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Surrogate-based optimization has been used in aerodynamic shape optimization, but it
has been limited due to the curse of dimensionality. Although a large number of variables
are required for the shape parametrization, many of the shapes that the parametrization can
produce are abnormal and do not add meaningful information to a surrogate model. To
improve the efficiency of surrogate-based optimization, we apply recent machine learning
techniques to reduce the abnormality of both initial and infill samples. We propose a new
sampling method for airfoils and wings, which is based on a deep convolutional generative
adversarial network. This network is trained to learn the underlying features among the
existing airfoils and is able to generate sample airfoils that are notably more realistic than
those generated by other sampling methods. In addition, we develop a discriminative model
based on convolutional neural networks. This model detects the geometric abnormality of
airfoils or wing sections quickly without using expensive computational fluid dynamic models.
We embed these machine learning models in a surrogate-based aerodynamic optimization
framework and perform aerodynamic shape optimization for airfoils and wings. The results
demonstrate that, compared with the conventional methods, our proposed models can double
the optimization efficiency.

Nomenclature

A = Airfoil area
Cd = Drag coefficient
Cl = Lift coefficient
Cp = Pressure coefficient
D = Discriminative model
G = Generative model
M = Mach number
Re = Reynolds number
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Svalidity = Discriminative score provided by the convolution model
t = Thickness
V = Wing volume
xshape = Shape design variables
α = Angle of attack
θ = Lower bound of Svalidity in design optimization

I. Introduction
Aerodynamic shape optimization based on computational fluid dynamics (CFD) has been widely used in aircraft

design. Various optimization approaches, such as the adjoint-based high-fidelity optimization [1, 2], surrogate-based
optimization [3–5], data-based design optimization [6–8], and hybrid methods [9, 10] have been developed to satisfy
different demands. As reviewed by Yondo et al. [11], surrogate-based design optimization is a popular approach due to
the easy implementation, which has been applied in airfoil design [12], wing design [13], and aerostructural design
optimization [14]. This approach does not necessarily require gradient information, the computation of which is either
time-consuming or requires an adjoint solver. This makes it possible to use a black-box CFD solver, such as a robust
commercial software or a legacy code. However, the optimization efficiency of surrogate methods leaves much to be
desired, especially in high-dimensional design problems where surrogate models suffer from the curse of dimensionality.
Therefore, it is important to develop new methods to improve the efficiency of surrogate-based optimization.

Previous efforts to improve the surrogate-based optimization efficiency mainly emphasize two parts: more accurate
surrogate models or smaller design spaces. Kriging models [15] are the most popular surrogate models used in this
field. Different variations of Kriging have been developed. For example, the gradient-enhanced Kriging (GEK) [16, 17]
uses the gradient information to improve the model accuracy, which has been shown more effective than conventional
Kriging in airfoil design optimization. Bouhlel et al. [18] proposed a Kriging model with the partial least-squares
method (KPLS) to reduce the computational cost of training Kriging models in high-dimensional problems. Bouhlel
and Martins [17] further developed a gradient-enhanced version of KPLS, GEKPLS, to improve accuracy using gradient
information. According to their results, KPLS and GEKPLS have better accuracy than Kriging and GEK for the
same number of training points. Besides the dimensionality, the range of the design variable values is another factor
influencing the accuracy of surrogate models. Liem et al. [19] coupled Kriging with clustering algorithms to construct a
mixture of experts (ME) strategy. This ME model has been shown to be more accurate than regular Kriging in a large
design space covering the whole flight envelope of aircraft.

Moreover, simplifying the design space also improves the efficiency of surrogate-based optimization, which is mainly
performed by reducing the dimensionality of the design variables. For example, Li et al. [4] proposed a surrogate-based
optimization approach with the active subspace method (ASM) to reduce the high-dimensional inputs. By projecting the
original 220 design variables to four ASM vectors, they made the aircraft wing design optimization much more efficient.
In addition, singular value decomposition (SVD) is used to derive orthogonal airfoil mode shapes [20, 21]. These airfoil
modes have been shown to be more efficient than regular parameterization methods [22], so fewer parameters can be
used in the aerodynamic shape optimization. Li et al. [6] investigated the relationships between two dominant airfoil
modes and higher-order modes and managed to shrink the design space using margin surfaces of higher-order modes
to exclude abnormal airfoils. Chen et al. [23] proposed a parameterization method for airfoils based on generative
adversarial networks (GAN) that constructs low-dimensional airfoil shape representations using machine learning
techniques. GAN is a machine-learning model proposed by Goodfellow et al. [24], which learns to generate new data
with the same statistics as the training set. Compared to SVD mode shapes, GAN mode shapes produce more realistic
airfoils. Chen et al. [23] achieved better optimization results by using GAN mode shapes than other parameterization
methods.

Training data have a significant impact on the accuracy of surrogate models and further influence the overall
efficiency of surrogate-based optimization. However, there have been few efforts toward improving the quality of
training data. In surrogate-based optimization, training data is composed of initial samples and infill samples. Initial
samples are generated by a sampling method in the design of experiment (DoE) process, which is typically the first step
of surrogate-based optimization. Existing sampling methods, such as the Latin hypercube sampling (LHS) method [25]
cannot ensure realistic samples in aerodynamic shape optimization, because they are designed to generate samples
distributed evenly without considering feasibility. Because of the usage of these methods, many samples associated
with abnormal aerodynamic shapes are thus included in the initial training data, which cannot be used in practice. In
addition, these samples are not the most effective for training surrogate models to predict aerodynamic functions of
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designs with realistic shapes [6]. Using existing airfoils as initial samples could be a solution, but it is difficult to have
enough samples, since the number of existing airfoils is limited.

