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The optimal shape of flying wings for subsonic and transonic speeds is examined
using a suite of tools developed around a three-dimensional, time-spectral Eu-
ler computational fluid dynamics solver. The first result in the study is a lift-
constrained drag minimization, performed on an unswept, rectangular wing. When
the spanwise twist distribution of the wing is varied the elliptic optimum predicted
by low-speed inviscid theory can be reproduced. With this result as a reference,
three different optimization formulations are explored. These consider the addition
of bending moment constraints, static-stability constraints, and dynamic-stability
constraints. In each case, the design space of the problem is explored using both
planform and shape variables to determine the optimal shape. These techniques
are used to show that the addition of stability constraints has a significant im-
pact on the optimal surface shape of the wing. In particular, it is shown that at
lower speeds, airfoil shape is sufficient to satisfy static-stability constraints, while
dynamic-stability constraints require the addition of sweep. It is also shown that at
higher speeds, airfoil shape is insufficient to satisfy either stability constraint, static
or dynamic, and that the addition of sweep is necessary.
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α Angle of attack

c̄ Mean chord
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c̄ref Reference chord length

∆FFD Free form deformation volume control point movement, y direction

q̇ Time derivative of q

λ Sweep

ω Short-period frequency

σ Bending stress

CG% Center of gravity variable

θi Section twist

ζ Short-period damping ratio

A Wing area

A1 Planform area

A2 Calculated projected area

b Span

CD Drag coefficient

CL Lift coefficient

Cm Pitch moment coefficient

Cp Coefficient of pressure

Cbendx x component of root bending moment

Cbendz y component of root bending moment

Cb Total root bending moment coefficient

croot Root chord

Cfx Force coefficient in the x direction

Cfy Force coefficient in the y direction

Cfz Force coefficient in the z direction

CLα Derivative of CL with respect to α
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Cmx Moment coefficient in the x direction

Cmy Moment coefficient in the y direction

Cmz Moment coefficient in the z direction

CmCG Pitch moment coefficient about the CG

CmNP Pitch moment coefficient about the NP

e Span efficiency factor

g Gravitational acceleration

hCG Normalized streamwise position of the CG

hNP Normalized streamwise position of the NP

I Second moment of area of beam/wing

Iy Pitch moment of inertia

Kn Static margin

L Generic length scale

M Bending moment

Mi Pitch moment derivative with respect to parameter i

n Vertical acceleration as a multiple of g

PIzz Moment-of-inertia modifier

q Dynamic pressure

Sref Reference area

t/c Thickness-to-chord ratio

u Forward aircraft velocity

V Velocity

w Vertical aircraft velocity

xbend Bending reference point

xCG Location of the CG
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xref CFD moment reference location

y Height of beam/wing

Zi Vertical force derivative with respect to parameter i

ATC Analytical target cascading

BLISS Bi-level integrated system synthesis

CAP Control anticipation parameter

CFD Computational fluid dynamics

CG Center of gravity

CO Collaborative optimization

CSSO Concurrent subspace optimization

FFD Free form deformation

IDF Individual discipline feasible

M Mach number

MAC Mean aerodynamic chord

MDF Multidisciplinary feasible

MDO Multidisciplinary design optimization

NACA National advisory committee for aeronautics

NP Neutral point

OML Outer mold line

SAND Simultaneous analysis and design

XDSM Extended design structure matrix
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I. Introduction
The design of flying-wing aircraft is a complex, coupled problem. In addition to the strong

aerostructural coupling seen in typical aircraft design, there is a strong coupling between the aero-
dynamic efficiency of the outer mold line (OML) and the trim and stability of the aircraft. This
strong coupling requires a delicate balance between optimizing the aircraft for aerodynamic perfor-
mance and maintaining the necessary stability characteristics [1]. Thus, multidisciplinary design
optimization (MDO) is an invaluable tool in flying-wing design. While stability characteristics
have been considered in aircraft MDO using lower fidelity tools [2, 3, 4], as efficiency standards
are increased, more accurate, higher fidelity analyses will be required in the design process to
make the most of new configurations. Further, while high-fidelity aerodynamic optimization has
matured significantly over the last twenty years [5, 6, 7, 8], and aerostructural optimization has
made great strides over the last ten years [9, 10, 11], the ability to consider stability character-
istics using high-fidelity aerodynamic information has not been incorporated. In this work, we
examine a series of increasingly complex optimization problems to study the effects that various
structural and stability constraints have on the optimal design. In particular, we examine the trade-
offs between optimal aerodynamic performance and the limits imposed by structural and stability
constraints. The consideration of stability is enabled by the recently developed time-spectral sta-
bility derivative method [12], which efficiently computes stability derivatives and their sensitivities
using computational fluid dynamics (CFD).

The main body of this study is arranged in five sections. Section II provides a brief overview of
the tools and methods used and gives references to other work with more details on each method
or tool. Section III then provides a review of MDO methods with particular emphasis on the
techniques used in this work. Section IV introduces the design problem and discusses the vari-
ous optimization formulations that are used in the study. Finally, Section V presents the results,
examining the qualitative and quantitative trends in the solutions.

II. Methodology
The methodologies used to conduct this study are driven by two main factors: the desire to

consider transonic aircraft, and the desire to consider stability constraints. The first consideration
necessitates, at a minimum, the solution of the Euler equations using CFD. The second requires
the computation of the stability characteristics of the aircraft along with their sensitivities with
respect to the design variables of interest. In this work, we model the aerodynamics with the
time-spectral Euler equations and use an adjoint method to generate the necessary gradients for the
optimizations. The use of the time-spectral equations allows for the computation of the stability
derivatives necessary for the various stability-constraint formulations used. Details on the time-
spectral equations and the associated adjoint can be found in Mader and Martins [13].
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In addition to the flow solver, which is the core component of this work, a number of other
tools are necessary. These include tools for optimization, geometry handling, and mesh handling.
We also need a variety of simple auxiliary analyses to compute the constraints. These components
are described below.

A. Optimization Algorithm

The optimization tool used in this work is pyOpt [14], a Python-based optimization framework
that allows the user to access, through a common interface, a variety of numerical optimization
packages. The cost of each CFD solution is relatively high and there are hundreds of design
variables. To make this optimization problem tractable, we use a gradient-based optimizer in
conjunction with an adjoint method for computing the gradients [13]. pyOpt provides interfaces
to a variety of gradient-based optimizers, both open source and licensed. We have chosen to use
the pyOpt interface to SNOPT [15], an SQP-based optimizer, because SNOPT is proficient at
handling large nonlinear optimization problems.

B. Geometry Modeling

The geometry model has a series of layers. The top layer is a conceptual design description based
on simple planform variables. This level of the geometry is handled by pyACDT [16], a Python-
based, object-oriented aircraft design tool. This tool models the planform of the aircraft and pro-
vides information for the conceptual-level mass and inertia computations used in the computation
of the stability constraints.

