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Abstract While numerous architectures exist for solving
multidisciplinary design optimization (MDO) problems, there
is currently no standard way of describing these architec-
tures. In particular, a standard visual representation of the
solution process would be particularly useful as a commu-
nication medium among practitioners and those new to the
field. This paper presents the extended design structure ma-
trix (XDSM), a new diagram for visualizing MDO processes.
The diagram is based on extending the standard design struc-
ture matrix (DSM) to simultaneously show data dependency
and process flow on a single diagram. Modifications include
adding special components to define iterative processes, defin-
ing different line styles to show data and process connec-
tions independently, and adding a numbering scheme to de-
fine the order in which the components are executed. This
paper describes the rules for constructing XDSMs along with
many examples, including diagrams of several MDO archi-
tectures. Finally, this paper discusses potential applications
of the XDSM in other areas of MDO and the future devel-
opment of the diagrams.
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1 Introduction

When employing multidisciplinary design optimization (MDO)
to solve a given design problem, designers are confronted
with a wide range of options. For example, should the op-
timizer interact with the analysis software in a “black-box”
fashion or should the governing equations be provided to the
optimizer directly? Should a surrogate model be employed?
Which disciplines or system components should be resolved
in a coupled fashion? Should decomposition be employed
in the optimization problem? Should the decomposition em-
ploy a penalty function scheme or a multilevel scheme? In
practice, these kinds of questions are answered on a case-
by-case basis after considering the problem characteristics,
distribution of expertise, level of communication between
designers, and available software tools. However, the an-
swers to these questions strongly influence both the opti-
mization problem formulation and the solution strategy em-
ployed which, in turn, strongly influence the time and re-
sources needed to find a design solution.

We refer to the combination of the design problem for-
mulation and the organizational framework used to solve it
as an MDO architecture. Many architectures have been de-
veloped, including multidisciplinary feasible (MDF) (Cramer
et al, [1994), individual discipline feasible (IDF) (Cramer
et al|, |1994), concurrent subspace optimization (CSSO) and
its variants (Bloebaum et al,|1992; Sellar et al, [1996; Wujek
et al,|{1996), collaborative optimization (CO) and its variants
(Braun and Kroo, 1997} [Kroo} [1997; [DeMiguel and Mur-
ray, [2000; [Rothl 2008)), bilevel integrated system synthe-
sis (BLISS) and its variants (Sobieszczanski-Sobieski et al,



Andrew B. Lambe, Joaquim R. R. A. Martins

2000\2003; |[Kodiyalam and Sobieszczanski-Sobieski,[2000),
and analytical target cascading and its variants (Kim, [2001}
Kim et al, [2003} 2006 [Tosserams et al, |2006)). Determining
the conditions under which each architecture is most effec-
tive and refining their performance remains an active area of
research.

Once an architecture has been selected, it must be im-
plemented in the computational environment. As with other

computational methods, incorrect implementation of the MDO

architecture can prevent solution of the design problem. How-
ever, determining the correct implementation can be difficult
because there is no standard way of describing the solution
process. Each author uses his/her own notational set, algo-
rithmic description, and system of diagrams in describing
a new architecture. The lack of a standard representation of
MDO architectures is a barrier to communicating the correct
implementation and describing alternative approaches.

This work is complementary to a number of other stud-
ies in the MDO literature that seek more flexible ways of de-
scribing MDO problems and solution methods. |Alexandrov
and Lewis|(2004alb) proposed a linguistic approach to prob-
lem formulation called reconfigurable multidisciplinary syn-
thesis (REMS). The REMS framework used a small set of
computational components along with a directed graph rep-
resentation to allow the user to quickly reformulate a spec-
ified MDO problem. Later work by [Tosserams et al| (2010)
created the ¥ language to allow the user greater freedom in
the assembly of the problem formulation, especially for de-
composed problems. Another language, called y, was cre-
ated by [Etman et al| (2005)) to specify the coordination strat-

egy for parallel solution processes. While linguistic approaches

like these are useful for automatically implementing MDO
architectures in a computational environment (Martins et al|
2009), they do not provide a formal visual representation of
how the architecture handles the original problem.

Our work is most similar to the work of De Wit and Van
Keulen| (2010), who present a unified set of mathematical
notation and diagrams to describe a broad range of decom-
position and coordination strategies. Unlike the linguistic
approaches mentioned above, the diagrams provide a visual
framework for describing MDO architectures. However, in
that work, multiple diagrams are required to explain the de-
composition and coordination strategies employed. We feel
that a similar approach using only one diagram would be
a more accessible starting point, facilitating communication
about MDO architectures among experts and nonexperts alike.