Infill samples are added by solving sub-optimization problems in surrogate-based optimization, where aerodynamic
functions in the objective and constraints are evaluated by surrogate models. Due to the inaccuracy of surrogate models,
the shapes of new infill samples are also not guaranteed to be realistic. In fact, many infill samples have such abnormal
aerodynamic shapes that they do not add meaningful information to surrogate models. Refining surrogate models with
these infill samples further reduces the accuracy in predicting aerodynamic coefficients of realistic shapes, which leads
to a vicious circle. Thus, it is of great importance to avoid abnormal shapes in training data.

Abnormal airfoil shapes, such as multimodal shapes, obviously result in bad aerodynamic performance. However,
these geometric abnormalities are hard to define mathematically. Thus, it is difficult to exclude abnormal shapes by
explicitly defining geometrically infeasible domains in an aerodynamic design space. We seek to address this issue by
using deep learning techniques. First, we propose a sampling method with a deep convolutional generative adversarial
network (DCGAN). This method produces realistic airfoil and wing samples by learning the underlying distribution
features among the existing airfoils in the University of Illinois Urbana-Champaign (UIUC) airfoil database. Then, we
propose a discriminative model for evaluating the feasibility of airfoils or wing sections using a convolutional neural
network (CNN). This CNN discriminator is trained by 20,000 realistic DCGAN airfoils and 20,000 abnormal LHS
airfoils. We use this discriminator as a constraint function to avoid abnormal infill samples. Then, we couple the
proposed methods with a surrogate-based optimization framework and perform aerodynamic shape optimization of
airfoils and wings to verify the advantages.

The rest of this paper is organized as follows. First, we introduce the DCGAN model (Section II.A) and the CNN
discriminator (Section II.B). We present the sampling method based on DCGAN in Section II.C. We investigate the
influence of the training database on the DCGAN model in Section II.D. Then, we present the optimization framework
in Section III.A. We show the airfoil design optimization and wing design optimization results in Section III.B and
Section III.C, respectively. We finish with our conclusions in Section IV.

II. Methodology

A. Deep Convolutional Generative Adversarial Network of Airfoils
GAN consists of two “adversarial” models: a generative model G that captures the training data distribution Pdata

and a discriminative model D that estimates the probability that a sample comes from the training data rather than G.
Both G and D could be a nonlinear mapping function, such as a CNN. In these circumstances, the model is referred to
as DCGAN [26], where DC is short for deep convolutional. Models G and D are trained simultaneously to reach a Nash
equilibrium, which is the optimal point for the value function V in a two-player minimax game defined as

min
G

max
D

V(D,G) = Ex∼Pdata [log D(x)] + EZ∼Pz [log(1 − D(G(z)))], (1)

where x and z are the training dataset and noisy inputs, respectively. By learning the underlying features of Pdata, G
manages to produce similar synthetic versions of training data just using noisy inputs.

Different variants of GAN models have been successfully used to generate realistic and even hyper-realistic image
and voice synthesis [27]. In the field of aerodynamics, Chen et al. [23] used GAN to construct a compact set of
airfoil shape representations. Airfoils produced by this approach are more realistic than the conventional mode shape
approaches. These GAN mode shapes were then used to parameterize airfoils in aerodynamic shape optimization. In
this work, we apply DCGAN, not as a parameterization method, but to directly generate realistic airfoil coordinates.
Then, this DCGAN model can be further coupled with any conventional parameterization methods such as class-shape
transformations, B-splines, Hicks–Henne bump functions, to obtain realistic samples [22]. The proposed approach can
retain the high number of shape design variables currently used in airfoil design optimization.
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Fig. 1 Flowchart of the DCGAN trained with an airfoil database.

The flowchart of the DCGAN model in this work is shown in Fig. 1. Instead of generating images, we use this model
to produce airfoil coordinates, which are in a vector format. The training data is chosen from the UIUC airfoil database.
The training of DCGAN is an adversarial process with both discriminative and generative models. The discriminative
model D uses a fully connected layer to perceive the input information. Then, it uses four convolution layers to extract
underlying features, which is referred to as the downsampling process. These features are linked to a fully connected
layer with one scalar output, which is used to distinguish whether an input is from the training data set or synthetic data
of the generative model. The generative model G is trained to provide synthetic data using noisy inputs. The noisy input
is followed by a fully connected layer. This layer is reshaped and then upsampled by four transposed convolution layers.
The output of the last transposed convolution layer in the generative model corresponds to the coordinates of an airfoil.
The DCGAN is trained using the Adam gradient-based optimization algorithm for stochastic objective functions due to
its high efficiency [28].

We use the open-source script by Li et al. [29] to preprocess raw UIUC data and obtain 1407 airfoils in a uniform
x-y format with N = 251 points. The x coordinates are given by Eq. 4 in the Appendix. We store each airfoil as
a vector y with the corresponding yi coordinates. The airfoils in this database have different camber and thickness
characteristics and have been designed for different purposes. Thus, various scalings are needed, which is an issue
when trying to capture the common features among them. To overcome this, we propose a normalization method to
reduce the difference in the training data. The normalization first removes the dominant camber information from
the data by subtracting the component contributed by the first camber mode. The camber mode is solved by using
the camber-thickness shape mode method proposed by Li et al. [6] (see Appendix for details). Then, we scale the
remaining component of the airfoil by dividing the maximum absolute value of y, which we refer to as the thickness
factor. After the normalization, all values are in the [−1, 1] interval. The details of this normalization method are shown
in Algorithm 1 and Fig. 21 in the Appendix shows sample airfoils before and after the normalization.

