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Abstract Accurate aircraft fuel burn evaluation over a complete mission is computationally expensive, as it
requires up to millions of aerodynamic performance evaluations. Thus, it is advantageous to use surrogate models as
approximations of high-fidelity aerodynamic or aerostructural models. Conventional surrogate models, such as radial
basis function and kriging, are insufficient to model these functions accurately, especially in the transonic regime. To
address this issue, we explore several ways to improve the accuracy of surrogate models. First, we employ an adaptive
sampling algorithm to complement a traditional space-filling algorithm. Second, we improve the kriging surrogate
performance by including gradient information in the interpolation (a form of gradient-enhanced kriging—GEK), and
by introducing a known trend in the global model component (kriging with a trend). Lastly, we propose a mixture
of experts (ME) approach, which is derived based on the divide-and-conquer principle. We validate the developed
surrogate models using aerodynamic data for conventional and unconventional aircraft configurations, and assess their
performance in predicting the mission ranges by performing analyses on ten mission profiles. Our results show that
the proposed ME approach is superior to the traditional models. Using a mixture of GEK models to approximate drag
coefficients give us approximation errors of less than 5% with less than 150 samples, whereas the adaptive sampling
fails to converge when training a global model. However, when we have a simple function profile, such as the lift
and moment coefficients, using a conventional surrogate model is more efficient than an ME model, due to the added
computational complexity in the latter. The range estimation errors associated with the ME models are all less than
2% for all the test mission profiles considered, whereas some traditional models yield errors as high as 20% − 80%.
We thus conclude that the ME technique is both necessary and sufficient to model the aerodynamic coefficients for
surrogate-based mission analysis.

1 Introduction
Fuel efficiency has become an increasingly important metric in aircraft design due to increases in fuel prices and
environmental concerns [1, 2]. However, evaluating aircraft fuel burn accurately is not an easy task. Several dis-
ciplines contribute to the calculation, including: the aerodynamic performance of the aircraft, the aircraft’s weight
distribution and the performance of the engines. The calculation is also affected by the speed of the aircraft and the at-
mospheric conditions at the altitude where the aircraft is flying. To account for the coupling in such a multidisciplinary
system, multidisciplinary design optimization (MDO) should be used as it can automatically perform the optimal in-
terdisciplinary trade-offs [3]. While effective, MDO frameworks can be computationally expensive. Completing such
a computation in an optimization process (which requires many iterations, prior to reaching optimality) using pure
physics-based models quickly becomes computationally intractable. The most common approaches for reducing the
cost of these fuel-burn computations involve a simplification of either the physics in the model or in the mission profile
considered. The classical Breguet range equation is a popular example of such an approach [4, 5, 6]. Kenway and
Martins [7] used this equation to analyze the aircraft performance at each operating point in multipoint high-fidelity
aerostructural optimization problems to minimize fuel burn and takeoff gross weight. The multipoint objective is the
weighted combination of the objective functions evaluated at five operating points (perturbations of the nominal cruise

1

http://mdolab.engin.umich.edu


condition), assuming an equal weight for each point. Other simplified models include using fuel fractions to represent
the individual segment fuel burn values [6] or using either simplified analytical or empirical models [8] to represent
the physics. These simplifications and assumptions reduce the computational time, albeit at the expense of accuracy
and generality.

Recent work has shown that surrogate models can significantly reduce the computational cost of performing a
detailed fuel-burn computation in a design optimization setting. Surrogate models, or metamodels, are commonly
used as simpler approximations of the physical systems to reduce the cost of computationally intensive analysis and
optimization tasks [9, 10, 11]. Surrogate models have previously been shown to assist various optimization procedures
in aerospace engineering. Chung and Alonso [12, 13] used a gradient-enhanced kriging method in a supersonic busi-
ness jet design optimization, Toal and Keane [14] used a cokriging method to perform a multipoint drag minimization,
Zimmermann and Görtz [15] developed and used a POD-subspace restricted least squares model for solving the gov-
erning fluid flow equations, and Amsallem et al. [16] performed offline precomputations to construct fluid reduced
order bases (ROB) and structural reduced order models (ROM) database for aeroelastic computations. Fossati and
Habashi [17] employed a reduced order modeling approach, based on proper orthogonal decomposition (POD) and
kriging interpolation, to reduce the computational cost in steady and unsteady three-dimensional viscous turbulent
aero-icing simulations. In the context of mission analysis, Koko [18] used a Lagrangian interpolation as a surrogate
to model the aerodynamic forces at different points along the flight mission of interest in a trajectory optimization
problem aiming to minimize fuel consumption of morphing wingtip devices.

The authors have previously used kriging models to approximate the aerodynamic data required in a detailed
mission analysis procedure, to give an accurate estimation of the amount of fuel burned during a mission [19, 20]. This
surrogate-based mission analysis approach significantly reduces the required number of aerodynamic performance
evaluations from millions to the number of samples required to build the kriging models, thus enabling the integration
of mission analysis in aerostructural optimization cases. Using this procedure, a new strategy was derived to formulate
multipoint design aerostructural optimization problems to maximize the aircraft performance over a large number
of different missions [19]. This strategy was demonstrated in a fuel burn minimization problem for a long-range
wide-body aircraft configuration, where only the cruise portion was modeled in detail. In this multipoint optimization
strategy, the required number of high-fidelity aerostructural solutions at each optimization iteration is reduced from
millions to 25. A similar approach was demonstrated in a direct operating cost (DOC) minimization problem for
a 100-passenger regional jet configurations [20]. In this DOC minimization problem, a shorter range mission was
considered. This necessitated the inclusion of the climb and descent segments in the mission, as the cruise segment
was no longer the only dominant mission segment.

Expanding the input space of the surrogate model to include the flight conditions involved in climb and descent
makes training the surrogate model significantly more challenging. In addition to requiring a larger input space, the
model needs to capture the high drag gradient region outside the cruise regime, which causes problems for some of the
simpler surrogate modeling techniques. Handling unconventional configurations such as a blended-wing-body (BWB)
configuration, presents a similar challenge. In these cases, the challenge comes from a higher degree of correlation
between drag and trim, causing more nonlinearity in the drag profile with respect to the tail angle variable [21].
These are the challenges that have motivated this work, where we develop a surrogate modeling technique that is
sufficiently general to handle the full range of flight conditions and aircraft configurations that may be of interest
to an aircraft designer. Specifically, we explore and analyze the performance of various surrogate models in the
context of performing surrogate-based mission analysis. Based on our specific requirements, which will be discussed
in Section 3, we have limited our selection of surrogate models to kriging and radial basis function (RBF) models.
Several variants of kriging models are considered, in particular those that allow the incorporation of “extra knowledge”
to further fine tune the surrogate models.

The first is the gradient-enhanced kriging (GEK) model, which incorporates gradient information at sample points
so the surrogate model can have better approximations of the curvature around the sample points. GEK is a very
well-established technique and has been shown to improve kriging performance; see, [12, 13, 22, 23, 24], for example,
for some aerospace applications of GEK.

Second, we consider the “kriging with a trend” model, where we specify the basis functions for the global model
of kriging [25]. Instead of using the commonly used low-order polynomials, we select the basis functions based on the
system physics, e.g., by setting a quadratic trend in a certain direction. This second approach has been demonstrated
in a previous work by the authors [20].

Third, we propose to use multiple surrogate models in the input space, instead of just a single global model. The
main rationale is that we let each local surrogate model perform well in a smaller subset of the input space, instead
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of forcing one model to approximate the entire problem domain, which might have contrasting profiles in the input
space (e.g., when the function profile in one region is more nonlinear than the others). We adopt the mixture of experts
approach [26] which uses a cluster-based preprocessing step first proposed by Tang et al. [27]. In this approach, the
problem domain is first partitioned into several subregions by using clustering algorithms, followed by local expert
training within each subregion. In this case, the local experts are surrogate models. The local predictions are then
combined probabilistically to yield the final prediction.

In this work, we compare the performance of these surrogate models in approximating the aerodynamic lift, mo-
ment and drag coefficients of two Boeing 777-size aircraft configurations: one conventional and one unconventional.
We then assess the amount of error that this introduces into the estimated values of range across ten benchmark mis-
sions to assess how well the various techniques work for the surrogate-based mission analysis.

A part of the work presented in this paper was presented as a conference paper [28]. We start the remainder of
this paper by describing the surrogate-based mission analysis procedure in Section 2. In Section 3, we first discuss the
surrogate modeling classification, to select the techniques that are suitable for our purpose. We then explain the details
of the selected techniques, namely kriging and RBF models, and their comparison. Our proposed mixture of experts
model is presented in Section 4. The description of our case studies are given in Section 5. We then discuss our results
and findings in Section 6, followed by the conclusion in Section 7.

2 Surrogate-based Mission Analysis
The classical Breguet range equation is commonly used to compute the amount of fuel required to fly a given range [4,
5, 6]. This widely used range equation was derived and published independently in 1920 by Coffin [29] and later in
1923 by Breguet [30]. This equation has since become a basic model describing the physics of aircraft, encompassing
the three dominant disciplines within an aircraft system: engine (by the thrust specific fuel consumption, or TSFC),
aerodynamics (by the lift to drag ratio, L/D), and structural technologies (by the structural weight). This equation,
however, is only applicable under the assumption that the product of the inverse of TSFC, L/D, and flight speed are
constant. One important implication of this is that the takeoff, climb, and descent segments are not properly modeled
by this equation [31].

Simple fuel fractions (the ratio of the aircraft total weight at the end of a flight segment to the weight at the start of
the same segment) are typically used to compute the amount of fuel burned in flight segments other than cruise. See,
for example, Roskam [6] for values of suggested fuel-fractions corresponding to several mission phases for various
aircraft types. Lee and Chatterji [32] presented the approximation functions for total fuel burn in climb, cruise, and
descent phases. To compute fuel burn during climb, they applied a climb fuel increment factor, which was defined
as the additional fuel required to climb the same distance as it was for cruise, normalized with respect to the takeoff
weight [33].

Henderson et al. [34] presented an object-oriented aircraft conceptual design toolbox, pyACDT, which analyzed a
given mission profile to estimate the mission fuel burn and point performance parameters. The Breguet range equation
was used to calculate the cruise range. This toolbox uses a potential flow panel method to predict the aerodynamic
performance. The Program for Aircraft Synthesis Studies (PASS) is a conceptual design tool that evaluates all aspects
of mission performance [35]. This software package can incorporate several analyses, including linear aerodynamic
models for lift and inviscid drag, sonic boom prediction for supersonic cases, weight and center of gravity estimation,
and full mission analysis. These rapid analyses are coupled with optimization tools (gradient or non-gradient based)
to perform aircraft design optimizations.

