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Abstract

Aerodynamic shape optimization based on computational fluid dynamics has the po-
tential to become more widely used in the industry; however, the optimized shapes
are often criticized for not being practical. Techniques seeking more practical results,
such as multipoint optimization and geometric constraints, are either ineffective or
too time consuming because they require trial and error. We propose a data-driven
constraint for the aerodynamic shape optimization of aircraft wings that ensures the
overall practicality of the optimum shape, with a focus on achieving a good low-speed
performance. The constraint is formulated by extracting the relevant features from an
airfoil database via modal analysis, correlation analysis, and Gaussian mixture models.
The optimization results demonstrated that this approach addresses the thin leading
edge issue that had plagued previous optimization results, and further analysis demon-
strated that this data-driven constraint ensures good low-speed off-design performance
without sacrificing the transonic on-design performance. The proposed approach can
use other airfoil databases and can even be generalized to other shape optimization
and engineering design problems.

1 Introduction
Aircraft aerodynamic efficiency directly affects operating costs and greenhouse gas
emissions. Aerodynamic shape optimization based on computational fluid dynamics
(CFD) has been applied to airfoil and wing design to improve the cruise efficiency [1–
9]. However, aerodynamic shape optimization tends to overstate its benefits because it
improves the on-design performance to the detriment of the off-design performance [4,
10, 11]. Special care is required in aerodynamic shape optimization to prevent the
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design from converging to unrealistic shapes [12]. For example, some of the previous
efforts have produced thin leading edges, which deteriorate the off-design performance,
especially at low speeds [10].

Multipoint optimization can address this issue to a certain extent. Lyu et al. [10]
showed that multipoint optimization can alleviate the thin leading edge issue in the
optimization of the Common Research Model (CRM) wing. To eliminate the heuristics
involved in choosing the flight conditions and corresponding weights, Liem et al. [7]
proposed an approach to formulate the multipoint drag function based on cruise flight
data. However, multipoint optimization in the transonic regime is designed to improve
the robustness with respect to flight conditions around the cruise nominal condition;
therefore, it does not directly address the thin leading edge issue, which mainly affects
the low-speed performance of the clean wing. Nemec et al. [11] studied multipoint airfoil
design optimization in the transonic flow regime, but this issue was not addressed.
Kenway and Martins [13] studied the effect of different weights of cruise conditions
on the multipoint optimization of the CRM wing; however, the thin leading edge
issue persisted. To achieve a more practical airfoil design, Buckley et al. [4] enforced
a maximum lift coefficient (CL,max) constraint in a multipoint optimization and they
obtained a more reasonable shape. However, the evaluation of CL,max for a given design
using CFD requires higher fidelity than what the Reynolds-averaged Navier–Stokes
equations (RANS) can provide and is still an open problem. Constraining buffet can
also help address off-design performance [14].

Another technique that can be used to achieve more realistic airfoil shapes is to add
explicit geometric constraints, such as radius or thickness constraints at the leading
edge [14–16]. While this technique does help, the optimized design is sensitive to the
form and value of these constraints. Therefore, these constraints require trial and error
and experience to evaluate the suitability of the final results.

To bypass the trial-and-error process, we propose using the design experience im-
plicitly embedded in existing airfoil designs. Our hypothesis is that we can construct
a numerical constraint based on the analysis of an existing airfoil database. We used
a publicly available airfoil database that contains more than 1500 airfoils for different
applications.1 Most of these airfoils are designed by considering various requirements,
including the low-speed performance and structural demands, and many of them have
been validated through wind-tunnel experiments and actual flight.

The proposed data-driven approach provides a systematic method for deriving a
differentiable function to represent an optimization constraint and involves multiple
steps. First, we compute the dominant thickness and camber modes from the airfoil
geometries in the database and analyze the correlations between these modes. We
compare the distributions in these correlations with previously optimized airfoils that
exhibit leading edges that are unrealistically thin to find the most relevant charac-
teristics that define realistic airfoil shapes. Then, we use Gaussian mixture models
(GMMs) and their associated probabilities to quantify the extent to which a given
airfoil or a wing section exhibits the relevant characteristics. The probability function
is differentiable and suitable for gradient-based optimization.

1http://webfoil.engin.umich.edu
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We use this data-driven function to constrain the airfoil and wing section shapes in
CFD-based aerodynamic shape optimization, and we investigate the effect of adding
this constraint to different sections in wing design optimization. Further analyses of the
optimized results demonstrate that this data-driven approach addresses the thin leading
edge issue and improves the low-speed performance without significantly decreasing the
benefit to the transonic regime.