The G model in DCGAN takes noise from the latent space as the input. We use a one hundred dimensional
latent space as in other applications of GAN [30]. This noise conforms to the standard normal distribution. In D,
the downsampling process could either be realized by using a pooling layer or using stride steps larger than one in
convolution layers. We use convolution layers with a stride r = 2 instead of adding a pooling layer because it tends to
improve the overall accuracy and stability of the model [31]. Similarly, the upsampling in G is performed by using
transposed convolution layers with r = 2, rather than by adding an unpooling layer. We adopt a four-layer structure in
both G and D based on trial and error. Although this choice may not be optimal, we find that it works well with the
given airfoil format. Table 1 shows the number of filters and weights in the DCGAN model.
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Algorithm 1 Normalization of airfoil data

1: procedure Normalization(y, C) . y ∈ RN is the vector of airfoil y coordinates and C is the first camber mode
2: ycamber = fc(y) . fc computes the camber line coordinates of this airfoil
3: c1 = CT ycamber . Compute the component contributed by the first camber mode
4: for i = 1; i ≤ n f ; i + + do . Cycle to subtract the first camber component
5: yi = yi − c1Ci

6: yN−i−1 = yN−i−1 − c1Ci

7: end for
8: t = max

��y�� . Compute the thickness factor
9: y = y/t . Normalize
10: return y . Return normalized y
11: end procedure

Table 1 Number of filters and weights in each convolution or transposed convolutional layer of the DCGAN
model

Generative model Discriminative model
Filters Weights Filters Weights

First layer 4 × ndepth 128 × ndepth × nsize ndepth ndepth × (nsize + 1)
Second layer 2 × ndepth 8 × n2

depth × nsize 2 × ndepth 2 × ndepth × (nsize × ndepth + 1)
Third layer ndepth 2 × n2

depth × nsize 4 × ndepth 4 × ndepth × (2 × nsize × ndepth + 1)
Fourth layer 1 ndepth × nsize 8 × ndepth 8 × ndepth × (4 × nsize × ndepth + 1)
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Fig. 2 Effect of nsize and ndepth on the DCGAN model.

The size (nsize) and depth (ndepth) of the filters are two important model parameters that influence the convergence
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and performance of DCGAN. We conduct several tests to determine good values for these parameters. Fig. 2 shows
the convergence histories and synthetic airfoils of generative models with different values of nsize and ndepth. For each
DCGAN, we show 3 × 4 synthetic airfoils, which are generated by random inputs and converted using Algorithm 2 with
a fixed thickness factor and camber coefficient.

The filter size has a significant influence on the performance of DCGAN. Using nsize < 3 cannot make the generative
model produce smooth airfoil shapes. Increasing nsize makes DCGAN models converge faster. Increasing ndepth will
cause difficulty in training the model. However, it is necessary to make the depth larger than 5 (ndepth > 5); otherwise,
the synthetic airfoils may be not reasonable (see the synthetic airfoils with nsize = 3 and ndepth = 5 in Fig. 2). Overall, if
either nsize or ndepth are not too small, the synthetic airfoils are similar to real airfoils, which demonstrates the robustness
of the DCGAN model. Thus, we use nsize = 7 and ndepth = 10 in this work. The chosen DCGAN has 68,394 and 30,901
trainable parameters in the generative and discriminative model, respectively. Modifying these hyperparameters, by for
example maximizing the inception score [32], might further improve the performance. Nevertheless, the chosen model
is stable with different initialization weights, as shown in the Appendix. In Section II.4, we show that this model works
well using different airfoil datasets.

GAN is known to be very unstable due to the mode collapse issue, where the generative model can only produce a
small portion of the trained distribution. This leads to similar or even the same synthetic airfoils and thus DCGAN
cannot contain necessary diversity for the sampling purpose. Different approaches, such as the Wasserstein GAN [33],
have been proposed to address this issue. Other generative models, such as normalizing flows [34, 35], have been
shown to not suffer from the mode collapse issue. As shown below, we find that the airfoil normalization presented in
Algorithm 1 helps avoid this issue as well.

We use the inception score (IS) proposed by Salimans et al. [32] to evaluate the diversity of DCGAN outputs. As
demonstrated by Zhou et al. [36], mode-collapsed GANs usually get low inception scores. The score is given by:

IS(G) = exp
(
E

[
DKL

(
p(y |xGAN)| |p(y)

) ] )
, (2)

where xGAN and y are synthetic airfoils of DCGAN and their classification labels and DKL is the Kullback–Leibler
divergence between the conditional class distribution p(y |xGAN) and the marginal class distribution p(y). We
compute p(y |xGAN) using a Gaussian mixture model (GMM) [6, 29] which is a mixture of finite number of Gaussian
distributions trained by the UIUC database to classify airfoils. The probability density function of GMM is p (x) =∑K

i=1 φiN
(
x |µi ,Σi

)
, where φi (i = 1, . . . ,K) are the combination weights (

∑K
i=1 φi = 1) and K is the number of

Gaussian components. Each component represents a class of airfoils. The hyperparameters in GMM are solved by
maximizing the likelihood function p (X) =

∏Ntraining
n=1 p (xn) on the training data (UIUC airfoils). The chosen GMM has

K = 10 components because we find the likelihood function does not significantly increase afterward. The inception
score has the lowest value of 1.0 and the highest value of the number of classes supported by the classification model.
For the DCGAN trained without using the normalization process, an average score of IS(G) = 3.23 is obtained in
multiple tests. This score increases to IS(G) = 4.78 in the proposed DCGAN. Airfoil normalization increases the
diversity of DCGAN and thus helps address the mode collapse issue.

