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Abstract

Aerodynamic shape optimization must consider multiple flight conditions to obtain designs that perform well

in a range of situations. However, multipoint studies have relied on heuristic choices for the flight conditions

and associated weights. To eliminate the heuristics, we propose a new approach where the conditions and

weights are based on actual flight data. The proposed approach minimizes the expected drag value given

by a probability density function in the space of the flight conditions, which can be estimated based on data

from aircraft operations. To demonstrate our approach, we perform drag minimizations of the Aerodynamic

Design Optimization Discussion Group Common Research Model wing, for both single-point and multipoint

cases. The multipoint cases include five- and nine-point formulations, some of which approximate the

expected drag value over the specified flight-condition probability distribution. We conclude that if we focus

on the resulting design, a five-point optimization with points based on the flight-condition distribution and

equal weights is sufficient to obtain an optimal shape with respect to the expected drag value. However,

if it is important to retain the accuracy of the expected drag integration at each optimization iteration, we

recommend the proposed approach.
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1. Introduction

Prior to 1960, the aircraft design process relied mainly on flow visualization techniques and wind-tunnel

experiments using pressure and force measurements [18]. Computational aerodynamics was brought about

by radical improvements in numerical algorithms coupled with advances in computing technologies. Early

investigations of aerodynamic shape optimization include those by Hicks et al. [15], Hicks and Henne [14],5

and Constentino and Holst [5] in the late 1970s and early 1980s. In these early efforts, full potential flow

solvers were coupled with conjugate gradient optimization algorithms to enable the automated design of

airfoils and wing shapes. Major advances in aerodynamic shape optimization occurred in the late 1980s and

early 1990s, when adjoint methods made it possible to efficiently compute shape gradients [18, 16, 40, 41].

With adjoint methods, the cost of computing the gradients became independent of the number of design10

variables, which enabled detailed optimization based on high-fidelity models.

The first adjoint-based investigations focused on drag minimization at a single flight condition [2, 33,

37, 39]. Single-point optimized designs suffer performance degradations at off-design conditions [18, 4].

The drag polar for single-point designs features a cusp because the optimization eliminates the shock at the

nominal flight condition, while making the shock much stronger at off-design conditions. This cusp tends to15

become more prominent as the number of design variables increases [9].

Because of the limitations of single-point optimizations, it is necessary to consider multiple flight condi-

tions in aerodynamic shape optimization. Jameson [18] pioneered this effort, seeking a compromise design

by taking the sum of the cost functions for several design points. The design problem was formulated as a

control problem, where the cost function measured the wave drag and the deviation from a desired pressure20

distribution. The wave drag was added to the cost function with a multiplier, which could be varied to alter

the trade-off between drag reduction and deviation from the desired distribution.

The most common approach in multipoint formulations has been a composite objective function, typ-

ically expressed as a weighted sum of the drag coefficient over several flight conditions [34]. To emulate

the different flight conditions, Reuther et al. [38] varied the lift coefficient in an unconstrained transonic25

optimization, and Drela [9] varied lift coefficient for a low Reynolds number airfoil optimization. In some

airfoil optimization problems, the Mach numbers in the multipoint formulation were varied [9, 34]. Other

authors went a step further and varied both Mach number and lift coefficient [18, 11, 4]. Multipoint op-

timization results have been shown to be more robust and thus more practical than those of single-point

optimizations [9, 18, 38, 4, 31, 22]. Furthermore, the optimizer typically increases the drag-divergence30

Mach numbers [9, 22].
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Motivated by the desire to compare the various aerodynamic design optimization methods, researchers

formed the Aerodynamic Design Optimization Discussion Group (ADODG)4, which is sponsored by the

American Institute of Aeronautics and Astronautics (AIAA). The ADODG cases range from a 2D airfoil

inviscid drag minimization to a full-configuration multipoint drag minimization based on the solution of the35

Reynolds-averaged Navier–Stokes equations (RANS). For the inviscid airfoil optimization problem, Méheut

et al. [32] performed gradient-based single-point and multipoint aerodynamic optimizations. They per-

formed cross-validation to compare six different optimized shapes that were produced using different grid

types, solvers, and postprocessing procedures. For the Common Research Model (CRM) wing drag mini-

mization using RANS, Méheut et al. [32] showed that the two three-point optimization problems yielded a40

consistent performance improvement, and Lee et al. [24] showed similar trends. Lyu et al. [31] and Kenway

and Martins [22] compared the single-point and multipoint optimizations of the CRM wing with five to nine

points; they quantified the robustness of the various cases by plotting contours of the performance over the

flight-condition space.

The goal of this paper is to address two major questions in multipoint aerodynamic design optimization:45

(1) Which flight conditions should be considered, and (2) how much weight should be attributed to each of

these conditions? Although designers generally know the nominal flight condition based on the particular

aircraft mission, as well as the likely range of the flight conditions, it is not clear how to translate this

information into a multipoint drag minimization formulation. In previous work, the multipoint formulation

has been based on common sense or prior design experience, which is somewhat arbitrary [4, 9]. Lyu50

et al. [31] and Kenway and Martins [21] assigned equal weights in a multipoint drag minimization with five

flight conditions, which has been a popular approach in multipoint optimization. Buckley and Zingg [3]

employed an integration rule to formulate a weighted-integral objective function in their multipoint airfoil

optimization. Each flight condition was assigned a weighting function based on design experience. For

high-fidelity aerostructural design optimization, Liem et al. [25] chose the flight conditions to be considered55

and the associated weights based on a histogram of the aircraft missions. Gallard et al. [12] analyzed the

linear dependencies between the shape gradients and computed a minimal set of flight conditions.

We propose a new formulation that selects the flight conditions based on a flight-condition probability

density function (PDF). When this PDF is used, the expected performance provides a first-moment measure

4AIAA Aerodynamic Design Optimization Discussion Group, https://info.aiaa.org/tac/ASG/APATC/

AeroDesignOpt-DG/default.aspx (accessed 11 July 2016)
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of the real-world performance. The exact PDF, however, is typically unknown. Therefore, we replace the60

PDF with a distribution generated based on publicly available flight mission data. To demonstrate the pro-

posed approach, we perform our drag minimizations for the ADODG CRM wing geometry, for the ADODG

single-point and multipoint cases. We also perform a series of studies to compare the various multipoint

approaches and to analyze the effect of the number of flight conditions considered. In the proposed formula-

tion, we minimize the expected performance over all flight conditions, accounting for the time that is spent65

at each condition.

