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Abstract

The adjoint method is used for high-fidelity aerodynamic shape optimization and is an
efficient approach for computing the derivatives of a function of interest with respect to
a large number of design variables. Over the past few decades, various approaches have
been used to implement the adjoint method in computational fluid dynamics solvers.
However, further advances in the field are hindered by the lack of performance assess-
ments that compare the various adjoint implementations. Therefore, we propose open
benchmarks and report a comprehensive evaluation of the various approaches to adjoint
implementation. We also make recommendations on effective approaches, that is, ap-
proaches that are efficient, accurate, and have a low implementation cost. We focus on
the discrete adjoint method and describe adjoint implementations for two computational
fluid dynamics solvers by using various methods for computing the partial derivatives
in the adjoint equations and for solving those equations. Both source code transforma-
tion and operator-overloading algorithmic differentiation tools are used to compute the
partial derivatives, along with finite differencing. We also examine the use of explicit
Jacobian and Jacobian-free solution methods. We quantitatively evaluate the speed,
scalability, memory usage, and accuracy of the various implementations by running
cases that cover a wide range of Mach numbers, Reynolds numbers, mesh topologies,
mesh sizes, and CPU cores. We conclude that the Jacobian-free method using source
code transformation algorithmic differentiation to compute the partial derivatives is the
best option because it computes exact derivatives with the lowest CPU time and the
lowest memory requirements, and it also scales well up to 10 million cells and over one
thousand CPU cores. The superior performance of this approach is primarily due to
its Jacobian-free adjoint strategy. The cases presented herein are publicly available and
represent platform-independent benchmarks for comparing other current and future ad-
joint implementations. Our results and discussion provide a guide for discrete adjoint
implementations, not only for computational fluid dynamics but also for a wide range
of other partial differential equation solvers.
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Nomenclature

CD = Drag coefficient
CL = Lift coefficient
f = Function of interest (objective or constraints)
M = Mach number
R = Vector of flow residuals
Re = Reynolds number
w = Vector of state variables
x = Vector of design variables
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c = Chord length of a wing section
b = Wing span
γ = Wing twist angle

1 Introduction
The formulation and solving of partial differential equations (PDEs) has led to tremen-
dous progress in the numerical simulation of engineering systems. In most cases, these
simulations are eventually used to aid the design of the corresponding engineering sys-
tems, which often requires decisions involving large numbers of design variables. Chang-
ing these variables manually by trial and error is costly and is not likely to achieve the
best possible design. Numerical optimization can facilitate design exploration by auto-
matically finding the set of design variables that minimizes a given objective function
subject to the design constraints. Currently, gradient-based optimization algorithms
are the only viable way to handle optimization problems with large numbers of vari-
ables [1, 2]. In addition to being efficient, they allow designers to rigorously search for
the optimal design.

To take full advantage of gradient-based optimization algorithms, it is desirable to
compute the derivatives of the objective and constraint functions with respect to the
design variables in an accurate and efficient way. Various options are available for
computing derivatives, which we review in more detail in Sec. 4.2. Most gradient-based
optimization software automatically estimates the required gradients by using finite
differences. However, finite-difference approximations are subject to numerical errors
and are inefficient because their cost is proportional to the number of design variables.
Instead, users are recommended to provide their own derivative estimates so that they
can use more efficient methods or at least verify the derivatives and control the errors.

Adjoint methods compute accurate derivatives at a cost that is independent of the
number of variables. Instead, the computational cost of adjoint methods scales with the
number of functions of interest that need to be differentiated. Since many design opti-
mization problems involve large numbers of design variables with only a few objectives
and constraints, the adjoint method and gradient-based optimization form a powerful
combination.

One of the prime applications for the adjoint method has been aerodynamic shape
optimization based on computational fluid dynamics (CFD). The large number of vari-
ables in these problems stems from the detailed parametrization of three-dimensional
(3D) shapes that are required to optimize the design [3]. A typical problem is to minimize
the drag of a wing or aircraft configuration subject to lift and moment constraints [3–6].

Two fundamental approaches exist to formulate the adjoint for a set of PDEs: the
continuous approach and the discrete approach [7, 8]. The continuous approach consists
in differentiating the PDEs analytically to get the continuous adjoint equations, which
are then discretized so that they can be solved numerically. In contrast, the discrete
approach starts with the discretized form of the PDEs, which is then linearized to obtain
the discrete adjoint equations. For reasons that we explain in the next section, we adopt
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exclusively the discrete approach.
Given the power of the adjoint method, its lack of widespread use in the design

optimization of engineering systems governed by PDEs is curious. One of the main
reasons is that the development of adjoint methods requires a large effort and specialized
knowledge [7, 8]. Initially, discrete adjoint implementations required hand differentiation
of discretized PDEs [9–16], which is time-consuming and error-prone [7].

One way to address this large development effort is to use algorithmic differentiation
(AD) [17] (also known as automatic differentiation), which consists in using software that
automatically differentiates source code to produce code that computes derivatives. One
way to perform this differentiation, called the reverse mode, is analogous to the adjoint
method in that the cost of computing derivatives is independent of the number of design
variables [18]. However, the use of AD to differentiate the entire CFD code (full-code
AD) [19–22] usually results in inefficiencies and, in the worst case, the computational
and memory cost is prohibitive [8].

To improve efficiency, researchers have used AD to selectively differentiate the rele-
vant parts of a CFD code. For example, Christianson [23] reported a reverse accumula-
tion adjoint method where the total derivatives are iteratively incremented. Griewank
and Faure [24] proposed a piggyback iterative method and Giles et al. [25] developed
an iterative primal-dual accurate approach to solve the adjoint equations. Xu et al.
[26] reported a Jacobian-trained Krylov-implicit Runge–Kutta method to stabilize the
flow and adjoint solutions and implemented it in an open source solver STAMPS [27].
Albring et al. [28] developed a duality-preserving adjoint method that perfectly inherits
the convergence rate of the primal solver and implemented it in an open source solver
SU2 [29]. Mader et al. [30] used AD to selectively differentiate the code that computes
residuals and objective functions and solved the adjoint equations by using the gener-
alized minimal residual (GMRES) method. In that work, we achieved fully consistent
total derivatives verified against the complex-step method to be accurate to machine
precision [31]. We have since improved and generalized the implementation in the open-
source adjoint solver ADflow,1 which we detail in Sec. 4 and Appendix A. The idea of
using AD to selectively differentiate parts of the code has been used in other discrete
adjoint implementations [32–34].

Although numerous other efforts have reported adjoint methods for CFD [10, 11, 13,
14, 16, 35–38], they focus on a single adjoint implementation for a single flow solver.
A shortage exists of detailed quantitative comparisons of the accuracy and efficiency
of various derivative computation and adjoint equation solution options that use well-
defined benchmark problems. Quantifying the efficiency and other performance metrics
is important because it affects the capability to optimize aerodynamic design in prac-
tice. Although existing adjoint studies evaluate their performance, they use different
geometries, meshes, flow conditions, and computing platforms. A need also exists for a
universal, platform-independent adjoint benchmark that allows us to compare various
adjoint implementations.

Our main goal herein is thus to seek effective approaches for adjoint development;

1https://github.com/mdolab/adflow
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that is, approaches that are not only efficient and accurate but also incur low implemen-
tation and maintenance effort. We achieve this goal by first discussing the pros and cons
of the partial derivative computation and adjoint equation solution options. We then im-
plement three combinations of these adjoint options in ADflow and in an incompressible
solver (DAFoam) and quantitatively evaluate their performance in terms of six factors:
speed, accuracy, memory usage, scalability, development effort, and extensibility. We
also use an adjoint solver that implements a full-code AD approach for comparison.

To facilitate future performance comparisons, we propose a suite of platform in-
dependent adjoint benchmarks based on three cases from the AIAA Aircraft Design
Optimization Discussion Group (ADODG):2 the low-speed rectangular wing (Case 3),
the transonic Common Research Model (CRM) wing (Case 4), and the wing-body-tail
aircraft configuration (Case 5). The meshes and configurations for the benchmarks are
publicly available [39], which allows for direct comparisons with other solvers and adjoint
implementations.

In this work, we restrict our focus to discrete adjoint implementations for the steady-
state Navier–Stokes (NS) equations. However, much of the discussion and ideas can be
extended to other governing equations and discretization methods, such as the finite-
element structural analysis.

This paper can be read in different ways, depending on the level and goals of the
reader. For readers wishing to get a quick overview of the general recipe for adjoint
implementation and the pros and cons of the different adjoint implementation options,
reading Sec. 4 (especially Secs. 4.5 and 4.6), and the conclusions (Sec. 6) will suffice.
Readers interested in the solver-specific adjoint implementation details can refer to Ap-
pendix A. The remainder of this paper provides a historical perspective on adjoint meth-
ods (Sec. 2), a detailed description of the two flow solvers (Sec. 3), and a quantitative
comparison of the adjoint performance for various implementation options (Sec. 5).

2 Historical perspective
Adjoint methods originated in the optimal control community in the 1960s [40, 41].
The structural design community later adopted adjoint methods to help solve structural
optimization problems [42, 43]. Pironneau [44] first introduced adjoint methods in fluid
mechanics, where he handled drag minimization problems for Stokes flow. This approach
was then extended by Jameson [45] to the aerodynamic optimization of Euler flow in
the late 1980s.

Since then, the adjoint method has been implemented in more complex PDE models,
such as the NS equations [10, 46–48], the lattice Boltzmann equation [49–52], NS with
various turbulence models [53–57], and NS with transitional turbulence models [57–59].
The adjoint method has also been implemented for time-spectral unsteady solvers [60–
64] and RANS-based stability derivative computation [65–67]. The other aspect that
evolved was the number of flow conditions—initially, optimization considering a single
flow condition was the norm [10, 45, 68], but the need to consider multiple flow conditions

2http://mdolab.engin.umich.edu/content/aerodynamic-design-optimization-workshop
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to obtain robust designs quickly became evident [69–75].
In applications, the adjoint method has enabled the aerodynamic shape optimization

of wings [3–5, 16, 74], aircraft configurations [6, 68, 76, 77], wind turbines [78, 79], gas
turbines [26, 62, 80, 81], hydrofoils [82], ships [83, 84], cars [85–87], and duct flows [88–90].
The adjoint method has also been used in topology optimization for flows [33, 91–93] and
structures [94, 95], as well as for error estimation [96–98], uncertainty quantification [96,
99, 100], and inverse designs [48, 101, 102].

In addition to single-discipline PDEs, the adjoint method has been generalized to
multidisciplinary systems, which started with the development of a coupled-adjoint ap-
proach for an aerostructural model that coupled CFD to finite-element structural anal-
ysis [103] and its application to the design of a supersonic business jet [104], where aero-
dynamic and structural sizing were optimized simultaneously. In the last several years,
further developments greatly improved the efficiency of this approach [105] and enabled
the aerostructural optimization of aircraft wings [106–108]. In addition to aerostruc-
tural optimization, the coupled-adjoint approach has been used in aerothermal prob-
lems [90, 109–111], aeroacoustic designs [112, 113], and flutter-constrained optimiza-
tion [64, 114–117].

The coupled adjoint has since been further generalized. In an effort to unify the
theory for the various methods for computing derivatives, Martins and Hwang [18]
derived the unified derivatives equation, which also applies to coupled systems. This
theoretical development resulted in the development of an algorithmic framework for
the solution and derivative computation of coupled systems called modular analysis and
unified derivatives [118], which has since been implemented in the OpenMDAO frame-
work [119]. This greatly facilitates the implementation of adjoint methods for coupled
systems and enabled the optimization in multidisciplinary design optimization applica-
tions [120–125]. These included an propulsion-airframe integration effort that coupled
CFD with an engine cycle model to study boundary-layer ingestion effects [126] and
the simultaneous design of aerodynamic shape and propulsor sizing for boundary-layer
ingestion configurations [127].

As mentioned in the introduction, two fundamentally different approaches are avail-
able for formulating the adjoint of a PDE solver: the continuous and the discrete ap-
proaches. The early work on adjoint methods used the continuous approach. This
includes the work of Jameson et al. [46], Anderson and Venkatakrishnan [128], and the
initial adjoint implementations in SU2 [29] and OpenFOAM [91]. The advantage of
the continuous adjoint approach is that it generates a linearized PDE that is typically
solved by using the same numerical iteration technique as the primal flow solution. This
eliminates the need to explicitly form the Jacobian and leads to fast and low-memory
adjoint implementations [7, 8].

The main disadvantages of the continuous approach are a low accuracy for coarser
meshes and a challenging implementation. The fact that the PDEs are first linearized
and then discretized means that the discretized form of these equations is guaranteed
to result in a fully consistent gradient only at the limit of an infinitely fine mesh [129].
Therefore, the continuous adjoint produces inaccurate gradients for cases where the mesh
or the numerical methods have an effect on the solution accuracy [130].
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Additionally, the continuous adjoint system requires hand differentiation of the PDEs,
which is challenging for some terms. For instance, for the turbulent RANS equations,
adjoint developers typically simplify some of the terms in the turbulence model, which
creates an additional source of error [8]. From an implementation perspective, the fact
that the differentiation of the primal PDE is done by hand also restricts the imple-
mentation of this method to a few research groups with specialized knowledge of both
optimization and CFD. In addition, the boundary conditions of the linearized PDEs are
not always obvious and require careful consideration. For example, the adjoint boundary
condition for the shear stress term in viscous flow is ill-posed, which eventually impedes
us from evaluating the impact of viscous drag [8, 128].