In addition to the inception score, we use another metric, the maximum mean discrepancy (MMD), to evaluate the
quality of synthetic airfoils. MMD computes the dissimilarity between training data and synthetic data. A lower MMD
means the distribution of synthetic data is closer to that of training data and thus is desirable. We use an empirical
estimate of MMD [37], which is formulated as:

�MMD =
1
n2

n∑
i=1

n∑
j=1

k(xi, x j) +
1

m2

m∑
i=1

m∑
j=1

k(xiGAN, x
j
GAN) −

2
nm

n∑
i=1

m∑
j=1

k(xi, x j
GAN), (3)

where n and m are the numbers of training and synthetic samples; xi and xiGAN are the ith training and synthetic airfoil;
k is the kernel function and we use a radial kernel k(x, y) = exp(− | |x−y | |

2

2θ2 ) with θ = 0.1.
We analyze the influence of latent space dimension (from 1 to 1000) using IS and MMD scores computed in multiple

tests. The mean and standard deviation (SD) of these metrics are shown in Table 2. A low latent space dimension
(dlatent ∼ 1) would lead to a DCGAN with insufficient control ability and thus results in geometric failures, such as
crossing surfaces near trailing edges (see examples of synthetic airfoils in Table 2). Higher latent space dimensions
(dlatent ≥ 10) make DCGAN generate reasonable synthetic airfoils. The increase in latent space dimension improves
both diversity (higher inception scores) and validity (lower MMD scores) of synthetic airfoils although no significant
difference could be detected by visual inspection.
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Table 2 Influence of the latent space dimension

dlatent
IS MMD

Synthetic airfoils
Mean SD Mean SD

1 4.25 0.14 0.154 0.026

10 4.77 0.11 0.123 0.026

100 4.78 0.11 0.120 0.025

1000 4.81 0.09 0.118 0.026

B. Airfoil Discriminator with Convolutional Neural Networks
In surrogate-based aerodynamic shape optimization, infill samples may be generated with abnormal shapes due to

surrogate model inaccuracy. It is helpful to use additional simple functions to constrain the aerodynamic shape in the
infill process. In the field of airfoil and wing design optimization, this can be done with geometric functions on the
sectional shape. Li et al. [29] proposed a data-driven geometric constraint on the leading edge thickness to enhance the
low-speed performance in transonic wing design. Nevertheless, it is difficult to design a universal function to judge the
shape abnormality with a limited number of existing airfoils (only ∼ 1500).

In this work, we manage to generate numerous realistic airfoils with the DCGAN model introduced above. With
sufficient training data, we construct a discriminative model shown in Fig. 3. This model uses four convolution layers to
extract features in the training data. Filter sizes and depths are the same as those in the discriminative model of the
DCGAN. These features are summarized by a fully connected layer with one neuron, which provides a discriminative
score. In the training data, realistic airfoils and abnormal airfoils are labeled with ones and zeros, respectively. The
loss function of this model is the mean square error of discriminative scores to the labels, and the binary cross-entropy
function can also be used in this model. We use Adam to minimize the loss function [28].

Loss function

Discriminator

Synthetic airfoils
by DCGAN

Predicted
labels

Realistic labels

Abnormal labels
Abnormal airfoils

by LHS

Model updates by Adam

Normalization
process

Fig. 3 CNN-based discriminator of airfoil abnormality.

We train the CNN discriminator using 20,000 realistic airfoils and 20,000 abnormal airfoils. The realistic airfoils are
generated by the DCGAN model, which we refer to as GAN airfoils. The abnormal airfoils are generated by perturbing
control points of UIUC airfoils using LHS. As shown in Fig. 7 and in [6], most of the airfoils generated this way are
abnormal. A discriminative score near zero means the airfoil is abnormal, while a score around one corresponds to a
realistic airfoil. Figure 4 shows discriminative scores of another 5000 LHS airfoils, another 5000 GAN airfoils, and
UIUC airfoils provided by the CNN model. The CNN discriminator manages to distinguish abnormal airfoils from
realistic ones.
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Fig. 4 The CNN discriminator manages to distinguish abnormal airfoils from realistic ones.

Similarly to other discriminative methods, such as logistic regression, the CNN discriminator is trained to label
samples. A CNN discriminator can be advantageous because it is model-free and inherently nonlinear. It may seem
to be redundant to train an independent CNN discriminator, since DCGAN already contains a discriminative model.
However, the discriminative model in DCGAN is trained to distinguish synthetic airfoils from database airfoils, which
are all realistic. As shown in Fig. 23 of the Appendix, we find that the DCGAN discriminative model cannot distinguish
realistic airfoils from abnormal ones. Thus, it is necessary to have such an independent discriminative model. In
addition, it is possible to obtain a compact model by combining the training of DCGAN and the CNN discriminator.

To avoid geometric abnormality, we use the CNN discriminative function as a constraint on airfoils and wing sections
in the following optimizations, i.e, Svalidity ≥ θ. The selection of θ would compromise the optimization efficiency and
efficacy, and a conservative θ may even limit the discovery of novel shapes with good performance. Nevertheless, this
influence can be within an acceptable range by using an appropriate θ in the constraint. This work focuses on transonic
aerodynamic optimization, so we use θ = 0.9 because most transonic airfoils in the database have CNN scores larger
than 0.9.
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Fig. 5 Smooth monotonic decaying lines implies that the CNN discriminative function is suitable for gradient-
based optimization.

The complexity of constraint functions may affect the efficiency of solving sub-optimization problems in surrogate-
based optimization. Li et al. [38] showed that, for aerodynamic design, solving sub-optimization problems using
gradient-based algorithms can be much more effective and efficient than using gradient-free algorithms. We use this
discriminator as a geometric constraint of airfoil and wing sections in aerodynamic shape optimization. If this constraint
is highly multimodal, gradient-based algorithms may not be able to make sub-optimization problems converge, and
then the efficiency would be negatively impacted. Therefore, we investigate the complexity of the CNN discriminative
function. Figure 5 shows decaying lines of CNN discriminative scores from a UIUC airfoil to three LHS airfoils. The
intermediate airfoils along each slice line are linearly interpolated with k and airfoils at both vertices, where k is the
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linear interpolation parameter describing the distance to the starting vertex. The monotonic and smooth decay of scores
indicates that the CNN discriminative constraint function is suitable for gradient-based optimization.