The rest of this paper is organized as follows. First, in Section 2, we discuss how to
preprocess existing airfoil data in the database, capture the distribution features among
the thickness and camber modes, and formulate the data-driven constraint function.
Then, in Section 3, we formulate the constraint with the data-driven function in the
airfoil design optimization. In Section 4, we extend this approach to three dimensions
in the optimization of the CRM wing. Finally, in Section 5, we end this paper with a
summary of conclusions.

2 Data-Driven Constraint Formulation

2.1 Airfoil Data Processing

Features embedded in proven airfoils can be of great value to aerodynamic design. We
used a publicly available airfoil database to conduct feature analyses. These airfoils
are designed for a wide range of applications, from low-Reynolds-number airfoils for
unmanned aerial vehicles and model aircraft to jet transports and wind turbines. How-
ever, the airfoil data are not provided in a uniform format, and, therefore, we developed
a process to clean the data and make them consistent.

We used the procedure illustrated in Figure 1 to process the data in three main
steps: formatting, normalization, and selection. Most of the airfoils are provided in an
(x, y) format starting from the trailing edge, following the upper surface to the leading
edge, and back to the trailing edge along the lower surface. However, there are some
exceptions to this format. Some airfoils do not form a closed loop (including airfoils
with a finite trailing edge thickness), some coordinates are provided for a nonzero angle
of attack, and several airfoils exhibit large oscillations in shape.

We modified all the airfoils to have a sharp trailing edge. After eliminating incom-
plete airfoils, we were left with 1458 airfoils. Similar to our previous work with this
airfoil database [17], we applied a smoothing procedure to all airfoil coordinates to
reduce the small oscillations in the shapes. This procedure is implemented in Python
and is available under an open-source license 2.

2.2 Correlation Analysis of the Thickness and Camber Modes

There are different characteristics that can be used to measure airfoils, such as the
camber, thickness, and leading edge radius. Here, we characterize airfoil shapes using
modes computed via singular value decomposition, as done in previous efforts [18–
20]. We separate the modes for the camber and thickness lines because they are more
intuitive and they inherently represent different information [18]. Camber distribution

2https://github.com/npuljc/Airfoil_preprocessing
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Procedure Step Eliminated airfoils Selected airfoils

Step 1
Formatting

Step 2
Normalization

Step 3
Selection

1547

1498

1458

1.1 Delete texts in airfoil data files.

1.2 Ensure coordinates are in this

sequence: trailing edge-upper

surface-leading edge-lower surface-

trailing edge.

1.3 Eliminate incomplete airfoils.

2.1 Sharpen trailing edge if blunt.

2.2 Define leading edge by finding the

farthest point on curve.

2.3 Normalize coordinates by making the

chord equal to one and angle of

attack zero.

2.4 Save airfoil in uniform format.

3.1 Remove airfoils with more than one

maximum thickness location.

3

ua79sfm mh112 naca1

48

oaf102 oa206 oa212

oa213 oaf095 oaf128

oaf139 ssca07 ssca09

vr7b vr8b a63a108c

ames02 ames03 dsma523b

eiffel10 goe55
...

40

b707b dga1182 du861372

eiffel430 goe388 goe417a

goe451 goe802a goe802b

ht05 naca63206 naca633218

saratov stcyr171 strand

wb140
...

Figure 1: A total of 1458 consistent airfoil geometries were obtained after preprocessing
the airfoil database.

has a large impact on lift and pitching moments, while thickness distribution primarily
affects drag and directly relates to structural requirements. We obtain the modes via
singular value decomposition. Suppose we put all airfoil coordinates into a matrix A,
where each column corresponds to an airfoil. The singular value decomposition of this
matrix can be expressed as

A = UΣV >, (1)

where each column of U corresponds to a mode shape and Σ is a diagonal matrix with
the singular values. To obtain airfoil shapes based on these modes, we select the modes
corresponding to the largest singular values to obtain a matrix of the dominant modes,
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Φ. Then, the y-coordinate values can be expressed by

yairfoil = Φcmode, (2)

where cmode is a vector of coefficients corresponding to each mode.
The first five camber and thickness modes derived from the airfoil database and their

effect on some airfoil shapes are shown in Figure 2. For example, the first thickness
mode increases or decreases the whole airfoil thickness, while the second one decreases
the thickness of the rear while increasing it in the front.

Camber Mode 1

Camber Mode 2

Camber Mode 3

Camber Mode 4

Camber Mode 5

Thickness Mode 1

Thickness Mode 2

Thickness Mode 3

Thickness Mode 4

Thickness Mode 5

Airfoil 1 Airfoil 2 Airfoil 3 Airfoil 4

Figure 2: Effect of camber and thickness modes on airfoil testing.