We describe the basic optimization problem and the numerical tools used in Section 2. Then, in Section 3

we explain the optimization formulations to be compared, including the proposed expected drag minimiza-

tion approach. We then discuss our numerical results and findings in Section 4, and Section 5 provides

concluding remarks.70

2. Aerodynamic Design Optimization Approach

This section describes the aerodynamic design optimization approach, including the numerical tools,

the overall optimization problem formulation (objective function, design variables, and constraints), and the

baseline geometry that is optimized. The overall approach and geometry have been previously presented

by Lyu et al. [31] and Kenway and Martins [22], but we add the new formulation for the expected drag75

minimization. The baseline wing geometry and specifications follow those given by the ADODG, consisting

solely of the wing from the CRM full configuration. The single-point optimization benchmark has been

previously solved by various groups [31, 32, 43], and the baseline and optimized geometries and meshes

are provided by Lyu et al. [31]5. Multipoint optimization results for this case are presented by Kenway and

Martins [22].80

2.1. Multilevel Optimization Acceleration

To reduce the computational cost of the high-fidelity multipoint optimization, we first perform the opti-

mization on a coarse grid and then find the final solution on a fine grid, following the work of Lyu et al. [31]

and Kenway and Martins [22]. The coarse result is used as the starting point for the optimization on the fine

grid. This multilevel approach accelerates the optimization process because iterations on the coarse grid are85

5http://mdolab.engin.umich.edu/content/aerodynamic-design-optimization-workshop (Accessed

January 14, 2017)
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faster and cheaper. However, it is important to ensure that the coarse grid captures the main characteristics

of the flow, e.g., the shock strength and location. The geometries for the coarse and fine meshes used in this

optimization are briefly described next.

2.2. Computational Meshes

We use two different meshes in the optimization: a coarse mesh with 450 k cells (L2) and a fine mesh90

with 3.5 M cells (L1), as shown in Figure 1. The multiblock meshes are generated using a hyperbolic mesh

generator and exhibit an O-type topology. Kenway and Martins [22] presented a convergence study for these

meshes as well as a finer mesh with over 28 M grid cells (L0) and an extrapolated zero-mesh spacing. The L0

mesh is not considered in this work because the optimization is too expensive [31]. The convergence study

showed that the drag-count difference between the L1 mesh and the zero-mesh spacing is O (1), an error95

of 1.5%. The difference in drag (when comparing the baseline and optimized designs) is O
(
10−2

)
drag

counts, corresponding to a relative error of 0.4%. Thus, the L1 mesh was considered a good compromise

between computational cost and accuracy.

(a) L2 mesh with 450 k cells. (b) L1 mesh with 3.6 M cells.

Figure 1: Two O-meshes are used in a two-level optimization.

2.3. Optimization Problem Formulation

The optimization problem is formulated as a drag minimization, subject to aerodynamic and geomet-100

ric constraints. The formulation is similar to the ADODG CRM wing single-point and multipoint bench-
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marks [31, 22], and it is summarized in Table 1. It differs from the ADODG benchmarks only in the

formulation of the objective function.

Specifically, the objective function is the expected drag coefficient, E [CD], over the operating conditions.

The expectation integral is approximated numerically using a number of points in the flight-condition space,105

giving a multipoint optimization. The flight-condition weights wj are determined based on the integration

scheme and the flight-condition PDF. The multipoint formulations are further detailed in Section 3.

Function/variable Description Quantity

minimize E [CD] ≈
M∑
j=1

wjCDj
Expected value of CD

with respect to xshape z perturbation of FFD control points 768

αj Angle of attack for each flight condition j M

Total design variables 768 + M

subject to CLj
− C∗Lj

= 0 Lift constraint at each flight condition j M

CM ≥ −0.17 Moment constraint at nominal condition 1

V ≥ Vbaseline Volume constraint 1

ti ≥ 0.25tibaseline Thickness constraint at each point i 750

Total constraints 752 + M

Table 1: Multipoint aerodynamic shape optimization formulation

The design variables consist of the wing shape design variables, xshape, and the angle of attack for

each flight condition, αj . The wing shape is parameterized using the free-form deformation (FFD) volume

approach with trivariate B-spline volumes [22]. Figure 2 shows the two FFD volumes used in this work: the110

coarse (Figure 2a) and fine (Figure 2b) FFDs. The fine FFD has 768 control points that move in the vertical

(z) direction. This enables the optimizer to change the airfoil shapes and twist distribution, while keeping

the wing planform shape constant. In total, there are 768 + M design variables, where M is the number of

flight conditions.

The aerodynamic constraints include the lift-coefficient constraint for each flight condition, and a single115

pitching-moment inequality constraint enforced at the nominal condition (M = 0.85, CL = 0.5). The
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(a) Coarse FFD control points (b) Fine FFD control points

Figure 2: The wing geometry is parameterized by moving FFD control points in the z direction.

remaining constraints are geometric and consist of a volume constraint and a series of thickness constraints.

The volume constraint ensures that the internal volume of the wing is greater than or equal to the baseline

volume. The wing thicknesses, which are computed at 750 locations, must be greater than or equal to 25% of

the baseline thickness. There is a total of 752+M constraints in each multipoint problem: M lift constraints,120

1 moment constraint, 1 volume constraint, and 750 thickness constraints,

The flight conditions considered in the multipoint objective function correspond to the cruise segment of

the flight, and no off-design conditions are considered. This optimization is meant to be an academic problem

focusing on the multipoint objective function formulation. For a more realistic aircraft design problem, we

would need to include off-design conditions such as high-speed dive and low-speed performance [23].125

2.4. CFD Solver

The flow is modeled by the compressible RANS equations using ADflow [44]. ADflow is a finite-

volume, cell-centered multiblock flow solver. It uses the Jameson–Schmidt–Turkel (JST) artificial dissi-

pation scheme [17] and the Spalart–Allmaras (SA) turbulence model. Both the mean flow and turbulence

equations use a diagonally dominant alternating direction implicit (DDADI) scheme to solve the Navier–130

Stokes equations. To efficiently compute the gradients of the functions of interest with respect to the large

number of shape variables, we use a discrete adjoint method implemented with algorithmic differentiation,
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which includes the effect of the turbulence model. More details on this adjoint implementation are provided

by Lyu et al. [29].

2.5. Optimization Algorithm135

Multipoint aerodynamic shape optimizations based on RANS CFD solutions are costly. Therefore, it is

desirable to use a gradient-based optimization method to reduce the required number of function evaluations.

Studies comparing different algorithms in the context of aerodynamic design optimization have shown that

genetic algorithms and other gradient-free approaches are prohibitively expensive and not sufficiently accu-

rate [45, 30]. For optimization problems similar to that presented in this paper, Lyu et al. [31] showed that140

local minima did not pose any significant issues for the CRM wing case, which justified the use of gradient-

based optimization. In this paper, the problems are solved with SNOPT, which is an optimizer based on the

sequential quadratic programming approach [13], through the Python interface pyOpt [36].

