset conditions are
analyzed by using the scalar Jameson–Schmidt–Turkel dissipation scheme [71], which results in a
solution with more dissipation than the matrix dissipation scheme. The scalar scheme provides
the increased robustness necessary for the optimization, which is unnecessary for the contour plot
evaluations. The more dissipative scalar scheme slightly underpredicts the area of separated flow,
so the buffet boundary in the contour plot is lower when analyzed with the matrix scheme for the
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contour plot. Overall, the performance of this design is similar to that obtained with single-point
optimization (Case 5.1). Most of the high-performance region lies outside the integration region.
However, the reduction in performance is not as pronounced as with Case 5.1, for which perfor-
mance is reduced by just 1.6% in the original integration region and by almost zero in the on-design
integration region. Nevertheless, there is a small improvement in the buffet-onset boundary.

Upon analyzing the results from cases 5.1–5.4, we noticed that the nominal design point always
appears toward the upper side or even completely outside the integration region, and that all
optimization discussed thus far fails to improve the performance in the baseline integration region.
To address this issue, we formulate a multipoint optimization (Case 5.5). Previous optimizations
performed by the authors on the CRM wing-alone configuration show that selecting five operating
conditions arranged as a cross in the M -CL space results in highly robust designs [14]. Because
our goal is to improve the performance in the original integration region, we distribute the five
conditions as follows. The nominal Mach number is reduced to 0.845 for the first three operating
conditions. The first point lies on the 1.3g buffet-onset boundary, whereas the next two points
are at CL values corresponding to 2000 and 4000 ft below. The two remaining points are 2000 ft
lower than the buffet-onset boundary with a variation in Mach number of ±0.01 . The buffet-onset
conditions are taken at M = 0.85, CL = 0.65, and M = 0.89, CL = 0.41. The latter point is taken
from the baseline design buffet-onset boundary. The overall performance of this case is superior
to all previously discussed cases. The performance in the baseline integration region increases by
1.2%, and the performance of the updated integration region increases by 2.0%. The design is
very robust, as shown by the area inside the 99% (ML/D)max contour. Furthermore, the point of
maximum performance appears inside the operating envelope. Given these results, trying a lower
nominal CL for cases 5.2–5.4 may be worth considering in the future.

Next we developed Case 5.6, which is designed to investigate the effect of removing the buffet-
onset conditions present in Case 5.5. We wish to answer the following question: Is a multipoint
optimization near the design operating condition sufficient to ensure a robust buffet-onset envelope?
Unsurprisingly, without the buffet-onset constraints, the buffet margin boundary drops slightly
over the integration envelope, pushing the integration region into a lower-performance region. The
average value of ML/D for the integration region is 16.88, only 0.6% higher than for the baseline
configuration and much smaller than the 2.0% improvement obtained in Case 5.5.

Finally, for Case 5.7, we formulate a different design optimization problem. We wish to remove
the requirement of specifying fixed design lift coefficients and let the optimization itself determine
the ideal on-design condition. All cases presented thus far are lift-constrained drag minimizations
with fixed operating conditions. The fixed operating conditions also include fixing the value of
CL for the buffet-onset locations. In the formulation of Case 5.7, we want the optimization to
directly adjust the single nominal operating condition. The remaining operating conditions are
then explicitly linked to this design CL. More specifically, the high-CL buffet-onset conditions
must have 1.35 times the lift of the nominal cruise Mach. However, to achieve a higher buffet-onset
boundary for which more of the integration region lies inside the 99% ML/Dmax contour, we use
a factor slightly greater than the minimum factor of 1.3. The high-Mach buffet case must have
the same physical lift as the nominal operating condition at M = 0.89 and at the same altitude.
Finally, the remaining operating conditions move vertically in sync with the changing design CL.

20



The modified optimization formulation is as follows:

maximize
∑N

i=1WiMiLi/Di Quantity

with respect to Wing cross-sectional shape 240

Wing twist 9

Angle of attack (αi) N

Tail rotation angle (ηi) N

Design CL 1

subject to CLi − C∗Li
= 0.0 N

CMyi
= 0.0 N

tj ≥ tjCRM 750

Sepi ≤ 0.04 N

(7)

Note that the operating conditions (diamonds) shown in Fig. 16 are the optimized values. The
optimization increased the nominal design CL from the initial value of 0.490 (the value used in
Cases 5.5 and 5.6) to 0.520. This increase is made possible by a corresponding increase in the
buffet-onset boundary. The previous optimizations, especially Case 5.2, showed that there can be
a significant penalty in cruise drag for a higher buffet boundary. For Case 5.7, we have given the
optimizer sufficient information to make this trade-off optimal. This results in a slightly higher
average performance than Case 5.5 (17.13 vs. 17.11), as well as a higher buffet-onset boundary.
The design is also highly robust, exhibiting the largest 99% (ML/D)max contour of all the cases.