C. Sampling Method with DCGAN
Samples of airfoils and wings can be used to train surrogate models of aerodynamic functions [16, 38, 39] or to

construct reduced-order models [40, 41] of the aerodynamic system. Conventional sampling methods often introduce
aerodynamic samples with geometric abnormalities, which is inefficient. In this section, we propose to use the DCGAN
model to generate realistic airfoil and wing samples whose shapes are more regular and smooth. DCGAN produces
coordinates of normalized airfoils or wing sections from noisy inputs. For the purpose of DoE samples in optimization,
DCGAN outputs should be further transformed into sampling airfoils and then parameterized by design variables.
The dimensionality of the DCGAN inputs is independent of that of the shape design variables and any conventional
parameterization method can be used. Herein, we use the free form deformation (FFD) method to parameterize DCGAN
airfoils.

1. Airfoil samples
The generative model in the DCGAN model produces normalized synthetic airfoils with random noisy inputs. These

synthetic airfoils are required to multiply a thickness factor and associate a dominant camber component to obtain the
airfoils, which is the inverse process of the normalization process. The thickness factor and dominant camber coefficient
are two basic airfoil parameters that determine their overall shape. For a given design problem, the bounds of these two
parameters can be predetermined based on the thickness and lift requirements. We use DCGAN to produce normalized
synthetic airfoils and LHS to generate the two preliminary parameters for each synthetic. Then, we scale and camber of
the synthetic airfoils with the corresponding thickness factor t and dominant camber coefficient c, respectively. This
transformation process is described in Algorithm 2, which is the inverse process of the normalization in Algorithm 1.

Algorithm 2 Transformation of DCGAN synthetic airfoils to sampling airfoils

1: procedure Transformation(y, t, c) . y ∈ RN is the vector of y coordinates of the DCGAN synthetic. t and c are
the corresponding thickness factor and dominant camber coefficient, respectively.

2: y = y × t . Scale the synthetic airfoil coordinates
3: for i = 1; i ≤ n f ; i + + do . Cycle to add on the dominant camber component
4: yi = yi + cCi

5: yN−i−1 = yN−i−1 + cCi

6: end for
7: return y . Return the transformed airfoil coordinates
8: end procedure

We compare the GAN airfoils with airfoils generated by a traditional sampling method (LHS). To obtain LHS
airfoils, the baseline airfoil is parameterized using FFD. Then, LHS generates perturbations of the FFD control points.
The bounds of FFD control points and the baseline airfoil are shown in Fig. 6. For GAN airfoils, the bounds of the
thickness factor and dominant camber coefficient are chosen to have a design space of a similar size. As shown in Fig. 7,
most of LHS airfoils are abnormal, and GAN airfoils are much more realistic. We compute the flow around each airfoil
by solving the Reynolds-averaged Navier–Stokes (RANS) equations with M = 0.75, Re = 6.5 × 106, and α = 2.5◦ .
The Mach contours in Fig. 7 highlight the impact of geometric abnormality in LHS airfoils, which makes local flows
much more complicated.

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.1

0.1

y

Fig. 6 FFD control points in the airfoil parameterization.
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(a) Mach contours of LHS airfoils (M = 0.75, α = 2.5◦ , Re = 6.5 × 106)

(b) Mach contours of GAN airfoils (M = 0.75, α = 2.5◦ , Re = 6.5 × 106)

Fig. 7 Comparison of airfoils generated by LHS and DCGAN.

2. Wing samples
Similarly to GAN airfoils, we use DCGAN to produce sectional airfoil shapes and then combine them to generate

wing shapes, which we refer to as GAN wings. As shown in Fig. 8, we create five sectional airfoils using the generative
model for each GAN wing. We compute the twelve intermediate section shapes along the span by the cubic interpolation.
These sectional airfoils roughly represent the shape of GAN wings. The corresponding FFD control points of GAN
wings are solved by the least-squares method. LHS wings and GAN wings are compared in Fig. 9, where the LHS
wings are generated by perturbing FFD control points directly. Similarly to what we observed for the GAN airfoils, the
GAN wings are much more realistic.
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Fig. 8 From GAN sectional airfoils to wing samples with perturbed FFD control points.

(a) LHS wing 1 (b) LHS wing 2 (c) LHS wing 3

(d) LHS wing 4 (e) LHS wing 5 (f) LHS wing 6

(g) GAN wing 1 (h) GAN wing 2 (i) GAN wing 3

(j) GAN wing 4 (k) GAN wing 5 (l) GAN wing 6

Fig. 9 GAN wings are much more realistic compared with those generated using LHS.

