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An Evaluation of Constraint Aggregation Strategies for
Wing Box Mass Minimization

Andrew B. Lambe!, Graeme J. Kennedy?, Joaquim R. R. A. Martins®

Abstract Constraint aggregation makes it feasible to solve large-scale stress-constrained mass mini-
mization problems efficiently using gradient-based optimization where the gradients are computed using
adjoint methods. However, it is not always clear which constraint aggregation method is more effective, and
which values to use for the aggregation parameters. In this work, the accuracy and efficiency of several ag-
gregation methods are compared for an aircraft wing design problem. The effect of the type of aggregation
function, the number of constraints, and the value of the aggregation parameter are studied. Recommen-
dations are provided for selecting a constraint aggregation scheme that balances computational effort with
the accuracy of the computed optimal design. Using the recommended aggregation method and associated
parameters, a mass of within 0.5% of the true optimal design was obtained.

1 Introduction

We are interested in the problem of minimizing structural mass subject to constraints on structural failure. In
particular, we are interested in failure criteria based on yield stress and buckling under static loads. Checking
the failure criteria in the optimization problem is desirable from an engineering design perspective because
doing so allows us to immediately verify that the structure is suitable for the prescribed loading conditions.

The primary issue with including failure constraints directly in the structural optimization problem is the
resulting size of the optimization problem. Conceptually, for a continuum structure, failure constraints need
to be enforced throughout the material domain, leading to an infinite number of constraints. More practically,
failure constraints may be enforced element-wise in the finite element model. For detailed, high-fidelity
structural models, this can lead to an optimization problem with many thousands or millions of failure
constraints. These constraints are costly to enforce because they can only be checked by completing the
structural analysis. Specialized algorithm implementations are required to solve the optimization problem
efficiently (Duysinx and Bendsge, 1998).

The number of constraints in the optimization problem can be reduced through aggregation. The con-
straint aggregate then represents an effective failure criteria evaluated over a large part of the material do-
main. A natural choice for these constraint aggregates is a maximum- or minimum-value function. How-
ever, the maximum- and minimum-value functions are not differentiable and cannot be used efficiently in
conjunction with gradient-based design optimization. Instead, these functions are replaced by smooth es-
timators like the Kreisselmeier—Steinhauser (KS) function (Kreisselmeier and Steinhauser, 1979, 1983) or
the p-norm function (Duysinx and Sigmund, 1998; Qiu and Li, 2010). These estimators do not precisely
reproduce the true feasible design space provided by the original constraints, so the final design determined
by the optimizer will be different depending on the aggregation scheme.
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Because of the need to aggregate failure constraints, there exists a natural compromise between the qual-
ity of the optimal structural design, i.e., how close the computed design is to the “true” optimal solution that
could be computed by the model, and the computational effort to find it. This compromise has been observed
in the literature before, particularly in the field of topology optimization. Paris et al. (2009, 2010) compared
the use of local stress constraints with a global stress constraint (aggregation into one failure constraint)
and block aggregation of contiguous regions of the structure. Their results confirm our intuition about the
trade-off: local constraints produce the highest quality results, but block aggregation greatly reduces the
computational expense. However, their results only compare a single choice for the number of blocks, or
aggregation domains, with global aggregation and no aggregation. No information is given about how to
choose the number of aggregation domains.

Le et al. (2010) compared aggregation based on physical location in the design domain with aggrega-
tion based on the stress distribution. In the latter scheme, an interlacing approach was used in which the
elements were sorted based on the failure criteria and every m elements in order were allocated to m differ-
ent constraints. While this scheme gives better control over local constraint violation, (the highly stressed
elements are aggregated to many different constraints, reducing aggregation error,) it results in changes to
the optimization problem formulation every time the elements are sorted and reallocated. Consequently, this
changing problem statement may impede the convergence of the optimizer. Holmberg et al. (2013) study a
“stress level” aggregation scheme in which elements with similar stresses are grouped in the same failure
constraint. They also consider cases in which the elements are reallocated infrequently, rather than at each
iteration. However, only the effects on the final solution are examined in detail in this study.

What is missing from the previous research is a detailed study of the influence of the aggregation scheme
on computational effort. In this paper, we take aggregation scheme to mean both the number of constraints,
the choice of aggregation function, and the choice of parameters in the aggregation function. In all cases,
we take the aggregation domains to be fixed and based on physical location. While not as advanced as some
of the other methods mentioned above, this approach is easy to implement, requires no a priori knowledge
about the problem, and will not alter the problem formulation as the optimization algorithm progresses. We
aim to provide general recommendations for solving failure constrained mass minimization problems using
aggregation to balance low computational effort with accuracy of the optimal solution.

Another important contribution of this work is a comparative study of classical and induced aggregation
methods. Induced aggregation methods were recently introduced by Kennedy and Hicken (2015) with the
aim of providing greater accuracy in the optimal solution under aggregated constraints. This paper represents
the first detailed comparison of these two classes of aggregate.

