
Computing Stability Derivatives and their Gradients
for Aerodynamic Shape Optimization

Charles A. Mader∗

University of Toronto Institute for Aerospace Studies

Toronto, Ontario, Canada

Joaquim R.R.A. Martins†

Department of Aerospace Engineering, University of Michigan

Ann Arbor, Michigan

Aerodynamic shape optimization of aircraft configurations often ignores stability
considerations. To address this, a method for the computation of static, dynamic,
and transient aircraft stability derivatives and their sensitivities for use in gradient-
based optimization is introduced and evaluated. Computational fluid dynamics in
the form of a three-dimensional, structured-grid, multi-block flow solver with both
Euler and Reynolds-averaged Navier–Stokes equations is used. To compute the sta-
bility derivatives, a time-spectral formulation is used to compute an oscillating so-
lution for the configuration of interest. From this oscillating solution, a series of lin-
ear regressions is performed to calculate the various stability derivatives. Because
the solution is time-dependent, it contains the information required to compute the
transient—or “dot”—derivatives for the configuration. An adjoint method is used
to compute the gradients of the stability derivatives of interest, enabling gradient-
based stability-constrained aerodynamic shape optimization with respect to a large
number of design variables. The computed stability derivatives are verified for an
airfoil, and validated for the Stability and Control Configuration unmanned aerial
vehicle. The stability-constrained optimization of a wing demonstrates the viability
and usefulness of the method for aircraft design optimization.
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α Angle of attack

β Side-slip angle

∆α Change in α
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α̇ Time derivative of α

λ Wing sweep

∆yFFD Free form deformation volume control point movement in y direction

φ Mesh rotation angle about the z-axis

θi Section twist

A Wing reference area

b Wing span

c Wing chord

CD Drag coefficient

CL Lift coefficient

Cm Pitching moment coefficient

Cb Bending moment coefficient

CL0 Initial lift coefficient

CLα Derivative of lift coefficient with respect to α

CLα̇ Derivative of lift coefficient with respect to α̇

D Drag

Fy Side force

k Reduced-frequency

L Lift

Mx Moment about body frame x-axis

My Moment about body frame y-axis

Mz Moment about body frame z-axis

ncon Number of constraint functions

nds Number of dynamic states

ndv Number of design variables
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nobj Number of objective functions

nsp Number of spectral instances

p Roll rate

q Pitch rate

r Yaw rate

V Flight velocity

xCG Center of gravity location

ze Altitude

a Speed of sound

M Mach

I. Introduction
Computational fluid dynamics (CFD) based aerodynamic shape optimization has evolved con-

siderably in the last few decades. Using adjoint methods with Euler and Navier–Stokes CFD, a
number of researchers have successfully solved drag minimization problems [1, 2, 3, 4, 5, 6] for
a variety of aircraft configurations and for problems where the aerodynamic shape was optimized
simultaneously with the structural sizing, leading to optimal aeroelastic tailoring [7, 8]. However,
when considering full aircraft configurations there is a coupling between the aerodynamic effi-
ciency of the aircraft and its trim and stability characteristics. In the case of conventional aircraft,
the moment characteristics of the wing as well as the configuration of the wing and tail with respect
to the aircraft center of gravity impact the amount of trim drag generated by the tail. In the case
of a tailless aircraft, the planform and airfoil shape of the wing are integrally related to the trim,
stability, and performance of the design.

Therefore, to achieve feasible solutions that offer an optimal trade-off between the aerodynamic
performance and stability considerations, we need to compute the stability derivatives and imple-
ment them as constraints in aerodynamic shape optimization problems. To address this need, we
develop a method for computing static and dynamic stability derivatives—and their gradients—that
enables gradient-based stability-constrained aerodynamic shape optimization. While the compu-
tation of stability derivatives has been studied extensively—as detailed in the next section—the
implementation of stability derivative constraints in aerodynamic shape optimization problems has
not. Given that the stability constraints are themselves derivative quantities, it is challenging to
compute the gradients of these quantities efficiently.
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The objective of the present work is to develop an approach for which the computation of the
gradients of the stability derivatives is efficient and accurate enough to enable stability-constrained
aerodynamic shape optimization with respect to large numbers of design variables. The method
presented herein has already been used to conduct a study on the effect of stability considerations in
the optimal shape of flying wings [5]. However, that previous study focused on the comparing the
results of the various stability-constrained optimization problems, not on the method for computing
the stability derivative constraints. This work presents the details of that method, including a
validation of the stability derivative computations and discussion on the computational trade-offs
of various methods for computing stability derivatives when used in gradient-based optimization.

We start this paper by reviewing the current state of the art in stability derivative computation in
Section II, followed by a discussion of the additional considerations that are required for optimiza-
tion in Section III. We then introduce our approach to the computation of stability derivatives in
Section IV, highlighting the major differences with respect to existing methods and presenting two
validation cases to demonstrate the effectiveness of the method. Finally, in Sections V and VI we
demonstrate the effectiveness of the method via a set of simple optimizations that include stability
derivatives as constraints.

II. Background
There are two main approaches to computing stability derivatives with CFD. The first involves

applying a conventional derivative computation, such as finite-differencing, automatic differentia-
tion, or adjoint methods, to a steady flow solution. Applying this approach to a conventional CFD
formulation allows the computation of the static stability derivatives. These techniques have been
demonstrated by several authors. Charlton [9] conducted simple α and β sweeps to get the force
and moment information required for falling-leaf predictions for tailless aircraft. Godfrey and
Cliff [10] explored the use of analytic sensitivity methods—in particular, the direct method—for
the computation of static stability derivatives. Park et al. [11] applied ADIFOR [12], an auto-
matic differentiation (AD) tool, to a three-dimensional viscous flow solver to compute the static
derivatives of various configurations.