3. Multipoint Objective Function Formulations

As mentioned in the previous section, the optimization problem is identical to the ADODG CRM wing145

benchmark except for the objective function formulation and the flight conditions considered. In this sec-

tion we describe all the multipoint formulations that we investigated, including the proposed expected drag

coefficient minimization.

3.1. Multipoint and Expected Drag Formulations

The objective function of a multipoint aerodynamic optimization is typically formulated as a weighted

sum of the drag coefficient evaluated at different points,

fobj =

M∑
j=1

wjCDj
, (1)

where wj is the weight assigned to the jth flight condition, and M is the number of flight conditions consid-150

ered.

One of the keys to obtaining a design that is optimal in practice is the choice of the flight conditions

and their weights in the multipoint optimization formulation. As previously mentioned, the conditions and

weights are usually based on design intuition. To automate the process, we minimize the expected value
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of the drag coefficient based on the distribution of the flight conditions. Suppose we have a PDF in the

flight-condition space p (M,CL) given over a domain Ω. The expected value of the drag coefficient is

E [CD] =

∫∫
Ω

CD (M,CL) p (M,CL) dM dCL. (2)

When the flight-condition space is rectangular, this value can be computed using numerical integration with

m× n quadrature points

E [CD] ≈
n∑

i=1

m∑
k=1

τikCD (Mi, CLk
) p (Mi, CLk

), (3)

where τik is the quadrature weight assigned to each point. Comparing this approximation to the multipoint

objective (1), we see that the products τik · p (Mi, CLk
) correspond to the weights wj , and CD (Mi, CLk

)

corresponds to CDj
. Therefore, an expected drag minimization can be written as a multipoint drag mini-

mization with an appropriate choice of weights.155

The expectation integral can be approximated using various numerical integration rules [8, 6, 7]. We

mainly use the midpoint integration rule. For the 9-point ADODG case (Section 3.3.1) we follow the original

formulation that uses the trapezoidal rule. When we assume that the PDF is a normal distribution, we use

the Gauss–Hermite quadrature rule [1] (Section 3.3.4).

3.2. Flight-Condition Probability Density Function160

We develop a more realistic objective function by computing the expected drag value, where the PDF

is derived from actual aircraft operation data. To construct the PDF, we obtained historical flight data from

the Bureau of Transportation Statistics6 detailing the missions of all Boeing 777-200ER flights departing

from and arriving in the United States in 2011 [25]. The construction of the flight-condition histogram

based on these missions has been previously presented by the authors [25], and it involves a surrogate-based165

mission analysis for the cruise segments of each flight mission [26]. A mission analysis evaluates the range

equation via numerical integration, by discretizing the mission profile into a number of integration intervals.

The analysis gives the flight conditions (Mach number, altitude, angle of attack, tail rotation angle) and the

aerodynamic data (CL, CD, CM ) at each integration interval i. When all the flight missions have been

analyzed, the complete database is generated. A nominal Mach number of 0.85 is assumed in the analysis.170

6TranStats, Bureau of Transportation Statistics http://www.transtats.bts.gov/ (Accessed 14 July 2016)
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This Mach number is shifted from the nominal value of the Boeing 777 aircraft (0.84) to adjust for the CRM

nominal values.

The mission analysis generated a total of 21 430 flight-condition data points. We generated the histogram

by assigning these data points to 30 × 30 grid cells. The corresponding bin intervals for Mach and CL

are 0.0014 and 0.0049, respectively. The flight-condition histogram shown in Figure 3 shows the number175

of flight conditions in each Mach–CL bin. From this distribution, we identified a high-frequency region,

which is highlighted by the red rectangle. This region is within a range of Mach = [0.835, 0.865] and

CL = [0.4525, 0.5375], beyond which the frequency quickly drops.

This formulation is equivalent to an optimization under uncertainty problem, where the flight-condition

histogram can be replaced by a PDF. When historical data are not available, the PDF can be derived based180

on market research or a survey of customer needs. Our method is applicable regardless of how the flight-

condition distribution is generated.

Figure 3: Flight-condition histogram with high-frequency region (red rectangle). The color-mapped frequency values are the number

of evaluated flight conditions in each Mach–CL bin.

In the next section we describe the optimization cases and how we approximate the expected-value

objective function based on the flight-condition histogram with numerical integration using both five and
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nine integration points.185

3.3. Optimization Cases

We now describe all the optimization cases that we solved, including multipoint drag minimizations with

different point stencils and expected drag minimization cases. The cases are listed in Table 2, and the results

are presented in Section 4.

Table 2: The optimization cases include a reference single-point case, three standard multipoint cases, and three cases based on PDF

integration

Case Number of Mach CL Integration rule PDF

points [min, max] [min, max]

1 1 0.85 0.5 – –

9tu-ADODG 9 [0.820, 0.880] [0.420, 0.591] Trapezoidal Uniform

5 5 [0.840, 0.860] [0.475, 0.525] – –

5h 5 [0.840, 0.860] [0.475, 0.525] – Flight histogram

9mu 9 [0.840, 0.860] [0.475, 0.525] Midpoint Uniform

9mh 9 [0.840, 0.860] [0.475, 0.525] Midpoint Flight histogram

9gn 9 [0.838, 0.862] [0.465, 0.535] Gauss–Hermite Normal

The single-point optimization (Case 1) is performed for comparison purposes. This case is identical190

to the single-point ADODG CRM wing case presented by Lyu et al. [31]. We investigate a total of six

multipoint cases: three that correspond to our proposed expected-drag minimization formulation and three

for comparison purposes. The nine-point ADODG case, labeled Case 9tu-ADODG, has previously been

solved by Kenway and Martins [22] and Lee et al. [24]. Case 5 uses a five-point stencil similar to that used

by Lyu et al. [31] and Kenway and Martins [21]. The other three cases (9mu, 9mh, and 9gn) correspond to195

the proposed approach detailed in Section 3.2.

The optimization cases considered differ in the number, selection, and weights of the flight conditions.

The five-point cases (5 and 5mh) do not perform a strict 2D integration since they do not consider a rect-

angular stencil of points. The nine-point cases have a complete 3 × 3 stencil for the numerical integration.

The cases labeled with a “u” (9tu-ADODG and 9mu) assume a uniform flight-condition PDF. In the cases200
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with an “h” (5mh and 9mh), the flight conditions and weights are determined based on the flight-condition

histogram. We use “m” and “t” in the case names to refer to the midpoint and trapezoidal integration rules,

respectively. Finally, Case 9gn approximates the flight conditions as a normal PDF (“n”), which is then

integrated exactly using the Gauss–Hermite integration rule (“g”).