The high-fidelity geometry representation is modeled by pyPSG [17]. This tool is used to
create a watertight surface representation of the aircraft, a set of spline volumes enveloping the
aircraft, and a set of reference axes inside the aircraft. The set of volumes enveloping the aircraft
is used in conjunction with a free form deformation (FFD) technique [17] to handle the detailed
geometry manipulations during the optimization. The surface points on the CFD mesh are embed-
ded parametrically in these spline volumes, such that when the volumes are moved or deformed,
the CFD surface mesh is modified as well. The reference axes are used to tie together the control
points of the FFD volumes enveloping the aircraft. By tying the control points to a reference axis,
we are able to create the effect of physical design variables such as sweep, twist, taper, area, span,
and chord, which are more meaningful to a designer than the location of arbitrary control points.
The geometry is structured such that the planform changes specified in the pyACDT geometry
layer are transferred to the CFD surface mesh through these reference axes.

C. Mesh Deformation

Once the CFD surface mesh has been deformed, that deformation needs to be propagated to the
CFD volume mesh. This is handled using an efficient mesh deformation technique developed
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by Kenway et al. [17]. The CFD mesh is represented by a coarse finite-element mesh, which
is deformed using the perturbations of the coarse mesh surface nodes as input values. The finite-
element equations are solved, and the large surface deformations are propagated to the remainder of
the volume mesh. Then, an algebraic mesh deformation scheme, based on trans-finite interpolation,
is used to propagate the surface deformations to the blocks immediately adjacent to the surface.
This provides a fully updated volume mesh to the CFD solver.

D. Geometry Constraints

To make the results more realistic, we include two geometry constraints in the optimizations. The
first is a set of thickness constraints, included to prevent the optimizer from making the wing unre-
alistically thin. These constraints are implemented by computing thicknesses at various locations
in the wing and constraining those values to be no smaller than the initial values; the locations are
defined by the user. We constrained the thickness to maintain the thickness of the NACA 0012
profile at the 1%, 50%, and 99% chords at ten evenly spaced stations along the wing.

The second geometry constraint is a constraint on the leading- and trailing-edge control points
of the FFD volume. If these points are allowed to move freely, they can reproduce the same degrees
of freedom as twist variables, producing an ill-posed optimization problem. To prevent this, we
constrain the control points at each of the leading and trailing edges to move in equal and opposite
directions so that the midpoint of the FFD does not move with the shape variable perturbations.

E. Center of Gravity Calculation

We implement a relatively simple wing center of gravity (CG) calculation. The method is derived
from the work of Chai et al. [18], where the authors state that the wing CG for a normal transport
wing is located between the fore and aft spars along the wing mean aerodynamic chord (MAC).
Since flying wings are the focus of this study, we assume that this estimate of the wing CG is a
reasonable estimate of the CG for the entire aircraft. Thus, we allow the CG to vary as a design
variable over a range of one mean aerodynamic chord. As shown in Fig. 1, this range runs from
the rear spar forward, where the rear spar is assumed to be at 75% of the MAC chord location.

F. Moment of Inertia Calculations

The calculations for the moments of inertia are based on first principles. We discretize the surface
of the wing into a mesh of surface cells, each of which is assigned a thickness. The area, thickness,
and density of each of these cells allows the wing to be represented as a mesh of lumped masses
as shown in Fig. 2. We then use these masses to compute the moment of inertia of the wing skin.
Because the first-principles method approximates only the moment of inertia of the wing skin,
we add an additional multiplier to the computation to account for the remaining mass distribution
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Mean aerodynamic chord

Rear spar

Forward spar

Wing tip

Wing root

CG range: % of distance between spars

∆x spar

x

z

Figure 1. Diagram of CG calculation

in the aircraft. This parameter is given to the optimizer as a variable to allow it to satisfy the
constraints in the dynamic-stability constrained optimization.

G. Root Bending Moment Constraint

The root bending moment constraint is included to take into account the structural implications
of the varying wing shapes. There are well known trade-offs between aerodynamic and structural
performance for wings, the most prominent of which has to do with the effects of span. Increasing
the span reduces the induced drag. However, for a given lift distribution and total lift, a span
extension also increases the bending moment at the root of the wing. This in turn requires a
heavier structure to support the aerodynamic load. A similar effect is caused by wing sweep. For
shearing sweep—where individual sections of the wing are translated in the flow-wise direction to
sweep the wing—the effective structural length of the wing increases as the wing is swept. This
can be counteracted by reducing the span of the wing or washing out the wing tip to increase the
portion of the lift generated on the inner portion of the wing. Both of these modifications introduce
trade-offs between induced drag and wave drag at transonic Mach numbers. Therefore, if span
and sweep are used as design variables, it is necessary to account for these trade-offs between
aerodynamic performance and structural weight. We use the root bending moment as a proxy for
the structural performance of the wing. The assumption implicit in this approach is that two wings
with the same root bending moment require the same amount of material to support the load on
the wing and thus have the same weight. This is a relatively simplistic assumption, but it serves as
a useful metric for including structural considerations in the optimization.

To compute the bending moment coefficient, we integrate the pressure over the aircraft to get
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Figure 2. Discrete surface mesh with lumped masses at the cell centroids

the force and moment coefficients about a reference point, xref, which in this case is the CG, xCG.
This computation yields the values of Cfx , Cfy , Cfz , Cmx , Cmy , and Cmz , which are the force and
moment coefficients in the three principal Cartesian axes. We then specify a bending reference
point, xbend, at the root of the wing. This is the point about which the net bending moment is
calculated. We calculate the bending moment as follows:

Cbendx = Cmx + Cfy
xbendz − xrefz

c̄ref
− Cfz

xbendy − xrefy

c̄ref

Cbendz = Cmz − Cfy
xbendx − xrefx

c̄ref
+ Cfx

xbendy − xrefy

c̄ref
(1)

Cb =
√
C2

bendx + C2
bendz

where c̄ref is the reference chord length, Cb is the total root bending moment coefficient, and Cbendx

and Cbendz are the Cartesian components of the root bending moment about the bending reference
point at the wing root.

Figure 3 illustrates the various components of this calculation. Note that since the torsional
component of the wing moment is nonzero, the effective bending moment is not necessarily aligned
with the wing. Also note that as the wing is swept, this torsional component increases, causing the
combined effective bending moment to sweep with the wing. Therefore, we assume that the wing
can be supported normal to the effective total bending moment, regardless of the wing sweep and
pressure distribution. Thus, only the total magnitude of the bending coefficient, Cb, is considered.
Note that the reference value ofCb used to constrain the wing has a significant effect on the optimal
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Assumed support orientation

Cbendz

Cbendx

Figure 3. Bending moment calculation

design. We use the value from the elliptical optimum—computed at M = 0.5—as the reference
value. We then scale this value with the root cross-section to ensure that as the optimizer increases
the aspect ratio of the wing, the allowable bending moment is reduced to account for the reduced
second moment of the area at the wing root. The reasoning behind this scaling is based on the
definition of bending stress,

σ =
My

I
. (2)

Rearranging to get an expression for the moment and performing a dimensional analysis yields

M ∝ σL4

L
= σL3. (3)

Note that because we are assuming a constant t/c ratio, both the thickness and chord dimensions
scale with L. Therefore, if we express the moment in terms of coefficients, with A constrained to
be constant in the optimizations, we get:

Cbend ∝
σL2

qA
. (4)

Thus, for constant qA, the allowable bending moment must be scaled withL2 to enforce a constant
allowable bending stress at the wing root. Note that in this specific case L is the ratio of the
optimized root chord and the initial root chord of 1 m.

