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Abstract The purpose of this paper is to apply stress

constraints to structural topology optimization prob-

lems with design-dependent loading. A comparison of

mass-constrained compliance minimization solutions and

stress-constrained mass minimization solutions is also

provided. Although design-dependent loading has been

the subject of previous research, only compliance mini-

mization has been studied. Stress-constrained mass min-

imization problems are solved in this paper, and the re-

sults are compared with those of compliance minimiza-

tion problems for the same geometries and loading. A

stress-relaxation technique is used to avoid the singu-

larity in the stress constraints, and these constraints are

aggregated in blocks to reduce the total number of con-

straints in the optimization problem. The results show

that these design-dependent loading problems may con-
verge to a local minimum when the stress constraints

are enforced. The use of a continuation method where

the stress-constraint aggregation parameter is gradually

increased typically leads to better convergence; how-

ever, this may not always be possible. The results also

show that the topologies of compliance-minimization

and stress-constrained solutions are usually vastly dif-

ferent, and the sizing optimization of a compliance so-

lution may not lead to an optimum.
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1 Introduction

Ever since topology optimization was introduced by

Bendsøe and Kikuchi (1988), it has usually been used

to determine the stiffest structure by minimizing the

compliance. However, this is not the objective for most

practical structural design problems. A more realistic

objective would be to minimize the mass, while satisfy-

ing the stress constraints.

Enforcing stress constraints in topology optimiza-

tion presents some challenges. Topology optimization

problems typically have a large number of elements, so

satisfying the stress constraints at multiple points in

each element would result in a large-scale optimization

problem. Furthermore, convergence problems have been

observed in areas of low density, due to the stress sin-
gularity, in which the stress is undefined as the density

approaches zero.

This singularity phenomenon was first observed by

Sved and Ginos (1968) and Kirsch (1990) in the op-

timization of truss topology designs subject to stress

constraints. They observed that the optimal topology

can be obtained only by removing one of the trusses

completely, thus violating the stress constraint for that

truss. The singularity results from the appearance of

degenerate regions. These are caused by the discontin-

uous nature of the stress constraint when the cross-

section area is zero, which is often where the global

optimum lies. Optimizers are unable to identify these

degenerate regions and thus converge to a local opti-

mum instead. These regions can be eliminated by re-

laxing the stress constraints. The ε-relaxation approach

proposed by Cheng and Guo (1997) allows for higher

stresses in areas of low density. However, this approach

is not unique, and many other authors have adopted

variations of stress relaxation (Bruggi and Venini 2008,
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Duysinx and Sigmund 1998, Paŕıs et al 2009, Pereira

et al 2004).

One of the simplest ways to apply stress constraints

in a structural topology optimization problem is to limit

the stress at given points in the elements; this is known

as the local constraint approach. Some authors have

used this method, for example Duysinx and Bendsøe

(1998) and Pereira et al (2004), with the former choos-

ing to reduce the computational cost by calculating the

sensitivity of the active constraints only. Another ap-

proach is to transform these constraints into a single

global constraint, using some aggregating function such

as the p-norm or the Kreisselmeier–Steinhauser (KS)

function; see Duysinx and Sigmund (1998), Guilherme

and Fonseca (2007), and Yang and Chen (1996). How-

ever, this leads to weaker control of the local stresses. A

third approach is to group the elements into blocks and

use a single aggregated constraint per block (Paŕıs et al

2010); this is known as the block aggregated constraint

approach. This reduces the number of constraints dra-

matically compared to the local-constraint approach

while retaining control of the stress behaviour.

This paper investigates the effect of enforcing stress

constraints in design-dependent loading problems, where

the structural loading changes in magnitude, direction,

and location as the design changes. The most com-

mon design-dependent loads are self-weight and pres-

sure, and these loads have been previously considered in

compliance minimization problems. Bruyneel and Duys-

inx (2005) noted a few difficulties that arise with self-

weight, specifically the nonmonotonous behaviour of

the compliance function and the appearance of low-

density artifacts. Ansola et al (2006) applied self-weight

to a few structures and solved the problem using evo-

lutionary structural optimization.

In pressure loading, the most difficult task is to iden-

tify the material boundary location on which the pres-

sure acts. Many different methods have been proposed,

including simulating the pressure loading with a ficti-

tious thermal loading (Chen and Kikuchi 2001) and ap-

plying a fictitious electric field (Zheng et al 2009). Some

authors use a multiphase approach to identify the ma-

terial, void, and fluid regions (Bourdin and Chambolle

2003, Bruggi and Cinquini 2009, Sigmund and Clausen

2007). Other authors identify the material boundary di-

rectly, either by connecting points of equal density (Du

and Olhoff 2004, Zhang et al 2008) or with the use of

splines (Fuchs and Shemesh 2004, Hammer and Olhoff

2000); the load can then be directly applied to the finite

elements.

Although stress-constrained topology optimization

has been investigated in previous work (Le et al 2010,

Pereira et al 2004, Sigmund and Clausen 2007), the

problems considered involve predefined fixed loads. Like-

wise, some research has been done on topology opti-

mization under design-dependent loading. However, the

objective has always been to obtain the stiffest struc-

ture by minimizing the compliance.