In this work, we present our approach to the problem of
creating a standard visual representation of the solution pro-
cess of an MDO architecture. While this paper is focused on
MDO architectures in particular, we have found that our di-
agram syntax may be more broadly applicable to a range of
analysis and optimization processes. Indeed, we should ex-
pect this, given the commonality in the computational com-

ponents between the processes. We also integrate mathemat-
ical notation into the diagrams and show links between the
elements of the diagram and the underlying mathematics.
We refer to our diagram as an extended design structure ma-
trix, or XDSM.

This paper is organized as follows. Section [2]introduces
the mathematical notation and reviews basic MDO termi-
nology. Section (3| discusses the guiding design principles
and evaluates alternative diagrams for their use in describing
MDO processes. Section 4] outlines the elements and syntax
of the XDSM with simple examples. Section [5] shows four
different MDO architectures represented using XDSMs. Sec-
tion[6] discusses potential applications of the XDSM beyond
MDO architectures. Finally, Section [7] provides concluding
remarks.

2 Terminology and Notation

Before discussing the diagrams themselves, we introduce
the notation that is used throughout this paper. This nota-
tion was developed to compare the various problem formu-
lations within MDO architectures and is listed in Table [l
This is not a comprehensive list; additional notation specific
to particular architectures is introduced when the respective
architectures are described. We also take this opportunity to
clarify many of the terms we use that are specific to the field
of MDO.

A design variable is a variable in the MDO problem that
is always under the explicit control of an optimizer. Design
variables may pertain to a single discipline, i.e., be local, or
may be shared by multiple disciplines. We denote the vector
of design variables local to discipline i by x; and the shared
variables by x¢. The full vector of design variables is given
by x = [xg , XIT7 .. ,X]Y\}] " The subscripts for local and shared
data are also used in describing objectives and constraints.

A discipline analysis is a simulation that models the be-
havior of one aspect of a multidisciplinary system. Con-
ducting a discipline analysis consists of solving a system
of equations and returning a set of response variables. The
response variables may or may not be controlled by the op-
timization, depending on the formulation. We denote the
vector of response variables computed within discipline i
by y;. Analogously to the design variables, the full vector
of response variables is denoted y. In a multidisciplinary
system, most disciplines are required to exchange their re-
sponse variables with other disciplines to model the interac-
tions of the whole system. Often, the number of variables ex-
changed is much smaller than the total number of response
variables computed in a particular discipline. Those vari-
ables that are exchanged are referred to as coupling vari-
ables.
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Table 1 Mathematical notation for MDO problem data
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Vector of consistency constraints

Vector of coupling variable targets (inputs to a discipline analysis)
Vector of coupling variable responses (outputs from a discipline analysis)

Functions or variables that are shared by more than one discipline
Functions or variables that apply only to discipline i

Functions or variables at their optimal value

Approximation of a given function or vector of functions

In many formulations, copies of the coupling variables
must be made to allow discipline analyses or optimizations
to run independently and in parallel. These copies are known
as target variables and are denoted by a superscript ¢. For
example, the copy of the response variables produced by
discipline i is denoted y!. These variables are used as the
input to disciplines other than discipline i that are coupled
to discipline i through y;. To preserve consistency between
the coupling variable inputs and outputs at the optimal solu-
tion, we define a set of consistency constraints, ¢ = yﬁ» —-Yi,
that we add to the problem formulation. (These constraints
are sometimes referred to as compatibility constraints. How-
ever, we use the term consistency to avoid confusion with the
compatibility constraints present in structural analysis.)

Each of these elements of the MDO problem is handled
differently in different architectures. Several of the problem
formulations are discussed in Section [5|along with their cor-
responding XDSMs.

3 Design Principles

We now return to the primary objective of this paper: devel-
oping a standard visual representation of an MDO solution
process. In particular, we want to capture the basic algorithm
and all the data connections in a single diagram. We based
the graphic design on the following guiding principles:

1. Simplicity. MDO processes can be complex because of
the number of different analysis codes needed to model a
coupled system and the volume and varied types of data
that these codes exchange. In spite of this complexity,
the diagram syntax should have as few rules and symbols
as possible to make the description of the process clear.
We expect the average user to understand the syntax well
enough that they can create their own diagrams after an
hour of study.