To compute the dynamic derivatives using these techniques, the CFD formulation needs to be
modified to include the dynamic parameters. These approaches have also been well explored. Park
et al. [13] extended their study on using AD to compute stability derivatives to include the dynamic
derivatives. Limache and Cliff [14] demonstrated the use of adjoint methods for the computation
of dynamic stability derivatives for a two-dimensional case. Babcock and Arena [15] modified
the boundary conditions in a finite-element-based Euler CFD solver to separate the velocity and
position boundary conditions and to allow the computation of the dynamic derivatives using finite-
differencing. Mader and Martins [16] demonstrated the use of an AD adjoint solver for the compu-
tation of stability derivatives on a three-dimensional CFD solver. This class of approaches, based
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on steady CFD solutions, is efficient for computing the various stability derivatives because only a
single steady solution is required in addition to the chosen derivative computation.

The second general approach involves computing the solution of a forced oscillation of the
aircraft, then using that unsteady solution to estimate the stability derivatives. In this approach,
multiple flow solutions are required to compute a full set of derivatives. The exact number of
solutions depends on the specific motions used for the forced oscillation solution as well as the
techniques used to analyze that solution. This approach has been examined by a variety of re-
searchers. Early work on this topic was conducted mostly with respect to missiles and projectiles.
Several researchers, including Weinacht [17], DeSpirito et al. [18], Sahu [19], and Oktay and
Akay [20], demonstrated methods using steady and unsteady CFD to predict the stability deriva-
tives of missiles and projectiles. More recently, Murman [21] presented a method for computing
stability derivatives of both missiles and full aircraft configurations using a frequency-domain CFD
method. He used the frequency domain solver to produce periodic data for the forced oscillation
of the configuration of interest. The data were then analyzed with the same techniques used to
produce stability derivatives from forced-oscillation wind tunnel data, which allowed the method
to take advantage of the large body of knowledge in that field. A number of papers from the recent
NATO RTO Task Group AVT-161 have explored the use of forced oscillation techniques with a
variety of CFD solvers [22], including Reynolds-averaged Navier–Stokes (RANS) [23, 24], direct
eddy simulation (DES) [25, 26], and harmonic balance [27] solvers. The results were shown to
correlate well with experimental data. Additional details regarding some of these results have been
presented by Da Ronch et al. [28, 29].

III. Considerations for Optimization
Using the stability derivatives in an optimization adds another layer of complexity to the se-

lection of an appropriate computational method. The method not only needs to be efficient for
computing the stability derivatives, but also needs to provide efficient computation of the gradients
of the stability derivatives with respect to the design variables in order to allow for gradient-based
optimization. The methods based on steady flow requirements certainly satisfy the first criterion.
However, methods that rely on advanced derivative techniques (such as the adjoint method) for
computing the stability derivatives significantly complicate the computation of the optimization
gradients. In these cases, the gradients of the stability derivatives become second-order deriva-
tives and are very costly to compute. It is possible to compute them relatively efficiently using
a second-order adjoint method such as that proposed by Ghate and Giles [30] or Rumpfkeil and
Mavriplis [31]. However, the cost of this method scales with the sum of the number of objectives,
constraints, and design variables (outputs plus inputs). It quickly becomes prohibitive when large
numbers of design variables are used. This limitation can be relieved somewhat by using finite
differences to compute the stability derivatives. In this case, an extra flow solution (and set of
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adjoint solutions) is required for each individual stability parameter (α, β, V , p, q, r, etc.). While
this method is again independent of the number of design variables, it increases the total number
of flow and adjoint solutions required for a given iteration. This method has been used for simple
static margin constraints in aerostructural optimization by Kenway and Martins [7] and Liem et
al. [32].

The other significant drawback of all of the steady methods is that they contain no time-
dependent information in the solution. Therefore, with the exception of some special cases in
which α̇ can be excited using a helical motion [17], it is not possible to compute the transient
derivatives necessary for the linear flight dynamics model. Unfortunately, computing the stability
derivatives with a full time-dependent solution in order to include that information would be ex-
tremely expensive. Several authors have examined the use of adjoint methods in time-dependent
optimizations, both in two dimensions [33, 34, 35] and three dimensions [36, 37]. While the time-
dependent adjoint method is certainly an improvement over finite-difference sensitivity methods,
it still incurs a high computational cost. Fortunately, because of the periodic nature of the solutions
we use to compute the stability derivatives, we are able to use spectral CFD methods to reduce
the cost of both the computation and the associated adjoint method for computing optimization
gradients. The efficiency of adjoint-based shape optimization using spectral methods has been
demonstrated previously by Nadarajah and Jameson [38] who optimized an oscillating transonic
wing using an adjoint implementation for the NLFD equations and by Choi et al. [39] who used an
adjoint method for the time-spectral method to optimize a helicopter rotor-blade. These previous
results indicate that a an approach based on time-spectral CFD methods will be efficient in this
case also.

Using time-spectral CFD, the cost of computing the stability derivatives scales with the number
of spectral instances required to capture the unsteady effects in the oscillating solution as well as
the number of motions that need to be simulated to excite the various dynamic states of interest.
The cost of the adjoint solutions for the derivatives scales in the same fashion. Therefore, the
scaling of this method is similar to the scaling of the steady method where finite differencing is
used to compute the stability derivatives. Table 1 summarizes the relative costs of the two steady
approaches and the pseudo-steady spectral approach for computing the stability derivatives and
their gradients.