The goal of this paper is to determine the effect

of enforcing stress constraints in structural topology

optimization problems with design-dependent loads. A

comparison with the compliance minimization results

is also provided. The solid isotropic material with pe-

nalization (SIMP) approach (Bendsøe 1989, Zhou and

Rozvany 1991) is used along with the block aggrega-

tion technique. For pressure loading, an approach to

connecting the points of equal pressure is proposed.

The differences between the results from compliance

minimization and stress-constrained problems are ex-

plained, and the relative merits of these two approaches

are discussed.

This paper is organized as follows. Section 2 gives

an overview of the SIMP formulation that is used to

solve the topology optimization problem. The problem

statements for mass-constrained compliance minimiza-

tion and stress-constrained mass minimization are pre-

sented in Section 3 and Section 4, respectively. The

methods for applying self-weight and pressure loads

are described in Section 5. The numerical examples are

given in Section 6, where the differences between com-

pliance minimization solutions and stress-constrained

solutions are analyzed. Section 7 provides concluding

remarks.

2 Problem Formulation

The goal of topology optimization is to distribute ma-

terial within a certain region in the most favourable

way, for a given objective function, while satisfying a set

of constraints. The results show the locations in space

where there should be material and the locations that

should be void. With the design domain Ω discretized

by N finite elements, each element can be assigned a

design variable ρe ∈ (0, 1] to represent its relative den-

sity, with e = 1, . . . , N . These design variables can be

combined into a vector ρ ∈ RN . The assembled global

stiffness matrix K(ρe) ∈ Rd×d depends on the design

variables, where d is the number of degrees of freedom.

With the external load given by the vector f ∈ Rd, the

displacement vector u ∈ Rd can be determined by the

governing equilibrium equations

K(ρe)u = f . (1)

Assuming linear elasticity, the strain and stress ten-

sors can be related to the displacement vector through
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the kinematic and constitutive equations as

εij =
1

2
(ui,j + uj,i), (2)

σij = Dijklεkl, (3)

where D is the constitutive matrix and depends on the

material’s Poisson’s ratio µ and Young’s modulus E0.

The density design variable should attain one of the

limiting values, such that the discretized domain re-

sults in a black-and-white solution, giving a rough de-

scription of the continuum structure boundaries. Many

methods, including the solid isotropic material with pe-

nalization (SIMP) approach (Bendsøe 1989, Zhou and

Rozvany 1991), penalize the intermediate densities by

expressing the material properties Ee in each element

as

Ee = ρpeE0, (4)

where E0 is the Young’s modulus of the solid mate-

rial, and p is the penalization power. For a penalization

power greater than 1, the intermediate values of the

densities are penalized, since the material gives little

stiffness when 0 < ρ < 1, while the cost in volume de-

creases only linearly with ρ (Bendsøe 1989, Eschenauer

and Olhoff 2001). The result is a 0-1 solution.

By using a penalized Young’s modulus, the assem-

bled stiffness matrix has an explicit dependence on each

density design variables, with

K(ρ) =

N∑
e=1

ρpek0, (5)

where k0 is the element stiffness matrix that uses the

solid material’s Young’s modulus E0.

3 Mass-Constrained Compliance Minimization

The most common formulation for topology optimiza-

tion is to find the stiffest structure by minimizing the

compliance subject to a given amount of material. This

is equivalent to minimizing the energy of deformation

at the equilibrium state of the structure. This problem

can be stated as

minimize C(u) = uTKu

w.r.t. ρe

such that Ku = f

m(ρ) =

N∑
e=1

ρe ≤ m0

0 < ρmin ≤ ρe ≤ 1,

where u and K are the global displacement vector and

stiffness matrix respectively, m0 is the maximum mass

constraint, and ρmin is the minimum relative density

(typically set to O(10−3)). The minimum density is

nonzero to avoid singularities in the stiffness matrix,

and a value of ρe = ρmin effectively represents a void

element (Bendsøe and Sigmund 2003, Sigmund 2001).

4 Stress-Constrained Mass Minimization

Despite the well-developed mathematical background

of a compliance minimization topology optimization prob-

lem, the problem statements are usually not represen-

tative of the practical requirements. A more intuitive

problem would be to determine the lightest structure

that does not fail. One of the simplest failure criteria is

that the stresses do not exceed the yield stress of the

material. With the stress tensor formalized using the

constitutive relationship (3), the material failure func-

tion F (σ) can be defined as a function of the stress

tensor. Thus, the optimization problem can be written

minimize m(ρ) =

N∑
e=1

ρe

w.r.t. ρe

such that Ku = f
F (σe)

σy
≤ 1

0 < ρmin ≤ ρe ≤ 1,

where σy is the material yield strength, and failure oc-

curs when F (σ) > σy. For isotropic materials, the von

Mises failure criterion is the most widely used failure

function; it is given by

σ2
vm =

1

2

[
(σ11 − σ22)

2
+ (σ22 − σ33)

2
+ (σ33 − σ11)

2
]

+ 3
(
σ2

12 + σ2
23 + σ2

31

)
.

