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Abstract: Aerodynamic design optimization requires large computational resources, since each
design evaluation requires the solution of a system of partial differential equations in a three di-
mensional domain. Thus, the choice of optimization algorithm is critical, as it directly affects
the number of required design evaluations to reach the optimum design. To help designers make
an informed choice, we benchmark several optimization algorithms, including gradient-based and
gradient-free methods using three test problems of increasing difficulty: a multi-dimensional Rosen-
brock function, a RANS-based aerodynamic twist optimization problem and an aerodynamic shape
optimization problem. The majority of the gradient-based optimizers successfully solved all three
test problems, while the gradient-free methods require two to three orders of magnitude more com-
putational effort when compared to the gradient-based methods. Thus, gradient-based algorithms
are the only viable option for solving large-scale aerodynamic design optimization problems.
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1 Introduction
With the advancement of high performance computing, numerical simulation and optimization of complex
and large-scale aircraft design problems has become possible. Aerodynamic shape optimization of a transonic
wing is an example of such complex design problems, often solved with respect to hundreds of design variables.
Computational fluid dynamics (CFD) with a Reynolds-averaged Navier–Stokes (RANS) model is often used
in aerodynamic shape optimization to accurately capture the flow, which makes computing the objective
function computationally intensive. Therefore, performing high-fidelity aerodynamic shape optimization
remains a challenging and expensive task [1].

The optimization can be performed with gradient-based or gradient-free methods. Gradient-based meth-
ods are best when an efficient gradient evaluation is available. The computational expense of evaluating
the gradient using finite difference or complex step methods [2] is prohibitive for aerodynamic shape opti-
mization with respect to hundreds of variables. The adjoint method, however, can provide accurate and
efficient gradient evaluations [3, 4], and adjoint-based aerodynamic shape optimization has been widely
used [5, 6, 7, 8, 9]. The gradient-free methods are generally simpler to implement, and claim to find the
global optimum, but the computational cost is higher. In this paper, we investigate the local optima in aero-
dynamic shape optimization of a transonic wing. In addition, we also compare the optimization algorithms
using this benchmark.

The aerodynamic shape optimization has been well-studied using various approaches. Sasaki et al. [10]
applied an adaptive range multiobjective genetic algorithm (ARMOGA) to aerodynamic wing design. A
four-objective optimization of wing shape and planform were presented using 72 design variables, subject
to thickness and planform shape constraints. Moigne and Qin [11] studied aerodynamic shape optimization
based on a discrete adjoint of a Reynolds-averaged Navier–Stokes (RANS) solver. A variable-fidelity opti-
mization method combining low- and high-fidelity models was used. The optimization reduced 23% drag
on a RAE2822 airfoil and 15% on a ONERA M6 wing. Their results showed that using a variable-fidelity
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method that performs most of the optimization on a low-fidelity, low-cost model (Euler equations on a coarse
grid) reduces the overall computing time.

Lyu et al. [8] presented the results of lift-constrained drag minimization of the AIAA Aerodynamic Design
Optimization Discussion Group (ADODG) Common Research Model wing1 using a RANS solver. A 8.5%
drag reduction was achieved using a multilevel optimization approach. The same optimization was also
performed starting from a randomly generated initial design, and closely spaced local optima were observed.

Several authors compared the performance of different optimization methods. Foster and Dulikravich [12]
compared a hybrid gradient method and a hybrid genetic algorithm for a three dimensional aerodynamic
lifting body design. Zingg et al. [13] performed a comparison of genetic algorithm and gradient methods
in aerodynamics airfoil optimization. Genetic algorithm required 5–200 times more function evaluations
than gradient-based methods with adjoint sensitivity. They suggested genetic algorithm was more suited
for preliminary design with low-fidelity models. Gradient-based optimizers may be more appropriate for
detailed designs with high-fidelity models. Obayashi and Tsukahara [14] compared a gradient-based method
with simulated annealing, and a genetic algorithm on an airfoil lift maximization problem. The genetic
algorithm required the highest number of function evaluation. However, the genetic algorithm achieved the
best design compared to the other two methods. Frank and Shubin [15] compared one-dimensional duct flow
optimization with finite-difference gradients, optimization with analytic gradients, and an all-at once method
where the flow and design variables are simultaneously altered. They concluded that the optimization with
analytic gradients was the best approach that can be retrofitted to most existing codes.