3.3.1. Conventional Multipoint Optimization205

Case 9tu-ADODG is defined by the ADODG as Case 4.6 [22]. The flight conditions and weights, which

are normalized by the sum, are listed in Table 3. These weights are proportional to those of the trapezoidal

rule for numerical integration, even though the objective was not formulated strictly as an expectation inte-

gral approximation. The formulation implicitly assumes that the whole region is of equal importance, which

is equivalent to assuming a uniform PDF for the flight conditions. The cruise Mach number range (0.82–210

0.88) and CL range (0.420–0.591) considered cover a larger region in the flight-condition space than those

used in the other cases. Figure 4 clearly shows that the distribution of the selected flight conditions extends

beyond the histogram considered in this case. These points include extreme flight conditions at which the

aircraft would not usually operate, and thus the drag values at these points are not important in the design.

However, the points are included in the optimization formulation to provide a margin for buffet onset. Buffet215

occurs when shock-induced separation interacts with the boundary layer to cause unsteady flow and causes

vibration of the airframe, which is undesirable. Including these points in the optimization helps prevent

strong shocks, and this indirectly prevents buffet from occurring. Ideally, these off-design points would be

implemented as constraints [23].

Case 5 uses a cross stencil in Mach-CL space about the nominal condition with constant weights; a220

similar case was solved by Lyu et al. [31] and Kenway and Martins [21]. The nominal point is perturbed in

each direction, and equal weights are assumed for all flight conditions. The range in cruise Mach is the same

(0.85±0.01), but the range in CL is narrower (0.5±0.025). The narrower CL range is more consistent with

the flight-condition distribution relevant to this problem, which is also used in cases 5mh, 9mu, and 9mh.

These five points are illustrated in Figure 5, and Table 4 lists the points and weights (wj).225

3.3.2. Nine-Point Configuration with Uniform Distribution

The nine integration points are chosen from the high-frequency region shown in Figure 3. We use a 3×3

regular grid stencil to distribute the integration points uniformly in this region. This point distribution is

shown in Figure 6, where the red rectangles show the cells corresponding to each integration point, and ∆M

and ∆CL denote the size of the cell in each direction. When a uniform distribution is assumed, the PDF at230
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Figure 4: Flight conditions and corresponding weights for

Case 9tu-ADODG; the sizes of the dots are proportional to the

weight values.

Mach CL Re wj

0.82 0.483 4.82× 10−6 0.0625

0.82 0.537 4.82× 10−6 0.1250

0.82 0.591 4.82× 10−6 0.0625

0.85 0.450 5.00× 10−6 0.1250

0.85 0.500 5.00× 10−6 0.2500

0.85 0.550 5.00× 10−6 0.1250

0.88 0.420 5.18× 10−6 0.0625

0.88 0.466 5.18× 10−6 0.1250

0.88 0.513 5.18× 10−6 0.0625

Table 3: Flight conditions for Case 9tu-ADODG

points across the integration domain is 1/ (3∆M · 3∆CL), since there are three cells in each direction for

this configuration. Using this PDF in the midpoint integration rule, we obtain the weights listed in Table 5.

When we use the flight-condition distribution to approximate the PDF, we use the same integration

domain and point distribution as for Case 9mu. However, in this case the PDF is approximated based on the

flight-condition histogram. This approximation is illustrated in Figure 7 in grayscale: the darker the shade,235

the higher the PDF value.

We derived the nine weight values based on the flight-condition histogram (Figure 3) by integrating the

frequencies within each of the nine subdomains in the 3 × 3 stencil. By definition, the PDF function in the

expectation integral computation (2) must satisfy the following equality:∫∫
Ω

p (M,CL) dM dCL ≈
n∑

i=1

m∑
k=1

p (Mi, CLk
) ∆M∆CL = 1. (4)

If we denote the total frequency in each of the subdomains centered at (Mi, CLk
) by fH (Mi, CLk

), we have

3∑
i=1

3∑
k=1

fH (Mi, CLk
)∑

i

∑
k fH (Mi, CLk

)
=

3∑
i=1

3∑
k=1

f̄H (Mi, CLk
) = 1, (5)

where f̄H (Mi, CLk
) is the relative frequency. The relation f̄H (Mi, CLk

) = p (Mi, CLk
) ∆M∆CL can
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Figure 5: Integration points for Case 5.

Mach CL wj

0.85 0.475 0.2

0.84 0.500 0.2

0.85 0.500 0.2

0.86 0.500 0.2

0.85 0.525 0.2

Table 4: Integration points and weights for Case 5

then be substituted into the two-dimensional midpoint integration rule, and E [CD] can be approximated as

E [CD] ≈
n∑

i=1

m∑
k=1

CD (Mi, CLk
) f̄H (Mi, CLk

), (6)

where f̄H (Mi, CLk
) yields the values for each weight wj . The computed weights are listed in Table 6 and

represented in grayscale in Figure 7.

3.3.3. Five-Point Configuration with Flight-Condition Histogram

In addition to Case 9mh, we use the discrete histograms derived from the generated flight-condition240

distribution in a five-point configuration case. As shown in Table 6, the weights corresponding to the corner

points are small (less than 0.1). We hypothesize that removing these points does not significantly change the

optimization results. Using this five-point stencil, we hope to obtain results similar to those for the nine-point

case at a fraction of the computational cost.

The distribution of the integration points for this case (5h) is similar to that for Case 5, as shown in245

Figure 8. The derivation of the weights is similar to that for Case 9mh, and the weights are again normalized

such that their sum is 1. The weight values are represented in grayscale in Figure 8 and listed in Table 7.

3.3.4. Nine-Point Configuration with Gauss–Hermite Quadrature

In the cases presented above, the multipoint weights are products of the integration weights (based on

the selected integration rule), τik, and the PDF p (Mi, CLk
). The integration points are selected manually250
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Figure 6: Integration points for Case 9mu.

Mach CL wj

0.84 0.475 1/9

0.85 0.475 1/9

0.86 0.475 1/9

0.84 0.500 1/9

0.85 0.500 1/9

0.86 0.500 1/9

0.84 0.525 1/9

0.85 0.525 1/9

0.86 0.525 1/9

Table 5: Integration points and weights for Case 9mu

and might not be the best possible points. In this section, we propose a Gauss–Hermite quadrature to

automatically determine the integration points and corresponding weights.

Gauss–Hermite quadrature can be used to approximate the expectation integral via a change in variable

when the integration variable is assumed to have a normal distribution [42]. The Gauss–Hermite quadrature

is given by ∫ ∞
−∞

f (x) e−x
2

dx ≈
n∑

i=1

wif (ζi), (7)

where wi and ζi denote each integration weight and point, respectively. The weighting function in the

integration, e−x
2

, does not appear on the right-hand side. Instead, this term is captured by thewi coefficients.