(6)

However, it has been recognized that topology opti-

mization with stress constraints may encounter singu-

larities; see Sved and Ginos (1968) and Kirsch (1990).

In both cases, a three-bar truss problem was analyzed,

and it was pointed out that a global optimum can be ob-

tained only if one of the trusses is removed completely,

which would in effect violate that member’s stress con-

straint. This phenomenon is caused by the discontinu-

ous nature of the stress function: as ρ → 0, the stress

approaches infinity, and when ρ = 0, the stress is un-

defined. As the truss area approaches zero, the stress

approaches a large value and the constraint may be vi-

olated. However, this stress constraint is removed when
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the area is exactly zero. A stress-constrained structural

topology optimization approach that does not treat this

singularity appropriately would prevent material from

being removed completely.

4.1 Stress-Constraint Relaxation

To generate a smooth feasible design space in the truss

optimization problem, Rozvany et al (1995) used a smooth

KS function, while Cheng and Guo (1997) presented a

relaxation approach to allow for higher stresses in ele-

ments of low density. In a typical optimization problem,

the design domain may include a degenerate region, and

the global minimum may be located in that region. To

ensure that the stress constraint is always satisfied when

the area (or the density in a topology optimization) is

zero, this constraint can be stated as

(σvm − σy)ρe ≤ 0. (7)

However, as the density approaches zero, the stress re-

mains finite and the constraint is violated. The relax-

ation approach perturbs the stress constraint and the

variable lower bounds by a small parameter ε > 0 to

remove the degenerate region. This relaxation modifies

(7) to

(σvm − σy)ρe ≤ ε, (8)

which allows the constraint to be satisfied when ρe is

sufficiently small, thus removing the degenerate region.

However, Stolpe and Svanberg (2001) showed that al-

though the global optimum can be obtained, there is

no guarantee that the solution will in general converge

to the global optimum of the original problem.

Many relaxation approaches have been proposed for

element-based topology optimization, based on the ε-

relaxation (Bruggi and Venini 2008, Guilherme and Fon-

seca 2007, Pereira et al 2004). The stress constraint

definition needed to resolve the singularity was revis-

ited by Le et al (2010) who proposed a more general

approach that could give a number of viable stress, stiff-

ness, and mass interpolation schemes. The stress con-

straint is first rewritten as η(ρe)σvm ≤ σy, where η(ρe)

is a weighting factor1 on the stress (the SIMP approach

similarly weights the stiffness using ρp). A smooth de-

sign space is generated provided η(ρe) is continuous and

η(0) = 0. For the other restrictions that η(ρe) must sat-

isfy, see Le et al (2010).

In the following stress-constrained topology opti-

mization problems, a simple weighting factor of η(ρe) =

1 The ε-relaxed stress constraint in (8) would be written as
η(ρe) = ρe

ε+ρe
.

ρ
1/2
e is used, and thus the material failure function is

F (σ) = ρ1/2
e σvm. (9)

This weighting factor was also used by Le et al, and it

was shown to give acceptable results.

4.2 Stress Constraint Aggregation

Ideally, the stress constraint at each finite element should

be enforced individually. However, this leads to a large

number of constraints. Combined with the large num-

ber of design variables, this would result in a large-scale

optimization problem. Since a gradient-based topology

optimization requires the sensitivities of each constraint

function with respect to all the design variables, this

would also create a prohibitively costly sensitivity anal-

ysis. To address this problem, the stress constraints can

be aggregated into a single function. This drastically re-

duces the computational effort of the sensitivity analy-

sis and also reduces the amount of data that must be

stored. However, this approach provides poor control

over the stress distribution within the domain and typ-

ically yields overly conservative results.

A compromise between these two extremes is to

use the block aggregation approach (Paŕıs et al 2010),

where the elements are grouped into a number of blocks,

each with n elements, and a single aggregated stress

constraint is enforced in each block. Each constraint can

be written as the maximum stress ratio in the block,

σmax = max

(
F (σe)

σy

)
. (10)

Since this is not differentiable, the aggregating p-norm

function

σPN =

[
n∑

e=1

(
F (σe)

σy

)p
]1/p

(11)

or the KS function (Kreisselmeier and Steinhauser 1979,

Poon and Martins 2007)

σKS =
1

p
ln

[
n∑

e=1

exp

(
p
F (σe)

σy

)]
(12)

is preferable. Both functions are smooth and differen-

tiable. The aggregation parameter p controls the level

of smoothness, with p → ∞ yielding the original max

function. In the examples that follow, p-norm is used

as the aggregating function.
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4.3 Optimization Problem Statement

To further penalize the intermediate densities that might

occur, the mass function is redefined to become

m(ρ) =

N∑
e=1

ρe + αρe(1− ρe), (13)

where α is a penalty coefficient. This results in a nonzero

second term when the density is at an intermediate

value. Other versions of the penalized mass function ex-

ist, and they are used widely by various authors (Guil-

herme and Fonseca 2007, Paŕıs et al 2009, Pereira et al

2004).