H. Stability Derivatives

The stability constraints used in this work are based on linear flight dynamic theory. This the-
ory uses aircraft stability derivatives to represent aerodynamic characteristics of the aircraft in a
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state-space model. We calculate the aircraft stability derivatives using the time-spectral stability
derivative formulation developed by Mader and Martins [12]. This approach is similar to the meth-
ods presented by Murman [19] and Da Ronch et al. [20] and is motivated by the complex number
α̇ derivative methodology outlined by Etkin [21]. It is essentially a forced oscillation technique.
A time-spectral CFD solver is used to generate the solution for a prescribed oscillatory motion.
This periodic solution is then used, with a linear regression technique, to generate estimates for
the functionals of interest: the force or moment coefficient, the derivative of the coefficient with
respect to the oscillating parameter, and the derivative of the coefficient with respect to the time
derivative of the oscillating parameter. We are interested in the derivatives of the lift, drag, and
pitch moment coefficients (CL, CD, Cm) with respect to α, q and their time derivatives, α̇, q̇. The
simple algebraic nature of this method allows it to be used in conjunction with an adjoint method
to efficiently compute the necessary gradients.

I. Stability Constraints

One of the main contributions of this work is the development of a methodology that allows for
the inclusion of CFD-based stability information in aerodynamic shape optimization. This section
outlines how we use the stability derivatives and the resulting linear flight dynamics model to for-
mulate stability constraints for the optimization problem. Two stability constraints are considered:
one based on static stability and one based on dynamic stability. A discussion of other stability
criteria for a flying-wing configuration can be found in Agenbag [22].

1. Static Longitudinal Stability

To develop a static-stability constraint, we turn to the definition of the static margin. First, consider
the definition of the moment coefficient,

CmCG = CmNP + (hCG − hNP)CL, (5)

where hCG and hNP are the streamwise locations of the CG and the neutral point respectively,
normalized by the MAC. Differentiating with respect to α yields

∂CmCG

∂α
= (hCG − hNP)

∂CL
∂α

(6)

or, using stability derivative notation,

Cmα = (hCG − hNP)CLα . (7)
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Defining the static margin, Kn, as the distance between the CG and the neutral point normalized
by the MAC,

Kn = hNP − hCG, (8)

and substituting this relationship back into Eq. (7) results in

Cmα = −KnCLα . (9)

This can be rearranged as

Kn = −Cmα
CLα

. (10)

Thus, by specifying a static margin, we can determine a meaningful value for Cmα .
Up to this point, the discussion has been completely general and applicable to any aircraft. By

examining Eqs. (5) and (7), we can gain insight into how the various stability conditions may be
satisfied for the particular case of a flying wing. Equation (5) shows that the moment coefficient
is dependent on the moment about the neutral point—which does not change with the angle of
attack—and the location of the neutral point with respect to the CG. Thus, the optimizer can
trim the aircraft by altering three parameters: the moment, the neutral point position, and the
CG position. The moment coefficient about the neutral point is altered either by changing the
airfoil shape—adding reflex to the airfoil—or by twisting down the wing tips on a swept wing.
The neutral point of the aircraft is altered primarily by changing the sweep of the wing. Finally,
the CG location of the aircraft can be altered by changing the sweep of the wing or by shifting the
payload location. However, Eq. (7) shows that the neutral point and CG locations both impact Cmα
and hence the static margin. Thus, the optimizer must simultaneously adjust the wing sweep and
shape as well as the payload location to trim the aircraft and create an acceptable static margin.
These elements are discussed along with the results in Section V.

2. Short-Period Approximation

As a precursor to the discussion on the dynamic-stability constraint, we introduce the short-period
approximation to the standard linear flight dynamic model. This approximation assumes that the
variation in forward velocity (u) is negligible and that the short-period characteristics of the aircraft
can be modeled by changes in the pitch rate (q) and the angle of attack (α) alone. In this case, the
vertical velocity (w) is used in place of the angle of attack, where

tanα =
w

u
. (11)

To begin, we define a simplified version of the flight dynamic model based on the degrees of
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freedom described above, the details of which can be found in McRuer et al. [23]. This gives:[
∆ẇ

∆q̇

][
−Zw
m

−u0
−MẇZw
Iym

− Mw

Iy

−Mẇu0
Iy
− Mq

Iy

][
∆w

∆q

]
+

[
Zcontrol

Mcontrol

] [
∆control

]
. (12)

Ultimately, as we show later in this section, the handling-quality analyses we are interested in
require the frequency and damping ratio of the aircraft. These values can be determined from the
characteristic equation of the 2×2 system in Eq. (12). As shown in McRuer et al. [23] the relevant
characteristic equation is

s2 +
(
M̂ẇu0 + M̂q + Ẑw

)
+ ẐwM̂q − M̂wuo. (13)

Comparing this to the typical second-order characteristic equation,

s2 + 2ζωs+ q2, (14)

yields

ω =

√
ẐwM̂q − M̂wuo (15)

and
2ζω =

(
M̂ẇu0 + M̂q + Ẑw

)
(16)

or

ζ =
M̂ẇu0 + M̂q + Ẑw

2ω
. (17)

We can now use the frequency and damping ratio of the short-period mode to evaluate the
control anticipation parameter (CAP), which is used as the dynamic-stability constraint in this
study.

3. Control Anticipation Parameter

The CAP technique quantifies the handling qualities of an aircraft based on its short-period char-
acteristics. The fundamental idea behind this approach is that a pilot’s ability to fly an aircraft
precisely along a given flight path is related to their ability to anticipate the response of the aircraft.
Bihrle [24] relates the pilot’s ability to anticipate response to the ratio of the aircraft’s instantaneous
pitch acceleration and its steady-state normal acceleration:

CAP =
q̇

∆n
. (18)
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However, these quantities are not necessarily simple to evaluate. Therefore, with a little rearrang-
ing, Bihrle [24] provides the following expression:

CAP =
ω2
n

nα
(19)

where nα is the change in lift force (in gravities) with angle of attack:

nα =
1
2
ρV 2SrefCLα

g
. (20)

We can now use the stability derivative methods and short-period approximation described earlier
to compute the necessary values.

The United States Military has specified acceptable limits for the CAP and damping ratio for
various combinations of aircraft and flight conditions [25]. For an aircraft at cruise (Category B),
these limits are shown in Table 1.

Table 1. MIL-F-8785c handling-quality limits

Damping Ratio Limits CAP Limits
Lower Bound Upper Bound Lower Bound Upper Bound

Level 1 0.30 2.0 0.085 3.6
Level 2 0.20 2.0 0.038 10.0
Level 3 0.15 - 0.038 -

III. MDO Solution Architecture
An MDO architecture is the method used to handle the coupling between disciplines in a mul-

tidisciplinary optimization problem [26]. Over the years, numerous architectures have been de-
veloped to handle this coupling including monolithic architectures such as MDF [27], IDF [27],
and SAND [28] and decompositional architectures such as CO [29], CSSO [30], BLISS [31], and
ATC [32].

