
This is a preprint of the following article, which is available at: http://mdolab.engin.umich.edu

Charles A. Mader, Gaetan K. W. Kenway, Anil Yildirim, and Joaquim R. R. A. Martins. ADflow:

An Open-Source Computational Fluid Dynamics Solver for Aerodynamic and Multidisciplinary

Optimization. Journal of Aerospace Information Systems, 2020. doi: 10.2514/1.I010796

The original article may differ from this preprint and is available at:

https://arc.aiaa.org/doi/10.2514/1.I010796.

ADflow: An open-source computational fluid
dynamics solver for aerodynamic and

multidisciplinary optimization
Charles A. Mader, Gaetan K. W. Kenway, Anil Yildirim, and

Joaquim R. R. A. Martins
University of Michigan, Ann Arbor, Michigan, 48109

Abstract
Computational fluid dynamics through the solution of the Navier–Stokes equations with tur-
bulence models has become commonplace. However, simply solving these equations is not
sufficient to be able to perform efficient design optimization with a flow solver in the loop.
This paper discusses the recommendations for developing a flow solver that is suitable for
efficient aerodynamic and multidisciplinary design optimization. One of the major recom-
mendations is to be able to load the flow solver as a library that provides direct memory
access to the relevant data. Other recommendations are to use a higher-level language for
scripting and to pay special attention to solution warm starting, code efficiency, flow solver
robustness, and solution failure handling. As an example of a flow solver that follows these
recommendation, we present the open-source flow solver ADflow. Results from aerodynamic
optimization, aerostructural analysis, and aerostructural optimization using ADflow demon-
strate the performance advantages claimed in the recommendations. The publication of these
recommendations and the availability of the source code opens the door for other solvers to
adopt the same application programming interface. ADflow is part of a wider aerodynamic
shape optimization tool suite that is also available under an open-source license.

1 Introduction
The increase in computational power and availability has profoundly changed how computa-
tional methods are used in engineering design. Computationally intensive simulations that
were once used only for final design verifications are now used on a daily basis at the pre-
liminary design stage. This increased power and availability may be exploited in a number
of ways:

1

http://mdolab.engin.umich.edu
https://doi.org/10.2514/1.I010796
https://arc.aiaa.org/doi/10.2514/1.I010796

1. Simulations can be performed with higher resolution—either spatial or temporal.

2. Simulations can be performed with more complex physical modeling—for example
solving the Reynolds-Averaged Navier–Stokes (RANS) instead of the Euler equations.

3. More flight conditions can be analyzed for a given geometry.

4. Multiple designs can be evaluated for improvement and for understanding the design
performance trades; this may involve parameter sweeps or the use of an optimization
algorithm.

5. Computational models that are traditionally treated in a segregated fashion can be
integrated to perform a multidisciplinary analysis.

Venkatamaran and Haftka [1] considered the historical effects of increasing computational
performance on structural analysis and optimization. They noted that computational anal-
ysis tends to follow Parkinson’s Law [2], which states that the work done expands to fill up
all the available time. A related law by Thimbleby [3] states that software applications grow
to fill up increased computer memory, processing capabilities, and storage space. Venkata-
maran and Haftka [1] also point out that anecdotal evidence suggests that time required for
“adequate” structural analysis has remained constant, at 6 to 8 hours over the last 30 years.
This indicates that computational improvements have been used to refine the computational
models, which describes scenarios 1 and 2 above. We believe that the main reason for this
is because the first two scenarios alone do not fundamentally change the complexity of an
engineering design work flow.

In this work, we examine the requirements necessary to fulfill scenarios 3 through 5
in the context of computational fluid dynamics (CFD). These three scenarios require the
computational method to be used repeatedly in a completely automated fashion, which in
turn requires additional features for successful computation. One of these required features
is the ability to use the solver as a compiled library with direct memory access through
a well-defined, streamlined application program interface (API). This allows the solver to
be deployed effectively as part of an analysis framework on large-scale high-performance
computing (HPC) facilities.

In this paper, we demonstrate how these requirements are met in ADflow, a structured,
multi-block, overset flow solver, which is available under an open-source license.1 Specifically,
ADflow is used to solve both aerodynamic and aerostructural design optimization problems
for the Common Research Model (CRM) geometry [4]. All of the computations demonstrated
in this paper are steady-state RANS solutions. However, the concepts outlined in this
paper are not limited to a particular fidelity choice or solution methodology. The API has
been applied to 2D and 3D panel solvers as well as multiple 3D flow solvers. ADflow is
also capable of time-accurate and time-spectral calculations in addition to the steady-state
solutions shown here.

1https://github.com/mdolab/adflow, accessed March 2020

2

https://github.com/mdolab/adflow

The outline of the paper is as follows. Section 2 details the requirements for a multi-
disciplinary solver and Section 3 introduces the concept of the solver as a software library.
Section 4 describes the Python API developed to address the needs listed in Section 2.
These sections are meant to be a general guide for solver requirements and are therefore
solver agnostic. Section 5 details how these requirements were met for the ADflow solver,
and provides a summary of previous studies made possible by ADflow. Finally, Section 6
presents the results from a number of analyses and optimizations to demonstrate the per-
formance of ADflow. Section 7 summarizes the main conclusions of this work.

2 Requirements for an efficient multidisciplinary flow solver
The desirable characteristics for a flow solver to be used for multidisciplinary analysis or
optimization are different from those of a stand-alone solver. The goal of a stand-alone flow
solver is to solve for a given geometry and flow condition with sufficient engineering accuracy
as quickly as possible. To solve a multidisciplinary analysis or optimization problem, the flow
solver runs as part of a larger framework and needs to be run multiple times in succession
without manual intervention. This has several implications for the flow solver requirements,
as detailed below.