The expectation of a normally distributed variable, E [h (y)] with y ∼ N
(
µ, σ2

)
(where µ and σ2 refer

to the normal mean and variance), can be computed as

E [h (y)] =

∫ ∞
−∞

1

σ
√

2π
h (y) exp

[
− (y − µ)

2

2σ2

]
dy. (8)

To use the Gauss–Hermite quadrature in this expectation integral approximation, we apply the variable

transformation, y = σ
√

2x+ µ. With this transformation, Equation (8) becomes

E [h (y)] =

∫ ∞
−∞

1

σ
√

2π
h
(√

2σx+ µ
)

exp
(
−x2

)
σ
√

2 dx

=

∫ ∞
−∞

1√
π
h
(√

2σx+ µ
)

exp
(
−x2

)
dx.

(9)
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Figure 7: Integration points for Case 9mh.

Mach CL wj

0.84 0.475 0.045

0.85 0.475 0.113

0.86 0.475 0.034

0.84 0.500 0.131

0.85 0.500 0.280

0.86 0.500 0.082

0.84 0.525 0.077

0.85 0.525 0.181

0.86 0.525 0.057

Table 6: Integration points and weights for Case 9mh

After finding n Gauss–Hermite quadrature weights and nodes using a numerical algorithm, we can compute

E [h (y)] using the approximation

E [h (y)] ≈
n∑

i=1

1√
π
wGH

i h
(√

2σζGH
i + µ

)
, (10)

where the superscript GH is used to denote “Gauss–Hermite.” We can decompose multivariate weighted255

Gaussian quadrature with zero correlation between the variables into a sequence of nested one-dimensional

quadratures.

To use the Gauss–Hermite quadrature points and weights, we first need to determine a normal distribution

N
(
µ, σ2

)
that approximates the flight-condition histogram. Assuming zero correlation between Mach and

CL, we computed the corresponding µ and σ2 of the normal distributions as

NM

(
0.85, 0.0072

)
and NCL

(
0.50, 0.022

)
. (11)

This leads to the two-dimensional multivariate normal distribution shown in Figure 9. The integration points

for the 3× 3 Gauss–Hermite quadrature stencil are shown as white circles, sized by their weights. Although

the selection of the integration points is automated in this approach, the Gauss–Hermite integration rule is260

suitable only for cases where the PDFs are well approximated by normal distributions.

We now analyze the convergence of the Gauss–Hermite quadrature scheme. We conduct the convergence

study using the baseline configuration, and thus no optimization is involved here. For this two-dimensional
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Figure 8: Integration points for Case 5h.

Mach CL wj

0.85 0.475 0.144

0.84 0.500 0.166

0.85 0.500 0.356

0.86 0.500 0.104

0.85 0.525 0.230

Table 7: Integration points and weights for Case 5h
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Figure 9: Normal distribution approximation of the flight-condition histogram and Gauss–Hermite quadrature points sized by the

corresponding weights.

quadrature, the integration points are distributed in a uniform rectangular grid. The number of integration

points ranges from 4 (2 × 2) to 2500 (50 × 50). Figure 10 shows the convergence of the relative error in265
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E [CD] as the number of integration points is increased. The relative error is computed using the E [CD] for

the 2500-point integration as the reference value. The error rapidly reduces below O(10−4) and there is no

significant variation beyond 500 points. With nine integration points, the error isO
(
10−2

)
(in drag counts),

which is deemed sufficiently accurate for the multipoint optimization problem presented in this paper.
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Figure 10: Error in approximating E [CD] for different numbers of Gauss–Hermite quadrature points, in drag counts (CD × 104).

4. Results270

In this section, we present the results for the optimization cases considered. We seek to quantify the

difference in aircraft performance as well as how the different multipoint formulations affect the approx-

imations of the expected CD values. We also want to analyze the optimization history and quantify the

computational cost for each case.

4.1. Optimization Results275

The key features of the most representative results are summarized in Figures 11 to 14. For the sake of

conciseness, only four of the seven cases are presented here: cases 1, 5h, 9mh, and 9tu-ADODG. In these

plots all the CD values are reported as drag counts (CDcounts = CD × 104). The red and blue lines indicate

the baseline and optimized configurations, respectively. On the top right we show the planform view of

the wing with the Cp contours of the top surface. The left wing corresponds to the baseline design, which280
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is the design that the optimization starts from, and the right wing corresponds to the optimized design. A

front view with the shock surface visualization and the physical thickness distribution of the wing is shown

below the planform view. The next three plots on the left show the spanwise lift (with the reference elliptical

distribution shown in gray), twist, and thickness-to-chord ratio (t/c) distributions. The lift distributions are

normalized such that the area under the curve equals 1. On the right, we show the airfoils at six spanwise285

locations (A through F) and the correspondingCp distributions. For the nine-point cases (Figures 13 and 14),

the Cp distributions of all nine flight conditions are shown. The thick blue lines correspond to the nominal

flight condition (M = 0.85 and CL = 0.50).

The optimized configurations exhibit some common trends. The shock surfaces are visibly reduced in

all the optimized results and almost completely eliminated in the single-point case. All the optimized lift290

distributions are closer to the reference elliptical distribution than the baseline one, which results in lower

induced drag for the optimized configurations. The twist values close to the wing root and tip are similar to

the values for the baseline wing, but the optimized wings exhibit a short plateau in the mid-span section.

The optimized t/c distributions show a significant increase near the root and a reduction closer to the tip

when compared to the baseline design, especially at sections C, D, E, and F. This change in the t/c distribu-295

tion is due to a trade-off in the spanwise distribution of the viscous pressure drag. Since the optimization is

allowed to reduce the thickness to 25% of the baseline, it reduces the outboard airfoil thickness to decrease

the viscous pressure drag, while increasing the inboard thickness to satisfy the volume constraint, where the

chord is much larger. This design trade-off is more pronounced in the single-point case and is consistent

with previous results for similar cases [31, 35]. The change in the spanwise viscous pressure drag distribu-300

tion has been verified by Dumont and Meheut [10], who used a drag decomposition technique that is able

to separate the contributions from wave drag, induced drag, and viscous pressure drag. The leading edge of

the outboard wing also exhibits a smaller radius, and thus these designs would have a poor low-speed CLmax

performance, which is not considered in this study. This trend is less pronounced in the multipoint cases,

but the radius is still small enough that it would hinder low-speed performance.305

These results suggest that both structural constraints and low-speed performance considerations are re-

quired. Thus, the optimized wings obtained herein have an unfair advantage over the baseline CRM wing,

which was designed with these considerations in mind. However, our main goal is not to show that our op-

timized wings are better than the baseline but to study the effect of the cruise flight conditions and weights.