In this work we use a hybrid of the MDF and IDF approaches. The analyses used herein can
be decomposed into four disciplines: geometry, aerodynamics, structures, and flight dynamics.
The task of coupling the disciplines is simplified greatly by the fact that, for the analyses used in
this work, there is no feedback between disciplines. Thus, the tightly coupled MDF architecture
amounts to a sequenced evaluation of the disciplines. However, when adjoint methods are used,
coupling the derivatives of the various disciplines is not straightforward. This motivates the use of
the IDF architecture, which requires only the individual discipline sensitivity analyses and greatly
simplifies the computation of accurate gradients.
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Despite this apparent advantage, there are some disciplines for which tight coupling is a better
choice. The coupling between the geometry and the aerodynamics, for example, requires a large
number of coupling variables: there are typically thousands of mesh points on the surface. In
an IDF architecture, this would add thousands of variables and constraints to the problem, which
would unnecessarily increase the complexity of the optimization. By tightly coupling the geometry
surface to the aerodynamics, we can remove these coupling variables.

The other area where tight coupling makes sense is between the aerodynamics and the struc-
tures. The bending coefficient calculation is based on six force and moment coefficients, of which
only one, Cmz , is already present in the optimization. Separating these two disciplines would re-
quire the solution of five additional adjoint problems per optimization iteration. By tightly coupling
the aerodynamics and structures, we can reduce this to a single additional adjoint problem for the
bending coefficient. A detailed overview of each optimization problem is presented in the follow-
ing section. Note that all of the optimization diagrams that follow are presented in the extended
design structure matrix (XDSM) format of Lambe and Martins [33].

IV. Optimization Study Definition
The baseline wing used for the current study is a straight, rectangular wing with a NACA 0012

airfoil profile. The wing has a half span of three meters and a chord of one meter, giving the wing
an aspect ratio of six. The wing has a taper ratio of one and a leading-edge sweep angle of zero
degrees. The details of the geometry are summarized in Table 2. This test case is based on the
induced-drag validation case proposed by Hicken and Zingg [8], who demonstrate that one can
use this wing, with sections twisted about the trailing edge, to reproduce the elliptical distribution
outlined by lifting-line theory. In particular, they highlight the use of a straight trailing edge,
with spanwise sections twisted about the edge, to minimize the impact of nonplanar effects in the
wake. We use this configuration as the initial geometry in this set of optimizations. The twist-only
optimization outlined in Section C reproduces the elliptical result and can be used as a point of
comparison for the remaining optimizations. This provides a means of quantifying the effect of the
various stability constraints on the optimal solution. All of the optimization results are computed
on a 1,105,920-cell mesh. The mesh has a C-O topology and is split into 32 blocks, with the
surface mesh having 97 points spanwise and 81 points from the leading edge to the trailing edge
on each of the top and bottom surfaces of the wing. The farfield boundary is approximately 15
chords from the wing and the off-wall spacing of the mesh is 1 × 10−3 m at the leading edge and
5× 10−4 m at the trailing edge with a hyperbolic spacing in between.

A. Mesh Convergence

To demonstrate the accuracy of the mesh used, we have performed a mesh convergence study, the
results of which are shown in Table 3. As the table shows, the mesh is sufficiently refined, with
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Parameter Value
Half wing area (m) 3.0
Half wing span (m) 3.0
Chord (m) 1.0
Leading edge sweep (deg.) 0.0
Taper ratio 1.0
Wing tip washout (deg.) 0.0
Wing dihedral 0.0

Table 2. Baseline wing: Geometry specifications

errors of less than 1% for CL, CD, and CLα and an error of 1.1% for Cmα .

Case CL CD CLα Cmα

138,000 cell 0.262161 0.004065 5.00924 1.19912
1,100,000 cell 0.261608 0.003787 4.99286 1.18342
8,800,000 cell 0.261322 0.003769 4.98115 1.17374
Exact (Richardson extrapolation) 0.261228 0.003763 4.97724 1.17051
1,100,000 cell % error 0.146 0.621 0.314 1.10

Table 3. Grid refinement results

B. Design Variables

Two sets of design variables are used: one involving only planform variables and one involving
planform variables as well as 280 surface-shape design variables. These surface-shape design
variables—the control points of the FFD volume—modify the surface shape of the wing and affect
both its streamwise and spanwise profile. Table 4 shows the primary design variables that alter the
shape and planform of the wing as well as the variables that affect the flow condition of the test
case, while Table 5 shows the compatibility design variables introduced as a result of the hybrid
IDF-MDF architecture used.

Design variable Symbol Lower bound Upper bound
Angle of attack (deg.) α −15 15
Section twist at 9 sections (deg.) θi −10 10
Area (m) A1 2.9 3.2
Span (m) b 2.0 3.2
Sweep (deg.) λ 0 42.5
Center of gravity variable CG% −1 1
Izz Modifier PIzz 0.5 10,20,30
FFD control points: y-offset (m) ∆FFD −0.05 0.05

Table 4. Primary design variables and their bounds

Note that not all design variables are used for all cases. A number of the variables listed are
present as a function of the IDF architecture mentioned previously and are therefore present only
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Design variable Symbol Lower bound Upper bound
Moment reference location (m) xtCG −20 20
Rotation point (m) xtCG −20 20
Chord (m) ctroot 0.5 1.4
Target MAC (m) MACt −5 5
Target drag coefficient Ct

D −2 2
Target lift curve slope Ct

Lα
0 20

Target moment curve slope Ct
mα

−20 0
Target α̇ derivative Ct

mα̇
−20 20

Target pitch derivative Ct
mq

−20 0

Table 5. Compatibility design variables and their bounds

when the associated disciplines are included in the problem statement.

C. Reference Problems

1. Baseline Problem

As a first step, we formulate a problem to find the angle of attack, α, and CG location, xCG,
that yield a trimmed aircraft at the target value of CL for each Mach number. This problem is
formulated as:

minimize CD

w.r.t. α, xCG (21)

subject to CLref − CL ≤ 0

Cm = 0

Note that the lift-coefficient constraint is formulated as an inequality constraint rather than an
equality constraint. Because the induced drag is proportional to C2

L, reducing CL also reduces the
drag. Therefore, the optimizer will drive CL as close to zero as possible, making an upper limit on
CL, i.e., an equality constraint, unnecessary.

2. Twist Optimization

As a second benchmark, we perform a twist-only optimization for the subsonic case (Mach = 0.5).
This problem is designed to reproduce the elliptical result from lifting-line theory and is formulated
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as:

minimize CD

w.r.t. α, θi,CG%, x
t
CG (22)

subject to CLref − CL ≤ 0

Cm = 0

xtCG − xCG = 0

In this optimization, twist variables θi are added to control the lift distribution, and the full CG
calculation is added to control the location of the CG. Note that the aircraft is trimmed during the
optimization by forcing the pitch moment coefficient about the CG, Cm, to be zero. However,
since the location of the CG is allowed to move—through the variable CG%—the aircraft can be
trimmed without changing the aerodynamic shape.