2.1 Solution failure handling

When using a CFD solver within an automatic process, as is necessary for multidisciplinary
analysis and optimization, the solver is often required to analyze a wide range of operating
points without user intervention. In this scenario, it is likely that the flow solver will be
tasked to run one or more analyses that fail to generate an acceptable solution. For a truly
automatic procedure, the solver must fail gracefully without incurring an unrecoverable fault.
This is particularly important for HPC simulations where the overall process can takes several
hours or days, and aborted processes incur the additional cost of resubmitting the job and
waiting for its turn in the queue.

As a result, an automated process requires good exception handling to be included in the
solver. The important cases that need to be handled are when the solution fully converges,
diverges, partially converges, stalls, or produces a NaN (not a number) during computation.
Most of these cases are simple to handle by monitoring the residual of the flow equations
and using logic trees. The various cases can then be handled by returning boolean values to
the user or to the driving algorithm upon completion.

The major exception to this is the case where NaNs are encountered. In this case, the
solver needs to be reset, including a full re-initialization of the flow to ensure that all of
the NaNs in memory are purged so that subsequent flow solutions are not aborted because
of a preexisting NaN in memory. While fully resetting the flow solution adds cost to the
overall process, it is still far more efficient than re-initializing the flow solver, including the
reallocation of all the required memory, as would be required for a stand alone solver.

3

2.2 Solution restart

A second implication from the requirement to run several solutions automatically in sequence
is that there is a strong motivation for minimizing the cost of each solution in the sequence.
The simplest way to accomplish this is to implement a solution restart procedure, where
each solution after the first one starts with the converged state of the previous one. In
many cases, for example when computing drag polars, parameters sweeps, and performing
gradient-based optimizations, this previous solution state is a better starting point than the
default uniform flow. While this can be accomplished with file I/O for most solvers, it is
much faster to do through memory. Solution restarts can also be combined with a good
choice of algorithm to speed up the subsequent solutions. In particular, Newton’s method
yields excellent terminal convergence with a good starting point, a property that can be
utilized when the solver is restarted with the previous solution as the initial guess. For cases
where this previous solution is not a good starting point, this restart functionality should be
made accessible as an option through the API, allowing the user to disable this functionality
if starting from a uniform flow is more beneficial.

2.3 Robust startup

Having a robust startup method is useful regardless of how a flow solver is being used.
However, in our case, where we compute several consecutive solutions in an automated
fashion, having a robust startup method is extremely important. The solver needs to be
able to converge to a solution from the wide variety of starting points determined by the
automated process.

This is also needed every time the flow is reset due to a bad solution because a full
startup is required at the subsequent solution point. Furthermore, in the context of design
optimization, the optimizer is likely to try infeasible intermediate designs, such as cases that
exhibit massive flow separation. While Newton’s method yields good terminal convergence,
it usually fails in the early stages of convergence for these extreme cases. These factors
increase the need for a robust startup method.

2.4 Fine-grained iteration control

When using a flow solver in a coupled analysis (for example, coupled with an external
structural solver or a propulsion model) it is also important to be able to control the number
of iterations performed for a given solution. In many of these cases, it has been shown that
completing partial flow solutions between coupling updates allows the coupled solution to be
completed for only a marginal increase in the total flow solution cost. This has been shown
for example, in static aeroelastic analysis by Kenway et al. [5], who demonstrated that a
relative convergence tolerance of 0.1 per cycle for the flow solver is sufficient to converge the
system.

4

2.5 Efficient convergence through all phases of solution

A typical external aerodynamic simulation, such as those we compute with ADflow, can be
split into three phases: startup, transition, and terminal. In the startup phase, the initial
flow solution interacts with the near-field of the aerodynamic surface. In the transition
analysis phase, the flow solver handles the interactions between the near-field solution and
the far-field boundaries. In the terminal phase, the solver has already captured the overall
flow patterns and converges the numerical solution of the flow to further reduce the residuals
to the specified convergence tolerance.

Conventional engineering flow simulations tend to focus on the first two phases. This
is because it is only necessary to converge through the transition phase of the solution
far enough to have engineering confidence in the solution. However, when performing an
optimization, tight numerical convergence of the solution is desirable, especially towards the
end of the optimization process, so all three phases of the solution become important.

Different algorithms have different convergence characteristics in each of these phases.
Therefore, it becomes important to be able to switch easily between solution algorithms
during each simulation to maximize the convergence performance. These switches should be
automatic and be based on the relative reduction of the nonlinear residual norm, which is a
good metric for monitoring the convergence stage.

2.6 Direct memory access and API

The most common approach for handling stand-alone flow solvers in either optimization or
multidisciplinary analysis is through file I/O. Using this approach, a unifying framework or
driving script is configured to automatically generate input files and parse output files for
the various solvers and optimizers in use. While this technique can almost always be used
to couple codes together, it has several drawbacks.

The first drawback is the limited availability of disk bandwidth and the associated wall-
time required to write, read, and parse the associated data. On massively parallel computing
machines, file I/O is typically a shared resource, and therefore, the decrease in throughput
experienced by a given user can be significant. The data transfer speeds that can be sustained
between computational nodes with a high speed network far exceeds the speeds obtained
with file I/O. Using parallel solution techniques for multiple disciplines or optimizers further
complicates the information transfer.

The second drawback of the file I/O approach is the potential loss of accuracy. If the
analysis output is written using ASCII with a limited number of digits or using binary with
single precision (to save disk space and I/O time), information is lost relative to an initial
double precision reference when the information is subsequently reloaded. To eliminate this
discrepancy, it is necessary to use binary double precision values for all saved information,
which leads to high disk usage.