The fuel-burn computations mentioned above are done with simplifications of the aircraft performance and mis-
sion profile, which can reduce the accuracy of the predicted total aircraft fuel burn. For example, the constant product
of L/D, inverse of TSFC, and flight speed assumed in the Breguet range equation do not reflect the actual aircraft
operation, as their values vary across the flight operating points in the mission profile. Moreover, most fuel-burn com-
putations focus on the cruise portion, which is critical for long-range missions, but not necessarily so for shorter-range
missions. For shorter-range missions, the climb segments contribute significantly to the total fuel consumption. For a
more accurate fuel-burn computation that is suitable for both short-range and long-range flight missions, performing a
detailed mission analysis that include all phases in the mission profile is thus necessary. Instead of using the Brequet
range equation, the range now needs to be evaluated via a numerical integration procedure. However, performing such
a detailed mission analysis with physics-based models is computationally expensive due to the many performance
evaluations required in the procedure. The computational issue is further exacerbated when we use the mission anal-
ysis in optimizations, or uncertainty quantification (e.g., using the Monte Carlo method), both of which require many

3



function evaluations.
We now describe the mission analysis procedure to compute the fuel weight Wfuel, range R, and time t, by numer-

ically integrating a given mission profile. This mission analysis procedure has also been used in the previous work
by the authors [20]. As inputs we have the mission profile parameters (such as altitude and Mach number for cruise
segments; flight speed, initial and final altitudes for climb and descent segments), the initial takeoff weight, and the
final zero-fuel weight (ZFW) for each mission.

The weight, mission segment range and time are then solved iteratively using an all-at-once approach. Using this
approach, a set of residual equations, R, is set up using the endpoint weights of each segment as states. To set up
the residual equations, we need to match the endpoint weights of two adjacent segments: Wfj −Wij+1

= 0, where
j = 1, . . . , Nseg denotes the segment index; Wi and Wf denote the segment’s initial and final weight, respectively.
Similarly, at the boundaries, Wi1 = WTO and WfNseg = WZF, where WTO and WZF refer to the takeoff and zero-fuel
weights. The residual is set to zero to determine the characteristics for the entire mission profile, which is solved
using the Newton–Krylov algorithm. This forces the weights of the various segments to be consistent with each other,
providing a valid and continuous mission profile. Each segment can then be analyzed independently, based only on
the current states of the system, until the residual equations are solved.

The amount of fuel burned during startup, taxi, takeoff, and landing is computed using the fuel fraction method,
where Wf = (1− ζ)Wi, where ζ is the fuel fraction. The numerical integration to compute the fuel burn for the
climb, cruise, and descent segments is derived from the range equation. Since TSFC (cT ) is the weight of fuel burned
per unit time per unit thrust, we can compute the rate of reduction of aircraft weight as dW/dt = −cTT , where W
and T denote aircraft weight and thrust, respectively. Using this relation and the generic integral equation for range,
R =

∫ tf
ti
V dt, the numerical integrations for range are given below. The subscripts i and f in the integration limits

correspond to the initial and final values, respectively. For the cruise segment, the integration is done with respect to
weight,

R =

∫ Wf

Wi

− V

cTT
dW. (1)

For the climb and descent segments, the range equation is integrated over the change in altitude,

R =

∫ hf

hi

V cos γ

RC
dh, (2)

where h and γ denote the altitude and the flight path angle. The rate of climb, RC, is derived from the equation of
motion, Tav cos (φT + α) − D −W sin γ = (W/g) (dV/dt), and that RC = V sin γ. The symbol Tav denotes the
available thrust, D denotes drag, and g is the gravitational acceleration. The thrust inclination angle is denoted by φT
(typically assumed to be zero [36]), and α refers to the angle of attack. With small angle approximations, this equation
yields

RC =
(Tav −D)V

W
(

1 + V
g
dV
dh

) . (3)

We have the information of flight speed and altitude for each segment interval from the mission specification.
TSFC is a property of the aircraft engine, which can be estimated using an engine model or assumed constant. We
then need to compute T to evaluate (1) and (2), which we can find once we know D. We can evaluate drag upon
determining the angle of attack, α, and the tail rotation angle, η, that satisfy the lift (e.g., level flight, L = W , for
cruise) and trim (CM = 0) constraints simultaneously. These two angles are found using a Newton algorithm.

This procedure computes the mission range given the fuel weight (WTO−WZF). When the mission range is speci-
fied, we perform a secant algorithm to find the corresponding fuel weight,Wfuel. Following this procedure, the required
number of aerodynamic performance evaluations would be equal to the product of the number of missions, number
of secant iterations, number of iterations to solve the residual equations, number of integration intervals, and number
of Newton iterations to solve for the angles. Therefore, a mission analysis would require millions of aerodynamic
solutions, which would be computationally prohibitive. For this reason, surrogate models are built to approximate the
aerodynamic force and moment coefficients (CL, CD, and CM ) to be used in the mission analysis. When a sample-
based surrogate modeling technique is used, the required number of aerodynamic performance evaluation calls is
reduced to the number of samples used to build the surrogates, making the procedure computationally tractable.

The surrogate-based mission analysis procedure described here allows us to perform mission optimizations, where
we set some parameters (e.g., cruise Mach number and altitude) as design variables; aerostructural optimizations
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(e.g., to minimize fuel burn or DOC) with an accurate fuel burn computation; and coupled mission and aerostructural
optimizations. Liem et al. [20] used this procedure in a DOC minimization problem for a regional jet aircraft configu-
ration, by first optimizing the mission profiles, and then used these optimized profiles in an aerostructural optimization
problem. Coupling high-fidelity aerostructural optimization framework [7, 37, 38, 39, 40, 41, 42] with this mission
analysis procedure can lead to a more realistic aircraft design process. For example, we can further extend the multi-
point high-fidelity aerostructural optimization strategy [19] to include detailed analyses during the climb and descent
segments, in addition to cruise segment. To obtain meaningful results from these optimizations, however, we first need
to have reliable and accurate surrogate models.

3 Surrogate Modeling
A surrogate model uses mathematical models to provide a simpler approximation of a physical system, thereby reduc-
ing the computational expenses of analyses and optimizations [9, 10, 11]. Essentially, surrogate models are used
as low-cost substitutes to replace expensive evaluations when the original physics-based models are used in any
computational-intensive tasks (e.g., analysis or optimization) [43]. These approximation models are also known as
metamodels [9], or models of models [44, 45]. Before we can use a surrogate model to perform surrogate-based
mission analyses, it is imperative to have reliable surrogate models that can approximate the aircraft performance
over the entire flight operating regime (from takeoff to landing) of the various mission profiles considered. For our
purposes, the modeling techniques also need to be flexible enough to be used with different aircraft configurations
(conventional and unconventional), for both short and long range missions. To select suitable surrogate models for our
surrogate-based mission analysis procedure, we briefly discuss the available surrogate modeling techniques.

Eldred et al. [46] classified surrogate models into three categories: data-fits, reduced-order models [47], and
hierarchical models [48, 49]. Reduced-order and hierarchical surrogate models can be classified as physics-based ap-
proaches, since they exploit and simplify the governing equations [50]. These models are thus considered as intrusive
methods. Data-fit surrogate models, on the other hand, belong to the black-box approach category, where the deriva-
tions are only based on the inputs and outputs of the high-fidelity models, without necessarily knowing the underlying
governing equations. Black-box approaches are non-intrusive and typically approximate a function at a point in the
Nd-dimensional input space x0 ∈ RNd based on the available Ns sample information, including the sample locations
xs ∈ RNs×Nd and values ys ∈ RNs ,

y (x0) ≈ ŷ (x0,xs,ys,α) . (4)

The symbol α denotes a vector of model parameters, i.e., the undetermined coefficients that are typically derived based
on the available training sample set.

Black-box models can be categorized into regression and interpolation models. Regression models are derived
in a least-squares sense, so they are more suitable to approximate functions with inherent random error components,
such as measurement data. Interpolation models, on the other hand, reproduce the function values exactly at sample
locations. These models are thus suitable to model deterministic computer experiments, where repeated experiments
with the same input settings return exactly the same outputs [51]. Two widely used interpolation surrogate models are
kriging and RBF models.

To construct and use black-box surrogate models, we first need to generate data (samples), select model structure,
and estimate model parameters. The model is then assessed to evaluate the goodness of fit (for regression models)
and approximation accuracy at untested data. The sampling and model assessment procedures are presented next. The
model structure selection and parameter estimation are model dependent; they will be discussed when kriging and
RBF models are described.

3.1 Sampling Methods
Surveys of various sampling plans, also referred to as a design of experiments, are give by Simpson et al. [52],
as well as Wang and Shan [53]. When building surrogate models on unknown landscapes, a sampling plan that
is uniform, irregular, and space-filling is favorable [54]. The random Monte Carlo simulation (MCS) method is a
popular choice in industry, mainly due to its simplicity [53]. Another popular choice is the Latin hypercube sampling
(LHS) [55], as its projections onto each variable axis are uniform. Since there are no specific guidelines to determine
the “appropriate” sampling size a priori, sequential and adaptive sampling plans have become more popular recently.
The new points (infill points) are selected based on some infill criteria to improve the model’s predictive capability.
There are two main categories for the infill criteria: exploitation and exploration [54]. Exploitation criteria are used
mostly in surrogate-based optimization (i.e., when surrogate models are used to approximate the objective function),
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to help finding the optimum point. Some examples include the minimizing the predictor approach and the trust-region
method. Exploration criteria aim to “fill the gaps” between existing sample points to ensure that the samples are evenly
distributed spatially. This category consists of sequential space-filling sampling plans such as Sobol’ [56] and Halton
sampling sequence [57], as well as an adaptive approach that locates infill points with the highest estimated error (e.g.,
using the kriging variance as a metric). In general, maximizing variance when adding samples tends to maximize
the inter-site distances (D-optimality) [58]. In this work we use a Halton sequence sampling method and an adaptive
sampling procedure based on an exploration criterion, which is described in Section 5.3.

3.2 Surrogate-Model Validation Methods
We need to validate the models before using them as surrogates in computationally-intensive analyses and optimiza-
tions. One popular approach used to validate surrogate models is the cross-validation method, an overview of which
can be found in Meckesheimer et al. [45]. In the p-fold cross validation approach, the sample set is first divided into
p subsets. Then, we reconstruct the metamodel p times, by omitting one of the subsets each time, to compute the
approximation errors. When each subset contains only one sample point, this procedure is called the leave-one-out
cross-validation [59]. However, the cross-validation approach tends to be biased towards over-represented regions.
Due to this limitation, a more reliable model validation approach that employs additional test points to compute the
approximation errors is preferred [53]. One of the most commonly used error measures is the root mean square error
(RMSE),

RMSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2, (5)

where m denotes the number of validation (test) points. The normalized RMSE is also often used, especially when
the function value has large variations within the input space of interests. In this error measure, each error com-
ponent, (yi − ŷi), is normalized with respect to its actual value, yi, before computing RMSE, to yield the relative
approximation error. In this work, we use the normalized RMSE to assess our surrogate models.

3.3 Surrogate-Modeling Techniques
In this work, we want to use surrogate models to approximate the aerodynamic force and moment coefficients with
data obtained from solving physics-based aerodynamic models, which are deterministic computer experiments. Thus,
we consider only interpolative models, i.e., kriging and RBF models. These two models are described in more details
below.