Our application of interest is aircraft wing design. Our previous studies of both structural and mul-
tidisciplinary (aerostructural) wing design subject to failure constraints (Kenway et al., 2014b; Kennedy
and Martins, 2014b; Kenway and Martins, 2014; Kenway et al., 2014a) generally used a small number of
KS aggregation functions with a fixed choice of parameter. We have also experimented with specialized
optimizers which can accommodate a large number of design constraints (Lambe and Martins, 2015) and
optimizers that tightly integrate adaptive constraint aggregation (Kennedy, 2015). In this paper, we use a
wing design problem to examine the effects of varying the aggregation scheme. Our problem contains both
material yield constraints and buckling constraints.

The remainder of this paper is organized as follows. Section 2 reviews the major approaches to con-
straint aggregation in the literature. Section 3 lays out our wing design test problem and our analysis and
optimization software. Section 4 discusses the optimization results of the different aggregation schemes.
Section 5 makes recommendations for applying constraint aggregation to general mass minimization prob-
lems. Finally, Section 6 summarizes our work.



2 Review of Constraint Aggregation Techniques
In this paper, we are concerned with minimizing structural mass subject to a bound on a measure of the local
stress. We write the local stress or failure constraint as
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where & € Q is a point within the structural domain Q, ¥ are the design variables, and i are the structural
degrees of freedom. Common failure constraints include the von Mises yield criterion which can be written
as

g_6d7

where o, is the von Mises stress and oy is the design stress. Throughout the following, we omit the argu-
ments to the failure function g to simplify our notation.

As previously described, one method to impose the bound g < 1 everywhere within the structural domain
is to use the maximum-value function such that

maxg =maxg < 1. (D
EeQ
However, because the constraint (1) is not smooth, efficient gradient-based optimization algorithms cannot
be used to solve the resulting optimization problem. Instead, we use smooth constraint aggregation functions
¢ € RM to approximately impose maxg < 1 over M disjoint partitions of the structural domain Q, k =
1,...,M. These functions satisfy the limit property
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Increasing the parameter p simultaneously reduces the aggregation error while also making the optimization
problem more difficult to solve with a gradient-based optimizer due to the increased curvature in regions
where the maximum-value function is not differentiable. Therefore, we are interested in selecting functions
for which moderate values of p yield accurate constraint aggregates.

To review the different constraint aggregation approaches, we make reference to the following model
problem.

minimize m(X)

with respect to X, i

’ 3
such that ¢(g,p) <1 )
governed by K(R)i = f.
In this problem, m(X) represents the structural mass, and K (X)id = f represents the finite element governing

equations.

We solve the optimization problem (3) using two types of constraint aggregates: discrete and continuous.
Discrete aggregates operate on a finite set of stress constraints that are obtained by evaluating g at trial
points within the structural domain. Typically, these trial points correspond to the quadrature points in each
element. As a result of this construction, some discrete aggregates exhibit mesh-dependence (Kennedy and
Hicken, 2015). In contrast, continuous aggregation techniques seek an approximation of the maximum value
function using integrals over the domain. As a result, continuous aggregates have a well-defined limit for
increasing mesh size. However, for a fixed mesh the discrete and continuous aggregates share the same
limit as p increases if the quadrature scheme for the continuous aggregate shares the same trial points as the
discrete aggregate.



One elusive property of constraint aggregation methods is conservatism. An aggregate c is said to be
conservative if, given a threshold parameter value p*,

c(g,p) >maxg Vp>p*. 4)

In other words, the estimate of the maximum value produced by a conservative aggregate is necessarily
an overestimate. As a result, a conservative aggregate would guarantee g < 1 everywhere within the do-
main. Unfortunately, to our knowledge, a truly conservative aggregate does not exist for an arbitrary stress
distribution, g. While some discrete aggregates, such as the KS function and p-norm, are discretely con-
servative, they make no guarantees about the value of the stress constraint at points other than the trial
locations (Kennedy and Hicken, 2015).

2.1 Classical Constraint Aggregation

In this section, we review two classical approaches to constraint aggregation: Kreisselmeier—Steinhauser
(KS) aggregation (Kreisselmeier and Steinhauser, 1979, 1983; Akgiin et al., 2001) and p-norm aggrega-
tion (Duysinx and Sigmund, 1998; Qiu and Li, 2010). When applied to the continuous constraint g, these
aggregation approaches reduce to functionals over the domain Q. The KS functional is given by
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where ¢ > 0 is a normalization factor and k is an arbitrary constant. The factor « is typically chosen to
be either 1 or |QJ, but may be chosen arbitrarily provided it does not affect the asymptotic convergence of
the functional at large values of p (Kennedy and Hicken, 2015). The second form of the KS functional is
preferable when using finite-precision arithmetic since very large powers of e can be avoided with a suitable
choice of k. The p-norm functional is given by
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where & > 0 and k > 0 have the same meaning as in the KS functional. Again, the second form of the
functional is preferable when finite-precision arithmetic is used. Despite calling Equation (6) a p-norm
functional, we use p as the norm value for consistency in the presentation of the different methods.

The presence of the absolute value operator in the p-norm functional compromises its applicability as
an aggregator. If g can take both positive and negative values, then the functional is not differentiable in
regions where g transitions from positive to negative. For some failure criteria, such as the von Mises stress
criterion, this is not an issue because g is restricted to nonnegative real values. If the failure criterion has
a finite, negative lower bound, such as the Tsai—Wu failure criterion, the criterion should be remapped to
nonnegative real values to exploit p-norm aggregation. If g can take arbitrarily negative values, for instance
in buckling envelope calculations, remapping is not possible and the KS functional is recommended instead.