For the optimizations presented here, we have one objective (CD), three or four CFD con-
straints, and approximately 290 design variables. We are concerned only about the α derivatives, so
that limits us to a single dynamic state. Therefore, the cost of method one would be 1+1+3+290 =

295 equivalent flow solutions, the cost of method two would be (1 + 1 + 3) ∗ (1 + 1) = 10, and
the cost of method three would be (3 ∗ 1)(1 + 1 + 3) = 15. Thus, the unsteady method is only
marginally more expensive than the second steady method, and it allows us to compute the α̇
derivatives. Therefore, it is the method chosen here. Note that because of the simple motions

6 of 31

American Institute of Aeronautics and Astronautics



involved in this case, we are able to limit the number of spectral instances to three, which reduces
the cost of the unsteady method. We have also assumed that the cost of an adjoint solution is
approximately the same as the cost of a flow solution.

Method # Stab. deriv. method Gradient method Equiv. flow solutions Equiv. adjoint solutions Total cost
1 Adjoint 2nd order Adjoint 1 nobj + ncon + ndv 1 + nobj + ncon + ndv
2 FD Adjoint 1 + nds (nobj + ncon)(1 + nds) (1 + nobj + ncon)(1 + nds)
3 TS TS Adjoint nspnds nspnds(nobj + ncon) (nspnds)(1 + nobj + ncon)

Table 1. Stability derivative methods: Equivalent computational cost comparison

IV. Theory
The time-spectral stability derivative formulation presented in the following section is similar to

the methods presented by Murman [21] and Da Ronch et al. [27, 29] in that it uses a time-periodic
approximation to the unsteady CFD solution to reduce the cost of the computation. However,
the forced oscillation motions used here and the linear regression approach used to determine the
derivatives in this work differ somewhat from those previously used. These two components are
motivated by the complex number α̇ derivative methodology outlined by Etkin [40] and are based
on the idea that the transient derivatives are related to the time lag in the development of the
aerodynamic forces when an aircraft changes orientation. A similar linear regression method for
determining the stability derivatives is used with experimental flow results by Rohlf et al. [41].

As with other time-periodic CFD stability derivative techniques, the time-spectral stability
derivative method is essentially a forced oscillation technique. A time-spectral CFD solver is
used to generate the solution for a prescribed oscillatory motion. This periodic solution is then
used with a linear regression technique to generate estimates for the functionals of interest: the
force or moment coefficient, the derivative of that coefficient with respect to the oscillating pa-
rameter, and the derivative of that coefficient with respect to the time derivative of the oscillating
parameter. In this work, we focus on using relatively small-amplitude oscillations—less than two
degrees—at low reduced frequencies, with single-parameter oscillations to isolate specific deriva-
tives. The simple algebraic nature of the method allows it to be used in conjunction with an adjoint
method to compute the gradients necessary for aerodynamic shape optimization, thereby allowing
for efficient optimization with respect to large numbers of design variables.

A. Time-spectral CFD

The underlying core of this approach to computing stability derivatives is the time-spectral CFD
method. Early work on time-nonlinear spectral solution techniques was conducted by Hall et
al. [42], who derived a spectral formulation for the two-dimensional Navier–Stokes equations.
In an extension of this work, Ekici and Hall [43] applied the technique, known as the harmonic
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balance technique, to multistage turbomachinery applications where a variety of frequencies may
be present. Other spectral methods have been demonstrated by McMullen et al. [44, 45] (the
nonlinear frequency domain (NLFD) method) and Gopinath and Jameson [46] (the time-spectral
method). The main differences between the methods are the portions of the solution that are
computed in the frequency and time domains.

In this work, we use the time-spectral implementation in the SUmb flow solver [46, 47, 48].
This implementation is based on the time-domain version of the equations as derived by Gopinath
and Jameson [46, 48, 49]. The flow equations are discretized with a second-order finite volume
scheme with scalar dissipation. The rigid body grid motion is implemented with an ALE scheme.
For a complete review of the method, we refer the reader to the references.

B. Linearized Aerodynamic Forces

We base our stability derivative method on the linear air reaction theory outlined by Etkin [40].
From this theory, we know that for a general motion, the force and moment coefficients of an
aircraft—for example, the lift coefficient—can be approximated as

CL = CL0 + CLα∆α + CLα̇∆α̇ + CLα̈∆α̈ + ...+ CLβ∆β + CLβ̇
∆β̇ + ..., (1)

where all the motion states α, β, V , p, q, r, ze and their associated time derivatives are included,
andCL0 is the value of the coefficient for the steady-state reference flight condition about which the
motion occurs. However, if a simple motion is specified that consists of a single dynamic state—
for example, α—the values of the remaining motion states are zero and the associated derivatives
drop out of the equation. In the case of a pure α motion this leads to

CL = CL0 + CLα∆α + CLα̇∆α̇ + CLα̈∆α̈ + .... (2)

One can then make the further assumption, justified in the following discussion, that the higher-
order derivatives are small and can be neglected, which gives

CL ≈ CL0 + CLα∆α + CLα̇∆α̇, (3)

or in a more general form
Ci ≈ Ci0 + Cij∆j + Cij̇

∆j̇ (4)

where i = L,D, Fy,Mx,Mz,My and j = α, β, V, p, q, r. Based on the simplified equation (4), we
are now left with a simple equation with three unknowns, Ci0 , Cij , and Cij̇