Combining the above, the problem statement for a

stress-constrained, mass minimization optimization be-

comes

minimize m(ρ) =

N∑
e=1

ρe + αρe(1− ρe)

w.r.t. ρe

such that Ku = f

gi

(
ρ

1/2
e σvm
σy

)
≤ 1

0 < ρmin ≤ ρ ≤ 1,

where gi(ρe, σy) is the aggregating function used to

combine the relaxed stresses within a block.

5 Design-Dependent Loading

This section presents detailed formulations for the ap-

plication of design-dependent loads, self-weight and pres-

sure, in the finite-element framework. The difficulties

with these design-dependent loads are also discussed,

including the determination of the material surface bound-

ary for the pressure load and the numerical problems

that can be encountered when applying self-weight with

an SIMP formulation.

5.1 Pressure Loading

To allow pressure to act on the structure, a method

to determine the material surface boundary is needed,

and this surface must be tracked as the design changes.

The method used is based on an iso-density line that

iteratively connects points of equal relative density; it

is described in detail in Lee and Martins (2012). A pre-

defined voided area, where ρe = ρmin for all iterations,

is used to ensure that an intermediate density will exist

in the first iteration, and it also forms a starting point

for the line search.

By a linear interpolation from the corner densities,

the line segment, on which the pressure load acts, in-

tersects the element boundary at (s1, t1) and (s2, t2),

s, t ∈ [−1, 1]. The equivalent and consistent nodal load

fe through the element nodes can be determined using

the element shape function N, with

fe = P

{
−∆y/L
∆x/L

}∫
L

NT dl, (14)

which, with Gaussian quadrature and a change in the

interval of integration, becomes

fe =
1

2
P

{
−∆y
∆x

}∑
i

wiN(g′i)
T
, (15)

where L =

√
(x2 − x1)

2
+ (y2 − y1)

2
=
√
∆x2 +∆y2

is the physical length of the segment within the element,

and P is the magnitude of the pressure. Letting ∆s =

s2 − s1, s̄ = 1
2 (s2 + s1), and likewise for t, the physical

distances are ∆x = ∆x(∆s) and ∆y = ∆y(∆t). With

Gaussian quadrature, wi is the weight of the ith node,

and g′i is the modified Gauss point, taking into account

the change of integration bounds

g′i =

{
1
2gi∆s+ s̄
1
2gi∆t+ t̄

}
.

The magnitude of the pressure is equal to PL, and

the direction of loading is always 90◦ clockwise from the

direction of the isoline segment. Using equivalent load-

ing ensures that the original load and fe are statically

equivalent, with the same resultant force and moment

about any point (Cook et al 1989).

5.2 Self-Weight

The gravity load is simply a linear function of the el-

ement relative density ρe and the area of the element

A, which is assumed to be constant for a rectangular

mesh, applied along the x2 direction. The equivalent

nodal load vector fe can be determined from the ele-

ment shape functions

fe =

∫ 1

−1

∫ 1

−1

NT

{
0

fg

}
dξdη, (16)

where fg = gAρe, and the matrix of shape functions is

N =

[
N1 0 N2 0 · · · Ni 0

0 N1 0 N2 · · · 0 Ni

]
. (17)

For the four-node quadrilateral element that is com-

monly used (Ansola et al 2006, Bruyneel and Duysinx
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2005), this simplifies to 1
4fg for each node. For the nine-

node biquadratic quadrilateral element used here, it

simplifies to 1
36fg for the four corner nodes, 1

9fg for the

four edge-centered nodes, and 4
9fg for the cell-centered

node.

With this approach, intermediate densities often ap-

pear in locations where the densities are close to zero, as

shown in Figure 1(a). Bruyneel and Duysinx (2005) at-

tributed this to the ratio between the force and the stiff-

ness becoming infinite as the density approaches zero,

since f ∝ ρ and K ∝ ρp, which causes the displacement

to be unbounded. Therefore, the optimizer allows some

material to be present to reduce the displacements to

finite values. An approach proposed by Bruyneel and

Duysinx to address this was to modify the SIMP for-

mulation such that the stiffness is linearly dependent on

the design variables, for elements with densities below

a certain cutoff, ρC , such that

Ee =

{
ρpeE0 ρC < ρe ≤ 1

ρe
(
ρp−1
c E0

)
0 < ρmin ≤ ρe ≤ ρC

. (18)

Using this modified SIMP formulation, the inter-

mediate density artifacts can be removed, as shown in

Figure 1(b).

(a) Standard SIMP law

(b) Modified SIMP law

Fig. 1 Comparison of optimized topology for arch problem,
with and without SIMP modification.

6 Numerical Examples

This section present several examples to compare the

solutions obtained for a mass-constrained compliance

minimization problem and a stress-constrained mass

minimization problem, with the structural loading chang-

ing in magnitude, direction, and location as the de-

sign changes. Structural analysis is performed using the

in-house solver, Toolkit for the Analysis of Composite

Structures (TACS) by Kennedy and Martins (2010).

Optimization problems are solved using SNOPT (Gill

et al 2005), a sequential quadratic programming opti-

mizer, which is used within pyOpt, an object-oriented

framework for nonlinear optimization (Perez et al 2011).