3. Bending Moment Constrained Optimizations

As a third and final benchmark, we consider an aerodynamic optimization problem with a structural
constraint. In this problem, span (b), sweep (λ), and area (A1) are added as additional design
variables and a root bending moment constraint,Cb, is added to keep these variables within sensible
bounds. The value of the bending coefficient at the root is that of the elliptical optimal solution at
Mach = 0.5. Additional compatibility constraints for the root chord, croot, and the calculated area,
A2, are also added to account for the new flexibility. This problem is formulated as:

minimize CD

w.r.t. α, θi, A1, b, λ,CG%,∆FFD, c
t
root, x

t
CG,MACt (23)

subject to CLref − CL ≤ 0

Cm = 0

Cb − Cbref = 0

A2 − Aref = 0

xCG − xtCG = 0

MAC−MACt = 0

croot − ctroot = 0

Figure 4 graphically depicts the data and process flow for the bending constrained problem. Note
that the twist optimization and the baseline problem are subsets of this optimization and can be
visualized by removing the necessary variables from Fig. 4.
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Figure 4. XDSM for the root bending moment constrained problem

D. Static-Stability Constrained Problems

The first stability constrained formulation is based on the static margin. By introducing this con-
straint we can ensure that the optimal design has the desired static margin. This formulation is as
follows:

minimize CD

w.r.t. α, θi, A1, b, λ,CG%,∆FFD

ctroot, x
t
CG,MACt, Ct

Lα , C
t
mα (24)

subject to CLref − CL ≤ 0

Cm = 0

Knref −Kn ≤ 0

Cb − Cbref = 0

A2 − Aref = 0

xCG − xtCG = 0

MAC−MACt = 0

croot − ctroot = 0

CLα − Ct
Lα = 0

Cmα − Ct
mα = 0

Note that Kn is the static margin and that additional constraints have been added for Ct
Lα

and Ct
mα

corresponding to the additional IDF target variables that have been added for the computation of
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the static-margin constraint.

E. Dynamic-Stability Constrained Problems

The dynamic-stability formulation used in this work is based on the CAP parameter described in
Section II. This formulation builds on the previously described static-margin formulation and can
be written as:

minimize CD

w.r.t. x = α, θi, A1, b, λ,CG%,∆FFD, c
t
root, x

t
CG,MACt,

Ct
D, C

t
Lα , C

t
mα , C

t
mα̇
, Ct

mq (25)

subject to CLref − CL ≤ 0

Cm = 0

Knref −Kn ≤ 0

0.085 ≤ CAP ≤ 3.6

0.3 ≤ ζsp ≤ 2.0

A2 − Aref = 0

xCG − xtCG = 0

MAC−MACt = 0

croot − ctroot = 0

CD − Ct
D = 0

CLα − Ct
Lα = 0

Cmα − Ct
mα = 0

Cmα̇ − Ct
mα̇

= 0

Cmq − Ct
mq = 0

We have added two primary constraints to the static-margin optimization, a CAP constraint
and a ζsp constraint. These constraints define the appropriate limits for the dynamic-stability pa-
rameters. The range of allowable CAP values constrains the allowable short-period frequency, and
the damping ratio, ζsp, is constrained directly. We have also added IDF constraints for Ct

D, Ct
mα̇

,
and Ct

mq to reflect the addition of these variables for the computation of the dynamic-stability pa-
rameters. Figure 5 depicts the solution process for this formulation. The static-margin case is a
subset of this case and can be visualized by removing the dynamic-stability constraints and their
associated variables from the figure.
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Figure 5. XDSM for the CAP constrained problem

V. Results
This section summarizes our results and findings. We present the results of the various formu-

lations in order, identifying the effect of each constraint on the optimal solution. The optimizations
are conducted at M = 0.5, 0.7, and 0.85 respectively to compare the effects of the subsonic and tran-
sonic flow regimes on the solution. A short summary of the most significant parameters is shown
in Tables 6 through 10. The table results are sorted by Mach number and design variable set and
will be referred to throughout the following discussion. All optimizations have been converged to
CL = 0.30000 and Cm = 0.000001.

A. Reference Problems

1. Baseline cases

The solutions for M = 0.5, 0.7, and 0.85 are shown in Figs. 6 through 8. The solutions at the
three different Mach numbers each have different characteristics. The solution at M = 0.5 is fully
subsonic, with a correspondingly peaky Cp distribution on the airfoil. Both the neutral point of the
wing and the required center of gravity to trim are slightly forward of the wing quarter chord. This
generates a Cmα of 0.002 with a corresponding static margin of -0.04%, so the baseline wing is
mildly unstable at M = 0.5. The drag coefficient for this case is 49.5 counts. The M = 0.7 case is
just starting into the transonic regime and the inner half of the wing exhibits a weak shockwave near
the leading edge. The location of the center of gravity to trim the aircraft is slightly further forward
than in the M = 0.5 case but is still near the quarter chord. The neutral point is also shifted slightly
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forward. This generates a Cmα of 0.087 with a corresponding static margin of -1.49%. Thus, the
M = 0.7 baseline case is slightly more unstable than the fully subsonic case. As expected, the drag
coefficient increases in this case, to 55.7 counts. The M = 0.85 case is fully in the transonic regime
and exhibits a strong shockwave on the aft half of the airfoil. As a result, the neutral point and the
center of gravity location to trim are significantly farther back, near the half chord. Because both
the CG and the neutral point are shifted, the instability is actually smaller than for the M = 0.7

case, giving a Cmα of 0.055 and a static margin of -0.73%. However, the drag for this case is the
highest of the three at 399 counts. Note that the free stream parameters (pressure and density) have
been scaled such that the dynamic pressure q is the same for all cases.

Figure 6. Baseline problem: M = 0.5, e = 0.964

2. Twist-Only Case

The twist-only formulation yields the solution shown in Fig. 9. The optimal lift distribution
achieved with this formulation closely approximates that of the elliptical solution. The exception
to this is the area near the tip; this is because this location consists of complex three-dimensional
flows that violate the assumptions used to derive the elliptical result. Further, the predicted drag
of the twist optimized wing is 48.9 counts, within 2.5% of the theoretical value of 47.7 counts for
this wing. This leads to a span efficiency of 0.977.
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Figure 7. Baseline problem: M = 0.7

Figure 8. Baseline problem: M = 0.85
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Figure 9. Twist optimization: M = 0.5, e = 0.977

3. Bending Moment Constrained Cases

The root bending moment constrained optimizations have the same design variable flexibility as the
stability constrained cases described in Sections B and C. Therefore, they should be able to produce
shapes with lower drag than those for cases with stability constraints. These optimizations provide
the best indication of how much performance is sacrificed to ensure that the stability constraints
are satisfied. The results for the planform-only optimizations are shown in Figs. 10 and 11, and
the results including shape variables are shown in Figs. 12 and 13. Note that there is no shape
optimization result for the M = 0.5 case, because the airfoil shape has little impact on the drag of
a subsonic wing in inviscid flow.