Both the KS and p-norm functionals have analogues for finite sets of constraints. Let us define a finite
set of constraints by selecting n, trial points in Q at which to check for failure. Let &;,i = 1,...,n, be the trial
point locations and g; = g(&;, %, 1) be the constraint values at the trial points. The KS function for this set of

(6)
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On the right side of both Equations (7) and (8), we have chosen the constant k to be the maximum value of
g obtained in the trial points.

2.2 Induced Constraint Aggregation

Recently, Kennedy and Hicken (2015) introduced a new class of aggregation methods known as induced
aggregation methods. Induced aggregates are designed to provide more accurate estimates of max g for a
given value of p than classical aggregates. We focus on two aggregation functionals within the class of
induced aggregates which are closely related to the KS and p-norm functionals. The induced exponential
functional is given by

P20
cie(g.p) = Joge"tdQ 9

JoersdQ
Kennedy and Hicken (2015) show how ¢;g can be obtained from cgg by taking a Richardson extrapolation
of cks to p — oo. The induced power functional is given by
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The induced power functional is only suited to strictly positive functions g (Kennedy and Hicken, 2015).
This is analogous to the p-norm functional requiring nonnegative g values to be effective.
The induced aggregation functionals also have discrete analogues for finite sets of constraints. The
induced exponential function is given by
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The induced power function is given by
cop(p) = S5 (12)
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Similar to ¢;p, cprp is only applicable if g; > 0 for i = 1,...,n,. One advantage these induced aggregation
functions possess over the classical aggregation functions is convergence to a single value for an arbitrary
number of sample points. This is evident from the fact that functions (11) and (12) are ratios of sums rather
than single sums.



Figure 1: Exploded view of wing structure. Skin thicknesses and stiffener properties are defined by design
variables on each colored patch. Groups of colored patches define the domains for constraint aggregation.

3 Test Problem

The test problem we will use to evaluate the different aggregation strategies is the structural optimization of
the Common Research Model (CRM) wing. Originally, the CRM wing was developed as a test case for ver-
ifying the performance of computational fluid dynamics codes (Vassberg et al., 2008). Later, Kenway et al.
(2014a) created a model structure for the wing as a test case for structural and aerostructural optimization
methods. The layout of this wing structure is presented in Figure 1. The size, geometry, and structure of the
wing are based on those of a Boeing 777 civil transport aircraft.

We briefly discuss the set of software tools used in our analysis. The coupled aerodynamic and structural
properties of the wing at various flight conditions are analyzed using the MACH framework (MDO of air-
craft configurations at high-fidelity) (Kenway and Martins, 2014). The aerodynamic analysis was carried out
using the SUMad CFD solver (van der Weide et al., 2006). SUMad is a multiblock, finite-volume solver for
the Reynolds Averaged Navier-Stokes equations. Turbulent flow is computed using a one-equation Spalart—
Allmaras model. Large deformations in the wing geometry were handled using a hybrid algebraic-linear
elastic mesh warping scheme (Kenway et al., 2010). Changes in the wing geometry itself were computed
using a free-form deformation volume approach (Kenway et al., 2010). The structural analysis was car-
ried out by the toolkit for the analysis of composite structures (TACS) (Kennedy and Martins, 2014a), a
finite element solver specializing in thin-shell aerospace structures. The coupled aerodynamic and structural
states were resolved using a nonlinear block Gauss—Seidel method with Aitken acceleration (Kenway et al.,
2014b). The optimizer used in the framework is SNOPT (Gill et al., 2002), which is accessed through the
pyOpt interface (Perez et al., 2012). This suite of tools may be used to carry out aerodynamic shape opti-
mization (Lyu et al., 2014) and aerostructural optimization (Kenway et al., 2014a) but this work will focus
only on structural optimization.

Our goal is to minimize the mass of the wing for a design aircraft subject to both yield stress and buckling
constraints. We consider three symmetric load cases: a 2.5 g pull-up maneuver at sea level and 0.64 Mach
number, a 1 g push-over maneuver at sea level and 0.64 Mach number, and a 1.95 g buffet load at 28 000 foot
altitude and 0.85 Mach number. In order to accurately determine the loads for each load case, we perform a
full aerostructural analysis to compute aerodynamic loads. The aircraft weight is assumed to be 297 550 kg
in each case, regardless of changes in the wing mass.
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Figure 2: Cross-section of a skin panel with the design parameters labelled. Only skin thickness #;, stiffener
height A, stiffener thickness #,,, and stiffener pitch b are independent variables in our problem.

The design variables of the problem are the thicknesses of the skin panels z;, the stiffener height 4, the
stiffener thickness t,,, and the distance between stiffeners b, known as the pitch. The colored patches shown
in Figure 1 represent stiffened skin panels over which individual design variables apply. Figure 2 shows
a cross-section of a typical skin panel and the definition of each variable. For simplicity, we let t, = t,,
and wp, = h in the stiffener model. In addition, a single variable defines the stiffener pitch on the entire
lower skin, the entire upper skin, and both wing spars. Linear adjacency constraints are introduced for the
thickness, stiffener thickness, and stiffener height variables to restrict the difference between the variable
values in adjacent skin panels. In our finite element model, instead of modeling the stiffeners directly, the
increase in stiffness resulting from the stiffeners is smeared over the whole panel. In total, the problem
contains 842 design variables and 660 linear constraints.