Further insight into the differences between the optimized designs is provided by Fig. 17. It is
particularly interesting to see that there is a region between M = 0.86 and M = 0.88 at low CL
that is universally worse on all optimized designs. This is particularly noticeable on the single-
point designs (Cases 5.1 and 5.4). It is least evident in Case 5.5, where there is an improvement
over almost the entire contour region. Compared to Case 5.7, the higher buffet-onset performance
appears to be correlated with the reduced low-CL performance. The performance reduction at lower
lift coefficients in Case 5.7 is limited to less than 2%, which is acceptable given the performance
increase at the higher lift coefficients.

3 Grid Convergence

We studied grid convergence for the baseline geometry and for all optimized configurations. For
the grid-convergence studies, we apply the optimized geometry from the L1.5 mesh to the each of
the four meshes in sequence. The drag convergence for each mesh configuration is shown in Fig. 18.

The drag coefficient, when plotted against the grid factor N
−2/3
cells , is approximately linear, indicating

second-order convergence. However, the finest mesh analyzed (L0.5) does not fall directly on the
line, which indicates that a more highly resolved mesh is necessary to determine a grid-converged
value. However, for aerodynamic shape optimization, we are generally more concerned with the
change in drag coefficient resulting from a design change as opposed to the grid-converged drag
coefficient. Figure 19 shows the change in drag coefficient for each configuration on each mesh
level. Remarkably little variation occurs across each mesh level, which we attribute to the fact
that the spurious drag remains roughly constant for a given mesh, independent of the design
modifications. The maximum variation between the improvement on the L1.5 mesh—the finest
mesh used for optimization—and the L0.5 mesh is 0.63 counts (in Case 5.6). Given the much larger
computational cost of optimizing with the L1 or L0.5 meshes and the small difference in predicted
drag improvement when using these finer meshes, the use the L1.5 mesh for our optimizations is a
good choice.
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4 Computational Cost

Multipoint three-dimensional RANS-based aerodynamic shape optimizations are costly from a com-
putational perspective, so we make every effort to reduce the total cost of the optimizations. Table 4
lists the total CPU cost, in processor hours, required to generate the results presented in this paper.
All the computations were performed on nodes with two 4-core E5540 CPUs running at 2.53 GHz
with 16 GB of RAM per node. The nodes are connected with QDR InfiniBand. All L2 and L1.5
meshes were run on 64 cores, whereas the L1 and L0.5 meshes for the grid convergence study used
128 cores.

The optimization consumed 63% of the total computational time, and the remainder of the
time was used for postprocessing. The ML/D contour plots are particularly costly, because each
plot requires approximately 400–500 individual CFD evaluations.

6 Conclusions
We present herein a new formulation for predicting buffet onset and for effectively implementing
it as a design optimization constraint. The proposed method is based on the integration of a
separation sensor along with a cutoff value to estimate when buffet first occurs and can be directly
evaluated with only one steady RANS CFD solution. The results of this method compare well with
those of the ∆α = 0.1 method for the CRM configuration, and for various optimized designs. A
comparison with experimental data obtained from wind tunnel test also shows that the proposed
model has good predictive capabilities. The separation sensor method is particularly well suited
for formulating a constraint in gradient-based optimization, because it is easy to implement in a
discrete adjoint optimization framework, and the resulting function (although highly nonlinear) is
smooth.

To demonstrate the effectiveness of the proposed approach, we optimize seven CRM wing-
body-tail configurations. All optimizations are done with respect to 216 shape variables, 9 twist
variables, and tail rotation angle, subject to lift, pitching moment, volume, thickness, and separation
constraints. To reduce the overall computational cost,we apply a two-level sequential optimization
approach. At the nominal operating condition of M = 0.85, CL = 0.5, the single-point optimization
(Case 5.1) reduces the drag coefficient from 249.5 counts to 240.9 counts, a reduction of 3.4%. For
a more complete comparison of the optimized designs, we plot contours of ML/D in M -CL space,
which provides a visual and intuitive way of comparing the performance and robustness of the
optimized configurations.