.
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C. Prescribed Motion

As we can see from the the previous section, the key requirement for identifying the values of
individual stability derivatives is the simulation of a motion that excites a single dynamic state
and its higher-order derivatives. Several researchers have examined ways to separate pitching and
plunging motions, particularly in the context of analyzing projectiles and missiles. Both Qin et
al. [50] and Weinacht [17] introduce methods for calculating the q and α̇ derivatives based on
steady coning and helical motions. However, these motions include nonzero roll and yaw rates
respectively, which could cause problems in the context of non-axisymmetric bodies such as full
aircraft configurations. Weinacht [17] also introduces the idea of using a steady looping motion
to get the q derivatives. This motion is suitable for use with aircraft and has been demonstrated in
that context by several authors [13, 14, 16]. However, as discussed in Section II, methods based
on this approach do not lend themselves to optimization. Since we have chosen to use an unsteady
forced-oscillation approach to compute the stability derivatives, we have chosen to use pitching
and plunging motions to compute the separated stability derivatives. The motions that we aim
to recreate are those illustrated on page 267 of Etkin [40]. Note that these are also equivalent to
the two-dimensional projections of the helical motions outlined by Weinacht [17]. However, these
specific motions are difficult to realize physically and require some modification to a standard CFD
solver to implement computationally.

For the α motion, we specify a standard oscillating value of α,

α = A sin(ωt). (5)

However, in addition to this, we alter the velocity of the grid to be

Vx = aM cos(α) (6)

Vy = −aM sin(α) (7)

Vz = 0 (8)

so that the magnitude of the velocity stays constant and eliminates any Mach effects from the
oscillation. For the q motion, we again use a standard pitch rate oscillation,

φ = A sin(ωt) (9)

q = dφ = Aω cos(ωt). (10)

However, in this case, we modify the grid velocity to maintain a constant angle of attack throughout
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the oscillation, giving

Vx = aM(cos(α) cos(φ)− sin(α) sin(φ)) (11)

Vy = −aM(cos(α) sin(φ) + sin(α) cos(φ)) (12)

Vz = 0. (13)

When one of these pure motions is simulated with the time-spectral method, the result is a solution
that consists of force coefficient (CL,CD,CFy ) and moment coefficient (Cmx ,Cmy ,Cmz ) values atN
time instances in a periodic solution. A set of solutions corresponding to a pure α motion is shown
in Figure 1.

0.00 0.50 1.00 1.50 2.00
Time (s)

-6.0e-02

-4.0e-02

-2.0e-02

0.0e+00

2.0e-02

4.0e-02

6.0e-02

Va
lu

e

CL

CL : 3 Point solution

CL : 5 Point solution

α

α : 3 Point solution
α : 5 Point solution

Figure 1. Time-spectral solution: ∆α motion at Mach = 0.1

Now that we have a periodic time history of the coefficient with respect to the oscillating
parameter, we can use this information to compute the various stability derivatives with respect to
that parameter. To accomplish this, we relate the coefficients to the oscillating parameter through
the time variable. This leads to the relationship shown in Figure 2. As the figure shows, the general
trend of the relationship between the coefficient and the motion parameter is linear. However, there
is also a distinct hysteresis in the solution, as demonstrated by the gap between the coefficient on
the upstroke and downstroke of the oscillation. This hysteresis relates to the transient or “dot”
derivatives. As discussed by Etkin [40] with respect to the α̇ derivatives, the transient derivatives
represent the time lag in the development of the coefficient resulting from a change in the flow.
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This idea leads us to the method used to compute the stability derivatives.

-1.0e-02 -5.0e-03 0.0e+00 5.0e-03 1.0e-02
α (rad)

-6.0e-02

-4.0e-02

-2.0e-02

0.0e+00

2.0e-02

4.0e-02

6.0e-02

C
L

3 point solution
5 point solution
7 point solution
Derivative estimate
solution

Figure 2. Time-spectral solution: CL vs. α at Mach = 0.1

To compute stability derivatives from this solution, one computes a linear least-squares fit of
the output coefficient (e.g., CL) with respect to the primary motion variable from the solution (e.g.,
α). The slope of the line resulting from this fit, shown in Figure 2, is the stability derivative (CLα)
while the y-intercept of the line is the value of the coefficient (CL) at the zero value of the motion
perturbation ∆α = 0. This yields an approximation of the form

y = Cijx+ Ci0 . (14)

We now take advantage of the hysteresis in the solution to calculate the transient derivatives. To
estimate this quantity, we subtract the value of the linear regression line from the time-spectral
solution,

Rn
Ci

= Cn
i − y(xn). (15)

This process eliminates the bulk dependence of the solution on the main motion variable, leaving
just the variation (Rn

Ci
) associated with the hysteresis. This yields another strongly linear relation-

ship, as shown in Figure 3. Taking the slope of this trend yields the value of the transient derivative
(Ciα̇). Further, as this plot shows, the linear approximation is a very good representation of the α̇
trend, indicating that any dependence on the higher-order time derivatives is small. This is suffi-
cient to justify the assumption made for Equation (3). Also note that Figures 1 and 2 demonstrate
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Figure 3. Time-spectral solution: CL hysteresis vs. α̇ at Mach = 0.5

that three time instances are sufficient to model the forced-oscillation solution. In these figures, the
extra points in the five- and seven-instance cases lie on the same sinusoidal solution predicted by
the three-instance solution. This is consistent with the findings of Murman [21]. Murman observes
that the ability to simulate the forced oscillation with a single frequency arises because the forcing
frequency of the oscillation largely determines the frequency of the output and because there is
a limited potential for energy transfer between the modes when using the Euler equations. We
also note that, as demonstrated by Rohlf et al. [41], smaller amplitude oscillations tend to produce
more sinusoidal, if also noisier, output in the experiments. Since noise is not a major issue for
time-periodic CFD solutions, we have chosen to use small-amplitude oscillations in this work, on
the order of 0.5 to 2 degrees.