Much of the recent work on adjoints has focused on the discrete adjoint method.
The advantage of this approach is that, because it is formulated from the discretized
flow equations, it provides numerically consistent derivatives regardless of the coarseness
of the grid or the assumptions made in the analysis of the primal flow [7, 8]. Another
advantage is that the partial derivatives that appear in the discretized adjoint equations
do not necessarily need to be differentiated by hand and can be computed by using
several numerical methods (finite differences, complex step, and AD) [131]. These tech-
niques make it possible to generate numerically exact derivatives, even through complex
routines such as the various turbulence models used in RANS analysis [7, 55]. The
main disadvantage of the discrete approach is the very high cost, in both computational
and memory terms, of computing and storing the exact Jacobian, which is necessary in
at least some form. Therefore, efficiently implementing these computations is vital to
ensure a good overall adjoint performance. The discrete approach is the natural choice
because our final goal is to provide a recipe for adjoint implementation and to partially
automate the implementation of adjoint methods.

The aforementioned adjoint studies focus on steady- or periodic-flow problems. De-
veloping an efficient adjoint method to handle general nonperiodic unsteady flow is
challenging because an unsteady adjoint implementation requires storing and recomput-
ing linearizations at each time step instead of using information from the final converged
states. As a result, the computational cost for the unsteady adjoint is at least one order
of magnitude greater than that for the corresponding steady adjoint. Moreover, the
chaotic nature of turbulent flow poses the fundamental challenge that a small pertur-
bation in the initial conditions may be amplified exponentially at some finite steps and
eventually degrade the adjoint derivatives [132]. This problem is especially severe when
using high-fidelity, eddy-resolving turbulence-modeling techniques, such as large-eddy
simulation and direct numerical simulation. Thus, despite recent efforts [133, 134], the
development of efficient adjoint methods to handle chaotic turbulent flows for practical
engineering design problems remains largely unsolved.

3 Flow modeling and solution
This section introduces the 3D NS equations and describes the two CFD solvers, ADflow
and DAFoam, used in this work.
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3.1 Governing equations

In the derivations below, we focus on the 3D, steady-state turbulent flow equations,
commonly known as the Navier-Stokes (NS) equations:

∇ · (ρU ) = 0, (1)

∇ · (ρUU) +∇p−∇ · τ = 0, (2)

∇ · (ρEU) +∇ · (pU)−∇ · (τ ·U) +∇ · q = 0, (3)

where ρ is the density, p is the pressure, E is the total energy, and U = [u, v, w] is
the velocity vector, with u, v, and w being the velocities in the x, y, and z directions,
respectively. The quantity q is the heat flux and τ is the viscous stress tensor, which is
a function of U , molecular viscosity µ, and turbulent viscosity µt. We ignore all body
forces and internal heat sources.

To connect the turbulent viscosity to the mean flow variables, we use the Spalart–
Allmaras (SA) turbulence model:

∇ · (U ν̃)− 1

σ
{∇ · [(ν + ν̃)∇ν̃] + Cb2|∇ν̃|2} − Cb1S̃ν̃ + Cw1fw

(
ν̃

d

)2

= 0, (4)

where ν̃ is related to the turbulent viscosity νt = µt/ρ via

νt = ν̃
χ3

χ3 + C3
v1

, χ =
ν̃

ν
. (5)

The four terms in Eq. (4) represent the convective, diffusion, production, and near-wall
destruction for the turbulent flow, respectively. Spalart and Allmaras [135] defines these
terms and their parameters in more detail.

To discretize the above governing equations, we divide a bounded domain into a
mesh of finite-volume cells (finite-volume method). The specific numerical formulation
depends on the discretization schemes, flow solution techniques, and mesh topology. In
this work, we focus on two flow solvers, ADflow and DAFoam. A brief summary of their
implementations is included below.

3.2 ADflow: A structured overset compressible solver

ADflow is a finite-volume structured multiblock and overset mesh solver that is available
under an open-source license. 3 The core code is based on SUmb [136], but the code
has been completely refactored with a discrete adjoint, overset mesh capability, and
Newton-type solvers. It also features a Python API that operates as a Python module
for multidisciplinary analysis and design optimization. The code is written in Fortran 90
to maximize computational efficiency. In keeping with the desire for computational
efficiency, the initial implementation of the code was based on structured multiblock
meshes. Although this type of implementation allows for very efficient computations,

3https://github.com/mdolab/adflow
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there are well-known challenges to making multiblock meshes for complex geometric
configurations. As a result, the code was recently extended to handle overset meshes by
using an implicit hole cutting technique developed by Kenway et al. [137].

In ADflow, the inviscid fluxes are discretized by using three different numerical
schemes: the scalar Jameson–Schmidt–Turkel [138] (JST) artificial dissipation scheme,
a matrix dissipation scheme based on the work of Turkel and Vatsa [139], and a mono-
tone upstream-centered scheme for conservation laws (MUSCL) based on the work of
van Leer [140] and Roe [141]. The viscous flux gradients are calculated by using the
Green–Gauss approach. ADflow solves the compressible flow equations, so the mean
flow equations—defined by the continuity of mass, momentum and energy—are solved
simultaneously. For turbulent RANS solutions, a turbulence model is used to close
the equations. ADflow has several turbulence models implemented, including the one-
equation SA model [135] and the two-equation Menter’s shear stress transport (SST)
model [142]. These turbulence models can be solved either as a segregated system of
equations or as a fully coupled system of equations with the mean flow.

Four numerical algorithms are implemented to converge the residual equations in-
cluding a Runge–Kutta (RK) algorithm, a diagonalized-diagonally-dominant alternating
direction implicit (D3ADI) algorithm [143], an approximate Newton–Krylov (ANK) al-
gorithm [144], and a full Newton–Krylov (NK) algorithm [35]. The RK and D3ADI
schemes are multigrid compatible, so they can be used with any of the meshes compat-
ible with ADflow. However, although they both act as useful globalization methods for
the NK scheme, without a significant number of multigrid levels, these methods converge
relatively slowly and so are mostly useful for non-overset meshes. The ANK solver is
suitable for both multiblock and overset meshes, although it is not compatible with the
multigrid scheme in ADflow. It is sufficiently robust to act as a globalization scheme
for the full NK solver and converges well even without multigrid. Therefore, this has
become the default solver for overset cases in ADflow. The robustness of the ANK solver
has enabled the solution of challenging problems, such as the optimization of an airfoil
starting from a circle [145]. The NK solver provides efficient terminal convergence for
all types of meshes once the solution is within the Newton basin of attraction.

3.3 DAFoam: An unstructured incompressible solver

DAFoam uses the built-in simpleFoam solver in OpenFOAM to solve the incompressible
flow equations. This form of the equations assumes that the density is constant, allowing
the energy equation to be ignored for isothermal problems. simpleFoam is a finite-
volume solver for both structured and unstructured meshes. It uses the semi-implicit
method for pressure-linked equations (SIMPLE) [146] algorithm along with the Rhie–
Chow interpolation [147] to solve the flow equations. simpleFoam solves the NS equations
in a segregated manner; it first solves the momentum equations based on an old pressure
field, then updates the pressure field by solving a Poisson equation. The inviscid terms
are discretized by using a second-order upwind scheme, whereas the viscous terms are
discretized by using central differencing. simpleFoam solves the pressure equation by
using the Gauss–Seidel iteration with the algebraic multigrid technique, whereas the
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velocity and turbulence equations are solved by using the regular Gauss–Seidel method.
DAFoam is written in C++.

4 Adjoint implementation approaches
The final goal of an adjoint solver is to compute the total derivative (df/ dx), where f
is a function of interest and x is the vector of design variables. As previously mentioned,
the main advantage of the adjoint method is that it efficiently computes the derivative
vector df/ dx for any length of the vector x. In aerodynamic design optimization, the
functions of interest are the objective (e.g., drag coefficient) and constraint functions
(e.g., lift coefficient, pitching moment coefficient). The design variables can be divided
into aerodynamic design variables (e.g., angle of attack) and geometric variables (e.g.,
surface shape).

In this section, we describe the various possible approaches to implementing the
steady-state discrete adjoint method. We start by deriving the discrete adjoint equa-
tions (Sec. 4.1) and then describe the options for computing the derivatives in the adjoint
equations (Sec. 4.2), along with techniques that accelerate the derivative computation
(Sec. 4.3). Section 4.4 discusses the method we selected to efficiently solve the adjoint
equations, and Sec. 4.5 reviews existing implementations of discrete adjoint solvers in
CFD solvers. Finally, we outline our proposed adjoint implementations by using three
adjoint approaches that use combinations of the options given above for computing
derivatives and solving adjoint equations (Sec. 4.6). The material in this section is
meant to be general and thus applicable to any CFD solver. The solver-specific ad-
joint implementations for our two CFD solvers (ADflow and DAFoam) are detailed in
Appendix A.

4.1 Adjoint equations

The discrete adjoint method assumes that a discretized form of the NS (1) and (2),
energy (3), and turbulence (4) equations is available through the flow solver and that,
for a given design variable vector x ∈ Rnx , the discretized equations are solved for the
state variable vector w ∈ Rnw such that

R(x,w) = 0, (6)

where R ∈ Rnw is the residual vector. The R and w vectors contain the residuals
and state variables for all mesh cells, respectively. Therefore, Eq. (6) contains nonlinear
equations that involve millions of state variables and require specialized iterative solvers.
To ensure fully consistent adjoint derivatives,R andw contain all the residuals and state
variables (including the turbulent variables); we do not assume frozen turbulence, as is
commonly done in continuous adjoint implementations. We elaborate on the choice of
R, w, and x in Appendix A.1.

The functions of interest are then functions of both the design variables and the state
variables, i.e.,

f = f(x,w). (7)
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This computation does not require iteration and is much cheaper than the nonlinear
(primal) solution.

In general, there are multiple functions of interest (the objective and multiple design
constraints), but in the following derivations, we consider f to be a scalar without loss
of generality. As shown later, each additional function requires the solution of another
adjoint system.

To obtain the total derivative df/ dx, we apply the chain rule:

df

dx︸︷︷︸
1×nx

=
∂f

∂x︸︷︷︸
1×nx

+
∂f

∂w︸︷︷︸
1×nw

dw

dx︸︷︷︸
nw×nx

, (8)

where the partial derivatives ∂f/∂x and ∂f/∂w are relatively cheap to evaluate because
they only involve explicit computations. The total derivative dw/ dx matrix, on the
other hand, is expensive because w is implicitly determined by the residual equations
R(w,x) = 0.

To solve for dw/ dx, we apply the chain rule for R and use the fact that the total
derivative dR/ dx must be zero for the governing equations to remain feasible with
respect to variations in the design variables. The result is

dR

dx
=
∂R

∂x
+
∂R

∂w

dw

dx
= 0, (9)

which can be rearranged to get the linear system

∂R

∂w︸︷︷︸
nw×nw

dw

dx︸︷︷︸
nw×nx

= − ∂R

∂x︸︷︷︸
nw×nx

. (10)

We can solve a column of dw/ dx by using the same column of dR/ dx as the right-hand
side. We then repeatedly solve the linear equation nx times until all the columns in the
dw/ dx matrix are computed. Finally, we substitute dw/ dx into Eq. (8) to compute
the total derivative df/ dx for any objective function f . This approach is known as
the direct method, and its computational cost is proportional to the number of design
variables.

Alternatively, we substitute the solution for dw/ dx from Eq. (10) into Eq. (8) to
get

df

dx︸︷︷︸
1×nx

=
∂f

∂x︸︷︷︸
1×nx

−

ψT

︷ ︸︸ ︷
∂f

∂w︸︷︷︸
1×nw

∂R

∂w

−1

︸ ︷︷ ︸
nw×nw

∂R

∂x︸︷︷︸
nw×nx

. (11)

Typically, we do not actually find the inverse of the Jacobian ∂R/∂w explicitly. Instead,
we solve the corresponding linear system with the appropriate right-hand-side vector.
The direct method consists in solving with −∂R/∂x as the right-hand side. Alterna-
tively, we transpose the Jacobian and solve with [∂f/∂w]T as the right-hand side, which
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yields the adjoint equations
∂R

∂w

T

︸ ︷︷ ︸
nw×nw

ψ
︸︷︷︸
nw×1

=
∂f

∂w

T

︸ ︷︷ ︸
nw×1

, (12)

where ψ is the adjoint vector. Next, we substitute the adjoint vector into Eq. (11) to
compute the total derivative:

df

dx
=
∂f

∂x
−ψT ∂R

∂x
. (13)

Since the design variable x does not explicitly appear in Eq. (12), we need to solve this
equation only once for each function of interest, so the computational cost is independent
of the number of design variables. This approach is also known as the adjoint method,
and its computational cost is proportional to the number of objective functions.

In the context of large-scale engineering optimization problems such as aircraft de-
sign, the adjoint method is advantageous because the functions of interest typically
number fewer than 10, but the design variables can number several hundred.

To summarize, a discrete adjoint consists of the following four major steps: First,
we compute the partial derivatives [∂R/∂w]T and [∂f/∂w]T . Next, we solve the linear
equation (12) to obtain the adjoint vector ψ. Finally, we compute the partial derivatives
∂R/∂x and ∂f/∂x and use Eq. (13) to compute the total derivative df/ dx. Specifically,
the steps are as follows:

1. Compute [∂R/∂w]T and [∂f/∂w]T .

2. Solve the adjoint equation [∂R/∂w]Tψ = [∂f/∂w]T to obtain ψ.

3. Compute ∂R/∂x and ∂f/∂x.

4. Compute the total derivative df/ dx = ∂f/∂x−ψT [∂R/∂x].

These four steps indicate that an effective adjoint implementation requires efficient
partial derivative computation, as well as adjoint equation solutions. Multiple options
are available for these two tasks. The following sections outline the methods available
and highlight their advantages and disadvantages.