The correlation between the ith and the jth mode coefficient is defined as

ρci,cj =

∑N
l=1(c

(l)
i − c̄i)(c(l)j − c̄j)√∑N

l=1(c
(l)
i − c̄i)2

∑N
l=1(c

(l)
j − c̄j)2

, (3)

where the average mode coefficients are

c̄i =
1

N

N∑
l=1

c
(l)
i , c̄j =

1

N

N∑
l=1

c
(l)
j . (4)
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Figure 3: Correlation between the camber and the thickness mode coefficients derived
from the airfoil database.

Figure 3 shows the correlation between the camber and thickness mode coefficients,
where the color map represents the correlation coefficient ρci,cj .

Figure 4 shows the distributions of all airfoils (blue dots) in the space of related
pairs between the five camber and thickness modes. We also show the airfoils obtained
from previous aerodynamic shape optimizations [10, 13] that we consider unrealistic
(red ‘x’).
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Figure 4: Distribution of airfoils and some unrealistic airfoils in the planes of related
modes.
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Most of the related modes approximately obey the Gaussian distributions, which
do not convey useful features, and the unrealistic airfoils are almost within the airfoil
database in these distributions. However, the distribution between the first and the
third thickness mode is not a typical Gaussian one, and the unrealistic airfoils are
clearly outside the distribution domain of all airfoils. The first thickness mode increases
the thickness at the leading edge, while the third one decreases it. The coefficients
of the third thickness mode for the unrealistic airfoils are unusually large because
they have such thin leading edges. Given the trends observed in this distribution, we
can now quantify the desired characteristics from this correlation and constrain these
characteristics in an optimization.

2.3 Data-Driven Constraint

We quantify the desirable characteristics for the airfoils using a GMM, which is a
mixture of a finite number of Gaussian distributions. The GMM represents normally
distributed subpopulations of an overall population without requiring knowledge about
which subpopulation a data point belongs to. This is a form of unsupervised learning
that allows the model to learn the subpopulations automatically. The probability den-
sity function p(x) of the GMM is represented as a weighted sum of Gaussian component
densities [21]:

p (x) =
K∑
i=1

φiN (x|µi ,Σi) , (5)

where x is the D-dimensional input; φi (where i = 1, . . . , K) are the combination

weights, which add up to 1 (
∑K

i=1 φi = 1); and K is the number of Gaussian com-
ponents. The ith Gaussian density is

N (x|µi ,Σi) =
1√

(2π)D |Σi|
exp

(
−1

2
(x− µi)

>Σ−1i (x− µi)

)
(6)

where µi and Σi are the mean vector and the covariance matrix of this component
density, respectively. An example of a GMM is shown in Figure 5, where three func-
tions (on the left) get mixed into a single smooth function (on the right).

The difficulty in the construction of a GMM lies in determining which points came
from which latent component, and then it is easy to fit a separate Gaussian distribution
to each set of points. To determine this, we use the iterative expectation-maximization
(EM) algorithm [22] to compute the model parameters. The basic idea of the EM
algorithm is to iteratively maximize the likelihood function p(X). X is the training
data set x1, . . . ,xN and

p (X) =
N∏

n=1

p (xn) , (7)

where the means µi, covariances Σi, and mixing coefficients φi are initialized with the
k-means algorithm [23], which is an unsupervised clustering method with a low compu-
tational cost. Then, we apply the EM algorithm to update the parameters iteratively.
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Figure 5: A GMM with three components. Three individual Gaussian components with
different weights (left) become a single smooth function using the GMM (right). The
distribution is biased toward the function with the largest weight.

In the “E” step, we calculate the responsibilities using the current parameters:

Pr (k|xn) =
φkN (xn|µk ,Σk)∑K
i=1 φiN (xn|µi ,Σi)

. (8)

Then, in the “M” step, the parameters are re-estimated with the following formulas:

φ̂i =
1

N

N∑
n=1

Pr (i|xn)

µ̂i =

∑N
n=1 Pr (i|xn)xn∑N
n=1 Pr (i|xn)

Σ̂i =

∑N
n=1 Pr (i|xn)xnx

>
n∑N

n=1 Pr (i|xn)
− µ̂iµ̂

>
i ,

(9)

where “ ·̂ ” represents an updated parameter.
Because the GMM is completely determined by the parameters of its individual

components, a fitted GMM can give an estimate of the probabilities of both in-sample
and out-of-sample data points, which is known as density estimation. We use the GMM
to capture the distribution feature between the first and the third thickness mode, and
use its probability density function to detect the abnormality. We investigated the
effect from the number of components in the GMM and found that the likelihood
function does not increase after the fifth component is added. Therefore, we use five
components to construct the GMM. Figure 6 shows the log-probability density function
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fGMM(x), where
fGMM (cmode) = log10 p ((c1 , c3)) , (10)

and c1 and c3 are the first and third coefficients, respectively, for the thickness modes
in cmode. The previously obtained unrealistic airfoils (red ones) are in the domain
corresponding to fGMM ≤ −1.2. The airfoils (black ones) in the original CRM wing
sections are in the domain with fGMM ≥ 1.6, which is well within the desired range.