The failure criteria of the problem are aggregated over the four main wing components: lower skin,
upper skin, spars, and ribs. Each component has one yield stress failure criterion and one buckling failure
criterion per load case, for a total of 24 constraints. This number is reduced to 17 failure constraints by
ignoring buckling for the wing skin that is in tension in each load case and ignoring yield stress failure for
the 1.95 g buffet load case. The latter simplification is justified because those constraints are superseded
by the yield stress failure in the 2.5 g load case. The number of constraints is altered by subdividing each
component into more aggregation domains. We use between one and 40 domains per component, yielding
between 17 and 680 failure constraints in the optimization problem.

4 Aggregation Strategy Comparison

In Section 2, we defined eight different functions that could be used for aggregating failure constraints in a
structural optimization problem. In addition to selecting the aggregation function, the user must also select
the aggregation parameter p and the number of domains into which the structure is split. As stated in the
introduction, choosing larger parameter values and splitting the structure into more aggregation domains
leads to a more accurate optimal mass estimate, but increases the cost of the optimization. Our goal with the
remainder of this paper is to quantify the trade-off between accuracy and computational cost as we vary the
aggregation scheme.

As stated in the Section 1, each aggregation scheme comprises a choice of aggregation function, a
choice of aggregation parameter p, and a choice of how many domains into which each wing component
is divided. Each component may be divided into one, two, five, ten, 20, or 40 smaller domains. For each
choice of domains, we choose from among 13 possible values of aggregation parameter between 20 and 500
and one of the eight aggregation functions described earlier. This yields a total of 624 possible aggregation
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Figure 3: Optimal mass spread using discrete KS aggregation. Increasing p and the number of constraints
lead to more accurate optimal mass estimates.

schemes.

In each of the following sets of results, we set the optimality and feasibility parameters of SNOPT to
107> and use the “nonderivative linesearch” option. We set the maximum number of major and minor
iterations so that they do not cause premature termination of the optimization solver. Otherwise, we use the
default optimizer settings.

4.1 Discrete KS Aggregation
Our first set of results was generated using the discrete KS function (DKS) given in Equation (7). Figure 3
shows the optimal mass of the CRM structure for a range of different aggregation parameter values and
failure constraints. Figure 4 shows the same data, but focuses on the cases with a larger aggregation pa-
rameter. We plot our mass results in terms of the inverse of the aggregation parameter, 1/p, to better show
the convergence on a single “true” optimal mass value. (Recall that pushing p — o or 1/p — 0 results in
a feasible domain that approaches that produced by using the maximum-value aggregation (1).) Using this
knowledge and Figure 4, we can estimate the true optimal mass of the structure to be around 14 220 kg.
Figures 3 and 4 clearly show the trade-off between the selection of the aggregation scheme and the
accuracy of the optimum mass estimate. As expected, using more constraints (more aggregation domains)
and a higher p value yields a more accurate optimal mass estimate. In the worst case of one aggregation
domain per component, the optimum mass is overestimated by about 1890 kg (13.3% of the optimal mass)
for p = 20, 240kg (1.68%) for p = 100, and 40 kg (0.28%) for p = 500. In the best case of 40 domains
per component, the optimum mass is still overestimated by 890kg (6.3%) for p = 20, 120kg (0.84%) for
p = 100, and 20kg (0.14%) for p = 500. Increasing p further for this problem would lead to an even
narrower range of mass values but this level of accuracy may be unnecessary if other sources of error
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Figure 4: Optimal mass spread using discrete KS aggregation and high p values. The optimal mass at p = oo
appears to be 14 220 kg regardless of the number of constraints used.

overwhelmed the error due to constraint aggregation.

Figures 3 and 4 show that increasing the number of constraints leads to a more accurate estimate of the
optimum mass. However, the relative increase in accuracy diminishes with every increase in the number
of constraints. Figure 4 shows that using ten aggregation domains per component (170 failure constraints)
reduces the optimum mass by 75% of the difference between one and 40 aggregation domains across all
values of p > 100. In other words, we realize three-quarters of the accuracy improvement using one-
quarter the number of constraints. If we are prepared to use half the maximum number of constraints, (340
constraints or 20 domains per component,) we realize 90% of the benefit. Therefore, if p is large enough,
the number of constraints need not be excessive to yield accurate estimates of optimum mass.

An issue that arises with increasing the number of constraints is the computational cost of the optimiza-
tion. In particular, the cost of computing gradients at each iteration using the adjoint method scales with
the number of constraints. Figure 5 shows the wall time of the optimization for each case presented in
Figure 3. As we expect, larger values of p lead to longer run times because of the increased curvature of
the aggregated constraints and the resulting ill-conditioning in the optimization problem. For p > 200, run
time begins to rise rapidly. However, Figure 5 also suggests that when the number of constraints is not too
large (less than ten aggregation domains per component in our problem) the run time is insensitive to the
number of constraints. The increased cost of evaluating more constraint gradients at each iteration is offset
by a reduction in the number of iterations needed to solve the optimization problem.