In this paper, we extend the previous studies of optimizer comparison and local optima using high-
fidelity aerodynamic shape optimization. We compare several optimization algorithms including 6 gradient-
based methods—SNOPT, PSQP, SLSQP, IPOPT, CONMIN, GCMMA—and 2 gradient-free methods—
ALPSO, NSGA2. We test those optimizers using a multi-dimensional Rosenbrock function, a wing twist
optimization problem, and a wing shape optimization problem. The strengths and weaknesses of each
method are discussed. This paper is organized as follows. In Section 2, we discuss the computational tools
used in this study. The results of multi-dimension Rosenbrock function are presented in Section 3. The
aerodynamic twist optimization is shown in Section 4, and finally, the aerodynamic shape optimization is
discussed in Section 5, followed by the conclusions.

2 Methodology
This section describes the numerical tools and methods that we used for the aerodynamic shape optimization
studies. These tools are components of the framework for multidisciplinary design optimization (MDO) of
aircraft configurations with high fidelity (MACH) [16]. MACH can perform the simultaneous optimization
of aerodynamic shape and structural sizing variables considering aeroelastic deflections [17]. However, in
this paper we use only the components of MACH that are relevant for aerodynamic shape optimization: the
geometric parametrization, mesh perturbation, CFD solver, and optimization algorithm.

2.1 Geometric Parametrization
We use a free-form deformation (FFD) volume approach to parametrize the wing geometry [18]. The FFD
volume parametrizes the geometry changes rather than the geometry itself, resulting in a more efficient and
compact set of geometry design variables, thus making it easier to manipulate complex geometries. Any
geometry may be embedded inside the volume by performing a Newton search to map the parameter space
to the physical space. All the geometric changes are performed on the outer boundary of the FFD volume.
Any modification of this outer boundary indirectly modifies the embedded objects. The key assumption of
the FFD approach is that the geometry has constant topology throughout the optimization process, which
is usually the case in wing design. In addition, since FFD volumes are trivariate B-spline volumes, the
derivatives of any point inside the volume can be easily computed.

1https://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/default.aspx
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2.2 Mesh Perturbation
Since FFD volumes modify the geometry during the optimization, we must perturb the mesh for the CFD
to solve for the modified geometry. The mesh perturbation scheme used in this work is a hybridization of
algebraic and linear elasticity methods, developed by Kenway et al. [18]. The idea behind the hybrid scheme
is to apply a linear-elasticity-based perturbation scheme to a coarse approximation of the mesh to account
for large, low-frequency perturbations, and to use the algebraic warping approach to attenuate small, high-
frequency perturbations. For the results in this paper, the additional robustness of the hybrid scheme is not
required, so we use only the algebraic scheme.

2.3 CFD Solver
We use SUmb [19] as the CFD solver, which is a finite-volume, cell-centered multiblock solver for the
compressible Euler, laminar Navier–Stokes, and RANS equations (steady, unsteady, and time-periodic).
SUmb provides options for a variety of turbulence models with one, two, or four equations, and options
for adaptive wall functions. The Jameson–Schmidt–Turkel (JST) scheme [20] augmented with artificial
dissipation is used for the spatial discretization. The main flow is solved using an explicit multi-stage
Runge–Kutta method, along with geometric multigrid. A segregated Spalart–Allmaras turbulence equation
is iterated with the diagonally dominant alternating direction implicit (DDADI) method.

To efficiently compute the gradients required for the optimization, we have developed and implemented
a discrete adjoint method for the Euler and RANS equations within SUmb [21, 4]. The adjoint implemen-
tation supports both the full-turbulence and frozen-turbulence modes, but in the present work we use the
full-turbulence adjoint exclusively. The adjoint is verified against complex-step method. [2] We solve the
adjoint equations with preconditioned GMRES [22] using PETSc [23, 24, 25]. We have previously performed
extensive Euler-based aerodynamic shape optimization [26, 27] and aerostructural optimization [17, 28].
However, we have observed serious issues with Euler-based optimal designs due to the missing viscous ef-
fects. While Euler-based optimization can provide design insights, we found that the resulting optimal Euler
shapes are significantly different from those obtained with RANS [4]. Euler-optimized shapes tend to exhibit
a sharp pressure recovery near the trailing edge, which is non-physical because such conditions near the
trailing edge would cause separation. Thus, RANS-based shape optimization is necessary to achieve realistic
designs.