2. Clarity. The depiction of the data exchange and algo-
rithm should have an unambiguous meaning to the viewer.
We are particularly concerned with the reproducibility of

the depicted processes and avoiding errors in communi-
cation. This is especially important in explaining MDO
processes to nonspecialists and those new to the field.

3. Information Density. Because MDO processes involve
many computational elements exchanging data within
an overall algorithm, we wish to depict both the algo-
rithm and the data exchanges simultaneously. Incorpo-
rating data and process into a single diagram gives us
an immediate impression of the whole software archi-
tecture without having to compare and cross-check mul-
tiple diagrams.

4. Integration of Mathematics. Because MDO processes in-
corporate many mathematical representations in the form
of systems of equations, optimization problem statements,
inequalities defining convergence conditions, etc., the di-
agram should be able to incorporate the notation where
possible to enhance understanding. This should be done
so long as it does not interfere with the other principles
outlined above. If the mathematics cannot be incorpo-
rated into the diagram directly, the locations of the rele-
vant expressions should be obvious to the viewer. Using
mathematics directly in the diagram also helps to com-
pact the data into a small space without loss of informa-
tion (Tuftel [1983)).

Using these principles, we now review some commonly used
diagrams in the MDO and complex system literature.

The first diagram we review is the standard flowchart.
Flowcharts depict algorithms by representing simple oper-
ations (selection, initialization, input and output, etc.) by
different block shapes connected by lines. Flowcharts can
also be scaled to show large, complex algorithms. While
these diagrams are simple to understand and have been used
successfully for many years, they do not track data move-
ment among the computer program components. Because of
the nature of the MDO computing environment, with many
computational elements exchanging data at key points in the
algorithm, some representation of the data transfer is also
necessary. Separate data flow diagrams may be employed
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but, as mentioned above, we prefer to use a single diagram.
Adding data transfer lines to a flowchart is another possibil-
ity. However, the number of lines required in complex archi-
tectures could turn the diagram into “spaghetti” and make it
hard to interpret.

A common visualization technique used in the MDO lit-
erature is some type of block diagram (Braun et al, |[1996;
Sobieszczanski-Sobieski et all [2000; Perez et all [2004). Typ-
ically, these diagrams use blocks to represent computational
components and labeled arrows to show data flow. These di-
agrams suffer from the opposite problem of the flowchart:
they show the data exchange well but do not clearly de-
fine the process. This is especially true when multiple loops
are present in the algorithm or when certain components are
reused within a loop. Another consideration is that there is
no standard way of constructing the block diagram, so each
diagram must be interpreted individually.

Another option for visualization is the unified modeling
language (UML) (Booch et all 2005). UML was designed
to model and visualize software systems, especially object-
oriented software, under a unified standard. (An example
of UML class diagrams is given by Martins et al| (2009).)
Because of the close connections between object-oriented
software and MDO (Alexandrov and Lewis| [2004alb), we
may expect that the same visualization tools can be used in
both cases. In contrast to the other methods that we have
described, UML is standardized, and this adds to its ap-
peal for widespread communication. However, describing
an MDO process using UML would require multiple dia-
grams to show both the process and data flows, a situation
that we want to avoid. We also feel that UML is difficult
to learn, and this is an additional barrier to communication
about MDO.

Finally, a diagram that is common in systems engineer-
ing is the N2 diagram (Lano) |1977) or design structure ma-
trix (DSM) (Steward, |1981). An example DSM for an air-
craft design problem is shown in Fig. [I| While several dif-
ferent types of DSM exist (Browning, 2001), the basic dia-
gram is unchanged. The components of a system are placed
on the main diagonal of a matrix with the inputs to each
component placed in the same column and the outputs from
each component placed in the same row. External inputs
and outputs, if they are considered, are placed on the out-
side edges of the diagram. The key advantage of DSM is a
strict diagram structure. Whereas traditional block diagrams
and flowcharts allow the system components and intercon-
nections to be placed arbitrarily, the DSM structure effec-
tively “untangles” the collection of components and gives
the reader a complete view of the coupling structure within
the system. The DSM in Fig. [I] further enhances this view
by using larger dots to denote stronger coupling between
the disciplines. Other notation may be used to show more
coupling information, e.g., see|Yassine and Braha|(2003).