The analysis of the solution data to this point suggests that there is a “sweet spot” or ideal trade-off
between accuracy and computational effort. Figure 6 provides a visualization of that trade-off. It shows the
same run time information as Figure 5, but plotted against the optimal mass instead of p. Treating Figure 6
as a solution plot for a multiobjective problem, we see that the ideal trade-off occurs using p ~ 200 and five
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Figure 5: Run time to determine the optimal mass using discrete KS aggregation. For less than ten aggrega-
tion domains per component, the run time is not sensitive to the number of constraints.

to ten aggregation domains. If we are especially concerned about run time, we may choose a slightly lower
value of p.

4.2 Continuous KS Aggregation
We now compare the choice of aggregation function in addition to the choice of parameter and number
of failure constraints. Our first comparison is between Equations (7) and (5), the discrete and continuous
variants of KS aggregation. For clarity of presentation, we will only focus on the data for one, ten, and 40
aggregation domains per component. We have found that, when comparing the optimal mass of each case,
the lines showing one and 40 domains always provide the upper and lower bounds of the solution. The lines
for intermediate numbers of domains always appear arranged in their natural order between the lines for one
and 40 domains. The ten-domain line represents our best estimate of the ideal trade-off between accuracy
and computational cost.

Figure 7 compares the optimal mass values obtained from the continuous form (denoted KS) and dis-
crete form (DKS) of KS aggregation. Using KS, the optimal mass is generally underestimated rather than
overestimated. These contrasting behaviors in the limit of p can be explained by deriving the DKS aggregate
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aggregation domains.
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In our tests, we have taken & = 1, so cpgs will always be larger than cks regardless of the choice of p and
the number of domains. This leads to the counterintuitive result that a smaller number of failure constraints
produces a more accurate estimate of the true optimal mass.

Figure 7 also confirms the result of Figure 3 that only a fraction of the maximum number of failure
constraints are needed to estimate the optimum mass resulting from using the maximum number of failure
constraints. Overall, Figure 7 shows that the optimal mass values computed using KS aggregation are more
accurate than those using DKS aggregation. In the worst case of 40 aggregation domains, the optimal mass is
underestimated by 670 kg (4.7%) for p = 20, 200 kg (1.4%) for p = 100, and 40 kg (0.28%) for p = 500. In
the case of one aggregation domain, the optimum mass is underestimated by —30 kg (—0.21%) for p = 20,
90kg (0.63%) for p = 100, and 20 kg (0.14%) for p = 500.

The nonmonotone behavior of the optimal mass for one domain in Figure 7 raises the question of how
the optimal design itself evolves as p increases. Figures 8 and 9 plot the differences with the p = 500 case

12
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Figure 8: Difference in optimal panel stiffener height between p = 500 and p = 20 (top) and between
p =500 and p = 100 (bottom) using KS aggregation over one domain per component. The stiffeners are

taller for a smaller value of p.
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Figure 9: Difference in optimal panel stiffener thickness between p = 500 and p = 20 (top) and between
p =500 and p = 100 (bottom) using KS aggregation over one domain per component. The stiffeners are
thinner for a smaller value of p. Coupling this result with Figure 8, a small p value causes the stiffeners to
be tall and thin while a larger p value causes the stiffeners to be shorter and thicker.



for two sets of design variables: the stiffener height and the stiffener thickness. As we might expect, the
differences between the p = 500 case and p = 100 case are smaller than those between the p = 500 and
p = 20 case. However, while the optimum stiffener thickness increases with increasing p over much of the
wing—indicated by the positive difference value in Figure 9—the optimum stiffener height decreases with
increasing p. These two trends have competing influences on the optimal mass; the higher thickness in-
creases optimal mass while the lower height decreases optimal mass. Therefore, the nonmonotone behavior
can be explained by a rapid decrease in stiffener height as p increases for a small number of aggregation
domains. When more domains are used, as shown in Figure 10, the difference in optimal height is lower and
the difference in optimal thickness is greater, mitigating the nonmonotone change in optimal mass with p.

The run time for obtaining the optimal masses using the KS aggregation is plotted in Figure 11. These
run times can be directly compared with those obtained using DKS aggregation. Clearly, the run times
obtained using both types of aggregation functions are similar regardless of the number of failure constraints.
In terms of the cost-accuracy trade-off, the results in Figures 7 and 11 argue in favor of using KS aggregation
in place of DKS aggregation because a more accurate solution can be obtained in a similar computational
time.

4.3 p-norm Aggregation

As mentioned in Section 2, both the discrete form (8) and the continuous form (6) of p-norm aggregation
are only appropriate for failure functions that evaluate to nonnegative values. The buckling constraints in
this problem do not fit that criterion. Tensile loads cause the buckling criterion to become negative and
the absolute value of that negative number can cause a large overestimation of the buckling criterion in the
aggregate. Nevertheless, we attempted to use these aggregation schemes in the optimization problems to
see how much progress SNOPT could make from the starting point. In every case, SNOPT terminated after
only a few minor iterations with the error that it could not satisfy the nonlinear constraints. We interpret this
to mean that the negative values in the buckling criterion caused so much overestimation of the aggregated
buckling failure that the problem became infeasible. We do not consider the discrete or continuous p-norm
aggregation strategies further in this study.