4.2 Partial derivative computations

Five primary options are available for computing the derivatives in a discrete adjoint
implementation [8, 148]: analytical methods, finite-difference methods, the complex-
step method [31], AD [17], and symbolic differentiation. More details on these methods,
including their unification, can be found elsewhere [18]; here we just discuss what is
needed for the computation of the partial derivatives in the adjoint equations.
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4.2.1 Analytic method

The analytic method, which consists in hand differentiation, was used in early discrete
adjoint implementations [9–16]. However, analytically differentiating the adjoint partial
derivative terms requires significant expertise in the particular flow-solver implementa-
tion and is prone to human error [7]. Furthermore, the complex nature of the turbulent
NS equations is often handled by ignoring some terms (e.g., frozen turbulence [8]). This
simplifies the analytic differentiation of the residuals but introduces inaccuracies in the
gradients. Although this approach can produce computationally efficient derivatives, it
also typically requires a significant amount of development and implementation time.
As a result, this approach has largely fallen out of favor for recently developed adjoint
solvers.

4.2.2 Finite-difference approximations

Finite-difference methods compute partial derivatives by perturbing the corresponding
variables and recomputing the outputs. Consider a general vector function with the
input vector x and output vector y = y(x). The corresponding Jacobian matrix ∂y/∂x
can be computed by using first-order forward differencing as follows:

(
∂y

∂x

)

n,m

=
yn(x+ εem)− yn(x)

ε
+O(ε), (14)

where the subscripts n and m are the row and column indices of the matrix, respectively,
ε is the finite-difference step, and em is a unit vector with a single unity in row m and
zeros in all other rows. By looping over the input index m and applying perturbations
for each input in sequence, the entire Jacobian may be populated with M + 1 function
evaluations, with M being the number of columns. The finite-difference method is much
easier to implement than analytic methods, and it allows the Jacobian to be computed
even when the underlying implementation of the function computation is not accessible
(such as in black-box computations). However, the finite-difference method is subject
to truncation and subtractive cancellation errors, making the derivative value sensitive
to step size, especially for functions with strong nonlinearities. This requires a careful
step-size study to keep the error at an acceptable level.

4.2.3 Complex-step method

The complex-step method computes the derivative of a real function by perturbing it
with a complex step instead of a real one and taking the imaginary part of the result,
yielding the approximation [31, 149]

(
∂y

∂x

)

n,m

=
Im[yn(x+ εemi)]

ε
+O(ε2), (15)

where εi is a pure imaginary step. Since there is no subtraction in the above equation,
there is no subtractive cancellation error. Therefore, we can choose an arbitrarily small
step size (e.g., 10−40) to reduce the truncation error to machine precision. Given this
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advantage, the complex-step method is useful for computing the total derivative df/ dx
for verification purposes. However, only a handful of adjoint implementations use the
complex-step method for partial derivative computation [37]. This is primarily because,
to implement the complex-step method, all the floating point data types in the CFD
code need to be replaced with complex number data types. This modification usually
makes the code between two and four times slower than the equivalent real code, which
is partially because we need more arithmetic operations for complex numbers than real
ones. Moreover, the operations for the overloaded complex data type may not be fully
optimized by compilers. In addition to the slower speed, we need twice as much memory
when replacing all real numbers with complex numbers in the code. In addition, we
need to carefully complexify certain real-value operations such as the relational logic
operators and absolute value function [31].

4.2.4 Algorithmic differentiation

AD is another option for accurately computing derivatives [17]. This approach focuses
directly on the computer code and uses the fact that any code, no matter how complex,
consists of a sequence of elementary arithmetic operations. These operations can then
be differentiated to create differentiated versions of the code that compute derivatives
by using the chain rule.

There are two derivative computation modes for AD: forward and reverse. Both use
the same chain rule but accumulate the derivatives in different directions. In forward-
mode AD, the input variables of interest are specified and the derivatives with respect
to those variables are accumulated in the forward direction, together with the execution
of the original code. In reverse-mode AD, on the other hand, the outputs of interest are
specified and the derivatives of those outputs are accumulated backward. Before this
reverse accumulation is performed, however, the original code must be run (forward)
and all intermediate variables must be stored for use in the reverse accumulation.

Consider the vector function y = y(x). In the forward mode, the input and output
for its differentiated function ẏ(x, ẋ) can be expressed as

ẏ =
∂y

∂x
ẋ ⇒




ẏ1
ẏ2
...
ẏN


 =




∂y1
∂x1

∂y1
∂x2

. . .
∂y1
∂xM

∂y2
∂x1

∂y2
∂x2

. . .
∂y2
∂xM

...
...

. . .
...

∂yN
∂x1

∂yN
∂x2

. . .
∂yN
∂xM







ẋ1
ẋ2
...
ẋN


 , (16)

where ẋ is the input seed and ẏ contains the output of a forward-mode AD computation.
Note that Eq. (16) illustrates only the input and output structures of the differentiated
y function in the forward mode. The details of how the differentiated function is con-
structed by using the chain rule can be found in AD textbooks [17, 150]. We use the
differentiated y function to compute individual partial derivatives by providing an input
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seed vector such that the nth entry is unity and all other entries are zero:

ẋ =
[
ẋ1, ẋ2, . . . , ẋn, . . . , ẋN

]T
=
[
0, 0, . . . , 1, . . . , 0

]T
. (17)

Equation (16) then yields the partial derivative of all components of y with respect to
xn:

ẏ =

[
∂y1
∂xn

,
∂y2
∂xn

, . . . ,
∂yN
∂xn

]T
. (18)

The differentiated function in the reverse-mode y(x,y) has the following input and
output structure:

x =

[
∂y

∂x

]T
y ⇒




x1
x2
...
xN


 =




∂y1
∂x1

∂y2
∂x1

. . .
∂yN
∂x1

∂y1
∂x2

∂y2
∂x2

. . .
∂yN
∂x2

...
...

. . .
...

∂y1
∂xM

∂y2
∂xM

. . .
∂yN
∂xM







y1
y2
...
yN


 . (19)

Now y is the input seed and x contains the output of a reverse-mode AD computation.
To find the desired derivatives, we set the input seed vector

y =
[
y1, y2, . . . , yn, . . . , yN

]T
=
[
0, 0, . . . , 1, . . . , 0

]T
. (20)

The output of reverse-mode AD then contains the derivatives of yn with respect to all
x:

x =

[
∂yn
∂x1

,
∂yn
∂x2

, . . . ,
∂yn
∂xM

]T
. (21)

In addition to explicitly computing partial derivatives, we can use AD to efficiently
compute matrix-vector products with the Jacobian ∂y/∂x. This can be done by multi-
plying the Jacobian by a full vectorψ that we set to be the seed vector (ẋ = ψ or y = ψ).
Specifically, the forward mode allows the computation of regular matrix-vector products
[∂y/∂x]ψ, whereas the reverse mode allows the computation of transpose matrix-vector
products [∂y/∂x]Tψ. We use this unique feature of reverse-mode AD to implement
an efficient Jacobian-free adjoint solver using Krylov subspace methods, as detailed in
Sec. 4.4.

There are two main ways of implementing AD: source code transformation and op-
erator overloading [150]. Tools using source code transformation add new statements to
the original source code that compute the derivatives of the original statements. The
operator-overloading approach consists in using a new user-defined type instead of real
numbers. This new type includes not only the value of the original variable but also its
derivative. All intrinsic operations and functions have to be redefined (i.e., overloaded)
to compute the derivatives together with the original computations. Both source code
transformation and operator overloading differentiate the original functions in a semi-
automatic manner. The operator-overloading approach results in fewer changes to the
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original code but is less efficient because overloading user-defined data types results in
code that is two to four times slower, similar to the complex-step approach mentioned in
Sec. 4.2.3. Moreover, this approach uses at least twice as much memory as the original
code because the overloaded date type stores both the value and derivative, and because
the reverse-mode AD requires storing all intermediate variables on tapes [151, 152].
Conversely, the source code transformation creates new codes to compute derivatives
on the fly while keeping the same data type. With careful implementation, the source
code transformation AD can be as efficient as analytical methods in terms of speed and
memory usage [153]. Section 5 compares the performance of source code transformation
and operator-overloading AD.

4.2.5 Symbolic differentiation

Symbolic differentiation [154] is another option to compute derivatives. In contrast
to AD, symbolic differentiation directly manipulates the mathematical expression of a
function. The advantage of symbolic differentiation is that we obtain the mathematical
form of derivatives, and the process can be automated by using software such as Maple,
Mathematica, or Matlab. However, symbolic differentiation requires a function to be
expressed in closed form, which is not always feasible for modern CFD codes that use
iterative solution procedures. Moreover, as the function becomes complex, the mathe-
matical expression generated by symbolic differentiation can be prohibitively long and
thus computationally inefficient. Given these limitations, symbolic-differentiation-based
derivative computation has not been widely used in adjoint development. However, in
the finite-element-method (FEM) community, a semi-symbolic-differentiation method
was proposed to compute derivatives, which is elaborated on in Sec. 4.5.

4.3 Accelerating Jacobian computation

Being able to compute partial derivatives in both forward and reverse mode allows
flexibility when computing partial derivatives. However, the Jacobian required for the
adjoint system is square, which limits the benefits of using a particular computational
approach for the derivatives. Furthermore, computing the state Jacobian matrix ∂R/∂w
by naively computing all the elements in the matrix requires O(N2) operations, where
N is the number of rows in the Jacobian. This is prohibitive for a 3D problem because
N can exceed 100 million. Therefore, it is critical to accelerate the computation of the
Jacobian matrix by exploiting its sparsity.

Even if we use the Jacobian-free Krylov methods enabled by reverse-mode AD, we
still need a preconditioner matrix, which must also be computed efficiently. We thus
want to reduce the number of residual evaluations required to compute these matrices
to a small fixed number. We now discuss two approaches to exploit the sparsity pattern
and accelerate Jacobian matrix computations.
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Figure 1: Examples of stencils for a single-cell residual. The residual cell is black, and the
level-one and -two connected cells are red and blue, respectively. The structured hexahedral
mesh has a regular stencil pattern, whereas the unstructured hexahedral mesh splits its cell
faces and has an irregular stencil.

4.3.1 Single-cell residual

In this approach, we first identify the computational stencil to compute a single-cell
residual. Figure 1 shows examples of stencils for a single-cell residual. Here, the residual
cell is black, and the level-one and -two connected cells are red and blue, respectively. We
then re-code a reduced residual routine that computes the residual for only a single cell.
Next, we compute the derivatives of its residual with respect to the states and design
variables associated with this cell. This process is repeated for every cell in the mesh
until all the nonzero Jacobian elements are computed. The single-cell residual compu-
tation is relatively intuitive to implement and is effective in minimizing the number of
computations required to form the Jacobian. This approach was used in our original
adjoint implementation [30] and also in other recent work [33].

However, one big disadvantage of the single-cell residual approach is that we need to
re-code a reduced residual routine because the original residual computation typically has
an input vector of all the design variables and state variables [x, w] and an output vector
of all residuals [R], instead of an output for a single-cell residual. This code duplication
goes against best programming practices and makes it more difficult to maintain and
extend the code. In particular, this approach is susceptible to discrepancies between the
original residual computation and the single-cell residual computation. Furthermore,
for an object-oriented, industrial-scale code such as OpenFOAM, even isolating the
functions needed to create a single-cell residual computation is challenging. Therefore,
this approach is not widely used in the finite-volume CFD community.

4.3.2 Graph coloring

Similar to the single-cell residual approach, graph coloring [155] exploits the sparsity of
Jacobian matrices and requires the identification of the stencil of each residual computa-
tion. In this case, the residual stencil is used to define an adjacency matrix that serves to
compute a unique set of groupings that covers the entire domain with non-overlapping
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residual computations. This is done by partitioning all columns of a matrix into different
structurally orthogonal subgroups—the colors—such that, in one structurally orthogo-
nal subgroup, no two columns have a nonzero entry in a common row. Coloring allows
simultaneous perturbation of multiple columns of the Jacobian by using any of the
forward-mode methods (i.e., finite difference, complex step, and forward-mode AD) be-
cause we know that no residuals in a given color overlap, thereby reducing the quantity
of residual evaluations required to a small fixed number ncolor. The coloring approach
also allows us to directly use the original residual computation functions because we are
able to account for the sparsity by using the coloring. This avoids code duplication,
thereby ensuring consistency between the original and derivative computations.

Figure 2: Example of graph coloring for a five-point-stencil Jacobian matrix obtained from
a 5 × 5 two-dimensional mesh. Naively computing the Jacobian by using finite differencing
(column by column) requires 26 residual function evaluations. With graph coloring, we si-
multaneously perturb columns that have the same color, which reduces to six the number of
function evaluations.

As an example, we consider a five-point-stencil Jacobian matrix obtained from a
5 × 5 two-dimensional mesh (see Fig. 2). If we perturb each column of the matrix
and use the first-order finite-difference method to compute the Jacobian, we need 26
residual function evaluations. With graph coloring, we simultaneously perturb columns
that have the same color, which reduces to six the number of function evaluations. The
actual Jacobian matrices for the 3D NS equations are much more complex than the
five-point-stencil matrix. The cost and complexity of computing a coloring can be high,
depending on the mesh topology and the residual stencil of the primal solver. This
requires us to selectively adopt effective coloring algorithms for ADflow and DAFoam;
we discuss the details of these algorithms in Sec. A.2.
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4.4 Methods for solving the adjoint equations

As mentioned in Sec. 4, in addition to computing the partial derivatives, we need to
solve the adjoint equations (12). A system of linear equations may be solved by either
direct or iterative methods [156]. The benefit of using direct methods, such as lower
and upper factorization, is that we obtain exact solutions with a fixed number of op-
erations. However, the application of direct methods is relatively limited. To be more
specific, large-size linear systems incur prohibitive computational cost for exact lower
and upper factorization, especially for linear systems that are not tightly banded [156].
Although direct methods have been used to solve the adjoint equations for problems
in computational structural dynamics [95], they have not been widely adopted in CFD.
Iterative methods, on the other hand, have no restriction on the size or banded structure
of linear systems and is the natural choice to solve the adjoint equations for large-scale
CFD problems.