B CDEVFGH T J KILMN O
Optimization A | A | @ [ BN AN BN J [ AN BN J [ BN J
AcrodynamicsB @ B @ [ ) ®
Atmosphere C ® C [ J
Economics D | @ D
Emissions E @ E
Loads F @ @ F [ BN ]
Noise G @ G [ J
Performance H | @ . H @ . [ J
Sizing 1 @ @ [ ] 1 . °
Weight J @ . J @
Structures K @ [ ] e K
Mission L [ J ® 0 L
Reliability M @ M
Propulsion N | @ [ ] [ ] [ ) . N
System 0 [ ] [ J (0]

Fig. 1 Example DSM for aircraft design problem.

The principal disadvantage of the DSM lies in the def-
inition of the order of execution of the components. While
some DSMs show a sequence by ordering the components
along the diagonal of the matrix (Browning, 2001)), we re-
quire more flexibility in the ordering because of the selec-
tion, iteration, and parallel computing structures present in
MDO architectures. These structures can be considered a
high-level algorithm driving the architecture. Furthermore,
we would like to maintain the property of the standard DSM
that a reordering of the components does not change the
underlying system. Therefore, we have chosen to add addi-
tional graphical features to the DSM to show process flows
at the same time as data flows. These features are described
in detail in the next section.

4 XDSM Syntax Description

As explained above, the DSM structure offers a convenient
and compact way to represent the connections between sys-
tem components. When the DSM is applied to the specific
case of a computational MDO environment, the components
of the system are computational elements (disciplinary anal-
yses, optimizers, surrogate models, etc.), and the connec-
tions consist of the data passed between them. However, for
processes, such as the algorithms of MDO architectures, we
require the diagram to show the order in which the com-
ponents are executed without ordering the components. Fur-
thermore, we need a way to show iterative procedures on the
diagram. This section describes the extensions necessary to
create an XDSM from a DSM.

(All XDSMs shown in this work were created in LaTeX
using the TikZ package. To simplify the diagram creation,
we have developed template files containing all necessary
block shapes and line styles. These templates and some ex-
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Fig. 2 Generic, three-discipline, fully coupled system.
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Fig. 3 Gauss—Seidel MDA procedure.
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Fig. 4 Jacobi MDA procedure with parallel execution of components.

tion is to distribute the state target information appropriately
and to check the convergence of the MDA process. We re-
fer to the components controlling an iterative procedure as
drivers. We use a separate shape (a rounded rectangle, in this
case) to distinguish drivers from other components.

The order in which the components are executed is de-
fined by numbering the components, starting at zero. The
components are executed in numerical order unless a loop is
present. A loop is denoted by m — n, where n < m. This no-
tation means that before proceeding to m + 1, the sequence
returns to component n until the condition defined by the
driver is satisfied. The data blocks are also numbered to clar-
ify the step at which the data are passed to the component.
This is useful in more complicated diagrams where the same
component takes input from different sources at different

athttp://mdolab.engin.umich.edu/content/xdsm-overydgy. (the BLISS-2000 architecture depicted in Fig. [2isa

Comments and suggestions are welcome.)

We start with the task of performing a multidisciplinary
analysis (MDA) on a coupled system with three disciplines.
An MDA is an iterative process that computes a set of cou-
pling variables that satisfies the consistency constraints of
a coupled system. Figure [2] shows the original DSM for this
system. In this diagram, we have used different block shapes
to distinguish between the computational analyses and the
data connections. The shapes were chosen for their similar-
ity with flowchart syntax: rectangles for generic processes,
parallelograms for data input and output. The data depen-
dency of the components is further emphasized by the use
of thick gray lines to connect the nodes.

In a Gauss—Seidel MDA process, each analysis is exe-
cuted in sequence using a set of design variables (chosen
outside the MDA) and the most recent information on the
states of the other disciplines. The analyses continue until
a consistent set of state variables is returned by the individ-
ual disciplines. These states are then returned to the user or
some external process. Figure [3] shows the XDSM for the
Gauss—Seidel MDA.

We now address the new elements that we have intro-
duced to create an XDSM. To control the iteration we have
introduced a special component, labeled “MDA,” whose func-

good example of this.) Finally, to give an added visual cue
to the process flow, we use a distinct line style to connect
consecutive components. In our XDSMs, a thick gray line
represents data connections, while a thin black line repre-
sents process connections. These line styles were chosen so
that they could coexist on the diagram, i.e., so that one does
not overwrite the other.