The third drawback is the repeated execution of the same stand-alone code. Each time a
code is called, a new process must be started, and one-time initialization functions are typi-
cally performed. These operations are typically not as optimized for speed as the remainder
of the code. In addition, during optimization and multidisciplinary analysis, successive solu-

5

tions are often closely related. For iterative methods, it is prudent to reuse this information
from one solution to the next to reduce computational cost. This operation requires a restart
capability, which is generally not an onerous requirement, but it does increase the amount of
information to be written to and read from the disk. These two factors make it significantly
more expensive to run many subsequent analyses with a stand alone code as compared to a
code run as a library with an API.

Unfortunately, the file I/O approach is the only option if an API is not supplied with
direct access to the required functions, as is often the case with commercial codes. To avoid
the pitfalls of file I/O, it is critical that all data transfer from the CFD code occur strictly
using direct memory access. Using this approach, the analysis code is compiled as a library,
rather than a stand-alone executable, and a process script is used to direct the sequence of
operations performed during the analysis or optimization. The process script then configures
each subsequent analysis to run directly, rather than through an input file. This allows all the
data that has to be transferred in and out of the CFD solver—the aerodynamic states, forces,
and gradients, for example—to be passed through memory. This eliminates the need to write
any data to disk, which greatly reduces the cost of cycling iterations. Since we are passing
variables through memory, there is no cost to stopping and starting the iteration process,
which happens when updating coupling variables or when switching iteration algorithms.
Kenway [6] compares the relative cost of direct memory access and file I/O approaches for a
static aeroelastic solution with ADflow, where he found that the I/O approach was twice as
costly.

2.7 Code efficiency

Code efficiency considerations are more important for codes used in multidisciplinary analysis
and optimization. This is mostly because the codes run many times to iteratively optimize
the design. This iterative process introduces an additional cost multiplier on the already
expensive analysis routines. Therefore, it is particularly important to improve the computa-
tional efficiency of analysis codes that are used in multidisciplinary design optimization.

To develop efficient code, we consider three levels of efficiency. The first and most im-
portant level is algorithmic efficiency, which is achieved by using state-of-the-art algorithms
to converge the linear and nonlinear systems of equations that arise during an optimization
process. The next level of efficiency comes from having a direct-memory-access API, which
eliminates the impact of any file I/O limitations on the performance of the solver, as previ-
ously mentioned. The final level of efficiency requires code optimizations that are specific to
the algorithms and hardware being used. These optimizations can include reducing memory
bandwidth limitations, maximizing vectorization, minimizing cache misses, and other similar
improvements.

6

2.8 Additional requirements for efficient multidisciplinary design opti-
mization

While having the capabilities listed in the previous subsections is sufficient to enable efficient
multidisciplinary analysis, given the high cost of analyzing most multidisciplinary systems, it
is important to use efficient optimization methods as well as efficient solvers when conducting
multidisciplinary optimization.

As shown in the study by Yu et al. [7], gradient-based optimization algorithms are
much more efficient at finding optimal solutions for CFD-based optimization problems than
gradient-free optimization algorithms. To this end, not only is it important to have efficient
primal solution algorithms, but to also have efficient computation of derivatives for a multi-
disciplinary flow solver. In particular, efficient computation of derivatives of a few functions
of interest with respect to a large number of design variables is required. The adjoint method
is a useful approach for accomplishing this [8–10]. Kenway et al. [11] describes efficient ap-
proaches for implementing adjoint methods for CFD solvers and benchmarks ADflow and
OpenFOAM adjoint implementations.

3 The CFD solver as a library
Many of the requirements listed in the previous section can be achieved by viewing the CFD
solver as a library. This approach enables the required level of access to the code using an
API while maintaining modularity in terms of code development. Furthermore, a common
interface can be developed for multiple CFD codes, enabling the interchangeable use of these
CFD solvers as modular components in a broader computational framework.

3.1 Code wrapping

To treat the solver as a library and implement the API, it is necessary to wrap its functionality
to control it using a scripting language. There are three approaches for providing scripting
capability for a solver with increasing levels of intrusiveness:

File I/O wrapping: This is the simplest, least intrusive, and most universal of the methods
because it can be done by treating the solver as a “black box” without having access
to the source code. Using this approach, a script writes an input file, executes the
solver, and then parses the resulting output. However, this approach suffers from the
drawbacks described previously. The DAFoam wrapper for OpenFOAM developed by
He et al. [12] is an example of this approach.

Function wrapping: This level of wrapping exposes some but not all of the underlying
methods in the solver. This is the approach used to wrap ADflow. For example,
methods such as solve or getSolution are made available through the API, but the
lower-level functions used by the solver are not. This method is often employed when
the code was written originally as a stand-alone solver and just a subset of high-level
methods required for the API are exposed for the scripting level interface.

7

Direct object wrapping: The most intrusive wrapping approach exposes all of the un-
derlying data and methods to the scripting interface. The scripting code is responsible
for creating all the required objects, down to the lowest level. This approach is most
often used when developing a wrapper for an object-oriented code written in C++.
An example of a CFD code that uses this approach is elsA [13, 14].

3.2 Example workflow using Python

The vast majority of CFD programs rely on either a graphical user interface (GUI) or text
user interface (TUI) to control the execution of the solver. It is often the case that a GUI is
added on top of an existing TUI, such as the commercial packaging of the OpenFOAM open-
source solver [15, 16]. While GUIs help inexperienced users quickly learn the software, they
are usually not flexible enough to effectively implement the scenarios 3 through 5 described
in Section 1. For these more complex tasks, the ability to quickly and easily script the
computational software is a necessity.

The most common way to script TUI-based analysis methods is to use a scripting language
to automatically generate an input file, launch the solver, and then parse the resulting text-
based output for further analysis. This procedure is tedious and error prone, and output
parsing tends to be fragile. A better approach is to perform scripting using the CFD solver
directly. Furthermore, with an easy to use yet powerful scripting language such as Python,
simple scripts can completely replace the TUI. The use of scripting to control the solver
facilitates the transition to the more extensive scripting required for complex tasks.