One option to solve the adjoint equations is the linear fixed-point iteration method,
also known as the stationary iteration method [156, 157]. In this approach, we first
reformulate Eq. (12) as a residual function,

Radj(ψ) =

[
∂f

∂w

]T
−
[
∂R

∂w

]T
ψ = 0, (22)

and then solve for ψ by using

ψn+1 = ψn +MRadj(ψ
n), (23)

where n is the iteration number, and M is an operator that depends on the particular
iterative method (e.g., Euler, Gauss–Seidel, Runge–Kutta). One advantage of reformu-
lating the adjoint equation in residual form is that we do not need to factorize and solve
the exact Jacobian matrix [∂R/∂w]T . Another advantage is that we can use the same it-
erative solver as the flow solver, achieving same rate of convergence for the linear adjoint
and the nonlinear flow equations—a feature that is known as duality preserving [8, 158–
160]. Given these two advantages, the fixed-point iteration methods have been used in
a number of adjoint implementations [9, 12–14, 25, 27, 28, 32, 34, 88, 161, 162]. How-
ever, one drawback of linear fixed-point iteration methods is that the current solution
depends on information only from the previous iteration, so information accumulated
throughout the iterations is not fully used. Therefore, the convergence of fixed-point
iteration methods is always linear [156].

Given the pros and cons cited above, we opt to use the GMRES iterative method to
solve the linear equations. The GMRES method conducts iterations by using the Krylov
subspace,

Kn = span{r0, Ar0, A2r0, . . . , A
n−1r0}, (24)

where A is the transpose of the Jacobian [∂R/∂w]T , and the initial residual r0 is

r0 =

[
∂f

∂w

]T
−
[
∂R

∂w

]T
ψ0. (25)
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Compared with the fixed-point iteration method, the GMRES method uses informa-
tion gathered throughout the iterations and therefore converges faster [156, 157]. Fur-
thermore, by using the NK method to solve the primal flow equations, the GMRES
method provides a similar duality preserving behavior as the fixed-point iteration ap-
proach because the eigenvalues for Jacobians (primal) and transposed-Jacobians (ad-
joint) are the same, which ensures consistent convergence between the flow and adjoint
solutions [8, 15].

In addition to the above advantages, we can directly compute the matrix-vector
products to construct the Krylov subspace without forming [∂R/∂w]T ; a method known
as Jacobian-free GMRES. The benefit of Jacobian-free GMRES is that it saves the
computational time and memory involved in computing and storing [∂R/∂w]T .

To perform Jacobian-free GMRES iterations, we use the reverse-mode AD to effi-
ciently compute the matrix-vector products by using Eq. (19), which yields

w =

[
∂R

∂w

]T
R. (26)

We set the input vector R = r0, and the output w is the matrix-vector product w =
[∂R/∂w]Tr0 = Ar0. Note that, although we call it the Jacobian-free GMRES method,
we still need to explicitly form and store the preconditioner matrix [∂R/∂w]TPC [see
Eq. (27)]. We find that this approach is more efficient because a fully-Jacobian-free
method requires extra computation for [∂R/∂w]TPC , which makes the overall adjoint
solution slower. We compare the performance of the Jacobian-free adjoint solution
method with other approaches in Sec. 5.

In addition to reducing memory usage, another advantage of using the Jacobian-free
GMRES method is that the sparsity information for [∂R/∂w]T need not be computed.
This important feature allows us to easily extend our adjoint implementation to any
computational mesh. We demonstrate this flexibility by applying our adjoint implemen-
tation to a wing-body-tail aircraft configuration with overset meshes (Sec. 5).

One disadvantage of GMRES methods is that they solve the exact Jacobian system
[∂R/∂w]T , which is typically more difficult to converge because the state Jacobian ma-
trix that results from a 3D viscous turbulent flow solution is typically ill-conditioned, es-
pecially for realistic geometries with complex flow [6, 8, 28, 163–165]. Therefore, we need
a strong preconditioner to improve the eigenvalues clustering. The right-preconditioned
adjoint equations reads

(
∂R

∂w

T [∂R
∂w

T

PC

]−1)(
∂R

∂w

T

PC
ψ

)
=

∂f

∂w

T

, (27)

where [∂R/∂w]TPC is the preconditioner matrix and ([∂R/∂w]TPC)−1 is the approximated
inverse of [∂R/∂w]T . We require that the preconditioner matrix is an approximation
of [∂R/∂w]T but easily invertible. Unfortunately, no general-purpose preconditioner
matrix is guaranteed to be effective, so we must carefully construct [∂R/∂w]TPC for each
specific problem [156]. Appendix A.3 elaborates on the solver-specific computation of
the preconditioner matrix.
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In this paper, we solve the adjoint equations by using the Portable, Extensible Toolkit
for Scientific Computation (PETSc) software library [166–168]. PETSc provides a wide
range of parallel linear and nonlinear equation solvers with various preconditioning op-
tions. We select the GMRES as the top-level iterative solver and adopt a nested pre-
conditioning strategy (see Fig. 3). We use the additive Schwartz method (ASM)—with
one or two levels of overlap—as the global preconditioner. The ASM divides the linear
system into sub-blocks and then solves them in parallel. For the local preconditioner in
each sub-block, we use the incomplete lower and upper (ILU) factorization approach.
The effectiveness of the ILU approach is largely impacted by the level of fill-in: the use
of a higher fill-in level converges faster but increases memory usage. To reduce memory
usage, we apply the ILU preconditioning multiple times in each sub-block by using the
Richardson method (inner Richardson iteration), where the Richardson damping factor
is set to 1.0. Similarly, we perform outer Richardson iterations when applying the ASM
global preconditioner. Performing the inner and outer Richardson iterations has the
same effect as increasing the ILU fill-in level. Therefore, this strategy allows us to use
a relatively low fill-in level (one or two) to save memory. In terms of speed, we find
that the improvement in convergence rate outweighs the extra computational cost of
Richardson iterations, which is attributed to [∂R/∂w]TPC being much sparser than the
exact state Jacobian [∂R/∂w]T , so the cost of extra matrix-vector products in the inner
and outer Richardson iterations is much cheaper than that in the GMRES iterations. In
addition, we observe that the outer Richardson iteration is more effective than the inner
one, which we attribute to the fact that the overlapped ASM preconditioner gathers
information across the blocks, whereas the ILU approach only affects local blocks. In
this paper, we perform three and two iterations for outer and inner Richardson itera-
tions, respectively. The above nested preconditioning strategy is effective for solving the
adjoint equation, as perviously reported [55, 105].

GMRES
Solver

Outer
Richardson

Additive
Schwarz

Inner
Richardson

ILU

Nested Preconditioning

Figure 3: The GMRES method along with a nested preconditioning strategy for solving the
adjoint equations.
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4.5 Overview of approaches used in existing discrete adjoint solvers

Existing discrete adjoint implementations for CFD codes use different combinations of
the options described above to compute the partial derivatives and solve the adjoint
equations (see Table 1).

Several codes have used hand differentiation to compute the partial derivatives
(Cart3D, elsA, FUN3D, Jetstream, NSU3D, and TAU). As mentioned in Sec. 4.2, this
approach is potentially the most efficient from the computational point of view. How-
ever, it requires expertise in the primal code, and deriving derivative routines by hand
requires significant effort [7, 37]. Moreover, the hand-derived routines are not straight-
forward to extend (e.g., adding new turbulence models and discretization schemes).

More recent adjoint implementations (ADflow, DAFoam, HYDRA, piggySimple-
Foam, reverseAccSimpleFoam, STAMPS, and SU2) use AD to efficiently compute par-
tial derivatives and matrix-vector products. For solvers written in Fortran (ADflow,
HYDRA, and STAMPS), the source code transformation AD is the best choice be-
cause it results in faster code and incurs a lower memory overhead compared with
operator-overloading AD. The source code transformation tool Tapenade [174] was used
to compute the partial derivatives for these three codes. For C++ solvers that use
object-oriented code structures (DAFoam, piggySimpleFoam, reverseAccSimpleFoam,
and SU2), the operator-overloading AD becomes the only option. The benefit of us-
ing the operator-overloading AD is that it is relatively easy to implement and extend.
SU2 uses the CoDiPack [152] as the operator-overloading AD tool, whereas DAFoam,
piggySimpleFoam, and reverseAccSimpleFoam use dco/c++ [151].

The best strategy for choosing between the Krylov and fixed-point iteration ap-
proaches is to use the same iterative approach for solving the flow and adjoint equa-
tions, which is because the codes from the flow solvers can be reused to reduce the effort
required to implement the adjoint method. More importantly, by carefully formulating
the iterative scheme, we achieve the same convergence behavior for the flow solution
and adjoint computation, which helps to ensure robust optimization (see Sec. 4.4). The
benefit of using the Krylov approach is that it converges faster than the fixed-point
iteration, as mentioned in Sec. 4.4.

As mentioned in the introduction, an adjoint implementation is available that uses
reverse-mode AD to differentiate the entire CFD code (full-code AD). The cost of full-
code AD is independent of the number of design variables and shares this advantage
with the discrete adjoint method derived in Sec. 4.1; however, it tends to have a high
overall cost both in terms of memory and computation time. A naive implementation of
this approach requires all of the intermediate flow variables to be stored in memory in
the forward computational pass, which is not feasible for large 3D PDE solvers. Modern
algorithmic differentiation techniques, such as checkpointing and local pre-accumulation,
can reduce the computational cost and memory usage [17, 150]. Yet despite these im-
provements, the size of problems that can be solved remains limited. An example of
current state-of-the-art full-code AD is the adjointSimpleShapeCheckpointingFoam ad-
joint solver developed by Towara and Naumann [22], which we compare with our adjoint
implementations in Sec. 5.
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As mentioned in Sec. 4.2.5, there is an adjoint implementation in the FEM com-
munity (dolfin-adjoint [175]) that uses a semi-symbolic-differentiation approach. dolfin-
adjoint exploits the special code structure of FEniCS [176], which is a finite-element
method framework that supports the automated solution of PDEs starting from high-
level mathematical expressions. Semi-symbolic-differentiation is similar to full-code AD,
except that it stores a symbolic tape in the forward execution, as opposed to floating-
point operations in AD. Once finished, dolfin-adjoint analyzes the symbolic tape and
derives mathematical expressions for the adjoint, which are then automatically con-
verted to low-level computer codes to compute derivatives. The main advantage of
dolfin-adjoint is its high flexibility and automation when creating a new adjoint solver.
In addition, the dolfin-adjoint code is well optimized and achieves a better adjoint-to-flow
runtime ratio than the full-code AD approach [175]. However, no detailed comparisons
are available of the performance of the finite-element dolfin-adjoint solver versus that of
the finite-volume adjoint solvers. Moreover, the semi-symbolic-differentiation approach
is applicable only within the FEniCS framework; it is not designed for general adjoint
solvers.

In addition to the research community, commercial software companies have imple-
mented the discrete adjoint method for their CFD solvers (e.g., CFD-ACE+ [177] from
ESI Group, Fluent [178] from ANSYS, and STAR-CCM+ [179] from Siemens). We do
not elaborate on these because only limited information is currently available, but we
hope that they will be benchmarked by using the cases presented herein.

To summarize, we have reviewed various options used in existing adjoint solvers.
We implement the best combination of these options in ADflow (see the Jacobian-free
method in Sec. 4.6 and the appendix). To be more specific, we use a structured mesh
solver written in Fortran, which is faster than unstructured solvers and solvers written
in C++. In addition, we compute the partial derivatives by using source code transfor-
mation AD, which is faster and requires less memory than the operator-overloading AD.
Furthermore, we use the Jacobian-free GMRES method to solve the adjoint equations,
which converges faster than the fixed-point iteration approach while requiring moder-
ate memory overhead. Finally, we achieve consistent convergence between the flow and
adjoint solutions because we use the NK method to solve the primal nonlinear equations.

One limitation of the Jacobian-free adjoint method in ADflow is that it requires
greater effort for the initial development using source code transformation AD than
does operator-overloading AD. However, once implemented, extending adjoint codes
to include new terms and objectives is straightforward, (see Appendix A.4). Another
drawback is that mesh generation is generally less flexible than for unstructured solvers,
although this limitation has been alleviated by the overset mesh capability in ADflow.
Overall, the advantage in performance outweighs the above limitations.

Next, we elaborate on the Jacobian-free adjoint implementation along with two vari-
ations. Section 5 compares their performance and demonstrates the efficiency of the
proposed Jacobian-free method.
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4.6 Solver-agnostic implementation of proposed adjoint approach

This section elaborates on our proposed adjoint implementation (Jacobian free) along
with two variations (FD Jacobian and AD Jacobian), which are summarized as follows:

FD Jacobian: Uses a coloring-accelerated finite-difference method to compute all par-
tial derivatives [∂R/∂w]T , [∂R/∂w]TPC , ∂R/∂x, [∂f/∂w]T , ∂f/∂x, which are all
stored. [∂R/∂w]T is explicitly provided in the GMRES iteration to compute the
matrix-vector product.

AD Jacobian: This is similar to the FD Jacobian except that all partial derivatives
are computed by coloring-accelerated forward-mode AD.

Jacobian free: Uses coloring-accelerated forward-mode AD to compute [∂R/∂w]TPC .
Also uses reverse-mode AD to compute [∂f/∂w]T and ∂f/∂x, the matrix-vector
product [∂R/∂w]Tr0 for the GMRES iteration, and [∂R/∂x]Tψ to compute the
total derivative.