With this simple algebraic stability derivative computation in place, it is now a simple extension
to use the time-spectral adjoint method of Mader and Martins [51] to compute the gradients of
this approach for shape optimization. The time-spectral adjoint approach outlined by Mader and
Martins [51] uses simple agglomeration functions to combine the N spectral force coefficients
into a single value for the adjoint function. In the simplest case this can be just an averaging of the
coefficients,

Ci =
1

N
Ci1 +

1

N
Ci2 + · · ·+ 1

N
CiN . (16)

In our case, the linear regression operation described above forms the basis of this agglomeration
function. Therefore, using this approach with the time-spectral adjoint simply requires a minor
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modification to the partial derivatives of the objective function. Full details on the implementation
of the time-spectral adjoint can be found in the authors’ previous work [51].

D. Verification and Validation

To verify and validate the time-spectral stability derivative approach, we examine two test cases.
The first is an NACA 0012 airfoil undergoing an oscillating plunging motion, and it is compared
with a theoretical thin-airfoil theory result. The second is the Stability And Control CONfiguration
(SACCON) UCAV, which is compared with wind tunnel results.

1. NACA 0012: Test Case Description

The NACA 0012 case is a two-dimensional case that we emulate using our three-dimensional
solver. The meshes have only two cells in the spanwise direction, with symmetry planes on both
sides to simulate two-dimensional flow. The mesh is a C-mesh topology split into sixteen blocks
for efficient parallel balancing, as shown in Figure 4a. The near-field around the airfoil is shown
in Figure 4b. This set of test cases is simulated using the Euler equations at M=0.1. To assess

X

Y

Z

a) Mesh topology

X

Y

Z

b) Near field mesh: 65536 cells per slice

Figure 4. NACA 0012 mesh

the numerical accuracy of the solutions, we conducted a mesh convergence study with meshes
containing 4 096, 16 384, and 65 536 cells per slice. The mesh convergence results are shown in
Table 2.

The values of the coefficients (CL, Cm) and their derivatives with respect to α show excellent
numerical accuracy, with relative errors less than 1% on the finest mesh for both sets of coefficients
and derivatives. The accuracy of the derivatives with respect to α̇ is slightly lower, with relative
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Case size (cell/slice) CL Cm CLα Cmα
CLα̇ Cmα̇

4 096 0.1896 -0.0461 5.0660 -1.2745 -12.4044 2.2542
16 384 0.2377 -0.0621 6.1827 -1.6199 -20.6218 4.8321
65 536 0.2397 -0.0625 6.2298 -1.6217 -21.4835 5.1051
Estimate (Richardson extrapolation) 0.2404 -0.0626 6.2455 -1.6223 -21.7708 5.1961
65 536 cell % error 0.283 0.163 0.252 0.0367 1.319 1.751
16 384 cell % error 1.134 0.653 1.006 0.1467 5.277 7.004

Table 2. NACA 0012 mesh refinement results

errors on the order of 2% on the finest mesh. However, this level of error is acceptable for our
purposes.

2. NACA 0012: Verification

To verify our implementation of the time-spectral stability derivative method, we compare the
NACA 0012 results to those from thin-airfoil theory. Etkin [40] presents theoretical results for an
oscillating plunging airfoil, based on the work of Theodorsen. Using the Theodorsen function as a
basis, the theoretical values of the lift and moment coefficients can be expressed as:

CLα = 2πF (k) (17)

CLα̇ = π + 2π
G(k)

k
(18)

Cmα = 2πF (k)(h− 1

4
) (19)

Cmα̇
= π(h− 1

2
) + 2π

G(k)

k
(h− 1

4
). (20)

Here F (k) and G(k) are the real and imaginary parts of the Theodorsen function [52],

C(k) = F (k) + iG(k), (21)

and h is the percent chord at which the moment coefficient (Cm) is evaluated. The four plots in
Figure 5 show a comparison of the lift and moment coefficient derivatives with respect to α and α̇ as
predicted by the theoretical model and the time-spectral model. Since the theoretical result varies
with the frequency, the figure also shows the variation in the derivative over a range of reduced
frequencies. The data points on the plot represent the discrete reduced frequencies at which the
time-spectral solutions were analyzed. In addition, because the theoretical result is for an infinitely
thin airfoil, we computed numerical results for the full-thickness airfoil as well as half- and quarter-
thickness airfoils. As shown in Figure 5, the numerical results match the theoretical results well
over the full range of reduced frequencies. There is a small offset between the numerical results
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Figure 5. NACA 0012 time-spectral stability derivative verification, plunging motion at M=0.1, α=0.00
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and the theoretical results. However, for the α̇ derivatives, this discrepancy reduces significantly
for the half- and quarter-thickness airfoils, indicating that most of it comes from the thin-airfoil
assumptions of the reference results. For the α derivatives, the trend is less conclusive. At lower
frequencies, the thin results match the theoretical result more closely than the full-thickness results,
while at higher frequencies the offset is larger for the thin airfoils than the thick airfoils. However,
the shape of the curve for the thinner airfoil results matches the theoretical result more closely than
does the shape of the thicker airfoils. Note that the theoretical results for the α̇ derivatives become
undefined as the reduced frequency tends to zero. This singularity is clearly apparent in Equations
(18) and (20), and it prevents the calculation of a definitive value for the derivative. However,
given the demonstrated agreement between the theoretical and numerical results, this comparison
confirms that the time-spectral stability derivative method produces correct results for this simple
two-dimensional case.