Figure 1: Example of control script for solving a flow problem.

Import modules

from solverlib import FLOWSolver

from baseclasses import AeroProblem

Aerodynamic problem description

ap = AeroProblem(name=’flow’, mach=0.5, alpha=1.0, altitude=0.0, areaRef=1.0, chordRef=1.0)

options = {User Options} # Only non−default options
CFDSolver = FLOWSolver(options=options) # Create solver object

CFDSolver(ap) # Solve problem

Figure 1 shows a simple control script for solving a flow problem. This script includes the
main settings of a typical TUI file for a CFD solver: flow conditions, normalization values,
and solver parameters. The only additional complexity comes from the module imports and
the creation of the two required Python objects, AeroProblem and CFDSolver. This type of
run file is functionally equivalent to a TUI file. The power of this approach comes from the
flexibility of implementing both simple and complex automation tasks.

Consider, for example, the creation of a drag polar for an airfoil, which requires a sweep
over a range of angle of attack variables. Figure 2 details the script that can do this task with
Python. The polar requires only a simple for loop over the required angle of attack range.

8

The script writes the results to a simple text file for further processing. In this script, we also
take the opportunity to compute a derived value (the lift-to-drag ratio), demonstrating the
ability to perform customized post-processing online with the aerodynamic simulations. This
example highlights some of the advantages of the pure scripting approach over a scripting
language that creates an input file and parses the results: No restart files are written or
read, and even though the solver is called multiple times, the initialization needs to be run
only once.

Figure 2: Control script for creating a drag polar.

Import modules

from solverlib import FLOWSolver

from baseclasses import AeroProblem

Aerodynamic problem description

ap = AeroProblem(name=’flow’, mach=0.5, alpha=1.0, altitude=0.0, areaRef=1.0, chordRef=1.0)

options = {User Options} # Only non−default options
CFDSolver = FLOWSolver(options=options) # Create solver object

f = open(’polar.txt’,’w’)

for i in range(0,10,11):

ap.alpha = i # Set new angle of attack

CFDSolver(ap) # Solve problem

funcs = {}
CFDSolver.evalFunctions(ap, funcs) # Extract solution

f.write(’%g %g %g %g\n’%(ap.alpha, funcs[’cl’], funcs[’cd’], funcs[’cl’]/funcs[’cd’]))
f.close()

4 Python API
The key to using the flow solver with a scripting language effectively is a well-designed
API. To that end, we have developed a Python API that meets all of the requirements
for a solver that is to be used in multidisciplinary analysis and design optimization. This
API is extensible to various types of flow solvers and has been demonstrated on several
different types of codes, including a structured multi-block and overset solver (ADflow), an
unstructured solver (OpenFOAM) [15, 16], a 3D surface panel code (Tripan) [17], and a 2D
airfoil solver (XFoil) [18]. The following subsections describe the key elements of this API.

4.1 API concept

The fundamental idea driving the development of this API is the concept that in a truly
extensible multidisciplinary framework, all of the components must be modular. It is unreal-
istic to expect that all disciplines in a multidisciplinary analysis to be coded in a monolithic
framework. This would limit the ability of the code to be extended to accommodate future

9

needs. Therefore, we define the boundaries of a typical CFD analysis to establish a general
method for modularizing CFD codes.

The key concept for enabling this is to define the geometric surface of the CFD problem
as the point of interaction for the flow solver. In most CFD problems, this geometric surface
defines the boundary of the flow domain. This is true regardless of the flow solver fidelity
level. Both analyses with a volumetric analysis domain, such as RANS and Euler CFD
codes, and analyses with a surface domain, such as a panel code, can be handled using this
approach.

Furthermore, having the interface defined at the surface allows for straightforward use
in both multidisciplinary analysis and design optimization applications. It is on this surface
that physical quantities are integrated. For example, the transfers of the heat fluxes in an
aerothermodynamic analyses or the displacements and forces in an aerostructural analyses
are done through this surface.

A second important concept for the API is the separation between the flow conditions
definition for a given analysis and the geometric definition of the problem. Several tasks,
from parameters sweeps to multipoint optimization problems, require the analysis of a single
geometry at multiple flow conditions. By separating the definition of the from the solver
itself, it is possible to analyze any number of these flow conditions without re-initializing the
flow solver and incurring the associated startup penalty.

4.2 API layout

Using the concepts mentioned above, the API needs to have the ability to:

• Manipulate the surface of the CFD geometry

• Specify the flow conditions

• Solve for the flow state variables

• Evaluate the functions of interest

• Recover the solution from a failure state

• Evaluate the solver derivatives

Here, we elaborate on each of these requirements. In particular, we detail the specific
implementation we have developed for the API and how each of the specified requirements
is met through the API functionality. Figures 3 and 4 show simplified UML diagrams for
the solver and aerodynamic problem classes that embody the API outlined here. The figures
are simplified by leaving out some of the detailed private attributes and functions that are
solver specific and not part of the general API. The basic API layout is composed of a subset
of methods in these figures that provide the essential functionality.

10

4.2.1 ADflow class layout

The ADflow API uses class inheritance, as shown in Figure 3, where each class inherits the
properties and methods of all of the classes to its left. The base class is the Python object

class, which is part of the Python standard and is the basic building block for all classes in
this language.

The BaseSolver class is used for different types of solvers and defines methods for option
handling and class naming, which are common to all the solvers we implement. The Aero-
Solver class is the first layer of specialization for aerodynamic solvers. This class contains
attributes to access mesh and geometry objects, as well as basic implementations of most of
the API calls outlined in this work. The fourth and final class is the ADFLOW class, which
contains specific implementations of the functionality described in this work.

The purpose of each of these calls is provided in the following sections. Functions starting
and ending with are intrinsic Python functions that are part of a standard Python class
definition.