The same MDA can be solved using other types of it-
erations, such as Jacobi iterations. Figure [4] shows a Jacobi
iteration, where all the analysis components are executed us-
ing the state information from the previous Jacobi iteration.
To show that each of these components may be executed in
parallel, we use the same number for each component. Note
that no data are exchanged between these components dur-
ing the parallel execution. If it is not possible to evaluate the
discipline analyses in parallel, we can also use the XDSM
to capture sequential execution. A Jacobi iteration with se-
quentially executed components is depicted in Fig. [5]

Because the situation in Fig. {4| of many similar compo-
nents being executed in parallel occurs frequently in MDO,
we have adopted a special convention to make the diagram
more compact. The convention is that a reference to com-
ponent i implies that the diagram structure is repeated for
all disciplines. As an example, Fig. [f]is identical to Fig. [}
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Fig. 5 Jacobi MDA procedure with sequential execution of compo-
nents.

1:
Analysis i |

Fig. 6 Jacobi MDA procedure with parallel execution of components
using our convention for parallel diagram structure. Process shown
here is identical to that shown in Fig. ]

except that it applies this convention. The presence of the
Analysis i block in Fig. [6] implies that all the disciplinary
analyses are evaluated in parallel before the algorithm con-
tinues. This convention is further enhanced by showing stacks
of component and data blocks.

Using our syntax, we can also describe optimization pro-
cesses. Figure [/| shows the solution of a standard nonlinear
programming problem. An initial guess of the design vari-
ables, x| is passed to the optimizer. In each iteration, the
objective and constraints are evaluated, (in parallel, in this
case,) and an updated set of design variables is computed.
The iterations continue until the optimization driver con-
verges, returning the optimal solution x*. Note that Fig.
is independent of the type of optimizer used, i.e., it is inde-
pendent of the specific calculations that take place within the
optimization driver. If the optimizer also required the gradi-
ents of the objective and constraint functions, these could
be placed in the diagram as additional components with the
appropriate connections to the optimization driver. Figure §]
shows an optimization algorithm with a separate component
that computes all the gradient information required by the
optimizer.

To conclude this section, we make a few remarks on
the relationship between the XDSMs we have constructed
and the underlying mathematics of the MDA and optimiza-
tion processes. The key point is that, in all of our diagrams,
each component corresponds to a set of mathematical ex-

0,2—1:

1. . K 1. ./
Optimization /—lli/ L3
1:
Objective

— 1:
@ Constraints

Fig. 7 Simple optimization algorithm.

0,2—1:

sy ey .
Optimization l_lli/ 11l:a/ {1:x]
1:
Objective
Ay 1:
/7 = Constraints

[9. L iy
2t &) s, g abs Gradients

Fig. 8 Optimization algorithm where optimizer requires gradient in-
formation. Gradients are calculated by separate component.

pressions, and entry into each component corresponds to the
evaluation of these expressions. For example, evaluating the
“Constraints” component in Fig.[7 or[§]is the same as com-
puting the values of all the constraint functions in the nonlin-
ear programming problem. The “MDA” and “Optimization”
drivers evaluate expressions that compute the next point to
test in the iteration. The stopping criterion for the iteration
is also checked by the driver. We emphasize that this inter-
pretation extends to all components in all XDSMs, closely
linking the mathematics of the MDO problems to the XDSM
description of the solution process.

5 MDO Architecture Examples

We now have all the tools needed to provide a complete de-
scription of an MDO architecture. We describe only a few
architectures in detail here. However, we note that we have
been able to describe a total of fifteen general architectures
using the XDSM, all of which will be presented in detail in
a forthcoming survey paper.

In the multidisciplinary feasible (MDF) architecture (Cramer

et al| [1994)), all the disciplines are coupled together, and an
MDA is performed to compute the full set of state variables
for a given choice of design variables. MDF is effectively an
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Fig. 9 Multidisciplinary feasible (MDF) architecture.

extension of a single-discipline optimization to the multiple-
discipline case, where the MDA replaces a single-discipline
analysis. The optimization problem formed in this architec-
ture is given by

min.  fp (x,y(x))
w.rt. X
(D
st. ¢(x,y(x))>0

Ci(XOaXi7Yi (XOathj;éi)) >0 lzlvaN

Note the functional notation. Objective fp is a function of
both the design variables x and state variables y. Because of
the MDA process, the state variables are themselves func-
tions of X.