3.3.1 Radial Basis Function Model
RBF is a black-box surrogate model which emulates complicated design landscapes using a weighted sum of simple
functions,

ŷ (x0,xs,ys,α) = ΨT
0 w =

Nc∑
i=1

wiψ (‖x0 − ci‖) (6)

where the function ψ (‖·‖) is the kernel function centered at ci. The norm ‖·‖ is the Euclidean distance. Typically, the
training sample points are used as the centers, thus c = xs and Nc = Ns. The vector of unknown coefficients, w, is
determined by solving the following system of linear equations,

Ψw = ys, (7)

where Ψ is the gram matrix, defined as Ψij = ψ
(∥∥xsi − xsj

∥∥). Thus, the gram matrix is the the kernel function
evaluated at the Euclidean distance between the ith and jth samples. In this work, we use the thin plate splines, cubic,
and square-exponential (Gaussian) kernel functions.

3.3.2 Kriging Model
The kriging surrogate model was initially developed in the field of geostatistics by Danie G. Krige (after whom the
method is named) [60]. The term “kriging” was first coined by Matheron [61], who was also the first to formulate krig-
ing mathematically. When first derived in the geostatistics field, kriging was used to model continuous and uniquely
defined functions relating numbers (e.g., measurement data) to a domain of geographic coordinates (in one-, two-,
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or three-dimensional domains) [62]. The foundation of using kriging models in the design and analysis of computer
experiments (DACE) was first developed by Sacks et al. [63], where points in the input space are analogous to the
spatial (geographical) coordinates.

In kriging models, we assume that the deterministic response y (x) is a realization of a stochastic process Y (x) [63,
64],

Y (x) =

Nf∑
k=1

fk (x)βk + Z (x) = fT (x)β + Z (x) . (8)

The first term is the global model component, where f (x) =
[
f1 (x) , f2 (x) , . . . , fNf

(x)
]T

is a vector of Nf basis
functions and β =

[
β1, β2, . . . , βNf

]
is a vector of the unknown coefficients. The stochastic component Z (x) is

treated as the realization of a stationary Gaussian random function with zero expected value, E [Z (x)] = 0, and
covariance

Cov [Z (xi) , Z (xj)] = σ2R (xi,xj) , (9)

whereR (·) denotes the correlation function withR (0) = 1. Therefore, kriging models give exact prediction at sample
points, with increasing error variance as we go further from these sample points. In other words, in kriging models the
data are assumed to be exact but the function is a realization of a Gaussian process [65]. This second term is called the
localized deviation [52], bias, or systematic departure from the linear model [64]. A stationary correlation function
is typically assumed in kriging models, where the correlation between any two points in the input space, y (xi) and
y (xj), depends only on the difference vector ∆x = xi − xj , thus R (xi,xj) = R (xi − xj).

For higher-dimensional problems, the correlation function in a kriging model typically satisfies the product corre-
lation rule, where the correlation function can be expressed as a product of stationary, one-dimensional correlations,

Rij (θ, d) =

Nd∏
k=1

R
(
θ(k), d

(k)
ij

)
. (10)

The vector of correlation parameters is denoted as θ =
{
θ(k)

}
, k = 1, . . . Nd. The notation d(k)ij is the distance

between two points in the kth dimension,
∣∣∣x(k)i − x

(k)
j

∣∣∣. These correlation parameters (kriging hyperparameters) are
also referred to as length scales or distance weights, and are typically found via the maximum likelihood estimation
(MLE) approach. Large θ values correspond to weak spatial correlation, whereas small values correspond to strong
spatial correlation [66]. When each variable has a distinct physical meaning, it makes sense to use an anisotropic
correlation function, i.e., having different θ(k) values in different dimensions. In that case, we have more flexibility
in the modeling, but at the expense of a more complex MLE [58, 67]. We will use the Gaussian and cubic spline
correlation functions. These two correlation functions exhibit a parabolic behavor near the origin (R (θ, d) ∝ d2 for
small d) [67], which are suitable for continuously differentiable functions.

When the global model is assumed known, kriging models produce the best linear predictor (BLP). When the
known global model is a constant, we have a simple kriging [68]. On the other hand, when the global model is
unknown and thus needs to be derived, the model is referred to as the best linear unbiased predictor (BLUP). When
a constant global model is assumed, a BLUP model is called ordinary kriging, whereas when a set of basis functions
is used (typically low-order polynomials, e.g., linear or quadratic), it is referred to as universal kriging [68] or kriging
with a trend [25]. Ordinary kriging models are more popular and commonly used, as the a priori knowledge of the
trends in the data is typically unknown [54].

The kriging equation can be derived via the mean square error (MSE) minimization approach, with the unbiased-
ness constraint [63]. Another alternative for the derivation is the Bayesian approach [58, 64, 69, 70, 71, 72]. In the
derivation, the model assumes that the prior variance σ2, the family and parameters of the correlation function, R (·),
are known. Typically, the designers will determine the correlation function, and apply the empirical Bayes approach to
find the parameters to be most consistent with the observed data [58, 64], in particular by employing the MLE. Some
correlation functions have tunable parameters θ that still need to be determined. Since there is no closed-form solution
for these optimum parameters, θ is typically solved by performing a constrained iterative search. The equation for
kriging approximation at a test point x0, ŷ (x0), can generally be expressed as,

ŷ (x0) = fT (x0) β̂ + rT (xs,x0)R−1s

(
ys − Fsβ̂

)
, (11)
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where f and β are as previously defined, r (xs,x0) denotes the correlation vector between the test and sample points
and Rs denotes the correlation matrix between samples. The symbol ys refers to the vector of function values at
sample locations, and Fs is a matrix containing the basis functions evaluated at each sample location.

A gradient-enhanced kriging model (GEK) interpolates gradient information, in addition to the function value, at
each sample location, thus achieving a first-order-consistency requirement, in addition to the zeroth-order-consistency
achieved by gradient-free kriging [22]. Depending on how the gradient information is used, there are two types of
GEK, namely the indirect GEK and direct GEK. The former uses the gradient information to generate new samples
around the available samples via a Taylor series expansion around those samples,

y (xNs+ik) = y (xi) +
∂y (xi)

∂x(k)
∆x(k). (12)

In the direct GEK approach, the gradients are now directly included in the formulation as additional observations or
sample data, as shown below,

ys =

[
y (x1) , y (x2) , . . . , y (xNs) ,

∂y (x1)

∂x(1)
,
∂y (x1)

∂x(2)
, . . . ,

∂y (x1)

∂x(Nd)
,
∂y (x2)

∂x(1)
, . . . ,

∂y (xNs
)

∂x(Nd)

]
(13)

This method requires augmenting the correlation matrix with its derivative terms, which considerably increases the
order of the correlation matrix to Ns (Nd + 1) from kriging’s Ns. Consequently, the computational cost to build and
use GEK models is higher than that of the original kriging models. See, for example, [22, 73, 74], for more details on
the formulations and uses of GEK.

3.3.3 Kriging Compared to RBF
There is no clear consensus as to which of the kriging and RBF surrogate models has a better predictive performance.
Mathematically, an ordinary kriging model can be reduced to RBF with an offset [75]. Wang and Shan [53] claimed
that RBF is a compromise between kriging models and polynomial regressions, as it can interpolate the sample points
(generally more accurate than polynomial regressions) and at the same time easier to construct than kriging models.
Forrester and Keane [54] argued that kriging is the least assuming method, which provides a greater flexibility in the
modeling. The flexibility comes mainly due to the parameters in the covariance function; however, it comes at the
expense of the estimation of hyperparameters [75]. Jin et al. [44], on the other hand, concluded that RBF has the
best performance overall in terms of accuracy, robustness (the most robust model is the one that is the least problem-
dependent), efficiency (the amount of computational effort required for the surrogate model construction), transparency
(the capability to provide information on model sensitivity to input variables and the inter-variable interactions), and
conceptual sensitivity (ease of implementation). The comparison was performed with 13 analytical problems and
one vehicle handling problem, with varying non-linearity, scale (dimensionality), and smoothness. With the varying
opinions regarding the two models, it is safe to conclude that their predictive performance is essentially problem-
dependent.

4 Mixture of Experts
There has been a growing interest in using multiple surrogates instead of a single model in isolation [65]. Combining
models in some way has been shown to improve the approximation performance of the surrogates [76, 77]. One of the
main motivations of using multiple models is to overcome the limited modeling flexibility of using one global model
when there is heterogeneity in the function profile [78]. Black-box surrogate model training seeks to find a set of
model parameters that fit the observations over the entire input space, which might be inadequate when the function
complexity is input dependent. In this section, we will first present an overview of the mixture of experts approach,
followed by the description of our proposed approach.

4.1 Overview of Mixture of Experts
Using multiple surrogate models can be done by combination or selection. For example, in committees we take the
average of predictions from different trained models. Viana et al. [65] proposed using cross-validation error in both
model selection and combination. When multiple surrogates are present, we can either select one with the lowest
cross-validation error, or to use the cross-validation errors to create a weighted surrogate by minimizing the integrated
square error. Decision tree models use a sequence of binary selections to select one model as the predictor (a winner-
take-all strategy) [79]. Bayesian model averaging seeks to find one model among several models, by assessing the
posterior probability of each candidate [80].
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The divide-and-conquer approach, which seeks to solve a complex problem by dividing it into simpler problems,
has become increasingly popular in combining multiple models for regression and classification [81]. Some classical
examples include the classification and regression tree (CART) algorithm [82], the multivariate adaptive regression
splines (MARS) algorithm [83], and the iterative dichotomiser 3 (ID3) algorithm [84]. The CART and ID3 algorithms
are derivations of the decision tree models. The mixture of experts (ME) model offers a statistical approach of decision
tree modeling, by using a probabilistic framework to combine models [77]. Jacobs et al. [26] introduced the original
ME model, which adopts the divide-and-conquer strategy. This model relies on three main components, namely the
experts, a gating function that facilitates soft splits of data (allowing data to lie simultaneously in multiple regions),
and a probabilistic model to combine the experts and gating function. In ME, the experts can either be classifiers or
regression functions. When used in regression, ME performs better than other techniques in modeling nonstationary,
piecewise continuous data [77]. Bettebghor et al. [85] used an ME approach as a surrogate for a discontinuous
problem domain in a structural optimization problem. For a comprehensive overview of the ME methods, including
the development, advances, and applications, readers are referred to a survey presented by Yuksel et al. [77].

In the classical ME models described above, the partitioning and learning of the problem domain are based on the
same algorithm. Tang et al. [27] proposed another approach, which relies on a cluster-based preprocessing step, there-
fore separating the partitioning and learning processes. Tang et al. [27] used the Kohonen’s self-organizing feature
map (SOM) to partition the input data as a preprocessing step in their ME approach. Xing and Hu [86] initialized their
ME model using K-means. Nguyen–Tuong et al. [87] used a distance-based measure in partitioning the training data,
assuming the same kernel width for all local kriging models. Bettebghor et al. [85] implemented the Gaussian mixture
model (GMM) with conjoint data to partition their input space and derive the mixing proportion. This new approach
is typically referred to as the mixture of explicitly localised experts (MELE), whereas the classical ME model is cate-
gorized as the mixture of implicitly localised experts (MILE). A thorough literature survey of different ME methods
based on their classification to MILE and MELE approaches is presented by Masoudnia and Ebrahimpour [88], where
the authors also compare the advantages and disadvantages of MILE and MELE.