Therefore, we focus on comparing the optimized designs to determine which multipoint formulation should310

be used.
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Figure 11: Case 1 optimized wing (blue) compared to baseline wing (red).

Figure 12: Case 5h optimized wing (blue) compared to baseline wing (red).
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Figure 13: Case 9mh optimized wing (blue) compared to baseline wing (red).

Figure 14: Case 9tu-ADODG optimized wing (blue) compared to baseline wing (red).
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Figure 15 plots the drag divergence profiles for the baseline and optimization cases, for three CL values:

0.475, 0.5, and 0.55. These plots highlight the more consistent drag reduction achieved when including

more points in the formulation. The optimizer tries to reduce drag for all the flight conditions considered

in the formulation. Therefore, the larger the flight-condition range covered by the integration points, the315

flatter the drag divergence curve. As shown in Figure 15, the flattest drag divergence profile is observed in

Case 9tu-ADODG, where the integration points cover the largest range (as shown in Figure 4). The drag

reduction for Case 9tu-ADODG also extends to higher Mach values. The drag reduction in the single-point

optimization (Case 1), on the other hand, occurs only near the nominal condition, with higher drag values

observed at conditions away from the nominal.320
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Figure 15: Comparison of drag divergence for three different lift coefficients.

Although the multipoint optimization results are more robust, as demonstrated by the more consistent

drag reduction in the flight-condition space, they sacrifice some performance at the nominal condition. Ta-

ble 8 summarizes the optimized CD values at the nominal flight condition and their relative reductions

(computed with respect to the baseline CD of 199.71 counts). The reductions range from 5.65% to 7.36%.

As previously discussed (in Section 2.3), allowing for thinner wings accounts for these large reductions rel-325
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ative to the baseline wing. The single-point optimization achieved the largest drag reduction (7.36%), which

is expected because it does not need to compromise across multiple flight conditions. For the multipoint

formulations with the same range in the flight conditions (cases 5 through 9gn) the difference in the drag

reduction was within 0.43%. This suggests that different multipoint formulations do not significantly affect

drag reductions provided the points span the desired range in cruise flight conditions.330

Case CD % Reduction

Baseline 199.71 −

Case 1 185.01 7.36%

Case 5 186.32 6.70%

Case 5h 185.78 6.98%

Case 9mu 186.46 6.63%

Case 9mh 186.63 6.55%

Case 9gn 186.43 6.65%

Case 9tu-ADODG 188.42 5.65%

Table 8: Drag coefficients and their relative reductions for the optimized configurations (with respect to the baseline configuration) at

the nominal condition (in drag counts, CD × 104).

To further demonstrate the merit of multipoint versus single-point optimization, we compare the
√
ML/D

contours, which can be interpreted as a two-dimensional extension of the drag-divergence curve. The
√
ML/D metric can be used to assess the range performance of a transonic commercial aircraft [19], which

is based on the Breguet range equation

R =
L

D

V

cT
ln

(
W1

W2

)
, (12)

where L/D is the lift-to-drag ratio, V is the velocity, cT is the TSFC, W1 is the initial cruise weight, and

W2 is the final cruise weight. Assuming that the TSFC is proportional to
√
M (which is reasonable for

high-bypass ratio turbofans operating in the troposphere [28]), and that the speed of sound and the W1/W2

ratio are constant, the range is proportional to
√
ML/D.

Figure 16 shows the
√
ML/D contours for the baseline and single-point optimized geometries. The335

drag values must be corrected to include the additional parasitic drag from components other than the air-

craft wing. Therefore, an additional 28 drag counts are added, such that the maximum
√
ML/D of the
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baseline configuration occurs at the nominal CL = 0.5 [22], as shown in Figure 16a. The thick red line

marks the contour where
√
ML/D = 20.53, which is 99% of its maximum value 20.73. Aircraft typically

operate within this enclosed area, within which the fuel-burn penalty would not exceed 1%. Therefore, this340

99%(
√
ML/D)max area can be used as a proxy to measure the robustness of the design. For the single-

point case (Figure 16b), the blue circle indicates the maximum
√
ML/D value, and the corresponding

99%(
√
ML/D)max contours are shown as thick blue lines. We refer to the area enclosed by the red line as

the baseline high-performance region and one enclosed by the blue line as the high-performance region.
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Figure 16:
√
ML/D contours for the baseline and single-point optimized configurations.

Figure 17 displays the
√
ML/D contours for all the multipoint cases. The integration points are shown345

as black diamonds, sized by their objective-function weight values. From these contour plots, we observe

that the maximum
√
ML/D (i.e., the best-performance point) occurs at a flight condition close to the nom-

inal point. Recall that the integration-point configurations for all the cases are centered at the nominal flight

condition.

Figure 18 shows the superposition in one plot of the high-performance regions for the baseline and the350

optimized configurations. The points corresponding to the maximum
√
ML/D of all the optimization cases

are displayed, and the values are shown inside the brackets. From this comparison, we identify two main

factors that affect the shape and size of the high-performance region of each optimization case. The first
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Figure 17:
√
ML/D contours for the multipoint-optimized designs.

factor is the flight-condition range covered by the integration points, which affects the flatness of the drag-

divergence curves, as previously discussed. The second factor has to do with the weight values assigned at355

the corner points. The higher these weights (e.g., when assigning equal weights for all points), the larger the

high-performance region. This is because the corner points are assigned the same importance as the nominal

condition, and thus the optimizer trades off the performance at the nominal condition with the corner points.

This plot shows that all the optimized configurations have higher operating Mach numbers than the baseline

configuration, which means that the aircraft can fly faster without incurring a drag penalty.360

Figure 18 expands on the drag divergence curve comparison of Figure 15. All the optimized configura-

tions demonstrate improved performance compared to the baseline design, and we also observe the improved

robustness of the multipoint results compared with the single-point result. The improved performance is

demonstrated by the higher operating Mach number as well as the higher maximum
√
ML/D (i.e., the
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Figure 18: High-performance regions for the baseline and optimized configurations.

best-performance point). The improved robustness is shown by the larger high-performance regions of the365

multipoint results. In other words, the multipoint optimizations have “flatter” high-performance regions,

whereas the single-point optimization has a sharper maximum. All the high-performance regions for the

optimized configurations are smaller than that of the baseline configuration. This outcome shows that the

optimizer tries to improve the performance around the flight conditions that truly matter, based on the infor-

mation derived from the flight operation data.370

4.2. Assessment of the Expected Drag Approximation

In this section, we assess the objective function accuracy in estimating the expected value of the drag

coefficient, E [CD]. We denote the objective function as C̄D to represent the weighted averageCD. Since the

actual E [CD] is unknown, we use the flight-condition histogram shown in Figure 3 to compute the reference

value, which is denoted E [CD]ref. A midpoint integration rule is employed, where the flight condition at375

the center of each cell is used as the integration point. The flight-condition frequency in each cell (mapped
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to the colors in the histogram) is used as the PDF in the expectation integral computation. The difference

between E [CD]ref and C̄D is denoted ∆CD; all the quantities are reported in drag counts.