The above adjoint implementation variations are in the most general form; for each
implementation, the actual combination of options used for a specific solver to compute
the partial derivatives and solve the adjoint equations may differ. We summarize these
modifications in Sec. A.4. The present section keeps the explanation general by omitting
solver-specific implementation details (described in the appendix).

The FD Jacobian is the most straightforward adjoint option because it does not re-
quire the construction of differentiated versions of the R(x,w) and f(x,w) functions
by using AD or the complex-step method. Moreover, it is much easier to implement
compared with the hand-coded analytical derivative method, as discussed in Sec. 4.2.
We illustrate the operations and data flow for a generic FD Jacobian approach in Fig. 4.
We use the extended design structure matrix standard developed by Lambe and Mar-
tins [180]. The diagonal entries are the modules in the optimization process, whereas
the off-diagonal entries are the data. Each module takes data input from the vertical
direction and outputs data in the horizontal direction. The thick gray lines and the thin
black lines denote the data and process flow, respectively. The numeric label for each
process denotes their execution order. Taking [∂R/∂w]T as an example, the coloring-
accelerated FD Jacobian is computed as follows: We first compute the reference residual
Rref by using the unperturbed reference variables xref and wref. Next, for each color
i, we add perturbation ε to wref at the rows associated with this color and compute
the perturbed residual Rperturb. Based on the reference and perturbed R, we compute
∂R/∂w at the columns associated with color i by using the finite-difference method
(loop 0→ 2→ 0). Once done, we store the computed columns in ∂R/∂w to its trans-
posed matrix [∂R/∂w]T in memory. As mentioned in Sec. 4.3, the coloring ensures that
the residual stencils do not overlap for these computed columns, which allows us to com-
pute multiple columns for ∂R/∂w by calling the R function only once. We then loop
over all colors until all columns in ∂R/∂w are computed. A similar strategy is used for
∂R/∂x. We need special treatment for [∂f/∂w]T and ∂f/∂x because they are typically
dense vectors (e.g., drag depends on state variables integrated over all discrete cell faces
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on the design surface). Taking [∂f/∂w]T as an example, we divide f into ND discrete
cell faces, i.e., [∂f/∂w]T =

∑ND

i=1 [∂fi/∂w]T . We then compute each [fi/∂w]T by using
coloring and sum their values to [∂f/∂w]T . Note that we always use the graph coloring
method instead of the single-cell residual method to accelerate Jacobian computation,
which avoids code duplication and ensures consistency in residual computation between
the primal and adjoint solvers, as discussed in Sec. 4.3. When solving the adjoint equa-
tion, we pass a fully assembled [∂R/∂w]T into PETSc (processes 6) to compute the
matrix-vector product [∂R/∂w]Tr0 for the GMRES iteration (loop 6 → 8 → 6) and
solve for ψ. Finally, we compute the total derivative df/ dx in process 9.

x, w x, w, ẋ, ẇ x, w, R, f

R(x,w), f(x,w) Ṙ(x,w, ẋ, ẇ), ḟ(x,w, ẋ, ẇ) R(x,w,R), f(x,w, f)

R, f Ṙ =

[
∂R

∂w
ẇ,

∂R

∂x
ẋ

]
, ḟ =

[
∂f

∂w
ẇ,

∂f

∂x
ẋ

]
w =

[
∂R

∂w

T

R,
∂f

∂w

T

f

]
, x =

[
∂R

∂x

T

R,
∂f

∂x

T

f

]

Figure 5: General inputs and outputs for the originalR and f functions and their differentiated
versions using forward- and reverse-mode AD.

The implementation of the AD Jacobian approach is similar to that of the FD Ja-
cobian approach with two exceptions. First, instead of using the original R(x,w) and
f(x,w) functions, we construct their differentiated versions by using forward-mode AD.
Although the complex-step method also offers accurate derivative computation, it has
a memory and computational cost that is similar to the operator-overloading AD but
is much higher than the source code transformation AD. Moreover, it does not support
the transpose matrix-vector product needed for the Jacobian-free GMRES method (see
details in Sec. 4.4). Therefore, in the present work, we do not consider the complex-
step partial derivative computation. An example of original and differentiated R and f
functions is shown in Fig. 5. Note that we show only the inputs and outputs for these
functions (we elaborate in Appendix A.4 on how to use different AD to construct them).
The second difference is that, instead of using the finite-difference method, we use the
forward-mode AD to compute the partial derivatives. Taking [∂R/∂w]T as an example,
we first assign the coloring vector ci to the input vector ẇ for the forward-differentiated
residual function Ṙ, where ci has ones for the rows associated with color i and zeros
for the other rows. We then call Ṙ to compute ∂R/∂w at the columns associated with
color i (refer to loop 0→ 2→ 0 in Fig. 6). Finally, we assign the computed columns in
∂R/∂w to its transposed matrix [∂R/∂w]T . As in the FD Jacobian approach, we need
to loop over all the colors and we store all the partial derivative matrices in the memory.

The Jacobian-free approach is a hybrid-AD option, as shown in Fig. 6. We differ-
entiate the R(x,w) and f(x,w) functions in both forward and reverse mode to enable
further performance improvement. Similar to the AD Jacobian approach, we use the
coloring-accelerated forward-mode AD (loop 0 → 2 → 0) to compute [∂R/∂w]TPC and
store it in memory. One major difference compared with the AD Jacobian approach
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ẇ

=
c
i

4:
∂
R

∂
w

T P
C

2:
∂
R

∂
w

P
C
c
i

1
:
Ṙ
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is that we do not compute or store [∂R/∂w]T . Instead, the matrix-vector product
[∂R/∂w]Tr0 that is needed for the GMRES iteration is directly computed by using
the reverse-mode AD (process 5). This is done by assigning r0 to the input vector R
and calling the reverse-mode AD to compute [∂R/∂w]Tr0. Similar to what we did for
[∂R/∂w]T , we do not compute or store ∂R/∂x; instead, we use the reverse-mode AD
(process 7) to directly compute [∂R/∂x]Tψ . Moreover, we use reverse-mode AD (pro-
cess 3) to compute [∂f/∂w]T and ∂f/∂x instead of coloring-accelerated forward-mode
AD. As mentioned in Sec. 4.4, the use of the Jacobian-free GMRES strategy saves the
computation time and memory involved in computing and storing [∂R/∂w]T . Section 5
quantitatively evaluates the performance of the above adjoint implementation variations.

5 Results
In this section, we use three cases from the ADODG to evaluate the speed, scalabil-
ity, memory usage, and accuracy of the various adjoint implementation variations (AD
Jacobian, FD Jacobian, and Jacobian free; see Sec. 4.6) in the two CFD solvers.

The first case consists of a low-speed rectangular wing (ADODG Case 3) [181] that
we use to compare the two CFD solvers and their adjoint implementations. More specifi-
cally, we compare the performance of adjoint implementations for ADflow, DAFoam, and
adjointSimpleShapeCheckpointingFoam [22]. The second case consists of the transonic
CRM wing (ADODG Case 4) [3], which we use to benchmark several variations of the
adjoint implementation in ADflow and test the parallel efficiency. The third and final
case is based on the wing-body-tail configuration (ADODG Case 5) [6] with an overset
mesh, which we use to demonstrate the ability of our ADflow adjoint implementation to
handle complex geometry configurations. To facilitate future performance comparisons,
the files required to setup benchmarks are publicly available [39].

5.1 Low-speed rectangular wing

ADODG Case 3 involves an unswept low-speed rectangular wing with an aspect ratio of
6.12 and a NACA 0012 airfoil. This case allows us to evaluate the adjoint calculations by
using ADflow, DAFoam, and full-code AD using the same geometry and flow conditions.
We use a coarse structured mesh with 102 912 cells, providing an average y+ = 1.2 with
a domain that extends 20 chords from the surface.

The simulation is run at Re = 106 and M = 0.15 by using the SA turbulence model.
The objective function is the drag coefficient, and the target lift coefficient is 0.375. The
design variables are the sectional twists γ at eight spanwise locations.

To evaluate the computational speed, we set the relative residual tolerance to 10−10

and 10−8 for the flow and adjoint solutions, respectively. For ADflow, the flow and
adjoint converge in 1011 and 310 iterations, respectively, whereas for DAFoam, the
flow and adjoint converge in 720 and 143 iterations, respectively. When verifying the
accuracy of the adjoint derivative, we run the flow until the residuals no longer change
significantly. The flow residuals for ADflow and DAFoam decrease by 14 and 12 orders
of magnitude, respectively. We use the same convergence criteria for all other flow and
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adjoint computations in this paper.
In this case, we also run the adjoint solver adjointSimpleShapeCheckpointingFoam

of Towara and Naumann [22] to obtain values for the reference derivatives for DAFoam.
We use the same problem setup and convergence criteria as described above, except
that we use the algebraic multigrid solver with diagonal incomplete Cholesky for the
solution to the pressure equation and the symmetric Gauss–Seidel iteration solver for
the other linear equations. In addition, to save memory, we switch on the checkpointing
and use symbolic differentiation for the embedded linear solvers [182, 183]. We apply
the equidistant checkpointing option with an interval of two time steps, which ensures
that the memory usage is similar to that of DAFoam (Jacobian free) for a consistent
comparison of speed.

For this case, we run all the simulations on Stampede 2 by using one CPU core on
one Skylake node. The Skylake nodes are equipped with an Intel Xeon Platinum 8160
CPU running at 2.1 GHz, and each node has 48 CPU cores and 196 GB of memory.
The Skylake nodes are interconnected through a 100 GB/s Intel Omni-Path network.
The reason for using a coarse mesh is that both ADflow and DAFoam can converge the
flow tightly. This prerequisite is critical when evaluating the accuracy of the adjoint
derivative. Moreover, running the cases using one CPU core allows us to isolate the
impact of parallel communication on the performance.

To create a platform-independent benchmark, the runtime is reported as TauBench
work units (TWU), which is computed as 4

TWU =
nT

Tref
, (28)

where T is the wall-clock runtime of a solver in seconds (s), n is the number of CPU
cores that are used to run the solver, and Tref is the reference wall-clock runtime of the
Tau solver on the same computing platform. We follow the instructions described in the
third international workshop on high-order CFD methods guidelines 5 and run the Tau
code on a Skylake node by using the command: mpirun -np 1 ./TauBench -n 250000

-s 10. We obtain Tref = 2.972 s for Skylake nodes. In this paper, the memory usage of
a solver is reported as the peak resident set size in gigabytes (GB).

We first compare the flow solutions obtained by ADflow and DAFoam. The pressure
contours on the wing surface and the pressure distributions at the root, midspan, and
tip sections are almost identical between the two solvers, as shown in Fig. 7. However,
we observe that the drag coefficient predicted by DAFoam is 6.8% lower than ADflow.
We suspect that the difference is primarily due to the coarse mesh, for which the dis-
cretization error in both solvers is significant.

We now compare the speed and memory usage of the flow and adjoint solutions for
ADflow and DAFoam (Table 2). To help assess the detailed performance, we break
the adjoint total runtime into a Jacobian assembly and an adjoint equation solution.
The Jacobian assembly consists of the runtime required to compute all the required

4http://www.ipacs-benchmark.org/index.php?s=download&unterseite=taubench
5https://www.grc.nasa.gov/hiocfd/guidelines
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Figure 7: ADflow and DAFoam predict identical pressure distributions; however, the CD
predicted by DAFoam is 6.8% lower than ADflow.

partial derivatives for solving the adjoint equations (12)—[∂R/∂w]T , [∂R/∂w]TPC , and
[∂f/∂w]T—and for computing the total derivative (13)—∂R/∂x and ∂f/∂x. Note that
the adjoint solver from Towara and Naumann [22] uses the full-code AD approach, so
the breakdown is not available.

For ADflow, the runtime for the adjoint equation solution using the Jacobian-free
approach is 6% greater than for the AD Jacobian and FD Jacobian approaches (Ta-
ble 2). This is expected because Jacobian free performs a reverse-mode AD residual
computation for each GMRES iteration, which is slightly more expensive than a matrix-
vector product that uses a stored Jacobian. For the Jacobian-free case, the Jacobian
assembly time is only the time required for computing the preconditioner and adjoint
right-hand side and is thus much lower than for AD Jacobian and FD Jacobian. Overall,
when considering both the assembly time and solution time, the total runtime for the
Jacobian free is 27% and 9% faster than AD Jacobian and FD Jacobian, respectively.
Moreover, the memory usage of Jacobian free is 30% lower than that of AD Jacobian
and FD Jacobian. Therefore, for this simple case, Jacobian free is the best option, with
an adjoint-flow runtime ratio of 0.8 and an adjoint-flow memory usage ratio of 1.2. Note
that the runtime benefit shown here skews in favor of the explicitly stored Jacobian as
the number of functions of interest increases, since the cost of computing and storing the
exact Jacobian is increasingly amortized as the number of adjoint solutions increases.

The DAFoam adjoint total runtime for Jacobian free is 25% faster than FD Jaco-
bian. Again, this is primarily because Jacobian free does not compute [∂R/∂w]T . In
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terms of memory usage, however, Jacobian free needs 140% more memory than FD
Jacobian, which is not consistent with what we observed in ADflow where Jacobian
free used less memory. This result is primarily attributed to the fact that the complex
object-oriented code structure in OpenFOAM introduces numerous intermediate vari-
ables into the residual computation routine, which contains tens of levels of subroutines.
When performing reverse-mode operator-overloading AD computation in Jacobian free,
all these intermediate variables need to be stored in tapes and thus requires more mem-
ory than FD Jacobian. One way to reduce the memory usage is to carefully examine all
relevant subroutines and set the unused variables to “passive” in reverse-mode AD. By
doing this, we store only variables that are actually used in the residual computation.
However, we have not done this code optimization in DAFoam.