ADFLOW
curAP
mesh
_updateGeomInfo
adflow
comm
coords0
DVGeo

__init__
solveAdjoint
computeJacobianVectorProductFwd
computeJacobianVectorProductBwd
getSurfaceConnectivity
setStates
setAdjoint
setMesh
solveAdjointForRHS
writeSolution
setAeroProblem
getResNorms
__call__
setDisplacements
resetAdjoint
__del__
resetFlow
setSurfaceCoordinates
evalFunctionsSens
evalFunctions
getSurfaceCoordinates
getResidual
getAdjoint
getStates
getForces

object

AeroSolver

families
DVGeo
mesh
_updateGeomInfo

getStates
setStates
checkSolutionFailure
__init__
solveAdjoint
getResNorms
getResidual
setMesh
setDVGeo
resetFlow
getInitialSurfaceCoordinates
setSurfaceCoordinates
getForces
getSurfaceCoordinates

BaseSolver

solverCreated
imOptions
name
category
defaultOptions
options

getOption
printCurrentOptions
__init__
__call__
printModifiedOptions
setOption

Figure 3: Simplified UML diagram of ADflow and its base classes.

4.2.2 AeroProblem class layout

The AeroProblem class (shown in Figure) 4 stores and updates all of the information required
to run an aerodynamic solution at a given flow condition. This includes functions to treat
these variables as design variables and to generate a complete thermodynamic state from
various combinations of input data.

11

This class contains an instance of the ICAOAtmosphere class in the atm attribute. This
class has a smoothed implementation of the ICAO standard atmosphere tables that computes
fluid temperature, pressure, and density for the altitude corresponding to the flight condition.

AeroProblem

R
V
gamma
inputs
q
a
SSuthDim
__dict__
altitude
name
funcNames
mach
T
TSuthDim
P
rho
atm
Pr
reynoldsLength
nu
mu
re
reynolds
muSuthDim
DVs
bcVarData

__init__
_setStates
_updateFromV
setDesignVars
addVariablesPyOpt
_updateFromRe
addDV
evalFunctionsSens
evalFunctions
_updateFromM

object

ICAOAtmosphere

englishUnits

hermite
__call__
__init__
getTP

Figure 4: Simplified UML of the aerodynamic problem class.

4.2.3 Surface manipulation

There are three main functions required for the manipulation of the boundary surfaces of a
CFD problem, whose names are self explanatory: getSurfaceCoordinates,
setSurfaceCoordinates, and getSurfaceConnectivity. As previously mentioned, the
philosophy of this API is that these boundary surfaces represent the interface between the
CFD solver and other components or disciplines in a multidisciplinary analysis.

This approach allows the API to be used for both 3D volume mesh codes, such as those
based on the RANS or Euler equations, or lower-fidelity codes, such as panel codes. However,
this means that any mesh manipulation tasks, such as mesh warping, mesh regeneration, or
mesh adaptation for volume meshes must be handled inside the flow solver definition. This
can be accomplished in many different ways and is solver specific. Therefore, we do not
attempt to prescribe an approach to handling volume meshes in this API. In ADflow, the
volume mesh is handled by plugging an additional Python module into the flow solver at the
Python layer, as shown in Figure 7, allowing different mesh manipulation tools to be used

12

as needed.
Figure 5 shows the getSurfaceCoordinates function, which returns the coordinates of

CFD boundary surfaces. The default functionality is to return all solid wall boundaries of
the model, while the groupName argument allows the user to select specific subsets of the
boundary points to be returned.

Subset-selection is important for some types of multidisciplinary analysis. For example, in
a static aeroelastic (aerostructural) analysis with a wing-body-tail CFD mesh that only has
a wing-box structure, the user would probably not want the deflections of the wing structure
to affect the fuselage or the tail. With this API, the user can request just the coordinates of
the wing surface, so that this subset can be used to create the association between the aero-
dynamic and structural meshes. The surfaces are typically stored in a distributed manner,
with a portion of the surface on each processor, eliminating serial processing bottlenecks.

Figure 5: Function that returns the surface coordinates that define the boundary surface of
the flow problem.

def getSurfaceCoordinates(self, groupName=None):

"""

Return the coordinates for the surfaces defined by groupName.

"""

return coords

The getSurfaceConnectivity function returns a connectivity array for the surface co-
ordinates. This connectivity describes the boundary surface mesh of the CFD based on the
coordinates returned in the getSurfaceCoordinates function. This additional information
is required to facilitate the communication with other disciplines, such as structural analysis
and mesh deformation.

The final surface manipulation function is setSurfaceCoordinates, which allows the
coordinates, as returned in getSurfaceCoordinates to be updated at any time.

4.2.4 Set flow conditions

The function that sets the flow conditions is internal to the solver class and is not part of
the API. The flow condition information is contained in an AeroProblem class. This class
allows the user to specify the required flow conditions in a variety of ways. For external flow
calculations, the class computes the full set of thermodynamic variables required by the flow
solver. Additionally, specific boundary conditions with specified flow properties can be set
for boundaries, such as inflow or outflow conditions. Any number of these problems can be
setup and passed to the solver for sequential solutions.

4.2.5 Solve flow problem

The core solver function is in the call method, whose signature is:

13

def call (self, aeroProblem):

This function takes in an AeroProblem object and updates any solver specific settings for
the information contained in the AeroProblem. It also updates the volume mesh based on
the current surface, configures the solver with the current options, and handles the file input
and output.

This function can be configured to run for a fixed number of iterations, a fixed wall
time, or until the solver reaches a specific convergence tolerance. This allows for fine-grained
control over the flow solution process, which is useful for optimizations and multidisciplinary
analyses, as previously mentioned.