For Case 5.2, we add two operating conditions near buffet onset, which increases substantially
the performance at these points and produces a high buffet-onset boundary. However, the overall
performance as measured by a typical operating envelope is lower than the baseline. Although
weighting the nominal cruise point (Case 5.3) more than the off-design condition improves per-
formance, it requires knowledge of how to choose the appropriate weights, which may be case
dependent.

In Case 5.4, we introduce the use of the separation metric to directly control the buffet-onset
and buffet-margin boundaries. Although this approach is effective, the overall performance of the
optimized design is unsatisfactory; it is lower than that of the weighted-points approach in Case 5.3.

The remaining cases use five main operating conditions to produce more robust designs. Per-
formance improves for Case 5.5 over nearly the entire transonic range, with a simultaneous im-
provement of part of the buffet-onset boundary. Case 5.6 removes the buffet-onset conditions,
demonstrating the insufficiency of a multipoint optimization with all conditions near the on-design
condition. In this case, the buffet margin boundary encroaches onto the cruise performance region,
reducing the average usable improvement from 2.0% for Case 5.5 to only 0.6% for case 5.6. Finally,
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in Case 5.7, we do an ML/D maximization with automatic determination of the operating CL,
which improves the average performance above that of Case 5.5 while pushing the buffet-onset
boundary beyond the operational envelope.

Given these results, we recommend that physics-based buffet-onset constraints be enforced
for aerodynamic and aerostructural shape optimization of transonic transports, as we do in this
work. The separation metric we develop herein is easily implemented and yields robust results, so it
provides a much needed constraint formulation for the aerodynamic shape optimization community.
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Table 3: Operating conditions for each optimization. Red diamonds denote separation-constrained
points. Operating conditions for Case 5.7 are determined by the optimization process itself. Zero
weight means that only the flight condition is considered for the constraints.

Case Point Weights (Wi) Mach CL Re M–CL plot

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

5.1 1 1 0.85 0.500 43.00× 106

5.2 1 1/3 0.85 0.500 43.00× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 1/3 0.85 0.650 43.00× 106

3 1/3 0.89 0.456 45.00× 106

5.3 1 2/3 0.85 0.500 43.00× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 1/6 0.85 0.650 43.00× 106

3 1/6 0.89 0.456 45.00× 106

5.4 1 1 0.85 0.500 43.00× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 0 0.85 0.650 43.00× 106

3 0 0.89 0.456 45.00× 106

5.5 1 1/5 0.845 0.490 42.75× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7
2 1/5 0.845 0.445 42.75× 106

3 1/5 0.845 0.408 42.75× 106

4 1/5 0.835 0.467 42.24× 106

5 1/5 0.855 0.418 43.25× 106

6 0 0.85 0.650 43.00× 106

7 0 0.89 0.456 45.00× 106

5.6 1 1/5 0.845 0.490 42.75× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 1/5 0.845 0.445 42.75× 106

3 1/5 0.845 0.408 42.75× 106

4 1/5 0.835 0.467 42.24× 106

5 1/5 0.855 0.418 43.25× 106

5.7 1 1/5 0.845 0.520 42.75× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7
2 1/5 0.845 0.475 42.75× 106

3 1/5 0.845 0.438 42.75× 106

4 1/5 0.835 0.497 42.24× 106

5 1/5 0.855 0.448 43.25× 106

6 0 0.85 0.690 43.00× 106

7 0 0.89 0.469 45.00× 106
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Figure 16: Contours of ML/D for the baseline and for each optimized configuration.
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Figure 17: Percent difference in ML/D between the baseline design and the optimized configura-
tion.
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Figure 18: Grid convergence study for baseline and all optimized configurations, showing that the
change in drag is constant between grid levels.

Table 4: Breakdown of computational cost in CPU hours.

Case L2 optimization L1.5 optimization Contour Grid convergence Total

Baseline – – 1 346 817 2 162

5.1 289 611 1 270 1 009 3 179

5.2 2 378 2 394 1 795 1 121 7 688

5.3 1 290 2 505 1 750 910 6 457

5.4 1 507 2 602 1 384 1 024 6 518

5.5 2 090 3 506 1 392 830 7 369

5.6 1 111 1 803 1 147 610 4 673

5.7 4 136 6 623 1 800 696 13 255

Total 12 802 19 567 11 886 7 019 51 303
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Figure 19: Contours of the change in drag for the optimal designs relative to the baseline design
show that this change is roughly constant for all designs between grid levels.
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A Generation of Contour Plots
The generation of the contour plots shown in Fig. 16 warrants further explanation. These contours
are not simple α sweeps, because the tail angle that gives CM = 0 must be determined at each
point. Once the flight condition in the contour is trimmed, the trim drag penalty is included in
the computed drag coefficient. Naively performing a secant search to determine the tail angle at
each point would require at least three CFD solutions. However, because each contour plot requires
approximately 400 trim-converged solutions, we seek instead an alternative approach to reduce the
computational cost to the extent possible.