D. Impact of the Airfoil Database on DCGAN training
Data-driven models rely on training data to learn the underlying patterns [42]. It is of great value to have the

DCGAN model trained by an airfoil database that is big enough to involve all features of interest. However, this is
usually not the case because it is difficult to find airfoils beyond the UIUC database in the public domain. To investigate
the influence of training data in synthetic airfoils, we train DCGAN with three different airfoil databases: NASA SC(2)
database with 21 supercritical airfoils, wind turbine database with 27 airfoils, and the NACA airfoil database with
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100 airfoils. These databases are subsets of airfoils chosen from the UIUC airfoil database. As shown in Fig. 10,
DCGAN models trained by these airfoil databases are all converged, which means that the DCGAN model works well
with different sizes of training datasets. Similarly to Fig. 2, we show 3 × 4 synthetic airfoils for each DCGAN. These
synthetic airfoils are generated by random inputs, i.e., latent space variables, thickness factors, and dominant camber
coefficients. These inputs are the same for three DCGAN models. Nevertheless, as shown in Fig. 10, each particular
DCGAN produces similar designs to the given series of airfoils. We notice that MMD decreases in these models. For
example, the average MMD score of the DCGAN trained by NASA SC(2) airfoils is reduced to 0.043 (MMD = 0.120 in
the DCGAN trained by all UIUC airfoils). Consequently, the synthetic airfoils of this DCGAN model accurately retain
the geometric features of the training data, which can be visually identified as supercritical airfoils.
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Fig. 10 DCGAN can be trained with modest airfoil databases to produce a specific series of airfoils.

The inception scores of the three DCGAN models are 3.96 (NASA SC(2) airfoils), 4.14 (wind turbine airfoils), and
4.40 (NACA airfoils). Compared with the DCGAN model trained by 1407 UIUC airfoils, there is a slight decrease.
Nevertheless, the decrease is not large enough to be treated as a sign of mode collapse. Actually, the decrease of
diversity enables synthetic airfoils to preserve specific geometric features of training airfoils. This is useful for the airfoil
design of a given category, which is of potential to further improve optimization efficiency. For the aerodynamic design
optimization of specific usage, like transonic wings in commercial aircraft, the training airfoil database of DCGAN can
be more specific.

III. Aerodynamic Shape Optimization

A. Optimization Framework–pyAeroEGO
We use the efficient global optimization method (EGO) [3] to perform aerodynamic shape design in this paper.

In EGO, ordinary Kriging [15] is used to predict aerodynamic coefficients. Kriging also provides the variance of
the prediction, which is used to evaluate the expected improvement (EI) function in EGO. The details of EGO in
aerodynamic shape optimization can be found in previous work [4, 43].

As shown in Fig. 11, we develop an aerodynamic EGO framework (pyAeroEGO) based on the open-source
aerodynamic shape optimization suite MACH-Aero ∗. Aerodynamic shapes in pyAeroEGO are parameterized by FFD
implemented in pyGeo [44], which is a Python module for manipulating geometries †. The optimization starts with a
DoE process, where initial samples are generated by LHS or DCGAN. The volume meshes are deformed using IDWarp ‡,
which uses an efficient analytic inverse-distance method. Flow solutions of these samples are solved by ADflow [45],
which is a finite-volume structured multiblock RANS code § with an approximate Newton–Krylov solver [46]. Then,

∗https://github.com/mdolab/MACH-Aero
†https://github.com/mdolab/pygeo
‡https://github.com/mdolab/idwarp
§https://github.com/mdolab/adflow
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pyAeroEGO uses the Kriging model implemented in the Surrogate Modeling Toolbox (SMT) [47] ¶ to construct
surrogate models of aerodynamic coefficients. Surrogate models trained by the initial samples are usually inaccurate,
and they are refined via an infill sampling process. The infill process is performed by solving sub-optimization problems,
which consist of an objective minimization and an EI maximization.

Based on the results by Li et al. [38] and also on the findings of Haftka [48], gradient-based algorithms are
more efficient and effective than gradient-free algorithms in solving sub-optimizations of EGO. pyAeroEGO uses the
sequential least squares programming (SLSQP) algorithm implemented in pyOptSparse [49]‖ coupled with a multi-start
strategy to solve these sub-optimizations. pyGeo is used to ensure that all new infill samples satisfy the thickness or
volume constraints. pyGeo also supports other geometric constraints like the fixed leading edge point constraint, if
required.

The CNN discriminator is coupled with pyGeo in pyAeroEGO as another geometric constraint to ensure the
discriminative score of infill airfoil or wing sections larger than the lower bound. The new infill samples (solutions of
sub-optimizations) are further solved by ADflow. The surrogate models are updated until the convergence criterion is
satisfied. The current version of pyAeroEGO uses a fixed iteration convergence criterion, which is a commonly used
approach for comparing efficiency in surrogate-based optimization [4, 38].

Baseline design
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DCGAN-based
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Optimizer

(pyOptSparse)

Fig. 11 XDSM diagram of pyAeroEGO.

The XDSM (eXtended Design Structure Matrix) diagram [50] of pyAeroEGO is shown in Fig. 11. DCGAN and
CNN models are used as the sampling method and geometric constraints, respectively. The training of DCGAN and
CNN discriminator are fulfilled in advance before these deep-learning models are embedded in pyAeroEGO to perform
aerodynamic design optimization. To show the advantage of the proposed method, we conduct three optimizations for
each case.

EGO with LHS: EGO with initial surrogate models trained by LHS samples.
EGO with GAN: EGO with initial surrogate models trained by DCGAN samples.
EGO with GAN and CNN: EGO with initial surrogate models trained by DCGAN samples and sub-optimizations
subject to the CNN discriminator constraint.

B. Airfoil Design Optimization
In this airfoil design optimization case, the baseline airfoil is RAE 2822, the Mach number is 0.734, and the

Reynolds number is 6.5 × 106. The angle of attack is a design variable and can vary among the range of [1.5◦, 4.5◦] in
the optimization. We use a 10 × 2 FFD volume to control the airfoil shape. Figure 6 shows the FFD volume and the
bounds of each FFD control point. The variation of the two FFD points around the leading and trailing edges is coupled

¶https://github.com/SMTorg/smt
‖https://github.com/mdolab/pyoptsparse
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Table 3 Optimization problem statement in the airfoil case

Functions Quantity Description
minimize Cd 1 Drag coefficient
with respect to α 1 Angle of attack

xshape 18 y perturbation of FFD control points
subject to Cl ≥ 0.824 1 Lift constraint

A ≥ Ainitial 1 Area constraint
Svalidity ≥ 0.9 1 Discriminative score constraint

(in the opposite direction) to ensure that the y coordinates of the leading and trailing edges are approximately zero.
Thus there are 18 independent shape variables in this case. This optimization problem is summarized in Table 3. The
discriminative score constraint only applies to EGO with GAN and CNN.