The design domain is discretized with nine-node bi-

quadratic rectangular plane-stress elements. Node-based

design variables are used, located at the four corner

nodes of the element, and the stiffness of the element

is interpolated from the four corner nodes using the

bilinear element shape function N. Therefore, all the

element relative densities in the formulation can be re-

placed by

ρe = NT ρ, (19)

where ρ = [ρ1 ρ2 ρ3 ρ4 ]T is a vector of the relative

densities at the four corners.

By using this Q9/Q4 (9-node quadratic displace-

ment interpolation with 4-node linear density interpola-

tion) implementation, the design variables are guaran-

teed to be C0 continuous, thus preventing the checker-

boarding phenomenon that often occurs with element-

based design variables (Rahmatalla and Swan 2004, Sig-

mund and Petersson 1998). Also, in the extensive study

done by Jog and Haber (1996), the Q9/Q4 implemen-

tation was found to be stable, whereas for a lower-order

displacement interpolation, such as Q4/Q4, the analy-

sis was found to be unstable. Therefore, although gray

regions may appear in the following examples, this is

due to the density interpolation and all the results have

been fully converged.

To compare the mass-minimization solutions with

those of compliance-minimization, the stress-constrained

problem was first solved to determine the optimal mass.

This mass was then used as the maximum mass con-

straint for the compliance minimization problem. Thus,

although the two problems might result in very differ-

ent topologies, the results have the same mass, thereby

giving a fair comparison.

The penalization value p for the material proper-

ties is set to 3, and the minimum density is set to

ρmin = 10−3 to avoid singularities in the global stiff-

ness matrix. For the block aggregation of the stress con-

straints, p-norm with a parameter of p = 10 is used. The

mass function (13) uses α = 0.9 for the penalization of

intermediate densities.
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6.1 Self-Weight Arch

The following example is a self-weight problem with no

fixed loading imposed. A rectangular domain of 2 m ×
1 m is discretized by 2048 elements, as shown in Fig-

ure 2. Boundary conditions are applied at the bottom

two corners. Other than the self-weight due to the ma-

terial density ρ0 and gravitational constant g, no ex-

ternal loads are applied. The material properties are

ρ0 = 2780.0 kg/m3, E = 73.1 GPa, ν = 0.3, and σy =

75.8 MPa. Since a self-weight problem is subject to the

intermediate-density artifact observed by Bruyneel and

Duysinx (2005), a linear density switch limit of ρC =

0.25 was imposed in the Young’s modulus redefinition

(18).

Fig. 2 Self-weight arch: Geometry.

Since decreasing the load would decrease the com-

pliance, C = fTu, and the stress, the optimizer would

choose to remove material. Hence, in the minimiza-

tion of compliance, unless a very low volume fraction is
given, the problem becomes unconstrained. For the so-

lution in Figure 3(a), the volume constraint was set to

40%; however, the final solution has a volume fraction

of 8.144%, with a final compliance of C = 0.054. Roz-

vany analytically derived the 2D solution through the

optimization of trusses. This degenerates into a single

layer of arches, commonly known as a Prager structure

(Rozvany and Prager 1979). The solution shown in Fig-

ure 3(a) is in excellent agreement with the analytical

solution obtained by Rozvany (1989, p. 339).

For the stress-constrained problem, there is a trade-

off between reducing the nodal densities, thus reduc-

ing the self-weight load, and increasing the densities,

thus decreasing the resultant stresses. Since this is a

mass minimization problem, it is preferable to decrease

the densities in order to reduce the load, which also

decreases the stress. However, with a nonzero lower

bound on the densities, some material is still required

to support the structure. Therefore, the final solution

is not a true black-and-white solution. Instead, it is an-

other arch-shaped solution, as shown in Figure 3(b),

with a maximum relative density of 0.13 and a mass of

m = 73.856 kg.

(a) Compliance minimization (C = 0.054)

(b) Mass minimization (m = 73.856)

Fig. 3 Self-weight arch: Optimized topologies.

6.2 Self-Weight Column

The next example is a self-weight problem with a fixed

load. In this case, a rectangular domain of 1.0 m by

0.6 m is meshed with 6000 elements. The entire bottom

edge is constrained, and a total load of F = 100 kN is

distributed over 0.08 m at the center of the top edge,

in addition to the self-weight, shown in Figure 4. The

material properties are ρ0 = 7800 kg/m3, E = 210 GPa,

ν = 0.3, and σy = 6.5 MPa.

Again, the stress-constrained problem is optimized

first, which results in a final mass of m = 420.92 kg

(9.0% volume) and the geometry shown in Figure 4.

This mass is then used as the constraint for the com-

pliance minimization problem. The topologies of the

two solutions are vastly different, with the compliance

minization resulting in a single column, whereas the

mass minimization solution yields a two-column geom-

etry joined at the top, with a horizontal truss midway

(Figure 5).

Figure 6 shows the stress distributions. Although

the von Mises stresses are within the yield stress limit in

the compliance solution, once again the stress-constrained
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Fig. 4 Self-weight column: Geometry and loading.

(a) Compliance Minimization (C = 1.689)

(b) Mass minimization (m = 420.92)

Fig. 5 Self-weight column: Optimized topologies.

result exhibits a more fully stressed design, even though

the two solutions have the same mass.