Table 9 summarizes the assessment results for the baseline and optimized configurations. For the base-

line configuration, E [CD]ref is the same for every case (201.56), while the C̄D computations are different380

because of the different integration points and weights. The computed CD at the nominal condition for each

configuration is also shown in Table 9.

Case
Baseline configuration Optimized configuration

C̄D ∆CD Nominal E [CD]ref C̄D ∆CD

Baseline − − 199.71 − − −

1 198.77 −2.79 185.01 191.18 185.01 −6.17

5 200.05 −1.51 186.32 188.12 186.43 −1.69

5h 200.37 −1.19 185.78 188.07 186.82 −1.24

9mu 200.80 −0.75 187.14 188.34 187.26 −1.08

9mh 201.14 −0.41 186.46 188.37 188.13 −0.25

9gn 200.37 −1.19 186.43 188.26 187.13 −1.13

9tu-ADODG 210.27 8.71 188.42 189.47 192.23 2.76

Table 9: Comparison of E [CD]ref and C̄D for the baseline and optimized configurations. For the baseline configuration, the same

E [CD]ref reference value (201.56) is used for all the cases. All the values are in drag counts (CD × 104).

From Table 9, we see that Case 9mh yields the smallest ∆CD for both the baseline and optimized config-

urations. This result is expected since this case derived the PDF directly from the flight-condition histogram.

In general, including more points in the expectation integral approximation improves the accuracy. For the385

optimized configurations, the single-point approximation (Case 1) is the least accurate, since a single point

is not sufficient to represent the entire integration domain. Another case with poor approximation accuracy

is Case 9tu-ADODG, since it includes points outside the flight-condition histogram (Figure 3). This em-

phasizes the importance of ensuring that the selection of the integration points and corresponding weights

reflects how the aircraft actually operates.390

In addition to assessing the accuracy of the expectation integral approximation, we compare the overall

expected CD for the different optimization cases, i.e., the computed values of E [CD]ref. Table 9 shows that
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all the multipoint cases yield similar E [CD]ref values. To investigate this further, we analyze theCD variation

in the flight-condition space for each optimized configuration. For easier comparison, the drag values are

compared to the most accurate integration, which is Case 9mh. Figure 19 shows these comparisons for395

Case 1 and Case 9tu-ADODG, which have the biggest discrepancies.

(a) Case 1 (b) Case 9tu-ADODG

Figure 19: CD deviations from the reference case (Case 9mh) for each flight condition (in drag counts).

For the other four cases, the differences are much smaller and thus a much narrower value range is used in

the plots shown in Figure 20. Figures 19 and 20 show that theCD variations for the optimized configurations

fall within a narrow range. The CD values for the two extreme cases, Case 1 and Case 9tu-ADODG, differ

from the reference (Case 9mh) by −15 to 15 drag counts, whereas in the other cases the ranges are between400

−2 and 2 drag counts.

The above observations suggest that each case yields different configurations with different performance,

but the differences are small. Moreover, the differences at the perimeter of the flight-condition histogram

become even more insignificant in calculating the expected drag because they are less frequent flight condi-

tions. Therefore, the resulting E [CD]ref values are within 1 drag count of each other, as shown in Table 9.405

In Figures 11–14 we show that the various multipoint cases result in similar geometries. In this compar-

ison, we again use Case 9mh as the reference case, and compute the root-mean-square deviation (RMSD)

between any airfoil geometry and this reference airfoil. This deviation is based on the Euclidean distance

between each point of a given airfoil and the corresponding point on the reference airfoil, i.e.,

di =

√(
xi − xref

i

)2
+
(
zi − zref

i

)2
, i = 1, 2, . . . , Npoints. (13)
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(a) Case 5 (b) Case 5h

(c) Case 9mu (d) Case 9gn

Figure 20: CD deviations from the reference case (9mh) for each flight condition (in drag counts).
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The RMSD is

RMSD =

√∑N
1=i d

2
i

N
, (14)

where N is the number of points defining each airfoil. In addition to computing the RMSD for each airfoil,

we also compute the overall RMSD for each case using the geometry coordinates of six airfoils. The airfoil

geometry comparison is summarized in Table 10.

Case A B C D E F Overall

Case 1 2.8822 4.0880 3.1423 3.4589 3.6993 3.8524 3.5440

Case 5 0.0204 0.0134 0.0242 0.0125 0.0163 0.0230 0.0189

Case 5h 0.0287 0.0140 0.0313 0.0182 0.0269 0.0381 0.0274

Case 9mu 0.0203 0.0155 0.0300 0.0112 0.0109 0.0185 0.0189

Case 9gn 0.0214 0.0149 0.0164 0.0171 0.0131 0.0140 0.0164

Case 9tu-ADODG 0.0394 0.0365 0.0181 0.0284 0.0220 0.0260 0.0294

Table 10: Quantification of the airfoil geometry differences, using Case 9mh as the reference geometry (RMSD in meters)

The results in Table 10 show that Case 1 has the highest discrepancy with the reference case, which is

consistent with the E [CD]ref comparison results presented in Table 9. The overall deviation for this case410

is around 3.5 m. This deviation is illustrated in Figure 21 for six airfoil slices; it is lowest near the wing

root and increases toward the wing tip. For the other cases, the deviations are less than 3 cm. Compared to

the overall wing dimensions (the wing mean aerodynamic chord is 7 m), these deviations are small, which

explains the similarities in the E [CD]ref values.

4.3. Optimization History and Computational Cost415

Figure 22 shows the evolution of the merit function and the optimality of four representative cases. These

plots are representative of all the cases, since they all exhibit similar trends. In SNOPT, the merit function

is used in the augmented Lagrangian formulation, and optimality refers to how closely the current point

satisfies the first-order Karush–Kuhn–Tucker conditions [13]. For all the cases, the optimality and feasibility

tolerances are set to 10−4 and 10−5, respectively. In Figure 22, we see that the nine-point cases require 100420

to 110 iterations to converge, the five-point case requires about 140 iterations, and the single-point case

requires over 160 iterations. Based on Figures 11–14 and the CD reductions summarized in Table 8, we see
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(a) Airfoil A (b) Airfoil B (c) Airfoil C

(d) Airfoil D (e) Airfoil E (f) Airfoil F

Figure 21: Airfoil geometry comparison for Cases 1 and 9mh.

that the single-point optimization results in the largest change relative to the baseline configuration in both

drag and shape, which explains the increased number of iterations.