We first compare the accuracy of the surrogate models trained using LHS airfoils with those using GAN airfoils to
verify our hypothesis. Figure 12 shows the errors of surrogate models trained by different sets of samples and each set
consists of 50 LHS or GAN airfoils. The errors shown in Fig. 12 are reported in counts (one Cl count equals 0.001 and
one Cd count equals 0.0001). The scatter plot shows the error of each validation point, and the box plot shows the
statistics for these errors. The white line in the box plot indicates the median of the errors. As expected, sampling with
GAN significantly improves the accuracy of surrogate models, which implies that the design space of GAN samples is
more representative and thus more efficient in the construction of accurate surrogate models.
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(a) Errors of surrogate models for Cl
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Fig. 12 Surrogate models trained by GAN samples are much more accurate.
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We conduct airfoil design optimizations using pyAeroEGO. Each DoE consists of 50 samples. The optimization
results and convergence histories are shown in Figs. 13 and 14. The surrogate models get more accurate with increasing
infill samples. Thus, the minimum drag of samples satisfying the lift constraint is getting smaller, which is shown by
the convergence lines in Fig. 14. In addition to the convergence line, we also show the airfoil shape of each sample in
Fig. 14. These airfoil shapes are drawn using a color that represents their design lift coefficients.

EGO with GAN is much more efficient than EGO with LHS. However, some infill airfoils of EGO with GAN are
still abnormal. After adding the CNN discriminator as a constraint in EGO with GAN and CNN, all the infill airfoils
become realistic. As a result, EGO with GAN and CNN achieves the highest optimization efficiency and the best airfoil
design for the same computational budget.
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(a) EGO with initial surrogate models trained by LHS airfoils
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(b) EGO with initial surrogate models trained by GAN airfoils

0 25 50 75 100 125 150 175 200
Number of CFD simulations

150

200

250

300

350

C
d

(c
ou

nt
)

DoE

EGO with GAN and CNN

0.50

0.56

0.62

0.68

0.74

0.80

0.86

Cl

(c) EGO with CNN constraint with initial surrogate models trained by GAN airfoils

Fig. 14 GAN and CNN discriminator improve the efficiency of EGO in airfoil design.

To reduce the influence from a particular DoE, we run ten sets of optimization. Each set consists of three optimization
settings: EGO with LHS, EGO with GAN, and EGO with GAN and CNN. Figure 15 shows the convergence histories,
where the lines and margins are the average and ranges of convergence histories with each setting, respectively. On
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average, EGO with GAN and CNN obtains a design with Cd < 135 counts using only 75 CFD simulations, while EGO
with LHS uses about 150 CFD simulations. EGO with GAN also improves the efficiency, which reaches Cd < 135
after about 100 CFD simulations. However, it is not shown to be more effective than EGO with LHS after 200 CFD
simulations. The optimized drag coefficients for both settings are about 130 counts, which is larger than the optimized
Cd in EGO with GAN and CNN (125 counts). Therefore, we conclude that EGO with GAN and CNN does not only
improve the optimization efficiency but also makes the design optimization more effective.
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Fig. 15 Statistical data show that GAN and CNN double the efficiency of EGO.

C. Wing Design Optimization
We now perform the wing shape optimization for a transonic commercial aircraft. The wing planform is based on

publicly available Boeing 787-800 drawings and initial airfoil shapes correspond to the RAE 2822 airfoil. The mean
chord of the wing is 1.35 m, and the sweep angle at the quarter-chord line is 32.2◦ . The wing span is 6.1 m. The FFD in
Fig. 16 is used to control the wing shape, where the shape design variables are the y displacements of the 120 FFD
control points. We impose CNN discriminative constraints at five spanwise sections (z = 0.1, z = 1.5, z = 3.0, z = 4.5,
and z = 6.0), which only apply to EGO with GAN and CNN. This optimization problem is summarized in Table 4.

Fig. 16 Wing geometry and the FFD control points.
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Table 4 Optimization problem statement in the wing case.

Functions Quantity Description
minimize CD 1 Drag coefficient
with respect to α 1 Angle of attack

xshape 120 y perturbation of FFD control points
subject to CL ≥ 0.5 1 Lift constraint

V ≥ Vinitial 1 Volume constraint
Svalidity ≥ 0.9 5 Discriminative score constraints

To reduce the computational cost, we use a coarse CFD mesh with 151,200 volume cells in the wing design
optimization. Figure 17 shows the EGO convergence histories with different settings, where each optimization starts
with 150 initial samples. Similarly to the airfoil optimization results, EGO with GAN and CNN is the most efficient.
Within the computational budget of 500 CFD simulations, EGO with LHS, EGO with GAN, and EGO with GAN and
CNN reduce the drag coefficient from 408 counts of the baseline wing to 247.5 counts, 243.9 counts, and 239.4 counts,
respectively. Compared to EGO with LHS, EGO with GAN improves the optimization efficiency by using more realistic
initial samples. This benefit does not always generate a better optimization performance in each iteration. For example,
the best design of EGO with LHS is slightly better than that of EGO with GAN in the 220th CFD simulation. After
adding the geometric constraints with the CNN discriminator, the optimization efficiency improves significantly. The
design of the 215th CFD simulation in EGO with GAN and CNN has a similar CD with the design of the 420th CFD
simulation in EGO with LHS. From this point of view, EGO with GAN and CNN almost doubles the optimization
efficiency of a regular EGO with LHS. Figure 18 shows the results of multiple tests, which more credibly demonstrate
the efficiency of EGO with GAN and CNN.
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(a) EGO with initial surrogate models trained by LHS wings
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(b) EGO with initial surrogate models trained by GAN wings
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(c) EGO with CNN constraint with initial surrogate models trained by GAN wings

Fig. 17 EGO with GAN and CNN makes aerodynamic design optimization of the wing converge efficiently.
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Fig. 18 Multiple tests show the improvement of EGO efficiency by GAN and CNN.