4.2.6 Evaluate quantities of interest

The evalFunctions method evaluates the flow solution for quantities of interest, and has
the following signature:

def evalFunctions(self, aeroProblem , funcs, evalFuncs=None):

The incoming AeroProblem identifies the flow solution to be used, while evalFuncs is
a list of the functions to be evaluated. The evaluated functions are added to the funcs

dictionary, which can be accessed from the main script. By using a dictionary, we identify
the different functions evaluated from separate AeroProblems with unique keys, making it
substantially easier to handle complex cases with many functions and flow solutions.

4.2.7 Recover from a failed solution

Being able to recover from a failed solution is critical for any automated flow solution pro-
cess. As mentioned previously, it is impossible to guarantee that every flow solution in an
automated process will finish successfully.

Fully converged and partially converged solutions are considered successful solutions.
These are picked up by the logic tree in the solver and return FailedSolution = False.
A solution is considered partially converged if it terminates within a predefined tolerance of
the target convergence.

Solutions that terminate due to the maximum iteration limit without diverging and with-
out successfully converging are considered stalled solutions. Stalled solutions are considered
solution failures, so they return FailedSolution = True, but because the solution does not
contain any NaN values, it does not require any special treatment.

A solution is considered diverged if the norm of the total residual increases beyond a
certain threshold. Diverged solutions are also considered to be failed solutions and return
FailedSolution = True. On its own, a diverged solution is not an issue and does not need
any special treatment. However, diverged solutions in the CFD solver often trigger an NaN,
requiring the flow solution to be re-initialized.

If the solution process produces a NaN, the automated process is interrupted and cannot
continue unless all of the NaN’s are eliminated from the set of variables that define the state

14

of the system, both in Python and in the compiled library. In ADflow, this re-initialization
is accomplished by the resetFlow routine, which purges and resets all of the variables
in memory both in the Python layer and in the compiled library. This method has the
signature:

def resetFlow(self, aeroProblem):

where aeroProblem corresponds to the flow condition associated with the failed solution.

4.2.8 Evaluate the solver derivatives

As we mentioned in Section 2.8, when running optimizations using expensive computa-
tions, such as those inherent in CFD based optimization, it is strongly recommended to
use gradient-based optimization methods. To use these methods, we need to compute the
derivatives of the objective function and all the constraints with respect to all the design
variables in an efficient manner. Therefore, the definition of the API includes methods for
computing the solver derivatives.

The standard function for users who just want the aerodynamic derivatives for design is
the high-level function evalFunctionsSens(). This function handles the entire derivative
computation process and updates a dictionary provided by the user with the computed
values. For evalFunctionsSens to compute the total derivative of the functions of interest,
we must be able to compute the entire derivative chain back to the design variables. The
derivatives in ADflow are computed using the adjoint method, as described by Kenway et al.
[11].

4.3 Advanced API layout

A significant amount of functionality can be implemented using the basic API capability.
However, with an additional set of functions, we can enable finer grained inter-connectivity
in frameworks, such as OpenMDAO [19], which uses the modular analysis and unified deriva-
tives (MAUD) architecture [20]. Specifically, we need functions to:

• Get and set the solver state variables

• Evaluate the solver residuals

• Get and set the adjoint variables

• Get and set coupling variables

• Evaluate matrix-vector products with the state Jacobian and its transpose

• Solve the adjoint equation with arbitrary right-hand sides

The advanced API methods are listed in Figures 3 and 4, and are detailed below.

15

4.3.1 Get and set states

The getStates and setStates functions are useful for cases where multiple flow solutions
are required. The function signatures for these methods are:

def getStates(self):

return states

def setStates(self, states):

This functionality serves two purposes. First, it allows the state of the system to be saved
from one flow solution to the next for a straight-forward restart process. This is particularly
important when running multiple cases, such as in multipoint optimization, where the flow
solver must regularly switch between flow cases. Second, this functionality allows for tighter
integration with frameworks such as OpenMDAO [19]. By providing access to the flow states,
the solver can be integrated into various different coupled architectures.

4.3.2 Evaluate residuals

Direct evaluation of the flow residuals and their norms is another API functionality that
helps with coupled integration. The signatures for these calls are:

def getResidual(self, aeroProblem):

return res

def getResNorms(self):

return totalr0, totalrstart , totalrfinal

These functions evaluate the solver residuals and their norm at the Python level and can
help with the implementation of various multidisciplinary solver architectures.

4.3.3 Get and set adjoint states

Getting and setting the adjoint states plays the same role for the adjoint solution as getting
and setting the primal states for the primal solution. It allows for quicker restarts when
multiple adjoint solutions are required and it also allows for a more seamless integration of the
adjoint system into frameworks that compute coupled derivatives, such as OpenMDAO [19].

4.3.4 Get and set coupling variables

Getting and setting coupling variables is essential for coupled analysis. While this can be
done through file I/O, it is far more efficient to do it through the direct-memory-access API.
However, the specific nature of the coupling dictates that there needs to be a variety of
functions to accomplish this goal. In the cases we have dealt with, these functions include
functions to access the distributed forces on the surface, to update the surface shape based
on displacements, and to update boundary conditions based on propulsion variables. These
functions have the same general form as the “get” and “set” state functions: they either
take in or return a vector of coupling variables.

16

4.3.5 Evaluate matrix-vector products with the state Jacobian

Being able to compute matrix-vector products with the partial derivatives of the functions
and residuals in the flow solver from the API is extremely useful. In this context, we mean
partial derivatives to be the derivatives of these quantities with out re-solving the non linear
system. These matrix-vector products can be used in adjoint solvers [11] and Newton-Krylov
solvers [21], so being able to evaluate these derivatives through the API allows tremendous
flexibility when setting up single discipline or multidisciplinary solvers.

The lower-level API functions used for direct interaction with the aerodynamic partial
derivative computations are the computeJacobianVectorProductFwd() and
computeJacobianVectorProductBwd() functions, which are used to evaluate vector prod-
ucts with the state Jacobian matrix, and its transpose respectively. These functions allow
the user to compute any combination of partial derivatives through the solver, depending on
what input arguments are provided.