4.4 Induced Exponential Aggregation

We now directly compare KS aggregation with its induced counterpart, induced exponential aggregation.
Figure 12 compares the optimal masses obtained using the continuous form of induced exponential aggre-
gation (IE) (9) with those obtained using KS aggregation. Like KS aggregation, we observe that, counter-
intuitively, using more IE-aggregated failure constraints reduces the accuracy of the optimal mass estimate.
In addition, using more constraints has the advantage of producing a more predictable progression of the
optimal mass as p increases. The most interesting feature of Figure 12 is that each optimal mass curve for
IE aggregation resembles a reflected version of the corresponding KS aggregation curve. IE aggregation
overestimates the optimal mass where KS aggregation underestimates it, and vice-versa.

The main advantage of IE aggregation in place of KS aggregation is the rapid decrease in the spread
of optimal mass values with increasing p. Figure 13 shows the same data as Figure 12, but focuses on the
results for the largest values of p. The optimal mass spread—the difference between the optimal masses
of the one domain and 40 domain tests—for p = 100 is about 30 kg or 0.21% of the optimal mass. For
p = 500, the spread is about 5kg or 0.035% of the optimal wing mass. By comparison, the same spread
values using KS aggregation are 110kg (0.77%) and 20kg (0.14%) respectively. By using IE aggregation
in place of KS, the spread has been reduced by 70-75% for large values of p. Using IE aggregation with
one domain per component, the most accurate in terms of optimal mass, the mass is overestimated by 40 kg
(0.28%) for p = 100 and 10kg (0.070%) for p = 500. Adding the spread in the optimal mass to the error
in the best case, we see that for p > 100 and any number of failure constraints, the maximum error in the
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Figure 10: Difference in optimal panel stiffener height (top) and thickness (bottom) between p = 500 and
p = 20 using KS aggregation and 40 domains per component. The difference in optimal height is smaller,
compared to Figure 8, and the difference in optimal thickness is larger, compared to Figure 9, mitigating the
nonmonotone behaviour of the optimal mass with changing p.
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Figure 11: Run time comparison between KS and DKS aggregation schemes. Both strategies yield similar
run times for the same parameter values and number of domains.

optimal mass is about 1.4% using KS aggregation but only 0.5% using IE aggregation. Therefore, using IE
aggregation in place of KS aggregation reduces the error in the optimal mass estimate by more than 60%.

There is a computational price to be paid for this level of accuracy. Figure 14 plots the run time required
to solve the optimization problems for each case displayed in Figures 12 and 13. Regardless of the choice of
p and the number of constraints used, the problems that used IE aggregation required much more computa-
tional effort. Both aggregation methods used the same quadrature scheme to evaluate the failure constraints,
so this increase in effort must be caused by the difficulty of solving the optimization problem, i.e., the num-
ber of major iterations taken by SNOPT. This result suggests that robust optimization algorithms are needed
in order to use IE aggregation reliably.

Figures 15 and 16 compare the optimal masses obtained between the continuous and discrete (DIE) (11)
forms of induced exponential aggregation. For small values of p and a small number of aggregation domains,
there is a significant difference between the optimal mass values. Furthermore, the spread in optimal mass
is much higher using DIE aggregation than using IE aggregation. However, as both p and the number of
aggregation domains increases, the difference in optimal mass decreases rapidly. For p > 100, both the
continuous and discrete forms yield nearly identical results.

Figure 17 compares the run times of IE and DIE. While there is significant noise in the data, (most likely
due to variations in the optimal search path,) neither aggregation method reliably computes the optimal
solution in less time than the other. Our recommendation, therefore, is to use the continuous form of IE
aggregation over the discrete form because of the smaller spread in the optimal mass value discussed above.

4.5 Induced Power Aggregation
In principle, the continuous (IP) (10) and discrete (DIP) (12) forms of induced power aggregation should
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Figure 12: Optimal mass comparison of KS and IE aggregation. Using IE aggregation results in a more
accurate estimate of the optimal mass regardless of the number of constraints and the choice of p.

suffer from the same deficiency as p-norm aggregation. That is, they cannot be used for failure criteria that
evaluate to negative values. In practice, however, SNOPT had no difficulty satisfying the induced power
constraints. We were able to obtain converged results for all selected values of p and all choices of the
number of aggregation domains. This result is due to the absence of the absolute value operator in the IP
and DIP aggregates. Using the p-norm aggregates, the absolute value operator caused large tensile loads to
infect the aggregated buckling failure criteria and the optimization problem became infeasible. In IP and
DIP aggregation, the negative values are preserved in the aggregate because either p or p + 1 leads to an
odd power for a positive integer p. Therefore, for integer values of p, using IP and DIP does not destroy the
feasibility of the optimization problem.

Figure 18 compares the optimal masses obtained using IE and IP aggregation. While the optimization
processes converge successfully using IP aggregation, the optimal mass does not converge to the same value
when a smaller number of aggregation domains are used. If more domains are used and p is sufficiently
large, IP aggregation produces optimal masses that are virtually identical to those produced using IE aggre-
gation. If the failure criteria for the problem always returned nonnegative values, we conjecture that both
aggregation methods would produce the same result.