Figure 7 shows airfoil distribution probabilities with respect to fGMM. Most air-
foils are in the domain corresponding to positive fGMM values, and airfoils with sig-
nificantly negative values are not typical transonic ones. Defining outlier shapes using
fGMM ≥ −1.0, fGMM ≥ 0.0, and fGMM ≥ 0.6 results in domains including 95.1%, 90.7%,
and 85.0% of the airfoils, respectively.

0.3 1.2
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0.000
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CRM 2
CRM 4

CRM 6

CRM 8

DLR F6 inner

DLR F6 outter

Opt CRM 4

Opt CRM 2

Opt CRM 6

Opt RAE2822

Figure 6: Log-probability density function of the GMM between the first and the third
thickness mode

.

To reduce the aerodynamic drag, the optimization algorithm tends to decrease the
thickness by reducing the first thickness mode magnitude, which dominates the overall
thickness. However, if the third thickness mode magnitude is not reduced simulta-
neously, unrealistic airfoils with thin leading edges and significantly negative fGMM

values would be involved, including the previously optimized airfoils shown in Figure 6
(highlighted in red). Thus, constraining the function fGMM in an aerodynamic shape
optimization should ensure realistic airfoils.
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Figure 7: Histogram of the airfoil distribution with respect to fGMM.

This constraint plays a similar role to explicit geometric constraints on the leading
edge thickness or radius, although it is more robust as it improves the low-speed per-
formance with a much lesser negative effect on the transonic regime. We demonstrate
this robustness in aerodynamic optimization by using different fGMM lower bounds in
Section 3.

3 Airfoil Design Optimization

3.1 Problem Description

To evaluate the proposed approach, we implemented it in a CFD-based aerodynamic
shape optimization framework and applied it to solve a benchmark airfoil optimization
case.

The CFD solver was ADflow [24–27], which is available under an open-source li-
cense. 3 ADflow solves the RANS using a second-order finite-volume scheme. It can
handle structured multiblock and overset meshes using the Spalart–Allmaras (SA) tur-
bulence model. The shape parametrization that defines the design variables was per-
formed using free-form deformation (FFD) [28]. The optimizer we used was the Sparse
Nonlinear OPTimizer (SNOPT) [29], which is a gradient-based quasi-Newton optimizer
suitable for optimization problems featuring many sparse nonlinear constraints [30]. We
used SNOPT through the pyOptSparse Python interface [31] 4.

ADflow includes a discrete adjoint solver [25, 32] that efficiently computes the sen-
sitivities of force coefficients with respect to large numbers of design variables. To add

3https://github.com/mdolab/adflow
4https://github.com/mdolab/pyoptsparse
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the data-driven constraint fGMM to the gradient-based optimization, we evaluated its
gradient with respect to the shape design variables yshape, which is computed using the
chain rule

dfGMM

dyshape

=
dfGMM

dcmode

dcmode

dyairfoil

dyairfoil

dyshape

, (11)

where yairfoil are the airfoil or wing section coordinates. We computed dfGMM/dymode

and dcmode/dyairfoil using Eqs. (10) and (2), respectively. We evaluated dyairfoil/dyshape

using the FFD parametrization implemented by Kenway et al. [28].
The airfoil optimization problem we solved was the Aerodynamic Design Optimiza-

tion Discussion Group (ADODG) Case 2 benchmark, which defines the drag minimiza-
tion problem detailed in Table 1 starting from an RAE 2822 airfoil. This problem has
been solved by various researchers [33–35].