One of the main challenges in ME modeling is the automatic determination of the number of experts a priori [77].
In fact, this is a difficult problem in data clustering in general [89]. Research on addressing this issue is ongoing.
Yuksel et al. [77] categorized the proposed approaches into four main categories, namely growing, pruning, exhaustive
search, and Bayesian models. Ueda and Ghahramani [90, 91] used a variational framework to simultaneously estimate
the parameters and model structure of an ME, by treating the number of experts as a random variable. In the infinite
mixture of Gaussian Processes proposed by Rasmussen and Ghahramani [92], the ME model was assumed to have an
infinite number of experts, thus eliminated the needs to specify the number of experts explicitly.

4.2 Proposed Approach
In this work, we propose a means to combine surrogate models using the general formulation of ME approach, which
is shown below

ŷ (x0) =

K∑
k=1

πk (x0) ŷk (x0) , with 0 ≤ πk (x0) ≤ 1 and
∑
k

πk (x0) = 1. (14)

The notation ŷk (x0), k = 1, . . . ,K is the local surrogate model (i.e., the local expert), where K denotes the total
number of experts in the mixture. πk (x0) is the mixing proportion, which depends on the evaluation point location x0

in the input space. The final prediction ŷ (x0) is therefore a linear superposition, or weighted combination, of multiple
surrogate models. The basic idea is to have several surrogate models to be responsible for different parts of the input
space, to enable modeling the heterogenous complexity in the function profile.

In this formulation, we adopt the MELE approach. Implementing this approach gives us the liberty to use different
surrogate modeling types for different partitions in the input space. This is possible since the partitioning and learning
processes are independent of each other, unlike in the MILE approach. We choose to partition the training data based
on an attribute that reflects the function profile to be modeled, such as its function values or derivative information.
This translates to a one-dimensional problem in the clustering algorithm, which is simpler. For this purpose, we
perform an unsupervised learning algorithm, which can learn the pattern or hidden structure of unlabeled data. The
mixing proportion is typically derived based on the cluster posterior probability, i.e., the probability that the k-th
cluster is active at x0. Bettebghor et al. [85] chose the cluster with the highest posterior probability (hard-split) to give
the approximation. Tresp [93] used the softmax function of the Gaussian processes as the mixing proportion. Another
distribution type can also be used, such as the Dirichlet distribution as used by Shi et al. [78]. In our approach,
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however, the initial clustering of the training data is performed in the y-space, i.e., the training data are partitioned
based on the function values or derivatives, without regard to their locations in the input space. To enable computing
the corresponding cluster posterior probability at x0, we therefore need to map the clustering in the y-space to that in
the x-space. For this purpose, we can perform a supervised learning algorithm, since the training data are now already
labeled upon completing the unsupervised learning algorithm in the first stage. In this work, we use the Gaussian
mixture models (GMM) [94] as the unsupervised learning algorithm, and the regularized Gaussian classifier [76] as
the supervised learning algorithm.

We found that both hard-split and using the softmax function in the model combination have some limitations in
the approximation accuracy of the ME models, which will be further elaborated in Section 6. To address this issue, we
derive a “modified” softmax function as mixing proportion in our ME model, which is described below. The cluster
posterior probability can be expressed as

p (zk = 1|x) =
p (x |zk = 1) p (zk = 1)∑
j p (x |zj = 1) p (zj = 1)

, (15)

where zk (x0) is an unobservable latent indicator which assigns data points to local experts in the mixture [78]. The
K-dimensional binary random variable zk (x0) is a 1-of-K encoding where zk (x0) ∈ {0, 1} and

∑
k zk (x0) = 1.

In other words, the kth local model is active when zk = 1. When there are only two clusters (K = 2), this cluster
posterior probability becomes a sigmoid function, an S-shaped curved with values ranging from 0 to 1,

p (z1 = 1|x) =
1

1 + exp (−a)
= σ(a), where a = ln

p (x| z1 = 1) p (z1 = 1)

p (x| z2 = 1) p (z2 = 1)
(16)

The cluster boundary is defined at the point where p (zk = 1|x) = 0.5. We can modify the sigmoid function by
introducing weight (ω) and bias (λ), σ (ωa+ λ). Altering λ shifts the cluster boundary, whereas altering ω changes the
slope of the S-shaped curve around the cluster boundary. Since we want to maintain the cluster boundary position, we
set λ to the default value 0. Increasing ω drives the sigmoid function to be closer to a step function, or p (zk = 1|x) =
{0, 1} as ω →∞. For cases where K > 2, we use a softmax function,

p (zk = 1|x) =
exp (ak)∑
j exp (aj)

, where ak = ln [p (x |zk = 1) p (zk = 1)] . (17)

The previous discussion on the effects of adding ω and λ to the sigmoid function also applies to this softmax function.
In our proposed approach, we use this “modified” softmax function as the mixing proportion,

πk (x0) =
exp (ωak (x0))∑
j exp (ωaj (x0))

(18)

We will vary ω and discuss how it affects the predictive performance of the mixture of experts, which will be presented
in Section 6.

The procedure for the mixture of experts we developed can be summarized in the following steps:

1. Implement the Gaussian mixture model as the unsupervised learning algorithm to cluster the training data. The
designers need to decide on the clustering criterion and the number of clusters prior to performing this step.
The training data set for clustering, T = {xn, yn}n, is now partitioned into K clusters, Tk = {xn, yn}n∈Ck ,
k = 1, . . . ,K, where Ck denotes the set of clustering training data indices that correspond to the kth cluster.

2. Map the clustering of training data to the clustering in the input space (x-space) by implementing the regularized
Gaussian classifier as the supervised learning algorithm.

3. Build a separate local surrogate model within each cluster, ŷk (x) , k = 1, . . . ,K.

4. Compute the cluster posterior probability, i.e., the probability that x0 belongs to the kth cluster, using (15).

5. Compute the corresponding mixing proportion, πk (x0), using (18).

6. Compute the mixture of experts estimation, ŷ (x0), following (14), using the local experts and mixing propor-
tions obtained in steps 3 and 5, respectively.
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To further improve the approximation accuracy of the ME models, we complement the local surrogate model
training with adaptive sampling procedure. This is possible since each local surrogate model is independent of each
other, and built based on exclusive sample set. Some traditional ME models, on the other hand, use the same training
data for all local experts and gating functions [27]. At each cluster, this adaptive procedure starts with a subset of Tk,
until the termination criterion is achieved, which will be described in more details in Section 5.3.

In this paper, we demonstrate the effectiveness of the proposed mixture of experts procedure in creating a surro-
gate model for the aerodynamic force and moment coefficients of aircraft configurations. The performance is then
compared to those of some conventional global surrogate models.

5 Problem Description
In this section we describe the two aircraft configurations considered in this study and the aerodynamic solver used to
generate the aerodynamic coefficient data. We then provide more details on the surrogate models that we benchmark,
as well as the selected sampling and model validation procedures.

5.1 Aircraft Configurations
Two Boeing 777-size configurations are considered in this work to demonstrate the proposed surrogate-based mission
analysis procedure: one conventional and one unconventional. For the conventional configuration, we use the wing-tail
from the Common Research Model (CRM) [95]. This aircraft exhibits design features typical of a transonic, wide-
body, long-range aircraft, with overall dimensions similar to those of the Boeing 777-200ER. For the unconventional
configuration, we consider a BWB configuration with the sizing parameters used by Lyu and Martins [21]. Figure 1
shows the layouts for both aircraft configurations, and the grid to be used in the aerodynamic solver, which is described
next.
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Figure 1: Aircraft configurations considered in this study, showing the grid used in the aerodynamic solver.

5.2 Aerodynamic Solver
An aerodynamic panel code, TriPan, is used to generate the aerodynamic force and moment coefficient data (both
samples and validation points) in this work. This solver, developed by Kennedy and Martins [96, 97], calculates the
aerodynamic forces and moments of inviscid, incompressible, external lifting flows on unstructured grid using surface
pressure integration, with constant source and double singularity elements. The induced drag is computed using a
Trefftz plane integration and the code includes a skin friction and compressibility drag estimate as well. TriPan can
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be used with both quadrilateral and triangular panels. In this study, quadrilateral panels are used for the surface
discretization of the two aircraft configurations, as shown in Figure 1.

5.3 Surrogate Models
The surrogate models to approximate the lift, drag, and pitching moments coefficients (CL, CD, CM ) are constructed
in a four-dimensional space with input variables: Mach number (M ), angle of attack (α), flight altitude (h), and tail
rotation angle (η). Due to the varying magnitudes of the input variables (in particular between the flight altitude and
other input variables), the input variables are scaled to be between 0 and 1 prior to constructing the surrogate models.

We consider both global and ME models. As previously mentioned in Section 3, we consider black-box (data-fit)
surrogate models that are interpolative, i.e., kriging and RBF models. For the RBF models, three kernel functions are
used, namely the thin plate splines, cubic, and square-exponential (Gaussian). For the kriging models, since we know
that the aerodynamic force and moment coefficients are continuously differentiable, we consider only the correlation
functions that exhibit parabolic behavior, namely the Gaussian and cubic spline functions. Direct GEK and universal
kriging models are also benchmarked.

For the universal kriging model (kriging with a trend), the global model is modeled by an analytical expression,
which takes different values in space, to be the trend component [25]. Using this approach, instead of being restricted
to using low-order polynomials as the basis functions, we select the basis functions that reflect the physics of the
system, to assist the prediction. Since we know that drag coefficient profiles are expected to have a steep gradient in
the high Mach (M ) and high angle of attack (α) region, we set the trend to be

ψ (M,α) =

{
1/
(
1−M2

)
if α ≤ 1.0

α2/
(
1−M2

)
if α ≥ 1.0

. (19)

The constant numerator for α ≤ 1.0 is used to remove the quadratic profile (in the α dimension) in the low α region,
to be consistent with the CD profile obtained from the aerodynamic solver. The basis function vector, f (x), and the
coefficient vector, β, are thus expressed as follows,

f (x) = [1, ψ (M,α)] and β = [β0, β1]
T
. (20)

Thus at an evaluation point x0 = [M0, α0, h0, η0], the kriging equation can be expressed as

ŷ (x0) = β0 + β1ψ (M0, α0) + r (xs,x0)
T
R−1 [ys − β0 − β1ψ (M0, α0)] . (21)

The basis function coefficients, β0 and β1, are obtained by computing their least squares estimates.
The Halton sampling sequence, which is a space-filling low-discrepancy method [57], is used to generate training

samples to construct the surrogate models, as well as to generate the clustering training data for constructing the ME
models. The discrepancy in this case refers to the departure of the sampling points from a uniform distribution, thus
ensuring an even distribution of samples over the input space. Moreover, Halton sample generation is done in an
incremental fashion. That is, when we increase the size of training samples (Ns), we reuse the points from the smaller
sample set. With this incremental sampling, we can compare the surrogate modeling performance with different sizes
of sample sets more fairly, compared to other sampling method like LHS, which generates a new set of samples for
each sample size.