Figure [0] shows the XDSM for MDEF, using the Gauss—
Seidel MDA shown in Fig. [3] The sequence of operations
can be inferred from Fig. 0] following the numbering rules
defined previously. The operations corresponding to each
number in the diagram are as follows:

0. Pass initial data to Optimization and MDA drivers.
Initiate MDA.

Evaluate Analysis 1.

Evaluate Analysis 2.

Evaluate Analysis 3.

Check MDA convergence. If it has not converged, return
to 2; otherwise, continue.

Compute objective and constraint function values.
Compute new design point. If optimization has not con-
verged, return to 1; otherwise, return optimal solution.

ARl S

=N o

Note that we have not chosen the convergence criteria of the
MDA or the optimization, but we have specified where these

Functions

convergence criteria are applied. These criteria can be cho-
sen by the user and assigned to the corresponding architec-
ture loop. There is also flexibility in the choice of optimizer
and multidisciplinary analysis method; we need not use the
Gauss—Seidel strategy shown in Fig. 0] If, for example, a
Jacobi or Newton-like strategy is available, it may be substi-
tuted into the architecture. For the purpose of this work, we
have tried to keep the description of both problem and solu-
tion strategy as generic as possible. Specific implementation
details are left to the user, but all can be described with an
XDSM without difficulty.

In the individual discipline feasible (IDF) architecture
(Cramer et al, [1994)), individual disciplines are not coupled
together in the analysis of the system. Instead, coupling vari-
able targets are used to share information between disci-
plines, and consistency constraints are used in the optimiza-
tion problem to ensure that the coupling variable inputs match
the disciplinary outputs at the optimal solution. The result-
ing optimization problem is given by

min. fy ey (x.y))
wrt. X,y
st co(x,y(x,¥)) >0

(2)
C; <X07xi7yi (X();Xivytj;éi)) 20 l:17aN

C,L:)’:_yl (X()axlaytj;é[)zo l:17aN

Note that the coupling variable outputs, y, are treated as
functions of design variables and coupling variable inputs,
y', because each iteration of the method involves the eval-
uation of each discipline analysis. Therefore, coupling vari-
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Fig. 10 Individual discipline feasible (IDF) architecture.
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able outputs may take only values that satisfy the governing
equations of each discipline.

Figure[I0|shows the XDSM for IDF. Note the depiction
of the parallel analyses using our convention for repeated
diagram structure. If parallel processing was not available,
the disciplinary analyses could instead be evaluated inde-
pendently in sequence. The sequence of operations defined
by Fig. [I0]is the following:

0. Pass initial data to Optimization driver.

1. Evaluate all Analysis components in parallel.

2. Compute objective and constraint function values.

3. Compute new design point. If optimization has not con-
verged, return to 1; otherwise, return optimal solution.

As with MDF, we have presented a generic version of IDF,
and the specific implementation details are left to the user.

The collaborative optimization (CO) architecture (Braun
and Krool [1997) is quite different from the previous archi-
tectures in that a decomposition and coordination scheme is
introduced to allow each discipline to operate with greater
autonomy. As a result, an optimization subproblem is de-
fined for each discipline in addition to the top-level system
optimization subproblem. The system subproblem is given
by

min.  fo (Xo,%1..n,Y')
X0, %1.N,Y
s.t. ¢p (Xo,fil...Nayt) >0 (3)

Ji = |1Roi —Xol[3 + |I% — xil[3+

w.r.t.
||yi_yl(ﬁ0hXHy3;&z)H%:O i:17"'aNa

whereas the discipline i problem is given by

min. J; (fKOi,Xz‘,yz' (ﬁOiaxiaYS';Ai))

W.I.t. ﬁOi; X; 4

st ¢ (fionxh}’i (ﬁouxhylj;ﬁ)) >0.

The notations Xq; and X; are used to denote design variable
copies introduced to separate the system and discipline sub-
problems as much as possible. The variables X, are copies
of the x¢ design variables employed in the discipline i sub-
problem, and the &; variables are copies of the x; design vari-
ables employed in the system problem. In practice, only the
variables that appear directly in nonlocal objective and con-
straint function evaluations—i.e., not through a discipline
analysis—need to be copied.

The J; functions defined in CO preserve consistency be-
tween the variable copies contained in each subproblem at
optimality. Therefore, the goal of the discipline subproblems
is to minimize inconsistency, whereas the system subprob-
lem minimizes a system objective while maintaining consis-
tency among the optimized discipline subproblems.