Comparing the elliptical solution shown in Fig. 9 to the bending constrained case at M = 0.5,
shown in Fig. 10, we observe some subtle yet important differences. In the bending constrained
case, the optimizer takes advantage of the span variable to reduce the induced drag. The added
flexibility of the span variable allows the optimizer to reduce the drag an additional 1.4% from
the twist-only optimum, from 48.9 to 48.2 counts. The extended span can be seen in Fig. 10,
which compares the optimized wing to the original wing, shown as a black outline. Note that this
increase in span is limited by the allowable root bending moment and comes with a corresponding
movement away from an elliptical lift distribution.

In the M = 0.7 case, shown in Fig. 11, the optimizer adds a significant amount of sweep to
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Figure 10. Bending moment constrained optimization: Planform variables only, M = 0.5, e = 0.964

Figure 11. Bending moment constrained optimization: Planform variables only, M = 0.7
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Figure 12. Bending moment constrained optimization: Planform and shape variables, M = 0.7

Figure 13. Bending moment constrained optimization: Planform and shape variables, M = 0.85
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the wing. This causes a trade-off between induced drag and wave drag. The added sweep reduces
the effective Mach number normal to the wing leading edge, thereby reducing the strength of the
leading-edge shock. With sufficient sweep, the Mach number normal to the leading edge of the
wing is reduced below the critical Mach number, eliminating the shock wave and the corresponding
wave drag. However, adding sweep increases the effective root bending moment. Thus, as sweep
is added, the span must be reduced to meet the bending constraint. This is evident in the difference
in span between the M = 0.5 case shown in Fig. 10 and the M = 0.7 case shown in Fig. 11. The
net result is that the planform-only M = 0.7 case has a drag coefficient of 52.1 counts, lower than
the baseline M = 0.7 case at 55.7 counts but higher than the M = 0.5 bending constrained case at
48.2 counts. Note that because of the addition of sweep and twist, this case now has a positive
static margin of 0.75%.

When shape variables are added, the need for sweep to reduce wave drag is eliminated and, as
shown in Fig. 12, the optimizer does not sweep the wing, allowing for a larger span. Further, there
is now a significant change in the Cp distribution on the wing. The individual sections now show
a rooftop pressure profile at the leading edge, allowing the maximum section Cp to stay below
the critical Cp for the wing, thereby eliminating the wave drag on the wing. As a result, the drag
is significantly reduced, to 49.7 counts, within 1.5 counts of the subsonic result. Note that the
planform is now similar to the optimal M = 0.5 planform in Fig. 10. However, it is also important
to note that without any stability constraint, the optimizer has produced a result that has a negative
static margin of the order of 10%.

At M = 0.85, the optimizer produces the features typical of supercritical transonic airfoils
for the individual airfoil sections. The sections show a rooftop Cp profile and are highly aft-
loaded. However, even with these transonic airfoils, the wave drag is not entirely eliminated, so
the optimizer introduces some sweep in the design to mitigate this effect. This added sweep causes
a corresponding reduction in the span to maintain the required bending moment. This produces a
wing with a drag coefficient of 57.9 counts, significantly better than the 399 counts of the initial
wing but not as good as the 49.7 counts of the M = 0.7 wing. Note that because of the aft-loaded
nature of these airfoils, the neutral point of the wing is significantly forward of the required CG
location for trimmed flight, leading to a highly unstable wing with a static margin of -23.5%.

B. Static-Stability Constrained Problems

The planform-only, static-margin constrained optimization at M = 0.5, shown in Fig. 14, shows
an increase in sweep relative to the baseline case. The optimizer adds sweep and wash-out to
trim the aircraft for a more forward CG position. In this case, the magnitude of the changes is
sufficient to generate the necessary separation between the neutral point and the CG for a 5% static
margin. Note that because of the static-margin constraint, the drag coefficient has now increased
to 51.2 counts, an increase of 6% relative to the bending constrained case. When shape variables
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Figure 14. Kn constrained optimization: Planform variables only, M = 0.5, e = 0.944

are added, this additional sweep is not necessary to stabilize the aircraft. As shown in Fig. 15,
the optimizer is able to use the shape variables to modify the Cp to achieve the same effect. In
this case, the Cp distribution, especially near midspan, has developed negative lift near the trailing
edge, which alters the CmNP of the wing. This allows the optimizer to shift the CG forward—
stabilizing the wing—using CG% while still maintaining a trimmed state. Because the wing is
in a stable trimmed state without sweep, there is no increase in the bending moment associated
with sweep. Therefore, the optimizer is again able to increase the span from the baseline value of
three meters. This produces a drag coefficient of 48.0 counts, essentially equivalent to that of the
bending constrained case.

In the planform-only optimization at M = 0.7, the optimizer again adds sweep and twist to
create separation between the neutral point of the wing and the CG location of the aircraft while
maintaining a trimmed state. As can be seen in Fig. 16 there is now visible separation between the
neutral point and the CG location. Once again, the sweep added to satisfy the static margin requires
a span reduction and the resulting drag coefficient is 53.2 counts, higher than that for the bending
constrained case. Again, the addition of shape variables allows the optimizer to unsweep the wing
without sacrificing performance. As shown in Fig. 17, the optimizer uses the shape variables to
alter the Cp distribution of the wing to trim the wing in a stable state. In this case, in addition to
adding the negative lift near the trailing edge, the optimizer has flattened the Cp distribution at the
leading edge of the wing, eliminating the pressure peak and thereby reducing the wave drag. Thus,
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Figure 15. Kn constrained optimization: Planform and shape variables, M = 0.5, e = 0.968

Figure 16. Kn constrained optimization: Planform variables only, M = 0.7
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the total drag for the case is 49.4 counts, in line with that for the bending constrained case.

Figure 17. Kn constrained optimization: Planform and shape variables, M = 0.7

The M = 0.85 case, shown in Fig. 18, is physically a more challenging problem for the opti-
mizer. As in the previous bending constrained case, the optimizer attempts to reduce the wave drag
with the airfoil shape. However, it is unable to produce the heavily aft-loaded airfoils that are op-
timal for this case because they lead to an unstable design. As a result, it is forced to compromise
between reducing the drag and satisfying the static-margin constraint. These compromises show
up in different ways at different sections of the wing. At the wing root, the Cp profile is spread
over the entire chord of the section with significant lift generated at both the leading and trailing
edges and relatively little lift mid-chord. The mid-wing section exhibits a rooftop Cp distribution
over the front half of the foil, helping to reduce the wave drag of the wing. However, the addition
of the static-margin constraint prevents the optimizer from extending this trend over the entire foil.
As a result, there is a fairly constant amount of lift generated over the forward two-thirds of the
foil with negative lift at the trailing edge. The optimizer has also added more sweep to the wing
than in the comparable bending constrained case. As discussed earlier, this reduces the effective
Mach number that the wing sees and allows tip washout to contribute to the wing trim.

In addition to this general discussion, there are two specific secondary characteristics that are
worth highlighting. First, the optimizer adds a significant loading to the bottom surface of the
leading edge of the wing at the root. This forward loading helps to reduce the moment of the root
section. Also, the optimizer has developed an interesting inflection in the camber of the mid-wing
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airfoil. At the trailing edge, the airfoil starts to develop the high camber shape typical of transonic
airfoils, but partway to the trailing edge the foil develops reflex to help reduce the moment of the
wing.