For the ordinary kriging and GEK models, we also use the adaptive sampling procedure following the exploration
infill criterion. At each iteration, we select a point with the maximum index of dispersion, or variance-to-mean ratio
(VMR), σ2/µ, of the kriging prediction as the next sample. Using the maximum VMR instead of the more commonly
used maximum variance criterion takes into account the varying magnitudes of kriging predictions at different parts of
the input space. An initial set of points is required to perform this adaptive sampling procedure. For this purpose, we
use 15 Halton points for the global models, and the first 15 points in each clustering data set Tk for the ME approach.
This number of initial samples is deemed sufficient to have a reasonable surrogate model to start with for the kind of
problem complexity we consider here, while giving the adaptive sampling procedure enough “room” to be effective.

The adaptive sampling procedure is terminated when the convergence criterion is achieved (maximum VMR <
tolerance), or when the specified maximum number of samples (sampling budget) is reached. For simplicity, we select
the next sample out of a set of 10 000 candidate points, which are distributed uniformly in the input space. Note that
no actual function evaluations are required to compute the VMR values at those points, since the variance σ2 and
mean µ of the kriging prediction come out naturally from the kriging derivation and can be expressed analytically.
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The actual function evaluation is only required at the selected sample location, to update the sample set S. We found
that using this approach significantly accelerates the convergence of the VMR maximization, compared to using some
optimization techniques, resulting in much smaller sample sizes.

To validate the surrogate models, we generate 10 000 validation points with the aerodynamic solver, as the truth
set data. These data are used to compute the normalized RMS error, with which we assess and compare the accuracy
of surrogate models tested.

For the ME models, we follow the procedure presented in Section 4. Ordinary kriging and direct GEK models
with adaptive sampling are used as the local experts. With the divide-and-conquer approach, the computational cost
required to build and use the multiple kriging models is reduced. The correlation matrix for the ordinary kriging model
isO

(
N2
s

)
in size and its inversion isO

(
N3
s

)
in cost. Even when the total number of samples used are the same for the

global model and the ME model, the total computational cost is lower for the latter. When the job is distributed to local
experts, we can disregard the correlation between samples that belong to different subregions. Moreover, each local
expert is free to select the best model parameters to better reflect the characteristics of the underlying function in the
input subregion it is responsible for (e.g., by having different length scales, θ, for each local kriging model). In short,
this divide-and-conquer approach allows us to distribute a complex task into multiple simpler tasks. The numbers of
clustering training data are 100 for the two-dimensional test cases, and 500 for the four-dimensional test cases. In this
work, we try several numbers of clusters until there are “empty” clusters, i.e., clusters with zero or very few training
data. We then compare and discuss the performance of the ME models with different numbers of clusters.

5.4 Mission Analysis
In addition to verifying the modeling accuracy of surrogate models in the input space, we will also look into how this
accuracy translates to the accuracy of surrogate models when used to evaluate the aircraft performance via the mission
analysis procedure. For this purpose, we run a reference mission analysis using TriPan, instead of surrogate models, to
compute the aerodynamic force and moment coefficients. Due to the high computational cost of running the reference
mission analyses, we limit the comparison and verification to 10 mission profiles for the BWB configuration. For the
same reason, the numerical integration is performed with only four intervals per segment.

The 10 benchmark mission profiles are randomly selected from the typical payload-range diagram for long-range
aircraft configurations, such as a Boeing 777-200ER configuration1. The same payload-range diagram was also used
in the multipoint high-fidelity aerostructural optimization problem, which minimizes fuel burn over a large number of
different missions [19]. Although these 10 benchmark mission profiles correspond to the same vehicle configuration,
randomization is introduced in the mission Mach number (M ) and altitude (h) to account for the operational variation,
since each flight mission is independent of each other. The Mach number is drawn randomly to be within [0.7, 0.88]
to account for the unknown operational demands that might require faster or slower flights, whereas the altitude is
varied between [28 000 ft, 41 000 ft] to simulate the variability in the altitudes assigned by air traffic control. The four
mission parameters, namely mission payload, range, cruise Mach number, and cruise altitude for the 10 verification
missions are summarized in Table 1 (sorted by the mission range), and visualized in the payload-range diagram shown
in Figure 2. In this diagram, each scatter point, which represents a mission profile, is sized with the cruise Mach
number, and is color coded by the cruise altitude.

Index Payload (kg) Range (nmi) Cruise Mach Altitude (ft)

1 37 969 580 0.77 39 939
2 29 531 1 704 0.76 28 796
3 23 203 2 025 0.82 38 347
4 9 844 2 747 0.81 29 061
5 43 594 3 469 0.74 34 633
6 18 281 3 870 0.80 30 653
7 11 953 4 191 0.85 40 204
8 26 719 4 593 0.70 36 224
9 7 031 5 315 0.73 39 673

10 15 469 6 759 0.74 38 082

Table 1: List of mission parameters for the ten benchmark mission profiles.
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Figure 2: Selected mission parameters for the mission analysis verification. Each point in the payload-range diagram
is sized to be proportional to the cruise Mach number, whereas the color is mapped to the cruise altitude

A typical mission profile is used in the analysis, as shown in Figure 3, and described in Table 2. We only include
one main profile, without loiter or reserve profiles. For longer range missions, we assume a step climb procedure for
every 2 000 nmi, with a 2 000 ft altitude increment at each step. In this illustration we only show two cruise steps.
The cruise altitude specified in the mission parameters is used for the first cruise segment. The entire cruise portion of
the flight, from the initial cruise (segment 8), through the step climb (segment 9), to the final cruise (segment 10), is
done at a constant Mach number M , which is specified in the mission parameters. From 10 000 ft, the climb is done
at a constant KIAS, which is the indicated airspeed in knots (segment 6), until it intercepts the desired cruise Mach
number, at which point the climb is done at a constant Mach number (segment 7). The altitude where the constant
Mach segment starts is denoted as hcm. The descent is also done in a similar fashion, with a constant Mach descent
(segment 11) followed by a constant KIAS descent (segment 12). The same fuel fraction value of 0.01 is used for the
startup, taxi, and landing segments, whereas 0.005 is used for takeoff segment. These values follow those suggested
by Roskam [6], Raymer [98], and Sadraey [99].
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Figure 3: Typical mission profile for a long-range configuration (not to scale).

The main focus of this study is to investigate the performance of surrogate models in the mission analysis pro-
cedure. As such, the benchmarking case is kept simple by assuming a constant TSFC (0.53 lb/(lbf · h)), instead of
using an engine model. However, a full integration of engine performance model to the mission analysis procedure
is currently an ongoing work by the authors and their colleagues, to achieve a coupled aerostructural and mission
parameter optimization. We use a weight and balance model with four components, namely the mission payload (20
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Segment Altitude [ft] Speed

1 Startup — —
2 Taxi — —
3 Takeoff — —
4 Climb 1 500→ 10 000 150 KIAS→ 250 KIAS
5 Cruise 10 000→ 10 000 250 KIAS→ 310 KIAS
6 Climb 10 000→ hcm 310 KIAS
7 Climb hcm → h M
8 Cruise h M
9 Climb h→ h+ 2 000 M

10 Cruise h+ 2 000 M
11 Descent h+ 2 000→ hcm M
12 Descent hcm → 10 000 310 KIAS
13 Cruise 10 000 310 KIAS→ 250 KIAS
14 Descent 10 000→ 1 500 250 KIAS→ 150 KIAS
15 Landing — —

Table 2: Mission profile parameters for typical mission.

tons), fixed weight (200 tons), and fuel weight, which depends on the mission analysis. These component weights and
moments gives an estimate of the entire aircraft’s weight, as well as the nominal, forward, and aft center of gravity
locations. During the mission analysis, the weight and center of gravity locations of these components can be indi-
vidually updated, giving a more accurate picture of the aircraft’s weight and balance as fuel is decremented in the
integration.

5.5 Software Architecture
The computationally intensive part of our mission analysis module is implemented in Fortran, and then wrapped with
Python. This combination has been proven to be effective. Fortran offers a significantly faster computational time
as compared to Python, and the object-oriented Python provides the more practical user interface (scripting), ease
of use of a class object, and plotting features. Using Python at the scripting level has also facilitated the integration
of the different Fortran modules (e.g., aerodynamic solver, mission analysis, surrogate models, atmospheric module,
and engine model). The aerodynamic and mission solvers are suitable for parallel implementation. In this work, the
analyses are performed on a parallel computing platform [100].

6 Benchmarking Results
In this section, we first focus our discussion on the surrogate modeling performance comparison in approximating the
CL, CD, andCM in the four dimensional input space, for both the CRM and BWB configurations. We then present the
surrogate model verification in the mission analysis context. The value ranges for the surrogate model input variables
are listed in Table 3. The surrogate modeling techniques considered in this study are listed in Table 4. For simplicity,

Input variable Lower bound Upper bound

Mach number (M ) 0.15 0.90
Angle of attack (α) −10.0◦ 20.0◦

Altitude (h) 0 ft 50 000 ft
Tail angle (η) −20.0◦ (CRM), 4.0◦ (BWB) 20.0◦ (CRM), 40.0◦ (BWB)

Table 3: Value ranges for the surrogate model input variables.

“ordinary kriging” is referred to as “kriging”, and ”direct GEK” is “GEK” in the subsequent result presentation and
discussion.

For illustration purposes, we first demonstrate the methods with a two-dimensional case, using data corresponding
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Model type Kernel/correlation function Sampling
Global models
Kriging Cubic (C) Halton

Gaussian (G) Halton
Gaussian (G) Adaptive (maximum VMR)

Universal kriging Gaussian (G) Halton
GEK Cubic (C) Halton

Gaussian (G) Halton
Gaussian (G) Adaptive (maximum VMR)

RBF Cubic (C) Halton
Gaussian (G) Halton
Thin plate splines (TPS) Halton

Mixture of experts
Kriging Gaussian (G) Adaptive (maximum VMR)
GEK Gaussian (G) Adaptive (maximum VMR)

Table 4: Surrogate models benchmarked in this study, and the corresponding model structures and sampling tech-
niques.

to the BWB configuration. Next, the results corresponding to the four-dimensional cases are presented for both the
BWB and CRM configurations. We then use the surrogate models corresponding to the BWB configuration for the
mission analysis verification.

6.1 Two-dimensional Case with BWB Configuration
For the two-dimensional case, we fix the flight altitude to 38 500 ft and the tail angle to 7.0◦ , and we only discuss the
surrogate model performance in approximating CD. This is because the CD profile exhibits a more complex profile
than CL or CM , especially in the transonic region. Figure 4 shows the CD contour using the truth set data. The entire
input space is shown in Figure 4a, where we can observe the high drag gradient at the high M , high α region. Due
to the large value range shown in this contour plot, the lower left corner seems flat. However, when we zoom into the
region defined by the white rectangle, we see a quadratic profile, as shown in Figure 4b.
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Figure 4: Drag coefficient contour exhibits different profiles in different input space regions. The white rectangle
shown in the left hand side figure highlights the subset shown in the right hand side figure.

Now we look at the performance of global models in approximating this CD contour. We first build kriging and
GEK models with adaptive sampling, and then use the same sample size as the maximum number of Halton samples
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considered. The convergence criterion used for the adaptive sampling in this case is maximum VMR ≤ 10−5. The
convergence is achieved at Ns = 63 for the kriging model, whereas the GEK model converges with 42 samples.