3. SACCON UCAV: Test Case Description

The second test case considered is the Stability And Control CONfiguration, a flying-wing, UCAV
configuration. The mesh is constructed with an O topology and thirteen blocks. The geometry of
the case is based on the information provided in Schütte et al. [53] and Tormalm and Schmidt [26].
We analyze the flow around the UCAV using a RANS flow solver [47] with a Spalart–Allmaras
turbulence model [54]. The surfaces of the wing are modeled as adiabatic viscous walls with a
symmetry plane imposed at the root. The off-wall spacing for the 1 482 752 cell mesh is 3× 10−6

m. Samples of the coarsest mesh are shown in Figure 6.

a) Surface mesh b) Near field mesh at symmetry plane

Figure 6. SACCON Mesh: 185 344 cells
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Once again, we computed solutions on a series of meshes to assess the numerical accuracy of
the solution. We used meshes with 185 344, 1 482 752, and 11 862 016 cells. Assessments of the
numerical error associated with CL and its derivatives are shown in Table 3.

Case CL Cm CLα Cmα
CLα̇ Cmα̇

185 000 cell 0.1036 0.01393 2.5195 0.07998 -0.4002 0.2820
1 480 000 cell 0.1073 0.01521 2.5932 0.1099 -0.4865 0.3021
11 860 000 cell 0.1066 0.01607 2.5895 0.1188 -0.5459 0.3216
Estimate (Richardson extrapolation) 0.1064 0.01635 2.5882 0.1199 -0.5656 0.3281
11 860 000 cell% error 0.214 1.75 0.048 2.44 3.50 1.98
1 480 000 cell % error 0.859 7.0 .194 9.79 13.99 7.93

Table 3. SACCON mesh refinement results

The meshes show good mesh convergence as they are refined. The numerical accuracy of CL

and CLα is better than 1% on the finest mesh, while the α̇ derivative produces an error of 3.5% on
the finest grid. The accuracy of the moment calculations is slightly worse. In this case the error in
all three values on the finest mesh is on the order of 2%.

4. SACCON UCAV: Verification and Validation

Using the 1 482 752 cell mesh and a RANS flow solver, we ran a series of comparisons with
derivatives computed from experimental data by Rohlf et al. [55, 41] and CFD results from Le
Roy and Morgand [23]. The goal of this comparison is to place the results from the time-spectral
computation in context with physical results, thereby validating the method we propose for com-
puting the stability derivatives. The flow conditions used are shown in Table 4. These conditions
are selected to match the flow conditions used by Le Roy and Morgand [23]. The results of these
comparisons are shown in Figures 7 though 9. Figure 7 shows the lift and moment coefficients

Parameter Value
Mach Number 0.149
Reynolds Number 1.6× 106

α (deg.) 0–10
Half-body reference area (m) 0.385
Reference half span (m) 0.769
Reference chord (m) 0.479
Frequency (Hz) 1
Reference moment center (m) 0.6
Reference rotational center (m) 0.855414

Table 4. SACCON test case conditions

for the SACCON configuration compared with both experimental results and steady RANS results
from Le Roy and Morgand [23]. Both our CFD results and the reference CFD results differ slightly
from the experimental results. The variation in the lift coefficient can be attributed to the effect of
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the sting from the experimental setup [23]. This effect has been conclusively demonstrated in [23]
using simulations with and without the sting. However, our results match the reference CFD results
very well. The lift coefficient prediction is essentially the same, while there is a slight variation
in the moment coefficient. This variation is likely due to slight variations in the geometry used to
generate the test case. As an example, at an angle of attack of 5 degrees the norm of the sensitivity
of Cm with respect to the surface nodes in the mesh is O(1). At the same angle of attack, the differ-
ence between our estimate for Cm and the reference is 1.2 × 10−3. Therefore, an average change
of 1 mm over the surface of the model would account for the difference. Note also that the steady
and time-spectral results for our flow solver coincide, validating the use of the leading coefficient
from the linear regression to predict the coefficients.
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Figure 7. Comparison of CL and CM for the SACCON UCAV with experimental and RANS results [23]

Figure 8 shows a comparison of the CL derivatives with experimental results from Rohlf et
al. [55, 41]. CLα matches well, with the time-spectral stability derivative method predicting a
value within approximately 2% of the experimental result at 5 degrees. The result for CLq+α̇ is
not as good, with an error of approximately 40% relative to the experimental results at 5 degrees.
While this is relatively high, it is on a par with similar CFD results for this configuration, for
example those in Rohlf et al. [55, 41].

Figure 9 shows a comparison of the Cm derivatives with experimental results from Rohlf et
al. [55, 41]. The Cmα derivatives match the experimental results to within approximately 8% at 5
degrees. The Cmq+α̇

derivatives match surprisingly well, within approximately 10% at 5 degrees.

5. SACCON UCAV: Frequency Dependence

Since the two-dimensional results show a significant variation with frequency, we conducted a
similar frequency comparison for the three-dimensional case. To characterize this effect, we con-
ducted a frequency sweep on the 1 482 752 cell mesh, the results of which are shown in Figure 10.
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Figure 8. Comparison of SACCON UCAV CL derivatives with experimental results [41]
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Unlike in the two dimensional case, the α derivatives for the three-dimensional case do tend to a
steady-state value as k −→ 0. This is consistent with the standard assumptions in linear stability
theory. The same cannot be said for the α̇ derivatives. Both of these quantities vary continuously
as the frequency is varied, indicating that care must be taken when selecting the frequency at which
the α̇ derivatives are to be evaluated. However, the α̇ derivatives seem to vary less significantly
over a range from k = 0.03 to k = 0.3, making that a reasonable range of frequencies to use for
this case. Note that the simulations and experiments in the previous section were both computed
at the same frequency of 1Hz, so the comparisons made there are still valid.
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Figure 10. Frequency dependence of the derivatives for the SACCON UCAV