The ADflow adjoint derivative computation is 4.6 times faster than that of DAFoam
(using Jacobian free). The largest difference is in the cost of the Jacobian assembly:
2.4 for ADflow versus 100.3 for DAFoam), as shown in the runtime breakdown in Ta-
ble 2. This is primarily due to the different coloring techniques. As elaborated on in
Appendix A.2, ADflow uses a local block coloring on a structured mesh, allowing for a
compact analytic coloring scheme with only 162 colors to compute the preconditioner
[∂R/∂w]TPC [55]. In contrast, for the unstructured mesh solver DAFoam, we require
945 colors. Since the runtime of computing [∂R/∂w]TPC is proportional to the number
of colors, the Jacobian assembling for DAFoam is much slower. We have more colors
in DAFoam because the SIMPLE algorithm with Rhie–Chow interpolation results in a
state Jacobian matrix that is much denser than that in ADflow (Fig. 10). Moreover,
we use a heuristic global coloring scheme, so the number of colors is about three times
the maximum number of nonzero entries in a row of the Jacobian matrix. However, we
showed in our previous work [86] that the number of colors in DAFoam does not depend
on the mesh size and CPU cores when running in parallel, which alleviates the problem.

In addition to runtime, DAFoam requires 8.2 times more memory than ADflow. This
high memory cost is case specific for the DAFoam implementation and has two causes:
First, OpenFOAM has complex object-oriented code structure and requires large tape
memory when performing reverse-mode AD, as mentioned above. Second, the residual
stencil in DAFoam is much larger than that in ADflow (Fig. 10), which eventually in-
creases the memory cost for reverse AD computation and for storing the preconditioner
matrix. Despite these disadvantages, the Jacobian free (operator-overloading AD) op-
tion in DAFoam is 4.2 times faster than the adjointSimpleShapeCheckpointingFoam
solver, while requiring 22.1% less memory, which confirms the efficiency of the Jacobian-
free adjoint approach. Note that we test only the full-code AD solver adjointSimple-
ShapeCheckpointingFoam from Towara and Naumann [22] because it provides machine-
precision values for derivatives. We have not tested their other adjoint implementations
(e.g., reverseAccSimpleFoam and piggySimpleFoam), which were shown to perform bet-
ter [34].

In addition to computational time, we also evaluate the accuracy of the derivative
computations in DAFoam and ADflow in Tables 3 and 4, respectively. The accuracy
of derivative computations is critical to ensure a robust optimization process because
inaccurate gradients can cause an optimization to terminate early, which results in sub-
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Table 3: ADflow derivatives (dCD/ dγ, ×10−4) at eight spanwise locations. The Jacobian-free
and AD Jacobian approaches match the complex-step reference to 12 significant digits.

2y/b Reference ADflow ADflow ADflow
(complex step) (Jacobian free) (AD Jacobian) (FD Jacobian)

0.00 −4.564 591 147 572 −4.564 591 147 573 −4.564 591 147 573 −4.564 801 684 647
0.20 −6.509 297 734 175 −6.509 297 734 172 −6.509 297 734 172 −6.509 597 548 593
0.40 −7.056 747 972 049 −7.056 747 972 043 −7.056 747 972 043 −7.057 061 656 265
0.60 −7.519 182 294 474 −7.519 182 294 469 −7.519 182 294 469 −7.519 470 654 527
0.80 −5.249 850 721 884 −5.249 850 721 882 −5.249 850 721 882 −5.249 998 051 928
0.90 −2.774 098 324 145 −2.774 098 324 146 −2.774 098 324 146 −2.774 132 680 066
0.95 −1.414 324 615 362 −1.414 324 615 362 −1.414 324 615 362 −1.414 316 189 209
1.00 −0.857 741 790 567 −0.857 741 790 567 −0.857 741 790 567 −0.857 698 448 112

optimal (optimality not tightly converged) or infeasible (design constraints not strictly
satisfied) designs. Accurate derivatives are even more crucial when using advanced
optimization algorithms such as the Broyden–Fletcher–Goldfarb–Shanno algorithm, as
discussed by Peter and Dwight [8].

It is common practice to compare the adjoint derivatives with reference derivatives
computed from finite differences. However, as mentioned in Sec. 4.2, the finite-difference
method is subject to subtractive and cancellation errors, which degrades the accuracy
of reference derivatives. Therefore, for ADflow, we use as reference the derivatives
computed by the complex-step method. For DAFoam, the reference values are computed
by using the full-code AD solver adjointSimpleShapeCheckpointingFoam [22].

Both the complex-step and the full-code AD methods provide machine-precision-
level reference derivatives, as shown in Tables 3 and 4. The dCD/ dγ values computed
by using the Jacobian-free and AD Jacobian options match the reference values to 12
digits for ADflow and to 10 digits for DAFoam. Given that the flow converges by 14 and
12 orders of magnitude, respectively, the adjoint derivatives have an accuracy that is
fully consistent with the flow solutions. We achieve machine-precision accurate adjoint
derivatives because we do not make any approximations (e.g., ignore and simplify terms
or use the frozen turbulence assumption) in our adjoint formulations. Moreover, we
use AD to accurately compute all the partial derivatives. Finally, our adjoint code is
bug-free. In contrast, the FD Jacobian option matches the references to only three to
four digits and the average error is around 0.1% because of the errors introduced by
using the finite-difference method to compute the partial derivatives. Although this
derivative error is still acceptable, our experience is that the exact derivative obtained
from Jacobian free and AD Jacobian is crucial to ensure robust and tightly converged
optimizations, as mentioned above.

5.2 Transonic wing

We now evaluate the performance of the ADflow adjoint for a transonic wing configuration—
the CRM wing geometry from ADODG Case 4. In previous work, this benchmark was
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Table 4: DAFoam derivatives (dCD/ dγ, ×10−4) at eight spanwise locations. The Jacobian-
free approach matches the reference to 10 significant digits.

2y/b Reference DAFoam DAFoam
(Full-code AD) (Jacobian free) (FD Jacobian)

0.00 −4.882 503 197 6 −4.882 503 197 5 −4.883 286 244 8
0.20 −6.955 486 570 2 −6.955 486 570 1 −6.955 367 327 4
0.40 −7.518 312 658 1 −7.518 312 657 9 −7.519 901 569 7
0.60 −7.984 926 631 0 −7.984 926 630 6 −7.986 436 953 9
0.80 −5.597 739 570 2 −5.597 739 569 7 −5.603 676 158 6
0.90 −2.888 106 152 0 −2.888 106 151 4 −2.887 749 885 4
0.95 −1.365 193 880 0 −1.365 193 879 5 −1.355 452 150 5
1.00 −0.827 241 516 3 −0.827 241 515 5 −0.836 433 805 4

the subject of single- and multi-point aerodynamic shape optimization [3, 74]. Here, we
focus on benchmarking the parallel efficiency of the adjoint derivative computation.

The CRM is representative of a modern transonic commercial transport aircraft,
with a size similar to that of a Boeing 777. The fuselage and tail are removed from
the original CRM, and the root of the remaining wing is moved to the symmetry plane.
The nominal flight condition is CL = 0.5. at M = 0.85 and Re = 5 × 106. The design
variables are twists at eight spanwise locations. We use the L1 mesh described by Lyu
et al. [3], which consists of 3 604 480 cells. We run the computation on 48 CPU cores
with two Skylake nodes on Stampede 2.

Figure 8 shows the surface sensitivity and Cp distributions at three spanwise sections.
As shown in the sectional Cp distributions, a shock is present on the upper surface of
the wing. Similarly to what Lyu et al. [3] observed, this shock causes a large negative-
sensitivity region near the middle chord of the upper surface. In addition, we observe a
region with large sensitivity near the leading edge, especially at the root.

Similarly to the subsonic wing case, Jacobian free is the fastest method and requires
the least memory, as shown in Table 5. To be more specific, Jacobian free is 19.5% and
4.9% faster than AD Jacobian and FD Jacobian, respectively, and its memory usage
is 37% lower. In addition, the derivatives computed by using Jacobian free and AD
Jacobian match the complex-step reference values to 11 significant figures, as shown in
Table 6. Given that the flow converges 13 orders of magnitude, we conclude that the
Jacobian-free adjoint accuracy is fully consistent with the flow solutions.

Table 7 shows the flow and adjoint runtime in TauBench work units for an increasing
number of CPU cores. The values in parentheses are the parallel efficiency, defined as
η = T 24

WU/T
n
WU, where the superscript is the number of CPU cores. Note that Skylake

processors have many more cores compared with traditional CPU processors: as a trade-
off, the Skylake processors run at a relatively low frequency (2.1 GHz). Therefore, when
evaluating the performance for the Skylake nodes, it is more appropriate to compare
node-to-node as opposed to core-to-core performance. Both the flow and adjoint scale
up to 768 CPU cores. The parallel efficiency for the adjoint is larger than 90% if each
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Figure 8: Surface sensitivity (dCD/ dz) and pressure profiles for CRM under transonic flow
conditions.
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Table 5: ADflow performance for the CRM wing case. The runtime is reported as TauBench
work units TWU whereas, for reference, the wall-clock runtime for the flow simulation is 375.47 s.
All the cases are run on 48 CPU cores on two nodes. The mesh contains 3 604 480 cells. The
Jacobian-free option is the best.

ADflow Jacobian free AD Jacobian FD Jacobian

Runtime (TWU)
Flow 6064.1 6064.1 6064.1
Adjoint 4781.3 5719.1 5014.9

Jacobian assembly 110.4 1176.0 446.4
Adjoint equation solution 4670.9 4543.1 4568.5

Adjoint-flow ratio 0.8 0.9 0.8

Peak memory (GB)
Flow 44.6 44.6 44.6
Adjoint 87.2 119.5 119.5
Adjoint-flow ratio 2.0 2.7 2.7

Table 6: ADflow derivatives (dCD/ dγ, ×10−3) for the CRM wing case. The Jacobian-free
and AD Jacobian match the complex-step reference to 11 significant digits.

2y/b Reference ADflow ADflow ADflow
(complex step) (Jacobian free) (AD Jacobian) (FD Jacobian)

0.000 1.467 830 420 22 1.467 830 420 24 1.467 830 420 24 1.467 913 755 59
0.149 1.827 776 113 24 1.827 776 113 27 1.827 776 113 27 1.828 063 048 53
0.296 1.539 421 192 63 1.539 421 192 65 1.539 421 192 65 1.539 699 968 60
0.437 1.199 899 961 45 1.199 899 961 48 1.199 899 961 48 1.200 078 068 00
0.579 0.719 895 630 07 0.719 895 630 08 0.719 895 630 08 0.719 919 787 75
0.721 0.404 497 687 88 0.404 497 687 89 0.404 497 687 89 0.404 401 010 12
0.861 0.240 308 245 18 0.240 308 245 20 0.240 308 245 20 0.240 184 238 91
1.000 0.093 333 672 78 0.093 333 672 79 0.093 333 672 79 0.093 296 748 82

Table 7: Flow and adjoint runtime using 24 CPU cores per node in TauBench work units.
The values in parentheses are the parallel efficiency, which is defined as η = T 24

WU/T
n
WU, where

the superscript is the number of CPU cores.

Nodes Cores Flow Jacobian free AD Jacobian FD Jacobian

1 24 5628.3 (100.0%) 4525.0 (100.0%) 5455.6 (100.0%) 4765.9 (100.0%)
2 48 6064.1 (92.8%) 4781.3 (94.6%) 5719.1 (95.4%) 5014.9 (95.0%)
4 96 7166.4 (78.5%) 6828.0 (66.3%) 7885.9 (69.2%) 6998.3 (68.1%)
8 192 10 237.7 (55.0%) 10 147.6 (44.6%) 10 712.9 (50.9%) 10 012.9 (47.6%)

16 384 11 581.0 (48.6%) 9208.2 (49.1%) 10 006.1 (54.5%) 9407.2 (50.7%)
32 768 14 180.6 (39.7%) 12 334.0 (36.7%) 13 168.2 (41.4%) 12 574.1 (37.9%)
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processor owns no less than 75 000 cells. Note that we use only 24 CPU cores per node
in Table 7. Alternatively, we can use the maximum 48 CPU cores per node. We observe
that the use of more CPU cores per node generally decreases the wall-clock runtime;
however, it also decreases the parallel efficiency. For example, when using 1536 CPU
cores with 32 nodes, the adjoint parallel efficiency for Jacobian free is 30.1%, which is
less than the efficiency (36.7%; see Table 7) when using the same number of nodes. This
behavior is due to limitations in the memory bandwidth on the nodes, which causes the
computations to be limited by memory rather than by CPU speed.

5.3 Wing-body-tail configuration

The final case we solve is the wing-body-tail configuration from ADODG Case 5, which
we have used extensively in previous work for both aerodynamic shape optimization [6,
165] and aerostructural optimization [108, 184–186]. Here, we use this case to demon-
strate the ability of the ADflow adjoint to handle complex geometric configurations.

The ADODG Case 5 uses the same CRM wing geometry from Case 4 but includes
the fuselage and horizontal tail of the original CRM, which is also known as the Drag
Prediction Workshop 4 geometry [187]. The flow conditions are the same as for Case 4
except that the Reynolds number is Re = 4.3 × 107 to match a realistic flight condi-
tion and scale, as opposed to the wind tunnel testing model of Case 4. We generate
multiblock structured overset meshes for each component, resulting in a mesh with a
total of 10 358 373 cells. The other problem settings are similar to those of the CRM
wing-only case with the exception that we now compute sensitivities with respect to the
wing twists at nine spanwise locations. We run the computation using 96 CPU cores
and four Skylake nodes on Stampede 2.