Figure 19 shows the major difference between the optimal designs computed with IE and IP aggregation
for one domain per wing component. The figure shows the difference in stiffener pitch (the spacing between
stiffeners) between the two optimal solutions for the largest p value. Using IP aggregation, the optimal
design has the stiffeners placed farther apart on the ribs and therefore reduces their number and the mass of
the whole wing box as a result. Figure 20 shows the impact this change has on the buckling criterion for the
2.5 g load case. Even though both designs are feasible with respect to their respective constraints, the design
from IP aggregation shows higher buckling loads, both positive and negative, on its ribs.
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Figure 13: Optimal mass comparison of KS and IE aggregation emphasizing high p values. The spread
in optimal mass values using IE aggregation with different numbers of constraints rapidly decays with

increasing p.
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Figure 14: Run time comparison of KS and IE aggregation. Optimizing with IE aggregation is more com-
putationally expensive across all values of p and any number of constraints.

The presence of both positive and negative values of the buckling criterion on the wing ribs in Figure 20
explains why IE and IP aggregation yield optimal designs that differ only on the wing ribs. On both skins and
the wing spars, the stresses are either all tensile or all compressive so the aggregation of these stresses will
necessarily be tensile or compressive. On the ribs, however, there is a mixture of tensile and compressive
stresses. Integrating the failure criterion over the domain causes these stresses to cancel each other out in
the aggregate. This effect can result in a local violation of the buckling constraint that is not picked up by
the aggregate, regardless of the quadrature scheme used to evaluate the integral. Figure 21 clearly shows
this local violation of the buckling constraints. Note that this cancellation phenomenon cannot occur in
IE aggregation because the exponential term prevents it. As the number of aggregation domains increases,
there is less opportunity for mixed loading to occur in a given aggregation domain, and the optimal designs
from IP and IE aggregation move into agreement. While this analysis demonstrates that IP aggregation is
more robust than p-norm aggregation, in that it is less likely to lead to an infeasible problem, it is still not
as robust as IE aggregation in its handling of negative values of failure criteria.

Figure 22 compares the run times for IE and IP aggregation. Generally, the run times using the two
different aggregation strategies are similar. The main exception is the case of one aggregation domain and
large values of p. However, we attribute this behavior to the difficulty of handling the mixed loading in the
ribs using IP aggregation. Using more domains mitigates these ill effects and produces run times similar to
those found with IE aggregation.

As with IE and DIE aggregation, the differences in the results observed between IP and DIP aggregation
are minute when large values of p and many aggregation domains are used. Figure 23 compares the optimal
mass values while Figure 24 compares run time. Because the error in the optimal mass is smaller for the
same computational effort, we recommend using IP aggregation in place of DIP aggregation in general, if
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Figure 15: Optimal mass comparison between IE and DIE aggregation. The discrete and continuous forms
of IE aggregation produce similar optimal masses for large values of p.

the problem allows. However, the similarity in the solutions between IE and IP aggregation suggests that IE
is the preferred aggregation method in terms of optimal solution accuracy.

4.6 Mesh Refinement Study

Another important factor in estimating the optimal mass in structural design is the finite element mesh itself.
For consistency in the results, the aggregation function should converge to a single value as the element size
is reduced to zero for a fixed design. Of the functions tested in this study, only the discrete KS and p-norm
aggregation methods do not have this property, due to their sensitivity to the number of trial points (Kennedy
and Hicken, 2015). As the element size decreases, changes in the stress field may lead to different optimal
designs. In the next series of tests, we aim to study the mesh dependence of the optimal solution.

In the mesh refinement tests, we use IE aggregation with p = 100 and ten domains per component.
We optimize the wing design using both second-order and third-order plate elements. From our baseline
mesh, we size the average element so that each refinement contains about 10 000 more elements than the
next-coarsest mesh. We created five different meshes of between 10 000 and 50 000 elements and optimized
the wing design on all of them. Note that these changes to the mesh do not change either the number of
variables or the number of constraints in the optimization problem.

Figure 25 plots the optimal mass results for our mesh refinement study. While both the second-order
and third-order meshes do converge on similar optimal mass values, using a second-order mesh with this
aggregation strategy appears to yield a more accurate estimate of the true optimal mass for a coarse mesh.
This result may be analogous to the result, seen in Figure 12, that using fewer domains with IE aggregation
yields a more accurate estimate of the optimum mass. In comparison with the mass errors due to the
aggregation scheme, the mass error due to using a coarse mesh is much higher. The data in Figure 25 do not
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Figure 16: Optimal mass comparison between IE and DIE aggregation focusing on large values of p. For
p > 100, the two aggregation functions produce virtually identical results.

point to a clear estimate of the true optimal mass, but the optimal mass computed by the second order mesh
falls in a 600-kg range of values. The optimal mass computed by the third order mesh falls in a 1400-kg range
of values. By comparison, the range of mass values displayed in Figure 12 for every IE aggregation scheme
is less than 500 kg. If we only consider p > 100, the range of mass values is less than 100 kg. These results
all suggest that the choice of mesh can be even more important than the choice of constraint aggregation
method for obtaining an accurate optimal mass estimate in stress-constrained structural optimization.

5 Discussion and Recommendations
Our study is fundamentally limited to one large structural optimization problem. Because of the smeared
stiffness model employed in the structural analysis, multiple variables on each panel could be used to in-
crease the apparent stiffness of that panel. We found that this resulted in multiple local minima on this
optimization problem when only yield stress failure was constrained. Therefore, we are not able to com-
pare the KS and p-norm aggregation directly or to compare p-norm with IP aggregation directly. We could
mix the aggregation types in a single problem, such as using KS functions for the buckling failure and p-
norm functions for the yield stress failure, but have not done so to better study the aggregation methods
themselves.