2.4 Optimizer
A number of optimizers are studied in this paper. We use the pyOpt framework [29], which is an open
source framework that provides a common interface to all optimizers. Both gradient-based and gradient-free
methods are studied. In this section, we briefly describe each optimizer used in this paper.

2.4.1 SNOPT

SNOPT is a sequential quadratic programming (SQP) method that uses a smooth augmented Lagrangian
merit function and reduced-Hessian semi-definite QP solver for the QP subproblems [30]. It solves large-scale
problems with nonlinear constraints and a smooth objective.

2.4.2 SLSQP

SLSQP is a sequential least squares programming algorithm [31] that evolved from the least squares solver
of Lawson and Hanson [32]. The optimizer uses a quasi-Newton Hessian approximation and an L1-test
function in the line search algorithm. Kraft [33] also applied this method to aerodynamic and robotic
trajectory optimization.

2.4.3 PSQP

PSQP is a preconditioned SQP method with a BFGS variable metric update. It can handle large scale
problems with nonlinear constraints.
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2.4.4 IPOPT

IPOPT implements a primal-dual interior-point algorithm with a filter line search method [34]. The barrier
problem is solved using a damped Newton’s method. The line search method includes a second order
correction.

2.4.5 CONMIN

CONMIN solves linear or nonlinear optimization problems using the method of feasible directions [35]. It
minimizes the objective function until it reaches an infeasible region. The optimization then continues by
following the constraint boundaries in a descent direction.

2.4.6 GCMMA

GCMMA is a modified version of the method of moving asymptotes, designed for nonlinear programming
and structural optimization [36]. It solves a strictly convex approximating sub-problem at each iteration.
GCMMA guarantees convergence to a local minimum from any feasible starting point.

2.4.7 ALPSO

ALPSO is a parallel augmented Lagrange multiplier particle swarm optimization (PSO) solver written in
Python [37]. This method takes advantage of PSO methods, which can solve non-smooth objective func-
tions and is more likely to find the global minimum. Augmented Lagrange multipliers are used to handle
constraints. ALPSO can be used for nonlinear, non-differentiable, and non-convex problems. Perez and Be-
hdinan [38] applied this method to a non-convex, constrained structural problem. Other applications include
aerostructural optimization of nonplanar lifting surfaces [39] and aeroservoelastic design optimization of a
flexible wing [40].

2.4.8 NSGA2

NSGA2 is a non-dominant sorting based multi-objective evolutionary algorithm [41]. The optimizer enforces
constraints by tournament selection. It can solve non-smooth and non-convex multi-objective functions and
tends to approach the global minimum.

3 Multi-dimensional Rosenbrock Function
To examine the effectiveness of the optimizers listed above, we first minimize a multi-dimensional Rosenbrock
function [42]. In addition, a nonlinear constraint is added to the formulation, and the complete problem is:

minimize
n−1∑
i=1

100 (xi+1 − x2
i )

2 + (xi − 1)2

with respect to x ∈ Rn

subject to
∑̂n−1

i=1
(1.1− (xi − 2)3 − xi+1) ≥ 0

The constraint is always active at the optimum. For a two-dimensional problem, the feasible optimum is
at [1.2402, 1.5385] with an objective value of 0.0577244. The optimizations are started from xi = 4, and the
design variables are bounded so that they remain in the interval [−5.12, 5.12].

We set the options for each optimizer based on our best knowledge. For example, we use a swarm size of
8 and a maximum outer iteration of 4000 for ALPSO. We use a population size of 24 and 200 generations for
NSGA2. We terminate all optimizations with 10−6 relative tolerance of 3 consecutive iterations and 10−6

feasibility tolerance. In this study, we investigate the computational cost and effect of increasing number
of design variables. In addition, we compare results found using finite-difference gradients with those found
using analytical derivatives.
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Figure 1 shows the optimization path taken by each optimizer. Gradient-based methods follow through
the Rosenbrock valley and converge toward the optimum. Gradient-free methods converge their population
toward the optimum in a more scattered way. The convergence history of selected optimizers of the two
dimensional Rosenbrock function is plotted in Figure 2. For gradient-free methods, only the best point is
plotted for each iteration or generation. Most of the gradient-based optimizers converge to an objective
tolerance of 10−5 within 150 iterations, while ALPSO converges to the same tolerance using 3, 368 iterations
and NSGA2 can not converge to the same tolerance before we terminate the computation. NSGA2 termi-
nates when the maximum number of generation (200) is reached. SLSQP is the fastest, with 34 function
evaluations.
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Figure 1: Optimization paths for the constrained 2D Rosenbrock function