One way to reduce the computational cost of producing these contours is to reuse previously
evaluated points to continually update the 2×2 Jacobian of the residual, F = [CL −C∗L, CM ], with
respect to [α, η], where α is the angle of attack and η is the tail rotation angle. With an accurate
Jacobian, we can use Newton’s method to simultaneously determine the new α and η required to
produce a trimmed solution at a new CL. The full procedure is listed in Algorithm 2. An auxiliary
function for computing the residual for a given (α, η) is given in Algorithm 1.

In practice, only one subiteration is necessary for most points, because the CL and CM functions
are not highly nonlinear functions of α and η over most of the contour region. Generally, additional
subiterations are only necessary as buffet is approached due to the more-rapid variation in the
lift curve slope. For example, the contour for the baseline configuration requires 430 function
evaluations to produce 356 converged trimmed-CL solutions, an increase of only 20%. Note that
we only check for the convergence of CM , because precisely matching the lift coefficients to the
specified target is not critical.

Once all the raw data are generated, CL, CD, CM , and the separation sensor values are in-
terpolated by using an Akima spline [73] to produce a regular M -CL grid. This regular grid is
then used for further computations, such as the difference plots shown in Fig. 17 and the drag-
divergence curves in Figs. 13 and 14, and for extracting particular contours and computing the
average performance over specific integration regions.
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Algorithm 1 Trim-CL function

1: function F (x, C∗L)
2: Set α = x[0] and η = x[1]
3: Solve CFD problem
4: return F = [CL − C∗L, CM ]

T

5: end function
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Algorithm 2 Algorithm to compute trimmed-CL contours

1: Given: CLmin
, [M1, ...,MN ], ∆C∗L, α0, η0, ∆α, ∆η, Sepmax, maxSubIter, tol

2: Set M = M1

3: F0 = F ([α0, η0]T , CLmin
)

4: F1 = F ([α0 + ∆α, η0]T , CLmin
)

5: F2 = F ([α0, η0 + ∆η]T , CLmin
)

6: J =
[
F1−F0

∆α
F2−F0

∆η

]
. Initial finite-difference Jacobian approximation

7: Jsave = J

8: xsave = [α0, η0]T

9: for k ← 1, N do . Loop over N sequential Mach numbers

10: set M = Mk

11: J = Jsave . Restore Jacobian for lowest CL
12: xn = xsave . Restore x for lowest CL
13: ∆CL = ∆C∗L . Restore target CL increment

14: C∗L = CLmin . Set the target CL to the lowest desired CL
15: Fn = F (xn, C

∗
L) . Evaluate current point

16: continue = True

17: iα = 0

18: while continue do . α increment loop

19: for j ← 1,maxSubIter do . Subiteration loop

20: dx = J−1Fn . Newton’s method for update

21: xn+1 = xn − dx . New (α, η) solution

22: Fn+1 = F (xn+1, C
∗
L) . Solve CFD for the new x

23: dF = Fn+1 − Fn
24: J = J + dF−Jdx

‖dx‖2 dxT . Update Jacobian using Broyden’s method

25: xn = xn+1 . Set xn for next subiteration

26: if iα = 0 then . Store J and xn+1 for the next Mach number on the lowest CL
27: Jsave = J

28: xsave = xn
29: end if

30: Evaluate separation sensor, Sep

31: if Sep > 0.01 then

32: ∆CL = 0.01 . Reduce the target ∆CL as buffet is approached

33: end if

34: if abs(Fn[1]) < tol or j = maxSubIter then . Only check convergence for moment

35: C∗L = C∗L + ∆CL . Update the next target CL
36: Fn = [Fn+1[0]− C∗L, Fn+1[1] . Set the function value for the next CL
37: Break subiteration loop

38: else

39: Fn = Fn+1 . Continue to refine the current target CL
40: end if

41: end for

42: iα = iα + 1

43: if Sep > Sepmax then

44: continue=False . Reached buffet onset, so proceed to next Mach number

45: end if

46: end while

47: end for

36


	Introduction
	Computational Methods
	Buffet-Onset Prediction
	Full Configuration Aerodynamic Shape Optimization Benchmark
	Results
	Conclusions
	Acknowledgments
	Generation of Contour Plots