The normalized RMSE for different surrogate models that use no gradient information are shown in Figure 5a,
and those for GEK models are shown in Figure 5b. From the error plots we observe that the error trend is more
monotonically decreasing when adaptive sampling is used. Although using more Halton samples in general decreases
the approximation error, the convergence trend is more erratic than when we use adaptive sampling. Among the three
RBF models, the one with the thin plate spline kernel function has the worst performance, especially with smaller
sample size. The universal kriging, using the basis functions given in Section 5.3, shows the best performance when
fewer samples are used, but is caught up by kriging models (with Gaussian correlation function) as more samples are
added. This result shows that adding a known trend to the kriging model does improve the predictive performance,
especially when we have a small sample budget. For the GEK models, using a cubic correlation function results in
a poor predictive performance. In fact, its performance is worse than when no gradient information is used. GEK
models require computing the second derivatives of the correlation function to assemble the extended correlation
matrix (to include the correlation between function values and gradients, as well as between gradients). While the
second derivatives of a cubic correlation function is continuous, it is only piecewise linear and thus not smooth. The
Gaussian correlation function, on the other hand, has a smooth second derivative.
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Figure 5: The normalized RMS error for the two-dimensional BWB case show decreasing trends when adaptive
sampling is used, resulting in more accurate surrogate models. Halton sampling is used unless otherwise stated.

The CD contours given by the six global models are shown in Figure 6, using the maximum number of samples
shown in Figure 5. We use white dots to indicate the test points with > 5% approximation errors, to visualize the
input space regions where each surrogate model performs poorly. The GEK model with Gaussian correlation function
and adaptive sampling (Figure 6a) shows the best performance, both in terms of the normalized RMSE and the error
distribution. The gradient information seems to help fitting the different function characteristics in the different input
space region significantly. Kriging (Figure 6b) and universal kriging (Figure 6c) models can both follow the trend in
the high drag gradient region pretty well, but the performance in the low α region is still rather poor. A similar error
distribution is observed when an RBF model with Gaussian kernel function is used (Figure 6e), though the overall
normalized RMSE is significantly higher. Choosing a different kernel function affects the RBF model performance,
as seen in Figure 6d where a cubic kernel function is used. This model shows an overall good performance, except
in the regions that are close to the input space boundary. Kriging with cubic correlation function (Figure 6f) shows a
poor predictive performance in the entire input space region, which is also reflected in its high normalized RMSE. We
will now look into the ME results, and compare their performance to the global model performance.

Before generating the ME models, we need to determine the mixing proportions πk (x). As mentioned in Section 4,
we use the modified cluster posterior probability as πk (x) (18), where we need to specify the weight ω. In Figure 7,
we show the effect of changing ω on πk (x) (top row), and on the resulting CD approximation contours (bottom row).
For the πk (x) plots, we use different colors to indicate the different clusters. The color intensity within each cluster
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(a) GEK (G) Adaptive (3.56%)
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(b) Kriging (G) Adaptive (7.43%)
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(c) Universal kriging (G) (8.69%)
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(d) RBF (C) (11.83%)
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(e) RBF (G) (33.94%)
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(f) Kriging (C) (41.68%)

Figure 6: The approximated CD contours for the BWB configuration in a two-dimensional space from different
global surrogate models, with the normalized RMS errors shown inside the brackets. The test points with > 5%
approximation errors are indicated by the white dots.
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represents the πk (x) value, where 0 ≤ πk (x) ≤ 1. The lightest color corresponds to πk (x) = 0, whereas the
darkest corresponds to πk (x) = 1. We show three ω values: 1 (the default value for the original posterior probability
function), 2, and 3. For this benchmarking, we partition the input space based on the derivative (∂CD/∂M ) criterion,
and use kriging models as the local experts.

As we can observe from these plots, the cluster boundary gets more clearly defined as ω is increased, which
increases the sigmoid function slope. When ω = 1, the region in the input space where both local experts “share
responsibility” is larger. Consequently, each local expert needs to approximate the function value beyond its local area.
Since kriging (including GEK) models are not good at extrapolation, this poor predictive performance is reflected in
the overall approximation accuracy, as shown in Figure 7d. Increasing ω decreases the areas outside the local region
that each expert needs to predict, resulting in the better predictive performance seen in both the error distribution plots
and the overall normalized RMSE. Further increasing ω above 3 does not affect the predictive performance of the ME
model, as shown in the error convergence plot displayed in Figure 8.
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(c) πk, ω = 3
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(d) ĈD , ω = 1 (11.00%)
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(e) ĈD , ω = 2 (3.12%)

10 5 0 5 10 15 20
Angle of attack

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
a
ch

0.01

0.48

0.95

1.43

1.90

2.37

2.84

3.32

3.79

4.26

(f) ĈD , ω = 3 (2.87%)

Figure 7: Effect of changing ω in computing πk (x) (18). For the πk (x) plots (top row), different colors correspond
to different clusters. The highest color intensity within each cluster corresponds to πk (x) = 1 (maximum value). The
overall normalized RMSE are shown inside the brackets.

In this two-dimensional study, we consider two clustering criteria: the function value (CD) and the derivative of
CD with respect to Mach number (∂CD/∂M ). Both kriging and GEK models are considered as the local experts, and
the samples are drawn adaptively. The results are summarized in Figure 9, showing the total number of samplesNs and
the overall normalized RMSE for all cases considered here. When using multiple kriging models instead of one global
kriging model, the ME models reduce the RMSE from 7.4% to 3 − 4%. When we use ∂CD/∂M as the clustering
criterion, the improved performance is achieved with fewer samples. When using GEK models as the local experts,
we can achieve < 1% overall performance error with similar sample sizes as compared to when a global model is
used. Comparing the two clustering criteria, the overall approximation errors are of the same order for each number of
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Figure 8: Normalized RMSE converges upon increasing ω in πk (x).

clusters considered. However, fewer samples are required when we use ∂CD/∂M as the clustering criterion, showing
that this derivative value is a better indicator for the heterogeneity in the function profile.

90 60 30 Ns

63

59

75

84

48

57

62

RMSE 3% 6% 9%

7.43%

3.95%

2.86%

2.98%

2.87%

3.18%

3.95%4 clusters

3 clusters

2 clusters

4 clusters

3 clusters

2 clusters

1 cluster

90 60 30 Ns

42

34

39

52

31

41

47

RMSE 3% 6% 9%

3.56%

2.97%

0.96%

0.84%

1.91%

0.29%

0.25%4 clusters

3 clusters

2 clusters

4 clusters

3 clusters

2 clusters

1 cluster

Kriging models GEK models

Function
value, CD

Derivative,
∂CD/∂M

(Clustering criterion)

Figure 9: Mixture of experts result summary with two clustering criteria to approximate CD contour in a two-
dimensional space for the BWB configuration.

We now compare the ME performance for different numbers of clusters (local experts). The top row of Figure 10
shows the partitioning of input space (shown as the mixing proportion contour plots) with 2, 3, and 4 clusters when
using ∂CD/∂M as the clustering criterion. The CD approximation contours with kriging and GEK models as the
local experts are also shown, with the distribution of test points with > 5% approximation errors shown as white dots.
These plots show that the mixtures of GEK models offer a notably better performance than their kriging counterparts.

We now look at the optimum length scales (kriging hyperparameters, θ) for the various local kriging and GEK
models as obtained via the MLE procedure. Table 5 shows the different optimum θ obtained for each local expert.
Each square-bracket corresponds to the θ of one local expert. The first number refers to the correlation parameter in
theM dimension, whereas the second number explains the correlation in the α dimension. A smaller number indicates
a stronger correlation. This correlation can be interpreted as how much the knowledge of function value at one point
helps to deduce the function value at another point. Therefore, a simple linear function has a strong correlation,
whereas a highly nonlinear function (e.g., a function which exhibits pronounced oscillations) has a weak correlation.
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the clustering criterion for the BWB configuration.
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Figure 11 displays the optimum θ in the different input space partitions corresponding to the ME with kriging
models. For the lowM , low α region (blue), we see a stronger correlation in theM dimension than in the α dimension.
This outcome is not surprising, as we could see in Figure 4b that CD values do not vary much in Mach (stronger
correlation, lower θ), whereas it exhibits a quadratic profile in α (weaker correlation, higher θ). In the middle region
(red), we find almost equal length scales in both the M and α dimensions. In the high M , high α region (purple), the
correlations are weak but it is stronger in the α dimension. The optimum length scales in the latter partition are the
closest to the ones obtained when we use a single global kriging model (see Table 5), suggesting that this is the most
dominant profile when fitting a global surrogate model. These observations suggest that partitioning the input space
lets each local expert to model the dependence between function value and inputs separately, thus results in a better
approximation model overall.

Number of clusters Length scales (θ)

Local experts: kriging models

1 [6.04, 3.74]
2 [0.29, 1.90], [7.03, 2.44]
3 [0.08, 0.35], [0.01, 3.89], [6.18, 2.95]
4 [0.08, 0.35], [0.01, 3.89], [7.69, 4.15], [11.47, 12.05]

Local experts: GEK models

1 [7.94, 2.51]
2 [2.70, 0.73], [7.48, 2.77]
3 [2.63, 2.90], [0.90, 2.19], [8.35, 3.33]
4 [3.17, 3.63], [0.90, 2.19], [7.57, 2.60], [7.28, 7.13]

Table 5: Local kriging and GEK models have different optimum model parameters (length scales θ = [θM , θα])
in the partitioned input space, suggesting that the divide-and-conquer approach is better in modeling the different
characteristics in the function profile.
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Figure 11: Different local kriging models have notable differences in the optimum model parameters (length scales
θ = [θM , θα]).

22



6.2 Four-dimensional Case with BWB Configuration
Modeling the CD profile in the four-dimensional space is significantly more complicated than in the two-dimensional
case. The BWB configuration, in particular, exhibits a more complex correlation between drag and trim, and thus
the drag profile becomes more nonlinear in the tail angle dimension. As we will see, this complex profile imposes
challenges in fitting surrogate models that accurately predict the CD profile in the entire input space.

The adaptive sampling procedures performed for the global kriging and GEK models converge slowly. We thus
set the maximum Ns to be 600 for kriging and 200 for GEK model. The convergence (or the lack thereof) of the
maximum VMR, which is the criterion used for the adaptive sampling procedure, and the normalized RMSE are
shown in Figures 12 and 13 for the kriging and GEK model, respectively. Drawing 600 samples adaptively for the
kriging model takes around 22 hours on a single 2.00GHz processor, yet the approximation accuracy is still really
poor—the normalized RMSE is 27.13%. The adaptive sampling procedure for the GEK model takes approximately
32 hours to complete (using the same processor), and yet the resulting approximation accuracy is only 43.68%. In
both cases (kriging and GEK), the maximum VMR converges erratically, though the kriging model starts showing a
smoother convergence at Ns > 250. However, looking at the convergence slope, adding more samples does not seem
to provide any meaningful improvement in the approximation accuracy.