Table 8: ADflow performance for the CRM wing-body-tail configuration. The runtime is
reported as TauBench work units TWU whereas, for reference, the wall-clock runtime for the
flow simulation is 1046.14 s. The case is run on 96 CPU cores on four nodes. The mesh
contains 10 358 373 cells. Adjoint computation is faster than flow.

ADflow Jacobian free

Runtime (TWU)
Flow 33 792.0
Adjoint 23 577.6

Jacobian assembly 460.8
Adjoint solution 23 116.8

Adjoint-flow ratio 0.7

Peak memory (GB)
Flow 123.7
Adjoint 252.9
Adjoint-flow ratio 2.0

Figure 9 shows the surface sensitivity and pressure distribution. Similarly to what
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Figure 9: Surface sensitivity (dCD/ dz) and pressure profiles for the CRM wing-body-tail
configuration with overset mesh.
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we observed in the CRM wing-only case, a shock wave appears on the upper surface
of the wing, resulting in high local sensitivity of the drag coefficient with respect to
shape change. However, this high sensitivity becomes weaker near the root, owing to
the interaction between wing and fuselage. Table 8 lists the computational cost and
memory usage for this case, where we run only Jacobian free. Again, the adjoint solution
is faster than the flow solution, with an adjoint-flow runtime ratio of 0.7. In terms of the
accuracy, the adjoint matches the complex-step reference values to six digits, as shown
in Table 9. This good agreement highlights the effectiveness of Jacobian free in handling
complex geometries and mesh topologies.

Table 9: ADflow derivatives (dCD/dγ, ×10−3) for the CRM wing-body-tail configuration.
The adjoint derivative matches the complex-step reference to six significant digits.

2y/b Reference ADflow
(complex step) (Jacobian free)

0.000 1.285 351 33 1.285 350 96
0.125 1.447 412 06 1.447 411 92
0.250 1.263 087 08 1.263 086 79
0.375 1.031 381 90 1.031 381 70
0.500 0.677 939 91 0.677 939 77
0.625 0.486 188 41 0.486 188 36
0.750 0.305 559 03 0.305 559 06
0.875 0.195 216 84 0.195 216 85
1.000 0.079 003 40 0.079 003 39

6 Conclusions
In this paper, we discuss and compare various approaches for implementing a discrete
adjoint solver. Specifically, we compare three options for implementing a discrete adjoint
based on an exact solution of the linear system; namely, Jacobian free (Jacobian-free
adjoint solved by using GMRES with transpose matrix-vector products computed by
using reverse-mode AD), AD Jacobian (explicit Jacobian computation using the forward-
mode AD), and FD Jacobian (explicit Jacobian computation using finite differences).
We implement these three options for two different flow solvers—a compressible flow
Newton–Krylov solver for overset structured meshes (ADflow) and an incompressible
solver that uses the SIMPLE algorithm for unstructured meshes (DAFoam). We then
compare the adjoint implementations by using three ADODG benchmark cases covering
a wide range of flight conditions and configurations. These include Reynolds number
ranging from 1 to 43 million, incompressible and transonic flow conditions, as well as
multiblock and overset structured meshes with up to 10 million cells. The simulations
comprise both serial and parallel runs with up to 1536 CPU cores.

We evaluate the performance of Jacobian free, AD Jacobian, and FD Jacobian by
comparing their speed, scalability, memory usage, accuracy, development effort, and
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extensibility. The conclusions of this study are summarized in Table 10. We do not
have scalability data for the Jacobian-free (operator overloading) and the full-code AD
(operator overloading) options because we run the adjoint computation only in serial in
the ADODG Case 3 (Sec. 5.1).

Overall, the Jacobian-free approach with source code transformation AD is the best
option. More specifically, the Jacobian-free approach is up to 27% and 9% faster than the
AD Jacobian and FD Jacobian approaches, respectively. Moreover, Jacobian free uses
up to 30% less memory than AD Jacobian and FD Jacobian. This is primarily because
Jacobian free computes matrix-vector products for the GMRES solver by using reverse-
mode AD in a Jacobian-free manner. This strategy effectively avoids computing and
storing the state Jacobian matrix and therefore results in superior speed and memory
performance. Another advantage of the Jacobian-free approach is that we do not need
to compute the connectivity information and sparsity structure of the Jacobian matrix.
As a result, Jacobian free is easier to extend to complex mesh topologies, such as those
that show up in overset meshes. These advantages enable parallel computation with
up to 10 million cells and 1536 CPU cores. Partial derivative computation using AD
allows the Jacobian-free approach to compute accurate derivatives with up to machine
precision. In contrast, the FD Jacobian has an average error of O(0.1)%.

In terms of AD tools, source code transformation AD is preferred because it is faster
and requires less memory compared with operator-overloading AD. The Jacobian-free
implementation using source code transformation is 4.6 times faster and requires 8.2
times less memory than the operator-overloading version. Furthermore, Jacobian free
using source code transformation is 19.3 times faster and 10.5 times less memory intensive
than the adjoint solver that uses operator overloading to differentiate the entire code.

In addition to the fact that source code transformation is naturally faster than opera-
tor overloading, two solver-specific factors impact the performance comparison between
ADflow and DAFoam with the Jacobian-free option: First, ADflow uses structured
meshes, which enables an analytical coloring scheme with only 162 colors for the precon-
ditioner matrix. In contrast, DAFoam uses unstructured meshes and a heuristic coloring
scheme with 945 colors, which results in an almost fivefold increase in computational cost
for computing the preconditioner. Moreover, DAFoam uses a complex object-oriented
code structure such that a single residual call could involve tens of subroutine levels
and numerous intermediate variables. The residual stencil for the SIMPLE solver with
Rhie–Chow interpolation is also much denser than that in ADflow. These two factors
result in a large tape size and higher memory cost when performing reverse-mode AD.

The drawback of the source code transformation implementation is that it requires
a higher development effort than operator overloading. Instead of directly applying
operator overloading to every function, source code transformation requires manual con-
struction of the routines to differentiate the residual and objective computation. To
ensure optimal performance, these differentiated routines require careful implementa-
tion. However, once these routines are constructed by using source code transformation,
extending the implementation to include new terms and objectives is straightforward.

The cases solved in this work are available as platform-independent benchmarks
for comparing existing and future adjoint CFD solvers, and the ADflow solver is also
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available under an open-source license. The techniques presented herein provide a guide
for future discrete adjoint development, not only for CFD but also for a wide range of
other PDE solvers.
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A Solver-specific implementation details of proposed ad-
joint approach

In Sec. 4.6, we define three adjoint approaches (FD Jacobian, AD Jacobian, and Jaco-
bian free) in solver-agnostic terms for the sake generality. However, there are various
solver-specific implementation details that have important repercussions in the overall
numerical performance. This section elaborates on the implementation details for AD-
flow and DAFoam. These details concern the choice of elements and ordering for the x,
w, and R vectors, the coloring implementations, the GMRES preconditioning strategy,
and, most importantly, how to construct the differentiated R and f functions.

A.1 Choice of residuals, states, and design variables

When implementing an adjoint in a specific primal solver, we need to define exactly the
residuals (R), states (w), and design variables (x). The choice of states depends on the
flow discretization and solution techniques. For ADflow, the states [ρ, u, v, w, ρE, ν̃] are
the primitive variables in the governing equations (1)–(4). It is critical to include the
turbulence variable ν̃ in the w vector and compute the corresponding differentiation in
the ∂R/∂w matrix because it directly impacts the accuracy of adjoint total derivatives.
For DAFoam, we assume incompressible flow with a constant density and ignore the
energy equation, as mentioned in Sec. 3.3. Therefore the states are [u, v, w, p, φ, ν̃],
where φ is the cell face flux. Note that we treat φ as a state variable as a result of the
segregated SIMPLE algorithm with Rhie–Chow interpolation, as elaborated on in our
previous work [86].

In the discrete adjoint, R and w contain variables for all discrete cells. For example,
in ADflow,

w = [ρ1, u1, v1, w1, (ρE)1, ν̃1, ρ2, u2, v2, w2, (ρE)2, ν̃2, . . . , ρnC
, unC

, vnC
, wnC

, (ρE)nC
, ν̃nC

]T ,

and

R = [Rρ
1, R

u
1 , R

v
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w
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1 , Rν̃
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ρ
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, Rv
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, Rν̃

nC
]T ,

where the subscripts are the cell indices and nC is the total number of cells. The
superscripts for R denote the residual type. The length for the R and w vectors is 6nC .

Similarly, in DAFoam,

w = [u1, v1, w1, p1,φ1, ν̃1, u2, v2, w2, p2,φ2, ν̃2, . . . , unC
, vnC

, wnC
, pnC

,φnC
, ν̃nC

]T ,

and

R = [Ru
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]T .

Note that the φ vector contains φ variables on all the faces of a cell. Since we have
mixed cell-centered and face-centered state variables, the length for R and w depends
on the mesh topology and is approximately 8nC .
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In the above examples we use the cell-by-cell ordering for R and w; that is, we
start from the state variables associated with the first cell and then repeat for all the
other cells. An alternative option is to use the state-by-state ordering; that is, start
from the first state variable for all the cells and repeat for all the other state variables.
Although the total derivatives do not depend on the ordering, we use the cell-by-cell
ordering because the incomplete lower and upper preconditioning technique is more
effective when using block matrices.

As mentioned in Sec. 4, the x vector can contain both aerodynamic and geometric
design variables. For aerodynamic variables, the total derivative df/ dx is computed
directly. However, for geometric design variables, we first compute the total derivative
df/ dxv, which is done by replacing x with xv in Eq. (13), and then relate it to the
design variables by using the chain rule,

df

dx
=

df

dxv

dxv
dxs

dxs
dx

, (29)

where xv and xs are the vectors for volume and design surface coordinates, respectively.
The derivatives dxs/ dx and dxv/ dxs are computed by two external open-source ge-
ometry modules: pyGeo 6 and IDWarp. 7 pyGeo parameterizes and manipulates the
design surface by using a free-form deformation approach [188]. IDWarp implements
an efficient analytic inverse-distance method [189] for volume mesh deformation. pyGeo
was described in detail in our previous work [188].

The benefit of computing df/ dxv instead of df/ dx is that the adjoint implementa-
tion is independent of external geometric parametrization and mesh deformation mod-
ules [190, 191]. ADflow (all three approaches) and DAFoam (Jacobian-free approach)
use the above strategy. However, for DAFoam with the FD Jacobian approach, we
compute df/ dx for geometric design variables directly in practice. In other words, in-
stead of using the chain rule in Eq. (29), we directly compute ∂R/∂x and ∂f/∂x for
df/ dx [86]. This is because ∂R/∂xv is very dense, so computing ∂R/∂xv by using a
coloring scheme is too expensive.

A.2 Graph coloring implementation

As shown in Figs. 4 and 6, we need to use coloring to accelerate the partial derivative
computation. The graph coloring for single block structured meshes is straightforward:
Since the mesh topology is fixed, we use analytic colorings for a given residual stencil.
This is extended to multiblock structured meshes by treating each of the blocks indepen-
dently and using the halo cells to handle the cross block boundary derivatives. ADflow
uses the above strategy when computing the preconditioner matrix and explicitly stor-
ing the full state Jacobian [∂R/∂w]T . Figure 10(a) shows the sparsity pattern for the
state Jacobian in ADflow. We achieve a compact coloring scheme, requiring only 210
colors to compute the state Jacobian [∂R/∂w]T and only 162 colors for the first-order
preconditioner matrix [∂R/∂w]TPC. Note that the number of colors is computed based

6https://github.com/mdolab/pygeo
7https://github.com/mdolab/idwarp
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on all state variables that are associated with a residual. The details of the analytical
coloring are elaborated on in our previous work [55].

Figure 10: Examples of ∂R/∂w sparsity patterns for (a) ADflow with structured hex-
ahedral mesh and (b) DAFoam with unstructured hexahedral mesh. For DAFoam, the
Jacobian matrix is denser because of the larger stencil. Moreover, the sparsity pattern
for DAFoam is much more irregular because the use of unstructured meshes.

For unstructured and structured overset meshes, it is no longer possible to use local
colorings. The connectivity of unstructured meshes is global, so the entire mesh needs
to be colored at one time, creating a much more complex problem without an optimal
analytic solution (an NP-hard problem). Figure 10(b) shows the sparsity pattern for the
state Jacobian in DAFoam. The Jacobian matrix is much denser, owing to the larger
stencil for unstructured meshes (see examples in Fig. 1). Moreover, the sparsity pattern is
much more irregular, which prevents us from using an analytic graph coloring algorithm.
Therefore, we adopt a parallel, heuristic graph coloring algorithm that is applicable for
any mesh topology and size. The central idea is to tentatively assign colors for local
meshes owned by local processors and then resolve the conflicts by globally exchanging
data between meshes [86]. The flexibility of the heuristic coloring algorithm comes at a
price: the number of colors for ∂R/∂w is on the order of 1000, which is about three times
the maximum number of nonzero entries in a row of ∂R/∂w. The speed of state Jacobian
computation is proportional to the number of colors: a larger number of colors leads to a
larger computational cost. However, we have shown that the number of colors depends
only weakly on mesh size and number of CPU cores [86]. This behavior alleviates the
drawback of the relatively large number of colors required by the heuristic graph coloring
method. Section 5 evaluates the impact of coloring schemes on the performance of the
adjoint derivative.
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A.3 Preconditioner matrix construction

As mentioned in Sec. 4.4, having an effective preconditioner is critical to ensure fast
convergence of the adjoint equations. We thus need to construct a preconditioner ma-
trix [∂R/∂w]TPC that approximates [∂R/∂w]T but is easily invertible. To this end,
we approximate the residuals and their linearizations with the following solver-specific
details:

To construct [∂R/∂w]TPC in ADflow, we exactly linearize an alternative simple flux
formulation that results in only level-one stencils (refer to Fig. 1 for an example of a level-
one stencil). The level-one stencil yields a maximum of seven nonzero blocks per row for
multiblock meshes and greatly reduces the memory required to store the preconditioner.
For the JST scheme, we use only second-order dissipation. This dissipation, which is
normally only active at flow discontinuities, is augmented with σκ4 [192]. The shock
sensor is also frozen for the linearization. If an upwind scheme is used, only first-order
reconstruction is employed. For the viscous fluxes, velocity and temperature gradients
at the cell face center are approximated by a spatial difference between adjacent cell
centers, as described by Yildirim et al. [144]. For the SA turbulence model, we use a
first-order upwind method, which also uses only level-one stencils. For overset mesh,
due to the complex mesh topology, we compute the preconditioner only on local blocks
by using the analytical coloring method mentioned in Sec. A.2; we ignore preconditioner
matrix values on any overset stencils.