Since the two topologies are dissimilar, the solution

from the stress-constrained problem was used to ini-

tialize another compliance minimization problem, and

the compliance minimization solution was used to ini-

tialize another stress-constrained problem. The mass

constraint is left unchanged for the compliance mini-

mization problem, and therefore it also equals the mass

from the initial solution. The results are shown in Fig-

ure 7. The single-column solution retains its topology

until close to the top, where it forks out to support the

(a) Compliance minimization (b) Mass minimization

Fig. 6 Self-weight column: Relaxed stress distributions.

applied load, when stress constrains are applied. This

results in a lower mass of m = 386.37 kg, indicating that

the earlier solution is a local minimum. For compliance

minimization, the optimizer merely refined the stress-

constrained solution, which gives a higher compliance

of C = 1.928, compared to C = 1.689 corresponding to

Figure 5(a).

(a) Compliance minimiza-
tion from stress solution
(C = 1.928)

(b) Mass minimization from
compliance solution
(m = 386.37)

Fig. 7 Self-weight column: Initialized from converged solu-
tions.

One approach for avoiding local minima is a contin-

uation method. The concept of continuation methods

was first introduced by Allaire and Francfort (1993).

The idea is to begin the optimization with no penal-

ization of the intermediate densities (i.e., p = 1) and

then to gradually increase the SIMP penalization pa-

rameter until an acceptable black-and-white solution is

obtained. This works because the penalization of the

intermediate densities greatly increases the number of

local minima present in the design space. Therefore,

delaying the penalization prevents the optimizer from

prematurely converging to a suboptimal solution.

More recently, James et al (2009) demonstrated that

a similar strategy could be used to avoid local minima

in problems involving constraint aggregation. In that
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study, the authors sought to minimize the maximum

compliance of structures subject to multiple load cases

by treating the compliance due to each load case as a

constraint using the bound formulation (Olhoff 1989).

The resulting constraint functions were aggregated us-

ing the KS function, and it was shown that if the aggre-

gation parameter was gradually increased, the process

converged to better optima.

The same principle applies to the case of stress con-

straints, where the local von Mises stress values within

a designated block are aggregated to form a single con-

straint. By starting with a low aggregation parameter,

it avoids the situation where the sensitivity contribu-

tions from the lower stress regions are overwhelmed and

the optimization is dominated by the stress values in a

small number of elements. This has the effect of stabi-

lizing the optimization process and avoiding premature

convergence to an undesirable local minimum.

In this approach, the p-norm parameter was initially

set to p = 1.0 and the problem was optimized using a

relaxed tolerance of 10−3. The p-norm parameter was

then doubled and the problem was optimized again.

This was repeated until p = 16.0, at which point the

convergence tolerance was set to 10−6 to obtain the

final solution. Since decreasing the aggregation param-

eter also overstates the maximum stress, the yield stress

must be gradually decreased to the final value in order

to obtain a feasible solution at every stage. The solu-

tion obtained using this continuation method is shown

in Figure 8; it has a mass lower than that of the previous

two results: m = 315.78 kg. However, the topology also

differs, with two angular trusses supporting the load, as

opposed to a single truss or a pair of vertical trusses.

Fig. 8 Self-weight column: Solution obtained with continu-
ation method (m = 315.78).

The relatively strong performance of the minimum-

weight, stress-constrained design shown in Figure 7(b)

is consistent with this result. Because both the compli-

ance and the von Mises stress are directly proportional

to the strain in the element, the compliance objective

initially used for the result in Figure 7(b) behaves simi-

larly to a constraint on the aggregated von Mises stress

with the p-norm parameter set to p = 1. Therefore, the

procedure of minimizing compliance and then switch-

ing to weight minimization with stress constraints is

analogous to a two-stage continuation method.

Figure 9 shows the convergence history of the op-

timality and feasibility for the continuation method,

with the dotted vertical lines indicating restarts in the

optimization with a increased aggregation parameter.

This optimized result indicates that although an opti-

mal stress-constrained solution may be harder to obtain

without a continuation method, the optimal topology

can be vastly different from that obtained by minimiz-

ing compliance.

0 50 100 150 200 250 300
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Major Iterations

 

 

Feasibility

Optimality

Fig. 9 Self-weight column: Convergence history of continu-
ation method result.

6.3 Pressurized Arch

The next two examples present cases where the struc-

ture to be optimized is subjected to pressure loading.

Because of the need to determine an isoline at every

iteration, an optimizer with smooth convergence be-

haviour is preferable to one with fast convergence. There-

fore, instead of using SNOPT, the method of mov-

ing asymptotes (Svanberg 1987), MMA, is used. Since

MMA can exhibit slow convergence behaviour near the

solution (Zuo et al 2007), once a reasonable solution is

found, SNOPT is then used to fully optimize the prob-

lem.

Pressure loading proves to be more difficult in a

stress-constrained mass-minimization problem than in

a compliance minimization problem. This is because in

a mass-minimization problem, the optimizer tends to
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remove material, and therefore a smooth boundary on

which to apply the pressure can be more difficult to find.

Thus, it is preferable to use a low threshold, such as 0.2

or even lower, to determine the material boundary. As

the optimizer converges to the solution, this threshold

can be increased.