Another issue we identify from the convergence plots are the sudden spikes of maximum VMR at around 100
samples for both kriging and GEK, and also at 220 for kriging, which are also reflected in the increasing normalized
RMSE. This phenomenon is common when performing an adaptive sampling procedure based on the maximum vari-
ance criterion. The procedure tries to converge to a certain kriging shape by adding more samples. However, it reaches
a point where adding a sample changes the shape it needs to converge to, thus the spike occurs. The kriging shape after
the spike is typically more complicated than the one before. In other words, there is a certain profile characteristic
that is only captured by the model with enough samples. We have often observed this phenomenon, even in simpler
analytical functions, and they typically converge in the end. Having multiple spikes in the convergence plot is not
uncommon either. However, when the function profile is too complex, the procedure converges too slowly, just as
observed here.
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Figure 12: The slow convergence of using a global kriging model (with adaptive sampling) to approximate the complex
CD profile of the BWB configuration in a four-dimensional space. The convergence criterion for the adaptive sampling
is not achieved.
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Figure 13: The slow convergence of using a global GEK model (with adaptive sampling) to approximate the complex
CD profile of the BWB configuration in a four-dimensional space. The convergence criterion for the adaptive sampling
is not achieved.

The other global surrogate models are tested with up to 200 Halton samples, since we do not have converged
numbers of samples with the adaptive sampling procedure. The error convergence plots are shown in Figure 14. For
all the eight surrogate models tested, only two yield approximation errors that are less than 20%: the universal kriging
(18.59%), and the ordinary kriging with cubic correlation function (15.85%). GEK with cubic correlation function
has the worst performance, as also observed in the two-dimensional case. Thus, using any of these surrogate models
in any analyses or optimizations will not yield meaningful results.

Due to the poor predictive performance of all the global surrogate models considered in this study, we now look
into using ME models and see how they can improve the accuracy. The training samples to build each local expert
are selected through the adaptive sampling procedure. For this problem, the convergence is considered achieved
when the maximum VMR < 10−3, and the maximum number of samples is set to 50 for each local expert. This
adaptive sampling procedure starts with the first 15 clustering training data assigned to the local region, Tk. Similarly
to the two-dimensional case, using the derivative, ∂CD/∂M , as the clustering criterion yields better performance
overall with fewer samples than when CD value is used. Thus, we only show the results from the former clustering
criterion here, which are summarized in Figure 15. Here we try partitioning the input space to up to seven clusters.
Using kriging models as the local experts result in normalized RMSE ranging between 7% to 11%, whereas using
GEK models further improves it to 4–5%. The total number of samples increases as we increase the number of
clusters. When GEK models are used as the local experts, we achieve a good compromise between the number of
samples and approximation error even with only 2 clusters (Ns = 74, with 4.73% RMSE). These results show that
applying the divide-and-conquer approach in approximating a complex function profile notably improves the predictive
performance. Compared to the global model training with adaptive sampling procedure that takes more than 20 hours
without achieving convergence, the training time for the ME models (including clustering, adaptive sampling, and
constructing the local experts) are more than 200 times faster than the global model training, using the same processor.
When using kriging models as the local experts, the training is done in less than 3 minutes, whereas when GEK models
are used, it is less than 8 minutes. This further supports our earlier argument that the adopted distributed approach can
help reduce the computational cost to build and use the surrogate models.
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Figure 14: The normalized RMSE plots show poor predictive performance by all the global surrogate models consid-
ered in approximating the CD profile of the BWB configuration in a four-dimensional space. Halton sampling is used
unless stated otherwise.
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Figure 15: Mixture of experts result summary with ∂CD/∂M clustering criterion to approximate the CD profile of
the BWB configuration.
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Figure 16 shows the convergence plots for the maximum VMR and normalized RMSE for each local expert in a ME
with five clusters. Each local expert is built using a GEK model. The convergence displayed in this plot shows a stark
difference from those of the global models (Figures 12 and 13). Here, the adaptive sampling procedure within each
local expert converges nicely until the convergence criterion is achieved, which translates to a smooth convergence of
the normalized RMSE. From these results, we can see that the adopted divide-and-conquer approach overcomes the
challenges of modeling a highly nonlinear function by partitioning the input space into smaller subregions that are
much easier to tackle.
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Figure 16: The convergence plots for the maximum VMR and normalized RMSE for each local expert (GEK), with
the input space partitioned into 5 clusters, when approximating the CD profile of the BWB configuration in a four-
dimensional space.

Building surrogate models for CL and CM is much easier than for CD, owing to the much simpler function
profiles. Using our aerodynamic solver, CL and CM values are independent of the flight altitude, and thus their
derivatives in the altitude dimension are zero. These zero derivatives impose difficulties when fitting a GEK model,
thus we restrict the following discussion to surrogate models with no derivative information, which will prove to be
sufficient in approximating CL and CM .

Unlike CD, performing the adaptive sampling procedure in building a global model results in good convergence
characteristics, for both the CL and CM kriging models, as shown in Figure 17. For the CL kriging model, the maxi-
mum VMR decreases to below 10−4 with 42 samples. The resulting surrogate model gives an overall approximation
error of 1.28%. With the same convergence criterion for the adaptive sampling procedure, the CM kriging model re-
quires 64 samples and achieves an overall approximation error of 2.97%. Using these converged numbers of samples,
we now run other global models using Halton samples, as shown in Figure 18. To approximate both CL and CD, krig-
ing with adaptive sampling offers the best performance. Since CL and CM profiles do not exhibit any strong quadratic
trends in the M and α dimensions, the universal kriging (which is set to have the same basis functions as the ones
for CD) does not have any advantage over the ordinary kriging models. The kriging models with a cubic correlation
function show rather poor performance and convergence at Ns < 35, but catch up with other kriging models for larger
number of samples. The approximation accuracy of the three RBF models converge slowly, and thus at the selected
Ns their approximation errors are still high.

For modeling simple profiles such as CL and CM , the ME models do not offer much advantage. In fact, going
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Figure 17: The convergence plots for the maximum VMR and normalized RMSE for kriging model with adaptive
sampling to approximate CL and CM profiles of the BWB configuration in a four-dimensional space.
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Figure 18: The convergence plots for the normalized RMSE for global models (with no gradient information) to
approximate CL and CM profiles of the BWB configuration in a four-dimensional space.
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from using two clusters to three clusters does not show much difference in the input space partitioning. The ME results
summary for these two function profiles is shown in Figure 19, using CL and CM values as the clustering criterion,
respectively. The adaptive sampling procedure is performed for each local expert (kriging model). From these results
we can see that adding more clusters requires more total samples to build the surrogate models, with no improvement
in the approximation accuracy. Therefore, when we deal with simple function profiles, global surrogate models are
sufficient and the computational complexity associated with implementing the ME model is not necessary.
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Figure 19: Summary for mixtures of experts applied to CL and CM profiles of the BWB configuration in a four-
dimensional space.

The function profile is expected to increase in complexity when high-fidelity models are used to generate samples,
as they can model more features not captured in low-fidelity models. Based on the results discussed in this section, we
could expect that the ME models would offer even more advantages than the conventional surrogate models, though
consequently additional local experts might be required to model the more complex profiles accurately.

6.3 Four-dimensional Case with CRM Configuration
The conventional CRM configuration has a simpler CD profile than that of the BWB in the four-dimensional input
space considered here, since the drag is not as strongly coupled to trim. We found that surrogate models with adaptive
sampling performs much better than those with Halton sampling. Thus, we only discuss adaptive sampling in this
section. Figures 20 and 21 show the convergence of maximum VMR and normalized RMSE for both kriging and
GEK models. We set the maximum number of samples to be 600 for kriging and 200 for GEK. As the plots show us,
the maximum numbers of samples are reached before the adaptive sampling procedures converge (maximum VMR
< 10−3). At termination, the normalized RMS errors are 20.18% and 29.02% for kriging and GEK, respectively.

We now implement the ME approach to approximate thisCD profile. Both kriging and GEK models are considered
as the local experts. The clustering criterion is based on the values of ∂CD/∂M , which was previously used in the
BWB case. An adaptive sampling procedure is performed for each local expert, where convergence is achieved when
max(VMR) < 10−3. The results are summarized in Figure 22. When the ME model uses kriging as the local expert,
we see an improvement in the overall approximation errors, with the lowest, 6.85%, is achieved when six local experts
are used. The adaptive sampling procedures converge for all local experts, with a maximum total Ns of 135 (with
seven clusters). Using GEK models as the local experts shows a notable improvement in terms of the approximation
accuracy, achieving overall normalized RMS errors of approximately 5%. The total Ns increases with more clusters.
As in the BWB case discussed previously, a good compromise between the sample size and accuracy is achieved even
with two clusters (Ns = 43, with an error of 5.12%)

Similarly to the BWB case, simple global kriging models with adaptive sampling offer good predictive perfor-
mance to approximate CL and CM of the CRM configuration. The convergence plots of the maximum VMR and
normalized RMS error are shown in Figure 23. We achieve a normalized RMS error of 2.13% with 50 samples in the
CL approximation, and 1.49% error with 76 samples in the CM approximation.

6.4 Surrogate-based Mission Analysis Benchmarking
Now we compare the performance of the different surrogate models in predicting the mission performance, which is
the ultimate goal of this work. We benchmark the reference mission analysis for the BWB configuration, as described
in Section 5.4. In particular, we will compare the computed mission ranges for a given fuel weight.
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Figure 20: Using a global kriging model with adaptive sampling to approximate the CD profile of the CRM configura-
tion in a four-dimensional space results in 20.18% approximation error, and the convergence criterion for the adaptive
sampling is not achieved.

The comparison procedure is as follows. We first run the mission analysis procedure using the selected “best”
surrogate models: ordinary kriging models with adaptive sampling for CL and CM , and a mixture of experts with two
GEK models forCD. For this mission analysis, we start with arbitrary initial states (by assuming equal fuel weights for
all segments), as well as an arbitrary fuel weight. Once converged, we find the corresponding mission ranges for the
same fuel weight using an aerodynamic model in the mission analysis procedure. The mission range obtained using
each aerodynamic surrogate model is then compared to that of the reference mission analysis (which uses TriPan), and
the relative approximation error can then be assessed.

By comparing the computed mission ranges for a given fuel weight, we eliminate the need to iterate over the
different fuel weights to achieve the desired mission range. Therefore, the residual equations for the mission analysis
are only solved once. The computational cost saving matters significantly when running the reference mission analysis,
since using the aerodynamic solver takes approximately 1 700 times longer than using surrogate models. To further
accelerate the residual equation convergence, we use the final states (for the residual equations) of the previously
converged mission analysis as the initial states, instead of setting them arbitrarily. We repeat this procedure for the
selected 10 mission profiles listed in Table 1.

The results for this surrogate-based mission analysis benchmarking is summarized in Figure 24. The eight surro-
gate models used in this study are listed in the left hand side column, with each ME model has two local experts. The
sampling procedure (’A’ for the adaptive and ’H’ for Halton) and the total number of samples (Ns) are indicated as
well. The last column shows the global RMSE, which is computed based on the 10 000 validation points described
in Section 5.3. The error bars shown in this figure summarize the performance for each surrogate model, by showing
the minimum and maximum absolute range approximation errors. The absolute approximation error corresponding to
each benchmark mission profile is indicated by the black circle shown on the error bar.