Table 1: Optimization problem statement in the airfoil design

Function Description Quan-
tity

Minimize Cd Drag coefficient 1
With respect
to

yshape y perturbations of the FFD control
points

40

α Angle of attack 1
Subject to ∆yLE,upper =

−∆yLE,lower

Fixed leading edge constraint 1

∆yTE,upper =
−∆yTE,lower

Fixed trailing edge constraint 1

Cl = 0.824 Lift constraint 1
Cm ≥ −0.092 Pitching moment constraint 1
A ≥ kareaAinit Area constraint 1

A 20× 2 FFD control box was used to parameterize the airfoil shape, as shown in
Figure 8. We verified the accuracy of the data-driven constraint gradient (11) via the
finite-difference method with the marked control points in Figure 8. The normalized
error was computed as ε = |g′ − g′

FD|/|g
′ |, where g

′
and g

′
FD are the gradient values

given by Eq. (11) and finite differences, respectively. Owing to truncation cancellation
errors, the finite-difference gradient was only accurate with a suitable difference step
size, which can be found by a step-size study [36]. Using the appropriate step sizes, we
found the normalized errors to be around 10−8, as shown in Figure 9.

p1
p2 p3

p4
p5

p6

Figure 8: FFD box used in the airfoil optimization, showing the design variables used
in the gradient verification.
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Figure 9: The gradient given by Eq. (11) agrees well with the finite-difference gradient
when using a step size of around 10−8.

As shown in Table 1, there is one geometric constraint in the ADODG case, which
prevents the cross-sectional area from decreasing by more than a factor of karea. This
constraint prevents the optimization from converging to unrealistic shapes to some
extent. However, the value of this area has a large effect on the optimum shape. To
study the effect of the area constraint value, we solved this problem with five different
values of karea. In addition to the constraints shown in Table 1, we added 30 thickness
constraints along the chord to prevent the upper and lower surfaces from crossing.

3.2 Optimization With Different Constraints

The optimization results with different area constraints are shown in Figure 10. All the
optimizations converge to airfoils with shock-free pressure distributions, and, therefore,
their drag coefficients are all reduced. However, the leading edge of the optimized
airfoils becomes sharper as the area constraint decreases. This would be an issue for
structural design and has a negative impact on the low-speed aerodynamic performance
of the clean wing as well.

To address this issue, we could explicitly add a constraint on the thickness or radius
of the leading edge to prevent it from decreasing during the optimization. As previously
discussed, this approach requires trial and error for each specific case. The data-
driven constraint proposed herein can be regarded as an implicit geometric constraint.
We compared the performance of both approaches in the airfoil optimization with
karea = 0.4. The explicit geometric constraint was set to x/c = 0.002 to prevent the
thickness from decreasing. To show the robustness of the data-driven constraint ap-
proach, we used three lower bounds, i.e., fGMM ≥ −1.0, fGMM ≥ 0.0, and fGMM ≥ 0.6,
according to the analysis in Figure 7. In the following context, we note these two types
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Figure 10: Optimization with different area constraints. As the allowable area de-
creases, the airfoil leading edge becomes much sharper.

of constraints as the thickness constraint and the data-driven constraint, respectively,
and the optimization with the basic area constraint (Figure 10) is noted as the basic
constraint.

Similar to the results in Figure 10, the optimization with both the thickness and
the data-driven constraints converges to shock-free shapes, as shown in Figure 11.
These results do not exhibit the type of unrealistic thin leading edges obtained using
only the basic constraint. However, the thickness constraint results in an unrealistic
shape for the trailing edge, while the shapes obtained with the proposed data-driven
constraint look more realistic. Thus, data-driven constraints achieve slightly smaller
drag coefficients than those of the thickness constraint. Furthermore, the three fGMM

lower bounds lead to similar optimized shapes and Cp distributions, which demonstrate
the robustness of the data-driven constraint.

We also performed an eleven-point optimization as a comparison, where the objec-
tive function was the weighted average Cd of all design points. Other than the cruise
design point with M = 0.734 and Cl = 0.824 in ADODG Case 2, 10 other design points
in both subsonic and transonic regimes were involved, as shown in Figure 12. For a mul-
tipoint design optimization to be credible, the flight conditions and respective weights
have to be appropriate [7]. We chose the weights according to the analyses of previous
optimization results and emphasize the transonic conditions to ensure a cruise perfor-
mance. This multipoint optimization yields an optimum with a leading edge thicker
than that of the single-point optimum with the basic constraint, and it is close to
optima obtained with the data-driven constraints.
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Figure 11: Optimization with different constraints.

To analyze the off-design transonic performance of the optimized airfoils, we com-
puted the drag divergence curves and plotted them in Figure 13. The drag divergence
curves for the airfoil optimized with the data-driven constraints were close to those
optimized with just the basic constraint (Figure 10), while the curves of the opti-
mized airfoil with the thickness constraint were significantly above the others. Despite
the explicit constraint formulation addressing the thin leading edge issue, it sacrificed
the aerodynamic performance over the whole transonic regime. The data-driven con-
straints, on the other hand, achieved almost the same performance as that of the basic
constraint case while obtaining much more realistic airfoils.