Figure [T1] shows the XDSM for CO. The sequence of
operations shown is the following:

0. Pass initial data to both system and discipline optimiz-
ers.

1. Compute system subproblem objectives and constraints,
and do the following in parallel:

1.0. Initiate disciplinary subproblem optimizations.

1.1. Evaluate all disciplinary analyses.

1.2. Compute disciplinary subproblem objectives and con-
straints.

1.3. Compute new disciplinary subproblem design points.
If subproblem optimization has not converged, re-
turn to 1.1; otherwise, return J; function values to
system subproblem.

2. Compute new system subproblem design point. If sys-
tem subproblem optimization has not converged, return
to 1; otherwise, return optimal solution.

Note that each discipline subproblem must be solved once to
complete a single iteration of the system subproblem. This is
a standard bilevel optimization approach. In Fig. [TT] nested
numbering is used to display the parallel operations of solv-
ing the disciplinary optimization problems and evaluating
the system subproblem objective and constraints. This or-
ganization is allowed because the system functions do not
require information from the discipline subproblems. If de-
sired, these operations could also be done in sequence. Fi-
nally, we emphasize that, even though the disciplinary sub-
problems are solved in parallel using the same sequence of
operations, those operations need not be synchronized be-
tween subproblems. In other words, each disciplinary opti-
mization operates independently of the others and it is only
when all the disciplinary subproblems are solved that the al-
gorithm proceeds.

The final architecture that we describe is the BLISS-
2000 variant (Sobieszczanski-Sobieski et al, 2003)) of bilevel
integrated system synthesis (BLISS). Like CO, BLISS-2000
decomposes the optimization problem into system and disci-
pline subproblems. Unlike CO, BLISS-2000 uses surrogate
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Fig. 11 Collaborative optimization (CO) architecture.

models to capture the influence of the shared design vari-
ables on the optimality of the disciplinary subproblems. The
system subproblem for BLISS-2000 is given by

min.  fo (x0,¥ (x,¥"))
wrt.  Xg,y
st. ¢ (x,§(xy)) >0 ®)

¢ =yi—Fi (mei,y’;#) =0 i=1,...,N,

where §, represents the state variable estimates computed by
the disciplinary surrogate models. The discipline subprob-
lem for discipline i is given by

min. f;= WiTYi (X()vxhytj;éi)
wrt. X; (6)

st ¢ (XO,Xth (X07X"’yt/¢")) 20,

where each wj is a vector of user-defined weighting coef-
ficients. The BLISS-2000 architecture introduces the added
complexity of forming and updating a surrogate model of
each discipline’s optimal output. These models must be in-
cluded in the XDSM as additional components, and the tim-
ing of the updates must be noted in the algorithm.

The XDSM for BLISS-2000 is given in Fig.[T2] The se-
quence of operations shown in the XDSM is as follows:

0. Pass initial data to both system and discipline optimiz-
ers.

1. Initiate discipline subproblem optimizations.

2. Evaluate disciplinary analyses.

3. Compute disciplinary objective and constraint function
values.

\ Optimization 4

ﬁ 1.2:
/ 1.3: fi,ci, J; /72 Discipline 4

.(0) (0
.20

/L1yl % / 1.2: o, &,y //

’1‘1 5 {iOi,Ii // / 1.2: .’ioi,zi ///”

1.1:
Analysis ¢

1.0, 1.3—1.1:

Functions

4. Compute updated solutions to disciplinary subproblems.
If subproblems have not converged, return to 2; other-
wise, return optimal solutions.

5. Update metamodels of optimized disciplinary subprob-

lems with new data.

. Initiate system subproblem optimization.

7. Interrogate metamodels with current values of system
variables.

8. Compute system objective and constraint function val-

ues.

. Compute updated solution to system subproblem. If sub-
problem has not converged, return to 7; otherwise, con-
tinue.

10. Check convergence of architecture based on change in

system design variables. If architecture has not converged,
return to 1; otherwise, return optimal solution.

@)}

Ne)

In this diagram, the “Metamodel i” components serve the
dual function of both updating and evaluating the metamod-
els. We determine which function is active at a given step
based on the data passed to the component. In the updat-
ing steps, the results of the disciplinary optimizations are
passed to the metamodel components in addition to the sys-
tem variable values, whereas only the system variable values
are passed in the evaluation steps. This setup is a concrete
example of different data being passed to a component at
different points in the algorithm and motivates our labeling
of the data nodes with the times at which they are passed to
the components.
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Fig. 12 BLISS-2000 architecture.