All the optimized designs satisfy the lift, moment, volume, and thickness constraints within the specified425

tolerance. All the cases are run in parallel [27]: the L2 cases are performed with 32 processors, while the L1

cases use 480 processors. Table 11 summarizes the total number of major iterations and computation time

(in hours) for all the cases. The coarse optimizations, where most of the gains are achieved, range from 31

to 59 hours of wall time for the multipoint cases using 32 processors, so they could be completed overnight

using 128 processors.430

5. Conclusion

Most multipoint aerodynamic shape optimization investigations to date have relied on heuristics to

choose the flight conditions and the corresponding weights. In this work, we investigate the effects of

31



Iteration

M
e

ri
t 

F
u

n
c

ti
o

n

0 20 40 60 80 100 120 140 160 180

0.02

0.025

0.03

0.035

0.04

Case 1

L2 L1

Iteration

M
e

ri
t 

F
u

n
c

ti
o

n

0 20 40 60 80 100 120 140 160 180

0.02

0.025

0.03

0.035

0.04

Case 5h

L2
L1

Iteration

O
p

ti
m

a
li
ty

0 20 40 60 80 100 120 140 160 180
10

­5

10
­4

10
­3

10
­2

10
­1

Iteration

O
p

ti
m

a
li
ty

0 20 40 60 80 100 120 140 160 180
10

­5

10
­4

10
­3

10
­2

10
­1

Iteration

M
e

ri
t 

F
u

n
c

ti
o

n

0 20 40 60 80 100 120 140 160 180

0.02

0.025

0.03

0.035

0.04

Case 9mh

L2
L1

Iteration

M
e

ri
t 

F
u

n
c

ti
o

n

0 50 100 150

0.02

0.025

0.03

0.035

0.04

Case 9tu­ADODG

L2 L1

Iteration

O
p

ti
m

a
li
ty

0 20 40 60 80 100 120 140 160 180
10

­5

10
­4

10
­3

10
­2

10
­1

Iteration

O
p

ti
m

a
li
ty

0 50 100 150
10

­5

10
­4

10
­3

10
­2

10
­1

Figure 22: Objective function and optimization history for four cases.
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Case
Coarse optimization (32 procs) Fine optimization (480 procs)

Major iterations Time (h) Major iterations Time (h)

Case 1 129 9 36 7

Case 5 94 31 23 9

Case 5h 106 34 30 12

Case 9mu 81 52 23 15

Case 9mh 83 52 27 18

Case 9gn 97 59 29 18

Case 9tu-ADODG 71 48 29 19

Table 11: Number of major iterations and total computational time for the coarse optimizations (with 32 processors) and fine optimiza-

tions (with 480 processors)

different multipoint optimization formulations on the expected drag minimization. In particular, we aim to

reduce drag over all the flight conditions that the aircraft normally operates at during cruise. To this end,435

we use actual mission operational data to generate a PDF of the flight conditions, from which a series of

multipoint objective functions is formulated. We also perform a single-point optimization for comparison

purposes. All the optimizations are for the CRM wing, subject to lift, moment, volume, and thickness con-

straints. There are 768 design variables and 752 constraints. The wing planform shape is fixed, and the

aerodynamic analysis consists in solving the RANS equations.440

We formulate the expected drag minimization problem as a multipoint problem by computing the ex-

pectation integral numerically, employing midpoint and Gauss–Hermite quadrature rules. We perform the

integration in the two-dimensional space of Mach and CL. We obtain the flight-condition distribution by

performing detailed mission analyses based on actual flight data. We then use this distribution to select

the integration points and weights for all the multipoint cases except one, which is a previously defined445

benchmark case (9tu-ADODG). In addition, we approximate this distribution via a normal distribution to

automatically generate integration points and weights using the Gauss–Hermite quadrature.

All the multipoint cases result in more consistent performance gains than the single-point case, especially

around the high-frequency region of the flight-condition distribution. This results in flatter drag divergence

curves and larger high-performance regions in the
√
ML/D plots. The single-point optimization, on the450
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other hand, resulted in localized performance gain around the nominal flight condition with the highest drag

reduction at this nominal point.

Comparing the various multipoint results suggests that it is important to choose the right points, but

the determination of the integration weights is secondary if the focus is on minimizing the overall expected

drag. This conclusion is based on the fact that all the multipoint cases (except 9tu-ADODG) yield similar455

designs. Recall that Case 9tu-ADODG is the only multipoint case that did not use the derived flight-condition

histogram to determine the flight conditions and weights. The cases that are based on the flight-condition

distribution (5, 5h, 9mu, 9mh, 9gn) have similar integration point stencils; the only difference between the

five-point and nine-point stencils is the absence of corner points. Each case uses a different rationale for

determining the flight-condition weights.460

Our results also highlight the importance of distinguishing between flight conditions where we want

to optimize the performance, and conditions where we want only to ensure adequate handling for safety.

Case 9tu-ADODG, for example, includes flight conditions at which the aircraft would not normally operate

during cruise. These conditions are included to emulate the off-design conditions to provide a margin be-

tween cruise conditions and buffet onset. This approach to addressing buffet onset reduced the performance465

at the flight conditions relevant for normal operation. Thus, a better approach would be to consider only the

relevant flight conditions in the objective and to include the off-design conditions as constraints [23].

Although most of the multipoint designs are similar, the expected CD values exhibit different accuracies

when compared to the actual drag integral. The most accurate is Case 9mh, where the weights are chosen to

integrate the flight histogram, with a 0.25 drag count discrepancy. For our aerodynamic shape optimizations,470

an accurate E [CD] approximation at each iteration is not critical, since we achieve similar results. However,

for aerostructural optimization [21], objective function accuracy is critical because we need to accurately

quantify the trade-off between aerodynamics and structural disciplines at each optimization iteration.

We conclude that a five-point configuration with equal weights is sufficient in the multipoint formulation

if the focus is on the final optimized shape and only aerodynamics is considered. On the other hand, if475

the expectation integral accuracy is important at each iteration, e.g., when doing trade-off analysis in the

loop, then the multipoint formulation should be based on the actual flight-condition distribution. While this

conclusion might not be applicable to flight-condition distributions that are different from those considered

here, our approach can still be used to minimize the expected drag or another objective, such as fuel burn.
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