Modifying the explicit thickness constraint according to the area constraint value
may provide similar results to the data-driven constraint; however, it requires trial and
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Figure 12: Eleven-point airfoil design optimization leads to a result close to the opti-
mum from the data-driven constraint approach.

error to find the appropriate constraint value. In wing shape design optimization, this
is especially difficult because the ideal sectional areas vary with the spanwise position,
while the data-driven constraint is more widely applicable. Although increasing the
lower bound of the data-driven constraint affects the transonic performance, the curves
in Figure 13 show that the optimization still yields sensible results for different values
of fGMM.
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Figure 13: Optimization with the thickness constraint decreases the improvement in
the transonic regime relative to the optimization with the data-driven constraint.

As shown in Figure 13, multipoint optimization achieves good performance around
the cruise point; however, the drag increases severely as the speed rises, which reduces
the drag-divergence Mach (Mdd) numbers. Involving optimization points in the drag-
divergence Mach domain could address this issue to some extent; however, we find that
it makes the multipoint optimization more sensitive to the combination weights. In ad-
dition, the optimizer tends to reduce the weighted drag by decreasing the subsonic per-
formance to increase Mdd, which makes the result impractical. In these circumstances,
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the data-driven constraint might be a better choice than multipoint optimization.
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Figure 14: Improvement by the data-driven constraint to the low-speed performance
of the optimized airfoil.

We also plotted the drag polars for the airfoils optimized with the data-driven
constraint at different Mach numbers in the subsonic regime, as shown in Figure 14.
These drag polars were much wider after adding the data-driven constraint, compared
with those of the airfoil optimized with the basic constraint. Therefore, we conclude
that the data-driven constraint significantly increases the low-speed performance of
optimized airfoils almost without decreasing the transonic performance.

3.3 Impact of the Airfoil Database

Data-driven approaches rely on a wealth of data to learn the underlying patterns. The
selection of an airfoil database might have an impact on the data-driven constraint and
optimization results.
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Figure 15: fGMM = 0 contours with GMMs trained by different airfoils.
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We investigated this impact by using different airfoils in the training of the GMM.
Because the airfoil database we used contains different families of airfoils and it is
difficult to find another database of a similar size, we generated the training data sets
by randomly selecting airfoils from this database. Owing to the transonic application
of this data-driven constraint, we kept the NASA transonic airfoils in all training sets.
Figure 15 shows that fGMM = 0.0 contours of GMMs trained by different airfoil sub-
sets are similar. We performed airfoil optimization with kaera = 0.4, using it as the
data-driven constraint.
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Figure 16: Optimization with data-driven constraints derived from different airfoils.

Table 2: Comparison of optimization results with data-driven constraints derived from
different airfoils.

fGMM dataset Optimized α (◦ ) Optimized Cd (counts) L2 norm of difference in shapes

All airfoils 2.1333 87.66 –
1000 airfoils 2.1384 87.86 0.0069
900 airfoils 2.1358 87.80 0.0090
800 airfoils 2.1317 88.13 0.0094
700 airfoils 2.1337 87.75 0.0116
600 airfoils 2.1320 87.70 0.0145

As shown in Figure 16 and Table 2, the optimization results with GMMs trained
by random subsets are all close to those optimized with the constraint derived from all
airfoils, which means that different training data do not have a significant impact on
the optimization with the proposed data-driven constraint.
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4 Wing Shape Optimization
Aerodynamic shape optimization of aircraft wings is usually subject to volume or thick-
ness constraints. A volume constraint is mainly used to ensure enough volume for the
fuel. However, thickness constraints are not easy to define because they are highly de-
pendent on the wing structure and design trade-offs between the aerodynamic and the
structural performance, and it is best done directly through aerostructural optimiza-
tion [37]. In a pure aerodynamic shape optimization, thickness constraints that prevent
the wing shape from moving inside a reasonable baseline shape like the CRM wing will
satisfy structural and manufacturing requirements. However, such strict thickness con-
straints sacrifice the potential improvement in aerodynamic performance [10]. More-
over, thickness constraints are even more challenging to define when a good baseline
shape is not available.

Table 3: Wing optimization problem statement. This is identical to the ADODG
CRM single-point wing optimization problem [10] with the addition of the proposed
data-driven constraint.

Function Description Quan-
tity

Minimize CD Drag coefficient 1
With respect
to

zshape z perturbation of the FFD control
points

720

α Angle of attack 1
Subject to CL = 0.5 Lift constraint 1

CMy ≥ −0.17 Pitching moment constraint 1
V ≥ Vinit Minimum volume constraint 1
t ≥ 0.25tinit Minimum thickness constraints 750
∆zTE,upper =
−∆zTE,lower

Fixed-wing root incidence constraint 1

∆zLE,upper =
−∆zLE,lower

Fixed-wing leading edge constraints 15

fGMM Data-driven constraints on sections 8

The ADODG Case 4 wing optimization benchmark 5 took the approach of con-
straining the thickness to be greater than or equal to 25% of the baseline CRM wing
thicknesses at any point and the volume to be greater than or equal to the baseline [10].
This low value for the thickness constraint was chosen so as not to restrict the aero-
dynamic performance improvement too much. However, the optimal wings exhibited
airfoil sections that were too thin to be considered practical and thin leading edges
that would adversely impact low-speed performance [10, 13, 38].