Fig. 19 The wing optimized using EGO with GAN and CNN has a much lower drag.
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Fig. 20 Airfoils optimized by EGO with GAN and CNN.

Figure 19 compares the baseline wing to the wing optimized using EGO with GAN and CNN. The optimization
significantly reduces the drag by weakening shock waves on the upper surface. Similarly to previous transonic wing
shape optimization subject to a fixed volume constraint [1, 29, 51], EGO with GAN and CNN reduces the drag by
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increasing thickness of the wing root, which is increased to 14.3% from 12.1%. Thickness of some sections in the
outer wing is reduced to a minimum of 9.3%, but the volume constraint is still satisfied. Figure 20 shows the optimized
sectional airfoil shapes and pressure distributions. EGO with GAN and CNN makes the optimized wing almost
shock-free.

IV. Conclusions
In this work, we propose a DCGAN-based sampling method to generate realistic airfoils and wings for DoE. With

realistic airfoils generated using DCGAN and abnormal airfoils generated using LHS as the training data, we develop a
CNN-based discriminative model to efficiently detect geometric abnormal airfoils and wing sections. We develop a
surrogate-based optimization framework (pyAeroEGO) that combines these models with CFD to perform aerodynamic
shape optimization. Airfoil and wing shape optimizations show that these machine learning models significantly improve
the optimization efficiency of EGO.

As the fundamental model in this work, DCGAN not only influences the performance of the sampling method, but
also determines whether the CNN discriminator can distinguish abnormal airfoils from realistic ones. We study the
parameters in the DCGAN model and find that its performance is robust and stable. The proposed airfoil normalization
method helps address mode collapse issues. DCGAN can always generate synthetic airfoils similar to realistic airfoils
unless the size or depth of convolutional filters in DCGAN is too small.

We also find that the performance of DCGAN is robust to the number of training airfoils. A reasonable DCGAN
model can be trained using a small database of only dozens of airfoils, and synthetic airfoils of this model reserve the
specific geometric features of training airfoils. From this perspective, our proposed framework is of high potential for
aircraft manufacturers to further improve optimization efficiency by training a specific DCGAN model using their own
airfoil database.

Previous surrogate-based optimization methods tend to suffer from inaccurate surrogate models. Our work addresses
this issue by using deep-learning models. Realistic samples of DCGAN span a simpler design space, which helps to
train more accurate surrogate models. Constraints enforced by the CNN discriminator exclude the abnormal shapes from
the infill samples. These machine learning models improve the accuracy of surrogate models and make the aerodynamic
shape optimization much more efficient. Nevertheless, since the deep-learning models are trained by previous designs,
future work could investigate whether these models would prevent the discovery of innovative shapes.

This work showcases the superiority of applying deep-learning algorithms in numerical aircraft design. This
approach can also be applied to the design of other aircraft components or other engineering design problems, which is
helpful to shorten the design process and reduce costs.

Appendix
We set the x coordinates for all UIUC airfoils to be,

xi =
1
2

(
cos

2π(i − 1)
250

+ 1
)
, i = 1, 2, . . . , 251. (4)

As proposed by Li et al. [6], camber and thickness mode shapes can be used to represent airfoils. For each airfoil, the
coordinates of the camber and thickness lines can be recorded as (xi, yci , yti ), where i = 1, . . . , n f (n f = 126). Similarly
to the full-airfoil mode approach, the y coordinate values of the camber and thickness lines are assembled using snapshot
matrices

Ac =


yc11 yc21 . . . ycm1

yc12 yc22 . . . ycm2
...

...
. . .

...

yc1n f
yc2n f

. . . ycmnf


, At =


yt11 yt21 . . . ytm1

yt12 yt22 . . . ytm2
...

...
. . .

...

yt1n f
yt2n f

. . . ytmnf


. (5)

Then, the modes of camber and thickness lines, Uc and U t , are be obtained by SVD:

Ac = UcΣcV c
T, At = U tΣtV t

T.

We use Φc and Φt to denote the first nc camber modes and the first nt thickness modes, respectively. The first column
of Φc is the first camber mode, which dominates the airfoil camber and is denoted as C in Algorithm 1. For a given
airfoil y, we compute the dominant camber coefficient c1 = CT ycamber with the camber line solved by ycamber = fc(y).
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Figure 21 shows the comparison of airfoils before and after the normalization stated in Algorithm 1.

Original airfoil Normalized airfoil

Fig. 21 Airfoils before and after the normalization.

Figure 22 shows the training processes of the DCGAN model (with nsize = 7 and ndepth = 10) with different initial
weights. All of these models converge to a similar IG(G) with reasonable synthetic airfoils, which demonstrates the
stability of DCGAN with different weight initializations.
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Fig. 22 Training DCGAN with different initial weights shows robustness of the selected model.

Figure 23 shows that the discriminative model cannot distinguish abnormal LHS airfoils from realistic ones (UIUC
and DCGAN synthetic airfoils), thus an independent discriminative model is required.
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Fig. 23 The discriminative model in DCGAN cannot distinguish abnormal airfoils from realistic ones.
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