Figure 6 shows the specific implementation of the backward variant, which computes the
transpose vector products used for adjoint derivative computation. This allows derivatives
to be computed for any combination of algorithmic differentiation seeds provided and can
either be used to compute stand-alone derivative vectors or linear combinations of those
derivatives as necessary.

Figure 6: Function for computing the Jacobian-vector products in reverse mode

def computeJacobianVectorProductBwd(self, resBar=None, funcsBar=None, fBar=None,

wDeriv=None, xVDeriv=None, xSDeriv=None,

xDvDeriv=None, xDvDerivAero=None):

"""This the main Python gateway for producing reverse mode Jacobian

vector products. It is not generally called by the user by

rather internally or from another solver. A mesh object must

be present for the xSDeriv=True flag and a mesh and DVGeo

object must be present for xDvDeriv=True flag. Note that more

than one of the specified return flags may be specified. If

more than one return is specified , the order of return is :

(wDeriv, xVDeriv, XsDeriv, xDvDeriv, dXdvDerivAero).

4.3.6 Evaluate adjoint solver with arbitrary right-hand sides

The final functionality in the advanced API is the ability to solve the adjoint linear system
for arbitrary right-hand-side vectors. The core benefit of the adjoint method is its ability
to compute gradients efficiently with respect to a small number of outputs. It is, therefore,
important to minimize the number of output functions that require an adjoint solution. In
multidisciplinary systems, the functions of interest are typically multidisciplinary as well. It
is more efficient to compute the combined multidisciplinary right-hand side for these func-
tions and solve a single adjoint system, rather than having to compute the adjoint solution

17

for each disciplinary output individually. This requires the API to handle communication
of arbitrary right-hand side vectors to the adjoint solver. Frameworks, such as OpenM-
DAO [19], also benefit from this functionality, since they will often create their own right
hand side combinations for the adjoint solver when that functionality is supported.

4.4 Plug-in API layout

In addition to the core functionality of the flow solver, the API defines a pair of plug-in
handles for specific cases. These plug-in extensions are set using the setMesh and setDVGeo

methods:

def setMesh(self, mesh):

self.mesh = mesh

def setDVGeo(self, DVGeo):

self.DVGeo = DVGeo

For volumetric flow solvers, such as ADflow, the setMesh extension allows a mesh manipu-
lation object to be included in the flow solver. This external object is used inside the flow
solver to translate the surface perturbations set in the setSurfaceCoordinates call in the
main API to the volume mesh defined in the flow solver. It is also responsible for computing
the sensitivity of this operation during the derivative process. For surface based solvers, such
as panel codes, this extension to the API is not necessary.

If physically meaningful shape variables are desired for design perturbation, an external
geometry manipulation module is required to define the perturbations to the surface mesh
as a function of theses variables [22]. This functionality is added to the flow solver through
the setDVGeo extension. Again, this external object is responsible for providing both the
relationship between the geometric design variables and the surface mesh coordinates as well
as the derivatives of these operations. Objects that satisfy these needs in conjunction with
ADflow are part of the broader MACH-Aero framework, which integrates all the components
required to perform aerodynamic shape optimization 2.

5 ADflow: A CFD solver for multidisciplinary analysis and
optimization

The concepts and requirements detailed so far have been general, solver-independent ideas,
intended to serve as a guide for solver development. However, specific details and examples
are helpful for a successful implementation, so here we describe how the requirements for
multidisciplinary design analysis and optimization were met in ADflow. The source code for
ADflow is distributed under the GNU Lesser General Public License (LGPL), version 2.1,
and is maintained in a GitHub repository. 3 This section starts with a brief introduction to

2https://github.com/mdolab/mach-aero, accessed March 2020
3https://github.com/mdolab/adflow, accessed March 2020

18

https://github.com/mdolab/mach-aero
https://github.com/mdolab/adflow

the computational models in ADflow After detailing how the requirements are met, we list
the various studies that ADflow has made possible in the last few years.

5.1 Computational model

ADflow can solve the Euler, laminar Navier–Stokes, and RANS equations on structured,
multi-block and overset meshes using a second-order-accurate finite-volume approach for the
spatial discretization. The inviscid flux calculations can be done with either a Jameson–
Schmidt–Turkel scheme using scalar dissipation [23], a matrix dissipation scheme based on
the the work of Turkel and Vatsa [24], or a monotone upstream-centered scheme for conser-
vation laws (MUSCL) based on the work of van Leer [25] and Roe [26]. The viscous flux
calculations use the Green–Gauss approach.

ADflow contains a number of turbulence models for the RANS simulations, including
Spalart–Allmaras (SA) [27], Wilcox k-ω [28], and Menter shear stress transport [29]. The
default turbulence model in ADflow is the SA model, which is fully differentiated for gradient
computations with the adjoint method [11]. ADflow can use different variants of the SA
model as defined in NASA Turbulence Modeling Resource [30]; we use primarily the SA-
noft2 variant.

5.2 Enabling multidisciplinary design analysis and optimization

The main enabler for multidisciplinary analysis and optimization in ADflow is the Python
API, which has the characteristics described in the previous section. Using this API, we can
couple ADflow to other analysis codes efficiently using direct memory access. Furthermore,
we can easily obtain the desired solver behavior while recovering from failed solutions or
solver restarts between optimization iterations.

These functionalities introduced by the API address many of the challenges we listed in
the previous sections. Figure 7 shows the general concept of the ADflow API and how it
interacts with other components in a multidisciplinary context. In this figure, the rounded-
edge blocks are required Python objects, while the hexagonal blocks are optional Python
objects. The regular rectangles are data passed by function calls. Items connected by the
lighter arrows are optional, while the others are required. Thus, the most basic analysis
possible includes an aerodynamic problem and the core solver, and computes values for
integrated quantities such as CL and CD. More complicated analyses build up from this.