6 Applications and Future Development

Our primary motivation for the development of the XDSM
was to develop a graphic representation of complex MDO
processes in a single, intuitive diagram. These diagrams, to-
gether with the mathematical descriptions of the analyses
and optimization problems, may then be used as a communi-
cation medium for explaining new architectures and drawing
comparisons with existing ones. As demonstrated in Sec-
tion |4} however, this type of diagram can also be used to
describe optimization, analysis, and related processes more
generally. While we have not explored this idea in more de-
tail, we believe that there are more cases in which XDSMs
could be used as visualization tools.

An important application of the XDSM is in MDO soft-

ware frameworks such as iSight, ModelCenter, pyMDO (Mar-

tins et all 2009), and OpenMDAO (Gray et al, [2010). These
are tools developed to assist engineers in integrating multi-
ple analysis codes to run various analysis and optimization
processes. Because the XDSM is designed to show such pro-
cesses, it could form the basis of a graphical user interface to
such software. The ability to generate the XDSM for a given
process could also facilitate debugging of the process by
comparison with reference diagrams. However, more work
is needed to expand the syntax to be able to show all of the
necessary functionality.

One property of the DSM that has not been studied in
detail in our work is the ability to nest diagrams. In a stan-
dard DSM, the components themselves may be systems of

smaller components, and these may be systems of even smaller

components, etc., forming a multilevel hierarchy. This is the
basis of the “system of systems” (Sobieszczanski-Sobieskil,
2008)) mode of thinking. While we have not specifically ac-
counted for this nesting in the XDSM, it is not difficult to

5,7
Metamodel i

1,4—2:
Optimization @

3:
Discipline @
Functions

- Tl 23
Analysis i

imagine the integration of lower-level XDSMs. For exam-
ple, many discipline analyses are themselves based on it-
erative procedures that can be modeled using an XDSM.
These XDSMs can then be integrated into multidisciplinary
analyses or optimizations using higher-level XDSMs. The
MDO architectures containing multiple levels could also be
displayed as multilevel XDSMs. However, we deliberately
chose not to show them this way to demonstrate that we
could capture the complete architecture in a single diagram.

Another aspect of our work that deserves more study
is the grouping of elements, such as the function evalua-
tions in the MDO architectures. We chose to display these
operations as single components to focus on the wider ar-
chitecture. However, breaking these components down to a
more fundamental level could yield deeper insights into the
calculations. For example, analysis of these calculations at
the most granular level could lead to reordering the function
evaluations to reduce the computational cost or developing
an adjoint operator for a complex disciplinary analysis mod-
ule. This type of application uses the underlying mathemat-
ical nature of the XDSM components.

Finally, by basing a visualization tool for MDO on a
DSM, we introduce the possibility of using existing DSM
analysis methods (Eppinger et all 1994 [Yassine and Braha,
2003) to study and improve the MDO architectures them-
selves. DSM partitioning methods, which reorder the tasks
within a DSM to shorten the design process (see|Gebala and!
Eppinger| (1991) and |Austin et al| (2000)), are of particular
interest. However, these partitioning methods would have to
be adapted to handle the iterative procedures already present
in MDO architectures in a way that does not prevent the
convergence of the architecture. In the proper context, we
believe that the XDSM could be used for many more inter-
esting applications.
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7 Conclusion

In this paper, we have developed a graphical representation
of MDO processes that we call the extended design structure
matrix, or XDSM. This diagram allows for the simultaneous
display of data dependency and process flow between com-
putational components. We have shown how these XDSMs
can be used to display several well-known architectures as
well as simple multidisciplinary analysis and optimization
processes. Subsequent work will show many more examples
of XDSMs applied to MDO architectures.

These diagrams show strong potential not only as a vi-
sual means of representing MDO processes, but also as a
graphical interface to MDO software and an analysis tool
for the processes themselves. Many questions remain as to
where and how to apply these diagrams most effectively.
While we developed these diagrams strictly for describing
MDO architectures, we also discussed other potential ap-
plications related to algorithm analysis to improve compu-
tational performance. We believe that there are numerous
other areas in which XDSMs may be applied, and the future
work includes finding new applications.
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