Figure 18. Kn constrained optimization: Planform and shape variables, M = 0.85

An interesting feature of this result is that it has produced a solution with only 56.4 counts of
drag, lower than the 57.9 counts for the bending constrained case. The latter solution turns out to
be a local optimum. By restarting the bending constrained problem at the static-margin constrained
optimum, we get the optimal solution listed as bending V2 in Table 10, which is essentially the
same as the static-margin constrained optimal solution. Thus, the static-margin constraint prevents
the optimization from falling into the local optimum produced in the initial bending constrained
case, producing the lower drag result.

C. Dynamic-Stability Constrained Problems

The CAP constrained optimizations add dynamic-stability constraints to the problem. This requires
the consideration of extra stability derivatives and the mass moment of inertia of the aircraft. The
optimal solution for the CAP constrained planform-only optimization at M = 0.5 (Fig. 19) is
essentially the same as the static-margin result from Fig. 14: it has 51.3 counts, within 0.1 counts
of the static-margin solution. This is because the moment-of-inertia multiplier is able to raise the
moment of inertia sufficiently to satisfy the CAP and damping constraints. If the moment-of-inertia
multiplier were limited to a smaller value, the optimal solution would likely be more highly swept
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with a larger static margin and a higher drag.

Figure 19. CAP constrained optimization: Planform variables only, M = 0.5, e = 0.942

An interesting result from the addition of the dynamic constraints is that the addition of the
shape variables no longer produces an unswept wing. As shown in Fig. 20, the optimal solution
now has almost 20 degrees of sweep. This results largely from the need to maintain a sufficiently
high moment of inertia to satisfy the damping requirements. As a result, the optimal solution still
has 51.5 counts of drag, essentially the same as for the cases without shape variables. Another
interesting side effect is that the section profiles no longer exhibit any reflex at the trailing edge.
This is because the optimizer is now able to use sweep and tip washout to trim the aircraft without
any additional penalty, so the Cp distribution is not required to add reflex to do so.

As for the previous CAP constrained cases, at M = 0.7 the shape variables are not sufficient
to allow the optimizer to reduce the sweep of the wing to zero. Again the optimal results from
the bending constrained case and the static-stability constrained cases have insufficient damping
to satisfy the dynamic constraints, so even with shape variables, additional sweep is required to
satisfy the frequency and damping constraints. As a result, the CAP constrained case produces
a drag of 50.9 counts, more than a full count higher than that of the bending and static-margin
constrained cases. Note that the added sweep causes the static-margin constraint to be inactive,
although the mid-span section still develops a significant amount of reflex.

At M = 0.85, the CAP constrained result is essentially the same as the static-margin con-
strained result, differing by only 0.2 drag counts. Because the shape variables are not sufficient
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Figure 20. CAP constrained optimization: Planform and shape variables, M = 0.5, e = 0.970

Figure 21. CAP constrained optimization: Planform and shape variables, M = 0.7
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to allow the sweep to be completely eliminated at the higher Mach number, the static-margin case
has enough sweep to ensure dynamic stability given a sufficient moment of inertia. Thus, the op-
timal result exhibits the same combinations of Cp distributions and planform variables as in the
static-margin constrained case.

Figure 22. CAP constrained optimization: Planform and shape variables, M = 0.85

D. Convergence Histories

The convergence histories for the M = 0.7 cases are shown in Fig. 23. This figure shows the
wide range of convergence rates for the various optimization problems. Surprisingly, the bending
constrained case with shape variables takes the fewest iterations. One would expect the simplest
optimization, the bending constrained case with planform-only variables, to converge most rapidly.
However, this turns out not to be the case. On the other hand, as expected, the static-margin and
CAP constrained cases with shape variables take the longest. This seems to indicate a relatively
flat design space around the optimal solution. Note that these cases were converged to a tolerance
of 5× 10−5, while the remainder of the cases were converged to a tolerance of 1× 10−6. Also note
that the CAP constrained optimization with shape variables was started from the static-margin
constrained optimum, so it has been shown starting at iteration 77, the end of the static-margin
constrained optimization.
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Parameter Baseline Elliptic Bending Kn CAP
CD 0.004954 0.004888 0.004817 0.005123 0.005133
Cmα

0.002242 0.013867 0.029788 -0.246456 -0.246417
Kn (%) -0.044805 -0.277744 -0.595908 4.999788 5.000118
e (%) 0.963761 0.976806 0.963537 0.943660 0.941934
CAP 0.000258 -0.015125 -0.037377 0.167942 0.168177
ζsp 8.047202 -0.000000 -0.000000 0.301925 0.301636
ωn (rad/s) 0.065557 -0.000000 -0.000000 1.651115 1.652217
Izz (kg m2) 244.664280 242.153023 228.835160 494.760972 493.932604
α (deg.) 3.434484 4.042761 7.545133 9.065110 8.899279
λ (deg.) 0.000000 0.000000 0.000000 19.280100 19.250614
b (m) 3.000000 3.000000 3.042917 2.981338 2.981104
PIzz 10.000000 10.000000 10.000000 10.000000 10.000000

Table 6. NACA 0012 wing: Planform-only optimization results, 1107 k cells, M = 0.5

Parameter Kn CAP
CD 0.004801 0.005149
Cmα

-0.752988 -0.246065
Kn (%) 15.092049 5.000230
e (%) 0.968178 0.970392
CAP 0.586254 0.164005
ζsp 0.161038 0.299986
ωn (rad/s) 3.142237 1.621730
Izz (kg m2) 403.325544 517.368619
α (deg.) 3.057671 3.051991
λ (deg.) 0.000000 19.888040
b (m) 3.040392 2.932521
PIzz 10.000000 10.000000

Table 7. NACA 0012 wing: Shape optimization results, 1107 k cells, M = 0.5

VI. Conclusions
In this work, we explored the effects of static- and dynamic-stability constraints on the optimal

shape of flying wings. The results showed that stability constraints have a significant impact on the
optimal shape of the wing. In the subsonic regime and the lower end of the transonic regime, airfoil
shape can be used to satisfy the static-stability constraints without significant degradation in perfor-
mance. For these flow regimes, using airfoil shape is preferable to using wing sweep and twist to
satisfy the static-stability requirements. At higher transonic Mach numbers, the degradation in per-
formance is unavoidable, and the addition of sweep is necessary, regardless of the airfoil shape, to
achieve satisfactory results. The same can not be said for the dynamic-stability constrained cases.
The study showed that for the subsonic and low transonic cases, sweep was required, regardless
of the airfoil shape, to raise the damping ratio of the aircraft to acceptable levels. At the higher
speed in the transonic regime, the static-stability constrained results required sufficient sweep to
be feasible for both the static- and dynamic-stability constraints. Thus, the results of this study
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Parameter Baseline Bending Kn CAP
CD 0.005570 0.005207 0.005325 0.005325
Cmα