We sought to address this issue in the CRM wing optimization by adding the data-
driven constraints. The optimization problem statement is detailed in Table 3. This
problem is identical to the ADODG CRM wing single-point optimization benchmark.
The single flight condition was M = 0.85 and Re = 5 × 106. Following the ADODG

5http://mdolab.engin.umich.edu/content/aerodynamic-design-optimization-workshop
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benchmark case, there were 750 thickness constraints that prevented the local thickness
from decreasing to less than 25% of the initial value. We used the same L2 level mesh
and FFD control points used by Lyu et al. [10] (shown in Figure 17).

(a) Surface mesh of the CRM wing (b) FFD control box

Figure 17: The mesh and FFD control box used in the CRM wing optimization

(a) Along the freestream direc-
tion

(b) Perpendicular to the
quarter-chord line

Figure 18: The two airfoil section orientations used to enforce the data-driven geometric
constraints.

The data-driven constraints are intended to ensure that the fGMM values for all
airfoil cross sections are consistent during the optimization. We investigated two airfoil
section orientations: freestream direction and perpendicular to the quarter-chord line.
Both approaches enforce eight fGMM constraints at airfoil sections distributed evenly
from the root to the tip, as shown in Figure 18. We also solved two other optimization
problems without the data-driven constraints for comparison. In total, we solved the
four optimization variations on the problem detailed in Table 3:

Basic constraints: This problem enforces the constraints in Table 3 except for the
data-driven constraints.

Strict thickness constraints: In addition to the basic constraints, 750 strict thick-
ness constraints are enforced such that the optimized shape lies outside the start-
ing shape.
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Data-driven constraints (freestream): This solves the problem of Table 3, where
the airfoils considered for the data-driven constraints are oriented in the freestream
directions.

Data-driven constraints (chord line): Same as the above, but the airfoils in the
data-driven constraints are perpendicular to the wing quarter-chord line.

4.1 Optimization Results With Different Constraints

Figure 19 shows the baseline CRM wing and the optimized wing subject to the basic
constraints. The optimization eliminates shock waves, and, thus, the drag is signifi-
cantly reduced. In addition, the optimization decreases the thickness near the leading
edge, and some sections in the optimized wing, such as Sections E and F, are unrealistic.

Figure 19: Optimization with the basic constraints in Table 3

Figure 20 shows that the strict thickness constraints addressed the thin leading
edge issue and made the optimization converge to a reasonable shape. However, these
strict thickness constraints negatively affected the optimization gains and, thus, the
optimized CD was larger than that in the optimization with the basic constraints
(Figure 19) by 4.23 counts.
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Figure 20: Optimization with the strict thickness constraints

Figure 21: Optimization with data-driven constraints (free stream)
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Figure 22: Optimization with data-driven constraints (chord line)

As shown in Figure 21 and Figure 22, the data-driven constraints also addressed
the thin leading edge issue, and the leading edge thickness increased compared with the
optimization with the basic constraints (Figure 19). More importantly, the data-driven
constraint did not affect the optimization gains: the optimized drag coefficients with
two different data-driven constraints were close to those achieved with the basic con-
straints. Applying the data-driven constraints along the freestream direction resulted
in more improvements in the thin leading edge issue. The optimization results demon-
strate that the data-driven constraints address the thin leading edge issue without
decreasing the optimization gain in the on-design point. We discuss the aerodynamic
performance of these designs by CFD evaluations in Section 4.2.

4.2 Aerodynamic Performance Comparison of Designs by Different
Constraints

We used CFD-based RANS to compare the performance of these designs in the subsonic
and transonic regimes. Figure 23 shows their drag divergence curves with different CL,
and Figure 24 shows their CL–CD drag polars with M = 0.2.