V. Optimization Problem
To demonstrate the use of the above stability derivatives in an optimization problem, we con-

sider a series of Euler drag minimization problems for an untapered wing. In each optimization we
add a single stability derivative constraint to quantify its effect on the optimal solution. The details
of the optimizations are described below. A much more detailed optimization study demonstrat-
ing the effects of various stability constraints on flying wings has been conducted by the authors
using the methods outlined in this paper. In that study, the authors used the method presented
here to demonstrate that at subsonic and low transonic mach numbers, airfoil shape modification
was sufficient to ensure statically stable trimmed flight with essentially no drag penalty, while at
higher Mach numbers sweep and twist were also required to ensure efficient, stable flight. Fur-
ther, the authors showed—using the transient derivatives allowed by this method—that to satisfy a
handling-quality constraint, sweep and twist were required at all speeds. More details of this study
can be found in Mader and Martins [5].
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A. Test Case

The wing used for the current study is a straight, rectangular wing with an NACA 0012 airfoil
profile. The wing has a half span of three meters and a chord of one meter, giving it an aspect ratio
of six. It has a taper ratio of one and a leading-edge sweep angle of zero degrees. The details of
the geometry are summarized in Table 5. The three optimization results shown are computed on
a mesh with 1 105 920 cells. The mesh has a C-O topology and is split into 32 blocks, with the
surface mesh having 97 points spanwise and 81 points from the leading edge to the trailing edge
on each of the top and bottom surfaces of the wing. The far-field boundary is approximately 15
chords from the wing and the off-wall spacing of the mesh is 1 × 10−3 m at the leading edge and
5× 10−4 m at the trailing edge. The flow solutions are computed with an Euler flow solver and are
analyzed at M=0.78.

Parameter Value
Half wing area (m) 3.0
Half wing span (m) 3.0
Chord (m) 1.0
Leading edge sweep (deg.) 0.0
Taper ratio 1.0
Wing tip washout (deg.) 0.0
Wing dihedral 0.0

Table 5. Baseline wing: Geometry specifications

B. Mesh Convergence

To demonstrate the accuracy of the mesh used, we performed a mesh convergence study, the results
of which are shown in Table 6. As the table shows, the mesh is sufficiently refined, with errors of
less than 1% for CL, CD, and CLα and an error of 1.1% for Cmα .

Case CL CD CLα Cmα

138 000 cell 0.262161 0.004065 5.00924 1.19912
1 100 000 cell 0.261608 0.003787 4.99286 1.18342
8 800 000 cell 0.261322 0.003769 4.98115 1.17374
Estimate (Richardson extrapolation) 0.261228 0.003763 4.97724 1.17051
1 100 000 cell % error 0.146 0.621 0.314 1.10

Table 6. Mesh convergence results
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C. Problem Description

The formulation of the optimization problem is as follows:

minimize CD

w.r.t. α, θi, b, c, λ,∆yFFD, xCG (22)

subject to CLref − CL ≤ 0

Cm = 0

Cb − Cbref = 0

A = Aref

Cmα ≤ −0.5 (Case 2 only)

2.0 ≤ Cmα̇
≤ 2.01 (Case 3 only).

This optimization problem is a lift-constrained drag minimization with a trim constraint. Because
the optimization is based on an Euler CFD solver, there is no significant penalty for making the
wing area larger. Therefore, we have constrained CL rather than lift, and we have constrained the
area of the wing to keep the overall lift provided by the wing constant. We have also added a root
bending moment constraint. This constraint considers both the spanwise and flowwise extent of
the wing, computing a bending moment about an effective axis that stays roughly aligned with the
major axis of the wing as the sweep is increased. This constraint penalizes both increased span
and increased sweep, forcing the optimizer to consider the trade-off between sweep and span—and
consequently wave drag and induced drag—in the transonic regime. Full details of the implemen-
tation of this constraint are presented in Mader and Martins [5].

The optimizer is able to vary the section shape (∆yFFD), twist (θi), and planform (b, c, λ) of
the wing to minimize the drag. The value of the bending coefficient at the root is constrained to be
that of an elliptical lift distribution at Mach = 0.5 for the same lift. Using this basic formulation,
we have conducted three variants of this optimization. The first optimization is conducted exactly
as described above to provide a reference case for the study. In the second optimization, we
constrain Cmα to be less than or equal to -0.5. This ensures that the design is statically stable at
the optimum. In the third optimization, we constrain Cmα̇

to be between 2 and 2.01. The value of
this constraint was selected to differentiate the results of this optimization from the other two cases
and to demonstate that the value of Cmα̇

could be used as an independent constraint. These last
two optimizations demonstrate the use of the time-spectral stability derivatives in an optimization
context. Figure 11 depicts the data and process flow for these problems in the XDSM (extended
design structure matrix) format of Lambe and Martins [56]. In this class of diagrams, the diagonal
blocks represent the disciplines, while the off-diagonal blocks and light grey lines represent the
data flow between the disciplines. The thin black line represents the process flow through the
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optimization problem.

x : α, θi, b, c, λ,
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Figure 11. XDSM for the optimization problems

D. Design Variables

The design variables used in our optimization problem include planform variables, such as sweep
and span, as well as 280 surface-shape design variables. The surface-shape design variables—
the control points of an FFD volume—modify the surface shape of the wing and affect both its
streamwise and spanwise profile. Table 7 lists the design variables and their respective bounds.