0.087088 -0.043966 -0.284135 -0.284114
Kn (%) -1.491942 0.745596 4.999817 4.999817
CAP -0.055895 0.020482 0.087320 0.087312
ζsp -0.000000 0.672371 0.310233 0.310233
ωn (rad/s) -0.000000 0.631212 1.272602 1.272483
Izz (kg m2) 417.494607 623.660078 963.347405 963.470201
α (deg.) 2.933511 7.613268 8.590863 8.557310
λ (deg.) 0.000000 14.106302 22.861602 22.864088
b (m) 3.000000 2.980515 2.953919 2.953687
PIzz 16.184566 16.184566 16.184566 16.184566

Table 8. NACA 0012 wing: Planform-only optimization results, 1107 k cells, M = 0.7

Parameter Bending Kn CAP
CD 0.004973 0.004939 0.005090
Cmα

0.539667 -0.298319 -0.302163
Kn (%) -9.112122 4.999844 5.121750
CAP -0.378485 0.129099 0.099087
ζsp -0.000000 0.277583 0.299995
ωn (rad/s) -0.000000 1.609959 1.389344
Izz (kg m2) 380.807451 611.432529 847.763119
α (deg.) 2.987315 3.008049 3.282016
λ (deg.) 0.000000 0.529970 13.921081
b (m) 3.010364 3.029077 2.972135
PIzz 20.000000 20.000000 20.000000

Table 9. NACA 0012 wing: Shape optimization results, 1107 k cells, M = 0.7

underline the importance of considering both static- and dynamic-stability considerations in the
design of flying-wing aircraft.
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Parameter Baseline Bending Bending V2 Kn CAP
CD 0.039898 0.005792 0.005654 0.005640 0.005619
Cmα

0.055392 2.566048 -0.498659 -0.484800 -0.489347
Kn (%) -0.729501 -23.522592 5.303884 4.999816 5.051372
CAP -0.036492 -0.975527 0.065181 0.086524 0.086135
ζsp -0.000000 -0.000000 0.361718 0.308502 0.309052
ωn (rad/s) -0.000000 -0.000000 1.429235 1.644602 1.639253
Izz (kg m2) 316.346371 416.989558 1356.125815 993.139864 1010.020857
α (deg.) 2.169667 3.437140 3.643754 3.643078 3.665365
λ (deg.) 0.000000 7.609797 20.970647 20.849705 21.144092
b (m) 3.000000 2.881879 2.899737 2.901532 2.898588
PIzz 21.988981 21.988981 21.988981 21.988981 21.988981

Table 10. NACA 0012 wing: Shape optimization results, 1107 k cells, M = 0.85
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Figure 23. Optimization convergence history: M = 0.7
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[20] Da Ronch, A., Ghoreyshi, M., Badcock, K., Görtz, S., Widhalm, M., Dwight, R., and Campobasso, M.,
“Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives,” Proceedings
of the 28th AIAA Applied Aerodynamics Conference, Chicago, IL, 2010, AIAA 2010-4699.

[21] Etkin, B., Dynamics of Atmospheric Flight, Dover Publications, Mineola, New York, 2000.

[22] Agenbag, D. S., Longitudinal Handing Characteristics of a Tailless Gull-Wing Aircraft, Master’s the-
sis, University of Pretoria, Pretoria, South Africa, July 2008.

[23] McRuer, D., Ashkenas, I., and Graham, D., Aircraft Dynamics and Automatic Control, Princeton
University Press, Princeton, New Jersey, 1973.

[24] Bihrle, W., “A Handling Qualities Theory for Precise Flight Path Control,” AFFDL Technical Report
AFFDL-TR-65-198, 1966.

[25] United States Military, “Flying Qualities of Piloted Airplanes,” Military Specification MIL-F-8785c,
1980.

[26] Martins, J. R. R. A. and Lambe, A. B., “Multidisciplinary design optimization: A Survey of architec-
tures,” AIAA Journal, 2013, (In press).

[27] Cramer, E. J., Dennis, J. E., Frank, P. D., Lewis, R. M., and Shubin, G. R., “Problem Formulation for
Multidisciplinary Optimization,” SIAM Journal on Optimization, Vol. 4, No. 4, 1994, pp. 754–776.
doi:10.1137/0804044.

[28] Haftka, R. T., “Simultaneous Analysis and Design,” AIAA Journal, Vol. 23, No. 7, 1985, pp. 1099–
1103. doi:10.2514/3.9043.

[29] Braun, R. D. and Kroo, I. M., “Development and Application of the Collaborative Optimization Ar-
chitecture in a Multidisciplinary Design Environment,” Multidisciplinary Design Optimization: State-
of-the-Art, edited by N. Alexandrov and M. Y. Hussaini, SIAM, 1997, pp. 98–116.

[30] Bloebaum, C. L., Hajela, P., and Sobieszczanski-Sobieski, J., “Non-Hierarchic System Decompo-
sition in Structural Optimization,” Engineering Optimization, Vol. 19, No. 3, 1992, pp. 171–186.
doi:10.1080/03052159208941227.

[31] Sobieszczanski-Sobieski, J., Agte, J. S., and Sandusky, R. R., “Bi-Level Integrated System Synthesis,”
AIAA Journal, Vol. 38, No. 1, 2000, pp. 164–172. doi:10.2514/2.937.

[32] Kim, H. M., Michelena, N. F., Papalambros, P. Y., and Jian, T., “Target Cascading in Optimal System
Design,” Journal of Mechanical Design, Vol. 125, No. 3, 2003, pp. 474–480. doi:10.1115/1.1582501.

[33] Lambe, A. B. and Martins, J. R. R. A., “Extensions to the Design Structure Matrix for the Description
of Multidisciplinary Design, Analysis, and Optimization Processes,” Structural and Multidisciplinary
Optimization, Vol. 46, 2012, pp. 273–284. doi:10.1007/s00158-012-0763-y.

39 of 39

American Institute of Aeronautics and Astronautics

http://dx.doi.org/10.1137/0804044
http://dx.doi.org/10.2514/3.9043
http://dx.doi.org/10.1080/03052159208941227
http://dx.doi.org/10.2514/2.937
http://dx.doi.org/10.1115/1.1582501
http://dx.doi.org/10.1007/s00158-012-0763-y

	Introduction
	Methodology
	Optimization Algorithm
	Geometry Modeling
	Mesh Deformation
	Geometry Constraints
	Center of Gravity Calculation
	Moment of Inertia Calculations
	Root Bending Moment Constraint
	Stability Derivatives
	Stability Constraints
	Static Longitudinal Stability
	Short-Period Approximation
	Control Anticipation Parameter


	MDO Solution Architecture
	Optimization Study Definition
	Mesh Convergence
	Design Variables
	Reference Problems
	Baseline Problem
	Twist Optimization
	Bending Moment Constrained Optimizations

	Static-Stability Constrained Problems
	Dynamic-Stability Constrained Problems

	Results
	Reference Problems
	Baseline cases
	Twist-Only Case
	Bending Moment Constrained Cases

	Static-Stability Constrained Problems
	Dynamic-Stability Constrained Problems
	Convergence Histories

	Conclusions
	References