Compared with the baseline, the optimization with the basic constraints did not
have any negative effects on the off-design points when M > 0.84. That is why previous
studies [10, 13] did not completely address the thin leading edge issue using a multi-
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Figure 23: Drag divergence curves showing that the optimized shape with the strict
thickness constraints seriously affects the optimization gains in the transonic regime.

point design in the transonic regime. The strict thickness constraints addressed the
thin leading edge issue at the expense of the transonic performance. For example, in
Figure 23, optimization with the strict thickness constraints only reduced the drag near
the on-design point M = 0.85, while, in the regime with a larger Mach number, the
drag of the optimized wing was larger than that of the baseline wing. The optimization
with the strict thickness constraints did not obviously improve the performance at the
on-design point but might have reduced the drag-divergence Mach number. Therefore,
the strict thickness constraints are not suitable for the aerodynamic shape optimiza-
tion in this case, and this type of thickness might not be suitable for other detailed
aerodynamic shape optimization either.

Optimization with the data-driven constraints obviously has a better transonic
aerodynamic performance. As shown in Figure 23, the curves of the data-driven con-
straints are similar to those of the optimization with basic constraints. In addition, en-
forcing the data-driven constraints on sections perpendicular to the quarter-chord line
achieved a slightly better transonic performance than that of enforcing the data-driven
constraints along the freestream direction. Overall, optimization with the data-driven
constraints effectively reduced the drag in the transonic regime.

We also compared the subsonic performance of different designs in Figure 24, which
shows the drag polar of three designs at M = 0.20. Because CFD-based RANS cannot
accurately simulate flows at high angles of attack, we only provided the drag polar
with CL ≤ 0.7. The design with the strict thickness constraints had a similar drag
polar to that of the baseline wing, and, therefore, this constraint maintained the initial
subsonic performance. The thin leading edge issue that occurred in the optimization
with the basic constraints significantly affected the subsonic performance, shifted the
drag polars to the right, and, thus, increased the drag overall. With the data-driven
constraints, the thin leading edge issue was addressed and the drag polars shifted to
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Figure 24: Improvement by the data-driven constraints to the low-speed performance
of the optimized wing.

the left of the basic constraint drag polar. In addition, the data-driven constraints
applied to the cross sections along the freestream direction made it more effective to
improve the subsonic performance, and this was expected on the basis of the optimized
shapes in Figure 21 and Figure 22.

Figure 25: Flow over the baseline CRM wing with M = 0.2, Re = 1.0 × 106, and
CL = 0.7

Figure 25 shows the flow over the baseline CRM wing with M = 0.2, Re = 1.0×106,
and CL = 0.7, and Figure 26 shows the corresponding flows over the optimized wings.
The thin leading edge in the optimization with the basic constraints induced flow
separations, which accounted for its larger drag. In addition, early flow separation
decreased the maximum CL, which could degrade the low-speed performance. The
strict thickness constraints and the data-driven constraints delayed the separation,
improving the subsonic performance of the optimized wing.

Overall, although strict thickness constraints can maintain the subsonic perfor-
mance, the benefits to the on-design point are decreased. On the other hand, the
data-driven constraints we developed improve the subsonic performance without los-
ing the optimization benefits in the transonic regime. For more comprehensive wing
optimization, structures should be modeled and designed concurrently [37, 39]. In ad-
dition, an accurate analysis of high-angle-of-attack flow conditions would be required.
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(a) Basic constraints (b) Strict thickness constraints

(c) Data-driven constraints (free stream) (d) Data-driven constraints (chord line)

Figure 26: Flows over the wings optimized with different constraints at M = 0.2, Re =
1.0× 106, and CL = 0.7

5 Conclusions
The thin leading edge issue in transonic aerodynamic shape optimization significantly
affects the subsonic performance. Although the final solution to this issue is via high-
fidelity multidisciplinary design optimization, it can be addressed at low computational
cost by adding suitable constraints. However, explicit geometric constraints require a
large amount of trial and error. We propose a data-driven approach to learn the
underlying knowledge built into a database of actual airfoils. We convert the engineer-
ing experience into a continuously differentiable function through a Gaussian mixture
model, which makes it viable to impose the corresponding constraint in gradient-based
optimization.

Transonic aerodynamic shape optimization where the cross-sectional area is allowed
to decrease is likely to sharpen the leading edge to decrease the drag, leading to thin
leading edge issues, especially in the outer wing sections.

The data-driven constraint developed herein addresses this issue. Unlike the con-
ventional approach of constraining the geometry explicitly, the data-driven constraint
approach increases the off-design low-speed performance without affecting the opti-
mization gains in the on-design transonic cruise points. Further analyses reveal that
this constraint makes airfoil and wing design more robust with respect to flow condi-
tions. Furthermore, the designs obtained with the data-driven constraints appear to
be more reasonable from a structural point of view.

The proposed data-driven approach realizes the automatic conversion from design
data to useful continuously differentiable constraints, which reduces manual interven-
tion. This idea of data-driven constraints can be used in many other engineering
problems where large-enough databases of actual practical designs exist.
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