To visualize the effect of increasing the dimensionality of the problem, we also plot the number of function
evaluations required to converge the optimization for an increasing number of design variables. As shown
in Figure 3, the gradient-free methods tend to have quadratic or cubic growth of function evaluations with
increasing dimensionality, while the gradient-based methods follow a linear trend. The difference between
gradient-based methods with finite-difference gradients and gradient-based methods with analytical gradients
is significant, motivating the use of the adjoint method in aerodynamic shape optimization that we discuss
later.
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Figure 2: Gradient-based methods converge faster for the Rosenbrock problem

To investigate the local minima, we remove the constraint. Then, two minima (one local and one global)
occur for higher dimensions [43]. The local minimum is at [−1, 1, 1, . . .], and the global minimum is at
[1, 1, 1, . . .]. We start the optimization at [−0.8, 0.8, 0.8, . . .], which is relatively close to the local minimum
at [−1, 1, 1, . . .]. All optimizers were able to converge to the global minimum for 2 and 4 design variables.
However, for 8 design variables or more, gradient-based methods converge to the local minimum, while the
gradient-free methods find the global minimum, as shown in Figure 4.

In this study, we compare the optimizers using a multi-dimensional Rosenbrock function. Gradient-free
methods take 2 to 4 orders of magnitude more function evaluations to converge the optimization than most
gradient-based methods. NSGA2 cannot achieve the required accuracy within 200 generations. The gradient-
free methods have a higher probability of converging to a point near a global optimum. However, it requires
high number of function evaluations with large number of design variables, making it infeasible for large-scale
aerodynamic shape optimization. Thus, gradient-based methods with efficient gradient computations are a
better choice for large-scale optimizations.

4 Aerodynamic Twist Optimization
In this study, the objective is to perform a lift-constrained drag minimization of the Common Research
Model (CRM) wing [44, 45, 46]. The flow is solved using RANS equations. The adjont method is used to
solve the gradients including the linearization of the turbulence model. The baseline geometry is the same
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Figure 3: The gradient-free methods require an excessive number of function evaluations for large numbers
of variables.

as the one used by Lyu et al. [8]. The specifications are given by the Aerodynamic Design Optimization
Discussion Group 2. The mesh is generated using an O-grid topology, extruded to a farfield at a distance
equal to 25 times the wing span. The grid size and y+ are listed in Table 1. We use level 3 and level 2 grids
in this study.

Grid level Grid size y+

L2 450, 560 2.213
L3 56, 320 8.4086

Table 1: Grid size used in aerodynamic twist optimization

For this problem, we use 8 wing twist design variables to provide a reasonable run time to compare
gradient-based and gradient-free optimizers. A lift coefficient constraint of CL = 0.5 is imposed. The initial
wing has zero twist. The coarse L3 grid is used. We also perform the optimization on the L2 grid using
gradient-based methods.

The optimized twist, lift and pressure distributions using each optimizer and the L3 grid are shown in
2https://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/default.aspx
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Figure 4: Visualization of the local and global minimum of 8-dimensional Rosenbrock function

Figure 5. All optimizers except NSGA2 converge to the same drag value. The difference is within 0.1 of a
drag count, and the twist distributions are nearly identical.

The gradient-free optimizers take 3 orders of magnitude more iterations than the gradient-based optimiz-
ers. We compare the computational cost of the optimizers in Table 2. The relative convergence tolerances
for gradient-based methods are 10−5 for the objective, and 10−4 for the constraints. The corresponding
values for the ALPSO optimizer are 10−2 for the objective and 10−3 for the constraints. For this case,
SLSQP, PSQP and IPOPT perform well. CONMIN is slower and did not achieve the required tolerance.
For non-gradient methods, ALPSO performs better than NSGA2, as it takes half of the time of NSGA2, and
converges to a better design. ALPSO converges to the same optimum as the gradient-based methods, while
the optimum obtained by NSGA2 is 0.8 drag count higher with a different twist distribution.

The convergence history of the optimization is shown in Figure 6 and 7. Since the number of function
evaluations for the gradient-based methods are two orders of magnitude lower than gradient-free methods, we
plot the convergence of the gradient-based methods and the gradient-free methods separately. For gradient-
based methods, we plot the value of objective function with respect to the number of function evaluations.
For the gradient-free methods, only the best point of each iteration or generation is plotted.