With the above limitation in mind, we present some general recommendations for employing constraint
aggregation based on our results.

Continuous vs. discrete aggregation While some discrete aggregation methods are conservative with re-
spect to failure at prescribed points in the domain, they also exhibit mesh-dependence and produce
less accurate estimates of the true optimum mass compared to their continuous analogues. These
properties are especially evident when a small value of p is chosen. Because conservatism is so dif-
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Figure 17: Run time comparison of IE and DIE aggregation. Neither aggregation scheme has a clear advan-
tage in terms of computational effort.

ficult to enforce on a domain of finite size, and because they showed better performance in our tests,
we recommend employing the continuous form of the aggregation in general problems.

Classical vs. induced aggregation In terms of computational cost, regardless of the number of constraints
in the problem, induced aggregation methods require longer run times than the corresponding clas-
sical aggregation methods. In terms of both solution accuracy and the range of applicable problems,
the induced aggregation methods are clearly superior. Therefore, we recommend their use if high
accuracy in the optimal design is required.

Number of aggregation domains Using more aggregation domains generally leads to an optimization prob-
lem that can be solved in fewer iterations, reducing computational effort. However, increasing the
number of constraints increases the number of gradients to be computed at each iteration, increasing
computational effort. As noted in the literature (Paris et al., 2010; Le et al., 2010), using a modest
number of aggregation domains instead of a large number can greatly reduce computational cost while
providing an accurate optimal design. Our study reconfirms this practice. However, in our test prob-
lem, we found that the two competing factors driving computational cost were well-balanced. For a
specific choice of aggregation function and parameter, using up to ten aggregation domains per com-
ponent — 40 domains in total, or 170 constraints over three load cases — did not substantially change
the run time from using one domain per component. In other words, we found no computational
drawback to increasing the number of constraints up to a threshold of 40 aggregation domains. We
emphasize that this result strongly depends on the software employed. The TACS software (Kennedy
and Martins, 2014a) can efficiently evaluate many gradients using a combination of the adjoint method
and a direct solver for the linear system. Using less-efficient techniques to evaluate the gradients, such
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Figure 18: Optimal mass comparison between IE and IP aggregation. Both aggregation methods produce
similar results if many constraints are present.

Param =500, 1 agg. domain,
(IE agg.) - (IP agg.) v

W

Figure 19: Difference in stiffener pitch between the optimal designs obtained using IE and IP aggregation

with p = 500 and one aggregation domain per component. Optimization with IP aggregation produces
higher pitch values on most of the ribs.
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Figure 20: Comparison of buckling criterion values between optimal designs obtained using IE and IP
aggregation with p = 500 and one aggregation domain per component. The ribs are the only part of the
wing structure where we observe a mixture of tensile and compressive loads.
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Figure 21: Same data as Figure 20, but focused on the ribs. The high positive values of the buckling criterion
observed on some ribs of the IP optimum are infeasible with respect to the IE constraints. In the aggregation,
however, they are offset by the high negative values observed on ribs near the wing root.
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Figure 22: Run time comparison between IE and IP aggregation. Except for cases where IP aggregation
fails to find the correct optimum, both aggregation strategies require similar computational time.

as finite differences, would favour using fewer aggregation domains to mitigate cost.

Selection of aggregation parameter The aggregation parameter must be selected to balance the accuracy
of the feasible domain with the ill-conditioning produced by the precise estimate of sharp corners in
the domain. Several references in the literature (Wrenn, 1989; Raspanti et al., 2000; Akgiin et al.,
2001; Poon and Martins, 2007) suggest a value of p = 50 to balance these considerations. However,
our results using SNOPT indicate that the computational time does not rapidly increase with increas-
ing p until values greater than 100 are used. Therefore, if a robust optimization algorithm is used, we
recommend using p = 100 or even larger values in general problems.

6 Conclusions

In this work, we applied a range of aggregation strategies to a structural mass minimization problem subject
to failure constraints. Our problem considered the design of a wing box under three load conditions for
which both yield and buckling failure constraints are enforced. We provided empirical data to quantify
the trade-off between the accuracy of the solution obtained using aggregated failure constraints and the
computational cost of obtaining the optimal solution.

We found that using up to 40 domains over which to aggregate failure criteria on our test structure did
not substantially impact wall time to obtain the optimal solution with efficient adjoint sensitivity calcula-
tions. To increase the accuracy of the optimal mass estimate, we recommend using the induced exponential
aggregation strategy in place of the KS or p-norm strategies now commonly in use. We also recommend
setting the aggregation parameter p to 100 to balance accuracy of the optimal solution and ill-conditioning
of the optimization problem. Taken together, these recommendations yielded an optimal structural design
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Figure 23: Optimal mass comparison between IP and DIP aggregation. As with IE and DIE, differences
between the optimal mass values disappear either by using more constraints or by using a larger value of p.

that had a mass of within 0.5% of the true optimal design. We found that this error was well below the error
introduced by using a coarse or low-order finite element mesh. The influence of the mesh on the optimal
design was not considered in depth and remains open to investigation.
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