From these error bars, we observe that the ME approach offers a better predictive capability than other surrogate
models. When using GEK models as the local experts, nine out of ten mission profiles have approximation errors of
less than 1%, and one of 1.82%. When using kriging models as the local experts, seven out of ten mission profiles have
approximation errors of less than 2%, and the rests are below 3.1%. The global GEK model with adaptive sampling
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Figure 21: Using a global GEK model with adaptive sampling to approximate theCD profile of the CRM configuration
in a four-dimensional space results in 29.02% approximation error, and the convergence criterion for the adaptive
sampling is not achieved.

offers the next best performance, with a maximum approximation error of 7.3%, and four of them are below 2%.
Looking at the global RMSE, which indicates the surrogate modeling accuracy in the input space, and the accuracy

of mission analysis performance prediction, we can see that some surrogate models perform worse than others in
predicting the mission performance, despite their better overall accuracy. For example, the ordinary kriging with
Halton sampling has a global RMSE of 26.32%, which is better than that of universal kriging (36.65%). However, in
predicting mission ranges, the ordinary kriging model yields absolute approximation errors of 10.78–78.33%, whereas
the universal kriging model performs better with 6.29%–19.35% approximation errors. This observation suggests that
the knowledge of the distribution of predictive error of a surrogate model in the input space is more valuable than
knowing the global RMSE alone. Some surrogate models might have poorer accuracy in the input space subregions
that are used more in the mission analysis, despite the lower global RMSE. These surrogate models thus perform
more poorly in approximating the mission ranges, as compared to other surrogate models with higher global RMSE’s,
but with lower errors in those subregions. However, it is challenging, if not impossible, to know a priori the error
distributions of the surrogate models, as well as the input space subregions that are most used in the mission analysis.
This problem, however, is eliminated when we use the mixture of experts approach, as we can observe from the
results. With the divide-and-conquer strategy, we now tackle much simpler problems locally. The consistency of good
approximation accuracy is thus much easier to maintain.

The computational time required to complete the mission analysis varies for each benchmark mission. When
starting from arbitrary fuel weight and initial states, the surrogate-based mission analysis procedures are completed in
6–18 minutes, using 16 processors. This computational time includes the search algorithm to find the fuel weight for
the specified mission range. When the TriPan aerodynamic solver is used, the computational time ranges from 7 to
45 hours, also using 16 processors. This computational time will be even longer when we need to perform a search
algorithm to solve for range, and if we start with arbitrary initial states.

The computational cost of running mission analyses without relying on surrogate models would be further exacer-
bated if we used finer grids or higher-fidelity models, and this would be prohibitively expensive the when performing
design optimization. This finding emphasizes the importance of developing an efficient surrogate-based mission anal-
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Figure 22: Mixture of experts result summary with ∂CD/∂M clustering criterion to approximate the CD profile of
the CRM configuration in a four-dimensional space.
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Figure 23: Convergence plots for the maximum VMR and normalized RMS error for kriging model with adaptive
sampling to approximate CL and CM profiles of the CRM configuration in a four-dimensional space.
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Figure 24: Error bars summarizing the range errors for each metamodel. The black circles are the errors for the ten
benchmark mission profiles.

ysis, which can accurately predict the mission performance at a much lower computational cost. Our results show that
the proposed ME approach is superior to global surrogate models and can offer better predictive accuracy (where it
brings the range estimation error to < 2%) and efficiency (more than 70 times faster) in the mission analysis context.

7 Conclusion
Motivated by the need to accurately compute aircraft fuel burn in high-fidelity mission and aerostructural optimiza-
tions, we developed a surrogate-based mission analysis procedure. The success of this procedure relies on the approx-
imation accuracy of the surrogate models. For this purpose, we explored the use of several interpolating surrogate
modeling techniques for modeling aerodynamic coefficients, for both the conventional (CRM) and unconventional
(BWB) aircraft configurations. In addition to using the well-established kriging and RBF techniques, we proposed a
means to combine surrogate models by adopting the ME approach. We complemented this method with an adaptive
sampling procedure. While the adaptive sampling is shown to improve the accuracy of surrogate models, the con-
vergence could be slow in some cases, particularly when modeling complex profiles. Therefore, with smaller sample
budget, a simple space-filling sampling technique is a better option.

The performance of the surrogate models was assessed by computing the normalized RMSE using 10 000 valida-
tion points. The traditional surrogate models performed well to model the simpler CL and CM profiles. However, they
proved to be insufficient to model the complex profile of CD, especially in the transonic drag regime. Significant im-
provements were observed when we used the proposed ME approach. The divide-and-conquer approach overcame the
challenges of modeling a complex terrain by partitioning the input space into smaller subregions, each with a simpler
profile to model. For the four-dimensional case with BWB configuration, a good compromise between the required
number of samples and predictive accuracy could be achieved with two clusters. We obtained an approximation error
of 4.73% with a mixture of two GEK models (74 samples), and 9.45% when kriging models were used as the local
experts (101 samples). On the other hand, the adaptive sampling procedures for the global kriging and GEK mod-
els failed to converge, yielding 27.63% and 43.68% approximation errors at termination. Moreover, the distributed
approach in the ME model notably helped reduce the computational cost to build and use the surrogate models. The
training times for the global kriging and GEK models (with adaptive sampling) were 22 and 32 hours (and yet they still
fail to converge); these numbers were reduced to 3 and 8 minutes when using the ME models. In other words, training
the ME models was more than 200 times faster than training the global models. Each local expert in the mixtures
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found different optimum model parameters. This observation shows that by partitioning the input space, each local
expert models the dependence between function value and inputs separately, yielding a better approximation overall.

We also assessed the surrogate modeling performance in the context of mission performance evaluation, by evalu-
ating the corresponding range estimation errors when they were used in the mission analysis procedure. ME models
again proved to be superior than the conventional global models. In particular, the range estimation errors correspond-
ing to the ME models were less than 1.82% for the ten benchmark mission profiles when GEK models were used as
the local experts, and less than 3.10% when kriging models were used. On the other hand, the several global surrogate
models that were implemented proved unable to provide sufficient accuracy to produce meaningful results with RMSE
values ranging from 12.91% to 66.71% and predicted mission range errors ranging from 0.19% to 78.33%. Moreover,
completing the surrogate-based mission analysis was more than 70 times faster than when an aerodynamic model was
used in the analysis. Based on these results we conclude that the mixture of experts technique is both necessary and
sufficient to model the aerodynamic coefficients for surrogate-based mission analysis.

In this study, we used the same model type for all local experts in the ME model. However, the proposed ME
approach offers the flexibility of using different models types, e.g., using RBF models in simpler subregions and GEK
models to model more complex profiles in other subregions. The derived mixing proportions can still be used in
such a case. Moreover, this ME approach is generally applicable to other highly nonlinear functions. The advantages
of the ME approach comes with added computational complexity and more parameters to tune, such as the number
of clusters and the clustering criterion. Applying the principle of parsimony, it is wise to use simple global models
whenever sufficient, to avoid the unnecessary complexity that is inherent in the ME approach. The ME model would
also have a broader applicability to other nonlinear problems, where the model structure (e.g., the required number of
local experts) would vary with the varying complexity of the problems.

Acknowledgments
The authors are grateful for the funding provided by the Vanier Canada Graduate Scholarships. The computations were
performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for
Innovation under the auspices of Compute Canada; the Government of Ontario; the Ontario Research Fund—Research
Excellence; and the University of Toronto. The authors would like to recognize the other members of our research
group, especially Gaetan Kenway, Graeme Kennedy, Edmund Lee, and Peter Lyu for their contributions to the solvers
and framework used in this work.

References
References

[1] Lee, J. J., “Can we accelerate the improvement of energy efficiency in aircraft systems?” Energy Conversion
and Management, Vol. 51, 2010, pp. 189–196.

[2] Nidumolu, R., Prahalad, C. K., and Rangaswami, M. R., “Why Sustainability Is Now the Key Driver of Inno-
vation,” Harvard Business Review, Vol. 87, No. 9, 2009, pp. 56–64.

[3] Martins, J. R. R. A. and Lambe, A. B., “Multidisciplinary Design Optimization: A Survey of Architectures,”
AIAA Journal, 2013. doi:10.2514/1.J051895, (In press).

[4] Lee, J. J., Historical and Future Trends in Aircraft Performance, Cost, and Emissions, Master’s thesis, Aero-
nautics & Astronautics Department and Technology & Policy Program, Massachusetts Institute of Technology,
September 2000.

[5] Randle, W. E., Hall, C. A., and Vera-Morales, M., “Improved Range Equation Based on Aircraft Flight Data,”
Journal of Aircraft, Vol. 48, No. 4, July–August 2011, pp. 1291–1298. doi:10.2514/1.C031262.

[6] Roskam, J., Airplane Design Part I: Preliminary Sizing of Airplanes, Roskam Aviation and Engineering Cor-
porations, Ottawa, KS, 1985.

[7] Kenway, G. K. W. and Martins, J. R. R. A., “Multi-point High-fidelity Aerostructural Optimization of a Trans-
port Aircraft Configuration,” Journal of Aircraft, Vol. 51, 2014, pp. 144–160. doi:10.2514/1.C032150.

33

http://dx.doi.org/10.2514/1.J051895
http://dx.doi.org/10.2514/1.C031262
http://dx.doi.org/10.2514/1.C032150


[8] Yan, B., Jansen, P. W., and Perez, R. E., “Multidisciplinary Design Optimization of Airframe and Trajectory
Considering Cost and Emissions,” 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization (MAO) Con-
ference, Indianapolis, IN, September 2012. doi:10.2514/6.2012-5494, AIAA 2012-5494.

[9] Simpson, T. W., Booker, A. J., Ghosh, D., Giunta, A. A., Koch, P. N., and Yang, R. J., “Approximation methods
in multidisciplinary analysis and optimization: a panel discussion,” Struct Multidisc Optim, Vol. 27, 2004,
pp. 302–313.

[10] Simpson, T. W., Toropov, V., Balabanov, V., and Viana, F. A. C., “Design and Analysis of Computer Ex-
periments in Multidisciplinary Design Optimization: A Review of How Far We Have Come—or Not,” 12th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, BC, Canada, September 2008.
doi:10.2514/6.2008-5802, AIAA 2008-5802.

[11] Sobieszczanski-Sobieski, J. and Haftka, R. T., “Multidisciplinary aerospace design optimization: survey of
recent developments,” Structural Optimization, Vol. 14, 1997, pp. 1–23. doi:10.1007/BF01197554.

[12] Chung, H. S. and Alonso, J. J., “Design of a Low-Boom Supersonic Business Jet Using Cokriging Approxi-
mation Models,” 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA,
September 2002, AIAA Paper 2002–5598.

[13] Chung, H. S. and Alonso, J. J., “Using Gradients to Construct Cokriging Approximation Models for High-
Dimensional Design Optimization Problems,” 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Reno, NV, January 2002, AIAA Paper 2002–0317.

[14] Toal, D. J. J. and Keane, A. J., “Efficient Multipoint Aerodynamic Design Optimization via Cokriging,” Journal
of Aircraft, Vol. 48, No. 5, September–October 2011, pp. 1685–1695. doi:10.2514/1.C031342.
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