In DAFoam, we use the first-order upwind scheme to compute the inviscid fluxes
(convective terms) to reduce the stiffness of the matrix. We then shrink the residual
stencils by reducing the maximal level of connected states for p and φ residuals from
three to two. We also ignore the turbulence production term to further decrease the
linear system stiffness, especially for the viscous layer near the wall when a y+ = 1
mesh is used. Finally, to ensure a better diagonal dominance for both [∂R/∂w]TPC
and [∂R/∂w]T , we scale the partial derivatives such that their magnitudes are as close
as possible, which is done by normalizing the cell and face residuals by their volume
and face area, respectively. We also normalize each column of state Jacobians by their
corresponding reference values at the far field. See details in He et al. [86].

A.4 Differentiation of residuals and functions

We first elaborate on the differentiation of residuals and functions for ADflow. As shown
in Fig. 5, before computing the partial derivatives by using AD, we first need to construct
a routine to compute R and f , which we call the master routine. This is a collection of
functions that reproduces the residual and function computations from the flow solver.
The master routine is not used during the actual flow solution; its sole purpose is to
serve as a source for AD to produce differentiated code that computes all the required
partial derivatives.

The major steps of the master routine are listed in Algorithm 1. The routine com-
putes all intermediate variables that depend on w (e.g., p given T and ρ, and µ using the
Sutherland law), updates the boundary conditions (e.g., halo cells through MPI commu-
nication, far-field Mach number, and angle of attack), computes the geometric metrics
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(e.g., cell volume, surface area, surface normal, and wall distance), and then computes
R and f . We need to compute and update all the intermediate variables and parameters
before computing R and f in the master routine, even though some of them may have
been set in other routines. This is to make sure the derivatives are properly accumulated
through all these intermediate variables and parameters when differentiated with AD.

Algorithm 1 master routine

1: function master(x, w) . input: x, w; output: R, f
2: wint ← Fint(x,w) . compute intermediate variables (wint) that depend on w and x
3: wbc ← Fbc(x,w) . update variables for boundary faces and halo cells (wbc)
4: xgeo ← Fgeo(x) . compute geometric metrics such as cell volume and face area (xgeo)
5: R← Fres(x,w,wint,wbc,xgeo) . compute flow residuals
6: f ← Fobj(x,w,wint,wbc,xgeo) . compute functions of interests
7: return R, f
8: end function

We use the source code transformation AD tool Tapenade [174] to differentiate the
Fortran master routine. As discussed in Sec. 4.6, we need to differentiate the master

routine by using both forward- and reverse-mode AD to implement the Jacobian-free
adjoint.

There are two options to differentiate the master routine. We can use Tapenade to
directly differentiate the entire master routine. Alternatively, we can use Tapenade to
first differentiate all the subroutines in the master routine and then manually assemble
these differentiated subroutines. The first option is straightforward to implement but
has two significant drawbacks: The first is that this approach leads to sub-optimal dif-
ferentiated code. Because the AD tool is designed to differentiate any Fortran code, it
must be designed to be general. This makes correctness the absolutely highest priority,
often at the expense of maximum computational efficiency. It also means that the AD
cannot take advantage of any specific code structure related to the CFD code. Further-
more, even with the most advanced AD tools currently available, some code structures
remain a challenge to differentiate, including pointers and MPI calls. Therefore, to
get a more efficient code, we use the second option. We differentiate the individual
subroutines in the master routine and manually assemble routines for the forward and
reverse derivatives by using specific properties of the code structure that the AD code
cannot, in general, safely assume. This is especially advantageous for the routine used
for transpose matrix-vector products in the Jacobian-free version of the adjoint solver,
which is because we call this routine multiple times in the GMRES solver, so the speed
improvement in the second option outweighs the low implementation effort in the first
option.

We call the forward- and reverse-mode master routines master d and master b,
respectively. A high-efficiency masterfast b routine is also available to compute just
the derivative of the residuals with respect to the states, which allows a reduced set of
routines to be used for that computation. The internal structures for these routines are
shown in Algorithms 2, 3, and 4. To construct the differentiated master routines, we first
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use Tapenade to differentiate all the subroutines in the master routine either in forward
or reverse mode. We then call these differentiated functions in sequence to compute the
necessary derivatives. Note that, in forward mode, the differentiated routines are called
in the same order as the master routine whereas, for the reverse-mode computation,
the differentiated routines are called in reverse order, as expected. Figure 11 shows the
inputs and outputs for the original and differentiated master function.

Algorithm 2 master d routine

1: function master d(x, ẋ,w, ẇ) . input: x, ẋ,w, ẇ; output: Ṙ, ḟ
2: wint, ẇint ← F Dint(x, ẋ,w, ẇ)
3: wbc, ẇbc ← F Dbc(x, ẋ,w, ẇ)
4: xgeo, ẋgeo ← F Dgeo(x, ẋ)
5: Ṙ← F Dres(x, ẋ,w, ẇ,wint, ẇint,wbc, ẇbc,xgeo, ẋgeo)
6: ḟ ← F Dobj(x, ẋ,w, ẇ,wint, ẇint,wbc, ẇbc,xgeo, ẋgeo)
7: return Ṙ, ḟ
8: end function

Algorithm 3 master b routine

1: function master b(x,w,R, f) . input: x,w,R, f ; output: x,w
2: x,w,wint,wbc,xgeo ← F Bobj(x,w,wint,wbc,xgeo, f)
3: x,w,wint,wbc,xgeo ← F Bres(x,w,wint,wbc,xgeo,R)
4: x← F Bgeo(x,xgeo)
5: x,w ← F Bbc(x,w,wbc)
6: x,w ← F Bint(x,w,wint)
7: return x,w
8: end function

Algorithm 4 masterfast b routine

1: function masterfast b(w,R) . input: w,R; output: w
2: w,wint,wbc ← F Bres(w,wint,wbc,R)
3: w ← F Bbc(w,wbc)
4: w ← F Bint(w,wint)
5: return w
6: end function

The manual implementation described above requires a greater development effort
than simply applying AD to the entire master routine. However, we obtain much more
efficient code by using this approach than by using the straightforward approach, espe-
cially in the reverse-mode case. This efficiency is derived from two main factors: The
first factor is that, by manually assembling the derivative routine, we take advantage
of the fact that many of the forward pass variables from the residual computation are
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computed and are up to date from the flow solution and do not need to be recomputed
for each derivative computation. This is particularly important when we compute sev-
eral transpose matrix-vector products in succession at the same solution point, as when
doing a Krylov-type solution. In this case, a single forward pass computation can be
reused for all of the matrix-vector products. The second factor is that we can be more
selective about the variables that we push onto the AD stack during the reverse pass.

There are several variables that, based on careful inspection of the code, we know
are not updated between subsequent subroutine calls and can therefore be left off the
stack. A general purpose AD routine cannot make this assumption. This allows for
a reduction in the number of variables stored during the reverse computation, thereby
reducing memory requirements and computational cost. These efficiencies are especially
important when solving the adjoint equation by using the Jacobian-free GMRES method
because the reverse-mode computation is called repeatedly to compute the transpose
matrix-vector products required for each GMRES iteration, as mentioned above.

Fortunately, most of the work involved in implementing this approach occurs in
the initial creation of the various master routines. Once the master d and master b

routines are constructed, they are easy to maintain and extend. All the differentiated
subroutines called in the master d and master b routines are automatically generated
by Tapenade before compiling the adjoint code. Therefore, when we add new terms
to the flow residuals, we need only tell Tapenade to differentiate the subroutines that
compute this new term and call these newly differentiated subroutines in the master d

and master b routines to get the correct derivatives.

x, w x, w, ẋ, ẇ x, w, R, f

master(x,w) master d(x,w, ẋ, ẇ) master b(x,w,R, f)

R, f Ṙ =
∂R

∂w
ẇ +

∂R

∂x
ẋ, ḟ =

∂f

∂w
ẇ +

∂f

∂x
ẋ w =

∂R

∂w

T

R+
∂f

∂w

T

f , x =
∂R

∂x

T

R+
∂f

∂x

T

f

Figure 11: Inputs and outputs for the original and differentiated R and f functions in
ADflow.

Once the master routine is differentiated with AD, we use the resulting code to
compute all the partial derivatives and solve the linear equation. The Jacobian-free
option in ADflow is the same as shown in Fig. 6 except that Ṙ(x,w, ẋ, ẇ) in process 1
is replaced by master d, f(x,w, f) in process 3 andR(x,w,R) in process 7 are replaced
by master b, and R(x,w,R) in process 5 is replaced by masterfast b. The procedure
then consists of the following major steps:

1. Set multiple rows associated with the first color to ones for the input vector ẇ and
use master d to compute the partial derivatives for these columns. Move to the
next color until the partial derivatives for all the columns are computed. Assemble
all the columns to construct the full preconditioner matrix [∂R/∂w]TPC .
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2. Set the input vector f = 1 and use master b to compute the partial derivative
[∂f/∂w]T .

3. Set [∂R/∂w]TPC as preconditioner matrix and [∂f/∂w]T as right-hand-side vector
for the GMRES solver. Set r0 as input vector and use masterfast b to com-
pute the matrix-vector products [∂R/∂w]Tr0 for the GMRES iteration. Solve the
adjoint linear equation until converged and output ψ.

4. Set R = ψ and f = 1 as the input seeds for master b to compute the total

derivative
df

dx
=
∂f

∂x
−ψT ∂R

∂x
.

The FD Jacobian and AD Jacobian in ADflow are modified versions of Fig. 6 with
two exceptions: First, in FD Jacobian we compute [∂R/∂w]T and [∂R/∂w]TPC by using
the finite-difference method, whereas in AD Jacobian we use the forward-mode AD. Both
approaches use a coloring scheme. Second, instead of using the Jacobian-free GMRES
approach, we store the [∂R/∂w]T matrix and explicitly pass it to the GMRES solver to
compute the matrix-vector products.

We now elaborate on the differentiation of residuals and functions for DAFoam. The
construction of the differentiated R and f has two major differences compared with
ADflow. First, no single master routine is constructed to compute all flow residuals and
objective functions, primarily because DAFoam solves the flow in a segregated man-
ner, as mentioned in Sec. 3.3. Therefore, we reuse the original OpenFOAM codes and
construct multiple residual and objective computation functions. In other words, we
construct RU (x,w), Rp(x,w), Rφ(x,w), Rν̃(x,w), and f(x,w) separately. These
functions are similar to the master routine, where we need to update all intermediate
variables, boundary conditions, and geometric metrics before computing the flow resid-
uals and objective functions. Figure 12 shows as an example the inputs and outputs
for the differentiated RU and f functions. Second, we use an operator-overloading AD
tool to differentiate the above functions because OpenFOAM is written in C++ with
complex objective-oriented code structures. Moreover, to generalize solver development,
OpenFOAM uses templates extensively. Given the above two features, it is impractical
for a source code transformation tool to differentiate an OpenFOAM function.

x, w x, w, RU
x, w x, w, f

RU (x,w) RU (x,w,RU ) f(x,w) f(x,w, f)

RU w =
∂RU

∂w

T

RU , x =
∂RU

∂x

T

RU
f w =

∂f

∂w

T

f , x =
∂f

∂x

T

f

Figure 12: Inputs and outputs for the original and differentiated R and f functions in
DAFoam.

We build our discrete adjoint solver based on an OpenFOAM version developed

67



by Towara and Naumann [22], who differentiated OpenFOAM by using the operator-
overloading tool dco/c++. As mentioned in Sec. 4.5, one of their adjoint solvers (ad-
jointSimpleShapeCheckpointingFoam) computes the total derivative df/ dx by using
AD to differentiate the entire primal solver. In Sec. 5, we use adjointSimpleShapeCheck-
pointingFoam to compare the AD Jacobian, FD Jacobian, Jacobian free, and full-code
AD options. Note that we do not use the full-code AD option for our adjoint solvers. In-
stead, we selectively differentiate parts of the code (e.g., the residual and objective com-
putation functions). Since OpenFOAM was differentiated by using operator-overloading
AD, it may be straightforwardly applied to any function without generating new differen-
tiated code. Given this feature, differentiating the flow residual and objective computa-
tion functions requires much less development effort compared with manually construct-
ing the master routine and their differentiated versions in ADflow. Moreover, it may
be straightforwardly extended to include new terms or governing equations. However,
the convenience of operator overloading comes at a price: Its computational cost and
memory usage exceed that of the adjoint codes generated by source code transformation.
Section 5 compares results for these options.

Overall, the implementation of Jacobian free is similar to that shown in Fig. 6 with
one exception: we compute [∂R/∂w]TPC by using finite-difference instead of forward-
mode AD. The FD Jacobian in DAFoam is similar to that shown in Fig. 4, except that
we directly compute ∂R/∂x and ∂f/∂x by using brute-force finite differencing and then
compute df/ dx, as discussed in Sec. A.1.
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