The following example is a common benchmarking

problem for topology optimization with pressure load-

ing (Bruggi and Cinquini 2009, Chen and Kikuchi 2001,

Sigmund and Clausen 2007). A rectangular domain of

2.0 m×1.4 m is meshed with 1120 elements and fixed at

the bottom two corners. The pressure originates from

the middle of the bottom edge, where the design vari-

ables contained within a 1.6 m × 0.28 m region are set

to void, with the geometry shown in Figure 10. The

pressure is P = 2 MPa, and the material parameters

are ρ = 2780 kg/m3, E = 73.1 GPa, ν = 0.3, and

σy = 75.8 MPa.

Fig. 10 Pressurized arch: Geometry.

The compliance minimization problem converged to

an arch shape as shown in Figure 11(a), which is ex-

pected. However, the stress-constrained problem con-

verged to a different geometry, where smaller secondary

arches are introduced to reinforce the top part of the

arch, as seen in Figure 11(b).

The stress contour plots in Figure 12 show that the

stress constraints are violated at the points where the

structure intersects the corners of the rectangular void.

Although the stress-constrained solution resulted in a

different topology, all the stresses are within the yield

stress limit.

Note that if the area of the initial void were re-

duced by lowering the height, the corner stresses for the

compliance-minimization solution would be reduced, and

the resultant stress-constrained solution would more

closely resemble a simple arch. However, this particu-

lar size for the initial void was chosen to illustrate that

(a) Compliance minimization (C = 4266.25)

(b) Mass minimization (m = 1469.0)

Fig. 11 Pressurized arch: Optimized topologies.

with stress constraints, sharp corners can be rounded to

reduce the stress concentration; this would not be pos-

sible for a compliance-minimization problem. This par-

ticular initial void also demonstrates again that stress-

constrained problems can converge to unexpected local

optima.

The minimum compliance problem was used as a

starting point to optimize the stress-constrained prob-

lem again, in an attempt to obtain the arched solution.

The result is shown in Figure 13(b), and in contrast to

the other stress-constrained solution (Figure 11(b)) the

arch shape was recovered. This result is also a “bet-

ter” optimum, with a mass of 1217.7 kg, compared to

1469.0 kg in Figure 11(b), a 17% decrease in mass.

When the compliance is minimized with the stress-

constrained solution (Figure 11(a)), the secondary struc-

tures remain. This is partly because when transforming

a convex structure to a concave structure, the opti-

mizer must produce some intermediate solutions that

are highly inefficient for supporting a pressure load.

These intermediate solutions can be skipped if faster

convergence behaviour is observed, but islands and non-

connecting structures will likely appear, making the for-

mation of the surface boundary difficult. The resulting

compliance, C = 6185.43, shows that this is indeed a

local minimum: it is 45% higher than the value for the

original arch structure (C = 4266.25).
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(a) Compliance minimization

(b) Mass minimization

Fig. 12 Pressurized arch: Relaxed stress distributions.

(a) Compliance minimiza-
tion from stress solution
(C = 6185.43)

(b) Mass minimization from
compliance solution
(m = 1217.7)

Fig. 13 Pressurized arch: Initialized from converged solu-
tions.

To investigate this local-optimum convergence be-

haviour, a slice in the valid2 design space was analyzed.

Three valid solutions were used to define the plane, with

two solutions being the stress-constrained solutions ob-

tained previously, Figure 13(b) and Figure 11(b), and

the third being the initial setup with the rectangular

void and a relative density of 0.9. Two parameters,

κ1 and κ2, were used to choose among the three so-

lutions: (κ1, κ2) = {(0, 0), (1, 0), (0, 1)}. The solution of

Figure 13(b), the best local optimum found, is located

at (0, 1).

Both the mass and the relaxed stress were deter-

mined along the plane defined by the three points, and

2 Valid in the sense that all relative densities satisfy the
constraint 0 < ρmin ≤ ρ ≤ 1. The stress constraint may still
be violated.

their contour is plotted in Figure 14. For the relaxed

stress contour plot, the feasibility contour of 1 is also

plotted, to differentiate between feasible and infeasible

points in the domain. This contour plot shows that the

optimum is surrounded by a discontinuity. Two points

are taken on either side of this “cliff” (indicated in the

detailed plot), and the density distribution and stress

contours corresponding to these two designs are plot-

ted in Figure 15 and Figure 16. Although the density

distributions are almost identical, the stress contours

are vastly different. This is due to the method used to

determine the boundary to apply the pressure. The dif-

ference in the density between the two points causes

two different boundaries to be used, leading to the dif-

ference in the stress distribution.

(a) Feasible point, density

(b) Infeasible point, density

Fig. 15 Pressurized arch: Densities of the two points shown
in detailed plot of Figure 14(b).

(a) Feasible point, stress (b) Infeasible point, stress

Fig. 16 Pressurized arch: Stress distributions of the two
points shown in detailed plot of Figure 14(b).
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(b) Relaxed Stress, violated when greater than 1

Fig. 14 Pressurized arch: Contour slice between local minima, with optimum located at (κ1, κ2) = (0, 1). Thick contour in
stress plot indicates boundary where constraint is active, where it is satisfied on outside.