After performing the comparison for the L3 grid, the same optimization is verified using the finer L2 grid.
Figure 8 shows the optimized results of the gradient-based optimizers using the L2 grid. The L2 optimization
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Figure 5: Aerodynamic twist optimization comparison on the L3 grid

Optimizer Iteration numbers Proc hours

SNOPT 27 5.81
SLSQP 14 2.56
PSQP 17 3.70

IPOPT 13 2.69
CONMIN 230 33.61
GCMMA 37 4.57
ALPSO 8129 1695.72
NSGA2 12757 2744.16

Table 2: Computational cost comparison of the twist optimization for the L3 grid

is too costly to be implemented with gradient-free methods. Using only twist design variables, the shock
on the wing can not be completely removed. The drag is reduced by 29 counts. Similarly, the difference in
drag between the optimizers is within 0.1 count. Thus, it seems as if the twist optimization problem has
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only one optimum. The lift distributions of optimized design using L2 and L3 grids are shown in Figure 9.
The difference in grid resolutions results in a difference in the optimized twist distribution. The optimized
design increases lift at the root and reduces lift at the tip, thus moving towards an elliptical lift distribution.
However, since the optimizers minimize the total drag with only 8 twist design variables, the optimal trade-off
between induced drag with wave and viscous drag is not obvious, resulting in a non-elliptical lift distribution.

Figure 8: Aerodynamic twist optimization comparison for the L2 grid

In this study, we examined a twist design problem. We used 8 design variables subject to a lift constraint.
We compared the optimized results using different optimizers on two grid levels. All optimizers converged to a
similar optimum. A single global minimum is observed. The gradient-based methods converged significantly
faster than the gradient-free methods.

5 Aerodynamic Shape Optimization
In this study, we use the same geometry as the twist optimization case discussed above. Instead of using
just 8 twist design variables, a total of 192 shape design variables are considered. As in the previous case,
the angle-of-attack is also allowed to vary, and we perform drag minimization subject to a lift constraint of
CL = 0.5. The wing thickness is constrained from reducing relative to the initial geometry by imposing 750
thickness constraints. In addition, a volume constraint is imposed to ensure that the internal volume does
not decrease beyond the baseline volume. This problem requires significantly more computational resources
than the previous case. We perform the shape optimization using 4 different gradient-based optimizers on
the L2 grid. The convergence tolerance is 10−6 for the objective and 10−4 for the constraints.
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Figure 9: Lift distribution comparison of the twist optimized designs

Figure 10 shows the final design resulting from the use of different optimizers. The results from the
baseline wing are shown in black. More detailed comparisons for each optimizer are shown in Figures 12– 15.
The drag is reduced by 4.84%, from 206.7 to 196.6 counts, which is similar to the previous result [8].

We can see that all optimizers achieve a shock-free wing with an elliptical lift distribution. The baseline
design has a strong shock, as evidenced by closely spaced Cp contours, while the optimized designs have a
parallel, equally spaced pressure contours. The variation in CD is within 1 drag count between the various
optimizers. All optimized shapes are similar to each other, and only small difference in shape are observed.
The comparison of the computational time for various optimizers is shown in Table 3. SNOPT converges
the fastest among all optimizers. The optimized results using GCMMA is 0.2 drag count higher than the
others. The convergence history is plotted in Figure 11.
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Figure 10: Aerodynamic shape optimization comparison for the L2 grid

Optimizer Function evaluations Proc hour

SNOPT 92 224.98
SLSQP 116 306.38
PSQP 221 562.60

GCMMA 298 772.60

Table 3: Computational cost comparison of the shape optimization for the L2 grid

6 Conclusion
We evaluated several optimization algorithms for three different aerodynamic shape optimization problems.
The algorithms we considered included gradient-based methods with adjoint gradients and gradient-free
methods (a particle swarm optimization and a genetic algorithm). The gradient-free methods required 2
to 4 orders of magnitude more iterations than gradient-based methods. We conclude that gradient-based
methods with adjoint gradients are the best choice for solving large-scale aerodynamic design optimization
problems.
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Figure 12: Wing shape optimization using SNOPT

Figure 13: Wing shape optimization using SLSQP
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Figure 14: Wing shape optimization using PSQP

Figure 15: Wing shape optimization using GCMMA
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