Design variable Symbol Lower bound Upper bound
Angle of attack (deg.) α −15 15
Section twist at 9 sections (deg.) θi −10 10
Span (m) b 2.0 3.2
Chord (m) c 0.5 1.4
Sweep (deg.) λ 0 45.0
Center of gravity location xCG −20 20
FFD control points: y-offset (m) ∆yFFD −0.075 0.075

Table 7. Design variables and their bounds

VI. Optimization Results
The results of the three optimization cases are shown in Figures 12 through 14. Each figure

shows the Cp distribution on the top surface of the airfoil as well as the spanwise lift distribution,
the spanwise twist distribution, and the section shape and Cp at three spanwise stations. In the
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reference problem shown in Figure 12 we see that the optimizer has modified the section shape of
the wing to eliminate the peaky section profile typical of the original NACA 0012 sections. The
sections of the optimized wing all produce rooftop Cp profiles, which reduces the wave drag. How-
ever, while this change in pressure distribution is advantageous from a drag reduction perspective,
it has also made the wing unstable, because the CG location required to trim the aircraft is now
aft of the neutral point. Note that the lift distribution is also skewed slightly inboard relative to an
elliptic distribution, which allows for an extension of the span while maintaining the required root
bending moment, a typical aerostructural trade-off. In the Cmα constrained optimization shown in

Figure 12. Reference problem: M = 0.78, CL=0.3, Cm=0

Figure 13 the optimizer has changed two main characteristics of the wing to satisfy the constraint.
It has increased the sweep and added reflex to the trailing edge of the airfoil. The addition of
sweep allows the section profiles to have a slightly higher critical Cp, giving the optimizer more
freedom to alter the section shapes. It also shifts the neutral point of the wing aft, which helps to
stabilize the aircraft. The addition of trailing-edge reflex to the section shapes of the wing shifts the
CG location required to trim the aircraft forward and helps to directly satisfy the Cmα constraint.
Note that in this case the CG location to trim the aircraft has shifted forward of the neutral point,
indicating a positive static margin, or negative Cmα , as required by the problem formulation. Note
also that the coordinate system used in the CFD computations provides pitching moments that are
opposite to the generally accepted sign convention in the stability and control community, so we
have multiplied all of our results by -1 so that the values presented match the standard convention.
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Figure 13. Cmα
problem: M = 0.78, CL=0.3, Cm=0

The third optimization, the Cmα̇
constrained case, produces a shape that is a mixture of the

results from the previous two cases. As in the reference case, the root section has a rooftop profile
with no trailing-edge reflex, while the tip section has significant trailing-edge reflex, similarly to
the second case. Note that the CG location to trim and the neutral point are essentially coincident,
producing a neutrally stable aircraft.

Finally, looking at the results shown in Table 8 we can see that the three optimal solutions
produce drag coefficients within one count of each other. This indicates that under the conditions
modeled, no significant penalty is paid to satisfy the various stability constraints. Further, in the
second and third cases respectively, the Cmα and Cmα̇

constraints are satisfied exactly to the tol-
erance specified. This demonstrates that the proposed method for computing stability derivatives
and including them in gradient-based optimizations is valid.

VII. Computational Performance
The optimizations conducted in this work were run on 80 Intel Nehalem Xeon E5540 proces-

sors (8 cores, 16 GB ram per node) with a mix of DDR and QDR InfiniBand interconnections.
The time-spectral flow solutions took approximately 300 seconds to compute, while the individual
time-spectral adjoint solutions averaged approximately 370 seconds—123% of the solution time—
and assembling the Jacobian took approximately 110 seconds. This leads to a total optimization
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Figure 14. Cmα̇
problem: M = 0.78,CL=0.3, Cm=0

cycle time (1 solution plus 4 adjoint solutions for the reference case) of approximately 1800 sec-
onds or 30 min. The cycle time for the second two optimizations is slightly longer because they
each have one extra adjoint to solve (the adjoint of the stability derivative). The complete refer-
ence optimization took just over a day of wall time, the Cmα case took two and a half days of wall
time, and the Cmα̇

case took just over four days of wall time. While these computational times
are significant, they are certainly reasonable for this level of optimization. Figure 15 shows the
convergence history for the optimality criterion of each case. All three initially converge quite
rapidly, with the convergence slowing somewhat as the optimality reaches an order of 10−4. The
two stability-constrained cases take more iterations to converge than the reference case. This is

Parameter Baseline Cmα
Cmα̇

CD 0.00515 0.00516 0.00505
Cmα 0.75661 -0.50000 0.01935
Cmα̇

5.14469 -0.06137 2.01000
α (deg.) 2.97 2.99 2.98
λ (deg.) 0.00 4.23 0.000
b (m) 3.07 3.09 3.11
c (m) 0.986 0.980 0.974

Table 8. Optimization Results: M = 0.78, CL=0.3, Cm=0
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expected given the more complex nature of the physical trade-offs inherent in these problem for-
mulations. However, in the Cmα̇

case, the optimizer completes several optimization iterations with
the optimality tolerance below the required level. This occurs because the optimizer is alternating
back and forth between satisfying the feasibility and the optimality of the problem. It is possible
that with some modifications to the optimizer options, this performance could be improved.
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Figure 15. Optimality convergence history

VIII. Conclusions
An approach to computing aircraft stability derivatives for use in CFD-based aerodynamic

shape optimization has been introduced, verified, and validated using an Euler and RANS CFD
solver. Two-dimensional Euler CFD results have been presented, verifying the approach against
a theoretical plunging airfoil case. Three-dimensional RANS CFD results have been presented in
which the approach was able to compute aCLα derivative within 10% of the experimental result for
the SACCON UCAV configuration, confirming the validity of the approach. Further, a small set of
Euler CFD-based optimizations has been conducted, demonstrating the usefulness of the approach
for gradient-based aerodynamic shape optimization. In particular, the approach has been used to
constrain the values of Cmα and Cmα̇

to a numerical accuracy of 10−5 in a drag minimization
problem, thereby demonstrating the effectiveness of the approach.
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