In an attempt to obtain an optimal stress-constrained

solution without using a compliance solution as a start-

ing point, the continuation method of the self-weight

column problem shown in Figure 8 is applied. How-

ever, this resulted in a final mass of m = 1449.42 kg,

which is lower than that obtained without the continu-

ation method, but higher than that obtained with the

compliance solution as a starting point. This result is

shown in Figure 17; it has the same topology as the case

without the continuation method but a slightly different

shape. Although the continuation method may result in

a better optimum, there is no guarantee that the stress-

constrained optimization with the continuation method

will yield the global optimum.

Fig. 17 Pressurized arch: Solution obtained with continua-
tion method (m = 1449.42).

6.4 Piston

The last example has a piston structure and is similar

to the problem solved by Sigmund and Clausen (2007)

and Bruggi and Cinquini (2009), with the design do-

main illustrated in Figure 18. A pressure of P = 1 MPa

originates from the top surface, and the domain is ex-

tended vertically to create the void along the top. The

left and right sides of the domain are constrained in

the x-direction, and the center of the bottom edge is

fully constrained, representing the piston rod. Because

of symmetry, only the right half of the domain is mod-

elled, and it is discretized by 2400 elements.

With the given pressure load and boundary condi-

tions, it is easy to imagine that the ideal solution would

be a dense ball of structure around the constrained

node, with a maximum volume under compliance min-

imization, or a point at the constrained node with a

finite volume under stress constraints, with the pres-

sure acting from the outside. To prevent the structure

from collapsing onto itself, a small, fixed load of 10 kN

is applied at the top right corner, also shown in Fig-

ure 18. At 0.3%, the fixed load can be considered to

be negligible compared to a minimum pressure force of

F = PLx = 3×106 N per unit depth, but it is just large

enough to prevent the structure from disappearing.

The material properties are ρ0 = 2780 kg/m3, E =

32.0 GPa, ν = 0.3, and σy = 75.8 MPa. The mass mini-

mization, stress-constrained solution resulted in a final

mass of m = 2577.8 kg, shown in Figure 19(b). Mini-

mizing the compliance, using the value above for the

maximum mass constraint, resulted in a final compli-

ance of C = 27592.9 as shown in Figure 19(a).
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Fig. 18 Piston: Geometry and loading.

(a) Compliance minimization (C = 27592.9)

(b) Mass minimization (m = 2577.8)

Fig. 19 Piston: Optimized topologies.

Although the topology of the two solutions is com-

parable, the stress contour plots show that the com-

pliance solution has an infeasible structure with regard

to permissible stress: the stress constraints are violated

near the bottom support. In the stress-constrained so-

lution, all the von Mises stress values satisfy the con-

straints (Figure 20).

The compliance minimization solutions obtained by

Sigmund and Clausen (2007) and Bruggi and Cinquini

(2009) are similar to the compliance solution obtained

herein, but with thicker members due to the higher vol-

ume fraction of 30%. Furthermore, their methods did

not require the additional fixed load, since the pres-

sure boundaries were forced to terminate at one of the

sides of the domain. However, their approach required

an additional volume fraction of the fluid region to be

enforced, whereas the current examples specified only

the magnitude of the pressure.

7 Conclusion

A comparison of mass-constrained compliance minimiza-

tion solutions and stress-constrained mass minimiza-

tion solutions have been provided, with both fixed load-

(a) Compliance minimization

(b) Mass minimization

Fig. 20 Piston: Relaxed stress distributions.

ing and design-dependent loading. In general, optimiza-

tions subject to material failure constraints are difficult

to solve because of the large number of nonlinear con-

straints that form highly nonlinear and discontinuous

feasible regions. However, it is important to investigate

these problems, since minimizing mass subject to fail-

ure constraints is the objective of many structural de-

sign problems.

The structural topology optimization problems were

solved using the SIMP approach, together with node-

based density design variables to avoid the need for a

filtering algorithm. Because of the stress singularities, a

stress-relaxation approach was adopted. Instead of en-

forcing stress constraints at every point of each element,

a block aggregation method was used to group the lo-

cal constraints. In each group, a p-norm function was

used to approximate the maximum stress with a smooth

function. This reduced the number of constraints in the

optimization, thus reducing the computational time re-

quired.

The numerical examples presented herein showed

that mass minimization subject to stress constraints

generally resulted in a more fully stressed design, when

compared to a compliance minimization with the same

mass, where stress constraints are violated. However,

problems with stress constraints were likely to converge

to local minima, especially for problems with design-

dependent loading. For the self-weight column problem,
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the convergence to local minima was avoided through

the use of a continuation method, in which the aggrega-

tion parameter was gradually increased. However, the

use of a continuation method does not guarantee that

a global optimum can be found; the pressurized arch

problem demonstrates this. Moreover, the results of the

piston example show that the compliance minimization

and mass minimization problems can result in consid-

erably different topologies. Thus, a compliance mini-

mization followed by a sizing optimization with failure

constraints may not result in an optimum. Therefore,

the stress-constrained approach is important in topol-

ogy optimization.
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