Another important feature of ADflow is the nonlinear solution algorithm. The conver-
gence for steady-state simulations is determined by monitoring the L2 norm of the residual
vector. ADflow computes this norm before each nonlinear iteration and selects the desired
nonlinear solver scheme based on the relative convergence metric, which is given by dividing
the current residual norm by the initial residual norm that is calculated with free stream
conditions. This provides flexibility in the nonlinear solver schemes and the code can select
the best solver algorithm based on the convergence stage.

This computation is also performed for subsequent solutions during the optimization
process, but the solver uses the initial residual norm for relative convergence calculations as

19

ADflow
core solver

Aerodynamic problem 1

Integrated quantities
(CL, CD, CM)

Surface quantities
(forces, heat fluxes, etc.)

Geometry
object

Mesh
object

Surface
displacements

Boundary condition
values

Aerodynamic problem 2

Aerodynamic problem 3

Figure 7: ADflow integration with other components and disciplines in a multidisciplinary
context.

the reference. This enables the solver to determine the convergence stage even when we use
the previous converged state as the initial guess.

For the initial stages of convergence, we have two alternative algorithms: multi-grid, and
approximate Newton–Krylov (ANK). The multi-grid algorithms in ADflow can be used with
multi-block meshes, where obtaining coarser levels of the mesh is straightforward for meshes
with the correct number of nodes or cells. Using this approach, ADflow can use a 5-stage
4th order accurate Runge–Kutta or the D3ADI [31] schemes as smoothers in the multi-grid
startup process.

The ANK solver was developed to add robustness to the pure NK algorithm [21]. It
uses a pseudo-transient continuation (PTC) method and an approximate Jacobian with the
backward Euler time-stepping scheme. This solver does not require coarser levels of the mesh
and it is therefore applicable to both multi-block and overset meshes. The approximate
nature of the linear system used in the solver, along with PTC, allows the algorithm to
progress the solution even when the state is far away from the final solution. The adaptive
nature of our implementation allows the solver to reduce the amount of approximation in
the linear approximation as the solver converges. This allows the solver to improve in
performance as the solution gets closer to the converged state.

When tuning an ANK solver, there is a trade-off between efficiency and robustness. We
have tuned the ANK solver defaults to favor robustness. This is because in an optimization
context, the optimizer is likely to try infeasible intermediate designs, and also because an
interruption of the optimization process is costly. The robustness of the ANK solver enables
ADflow to obtain steady-state solutions even with these intermediate cases, which helps the
optimization convergence by reducing the number of failed flow solutions.

For the terminal stage of convergence, ADflow switches to the Newton–Krylov (NK)
solver. This solver uses Newton’s method to converge the nonlinear system and a Krylov

20

subspace solver to solve the resulting linear systems. This approach can yield convergence
approaching quadratic, but only if the initial guess is in the basin of attraction of the solu-
tion. Therefore, we only use this method when the relative convergence of the more robust
nonlinear solver is below 10−3 − 10−5.

Efficient solver restarting is important within an optimization context, where the flow
solver is repeatedly called to solve similar problems between optimization iterations. During
successive CFD simulations, we use the converged solution from the previous optimization
iteration as the initial guess. If the design changes are large, the nonlinear residual norm
increases, and the solver defaults to one of the desired startup strategies. This is done to
prevent failures that might occur with the NK solver, when the initial guess is far from the
solution. However, if the design changes are small (as it is likely to happen during the final
stages of an optimization process), the previous flow solution provides a good enough initial
guess for the NK solver to converge. As a result, ADflow can rapidly obtain solutions for
new problems with slightly perturbed designs.

When using gradient-based optimization, the flow solver needs to provide the derivatives
of the functions of interest (objective and constraint functions) with respect to the design
variables. In aerodynamic design optimization problems of interest, there are usually far
more design variables than functions of interest. As a result, the derivatives can be efficiently
computed using the adjoint method.

Kenway et al. [11] detail the adjoint solver implementation in ADflow. The overall ap-
proach is to use automatic differentiation to compute the terms necessary to form the discrete
adjoint equations, resulting in accurate derivatives. This approach to adjoint development
also reduces the overhead to maintaining the adjoint code, since the automatic differenti-
ation tool can be used to update the derivative code whenever changes are made in the
analysis code. Furthermore, the cost of the adjoint approach is independent of the number
of variables (but it scales with the number functions of interest), which makes it suitable for
solving large-scale aerodynamic shape optimization problems.

For computational efficiency, ADflow implements the three levels of improvements men-
tioned previously. First of all, we use state-of-the-art algorithms to converge the resulting
nonlinear and linear systems. The ANK, NK, and adjoint solvers use Jacobian-free methods
to solve the underlying linear solution algorithms. This minimizes the code memory require-
ments, while the solution algorithms themselves provide fast convergence for the nonlinear
and linear systems. Secondly, we have direct memory access between ADflow and other
analysis code we couple to it. This removes any file I/O bottlenecks. The flow solver is
only initialized once and the allocated memory is recycled only between design iterations.
Finally, ADflow uses a cache-blocking technique to minimize cache misses with the residual
calculations. Besides mitigating the memory access bottleneck, this also enables us to take
full advantage of the vector instruction sets in modern processor architectures. All these
enhancements contribute to the performance of ADflow and help reduce the cost of the
optimization problems to manageable levels.

In addition to these enhancements, various implementation details in ADflow help de-
velopers to easily extend the code for novel applications. Because the API is written in

21

Python, developers can use the flexibility of this object-oriented language to achieve the de-
sired results with minimal coding effort. On the other hand, the high-performance routines
in ADflow are written in Fortran 90. This enables the developers to use a compiled coding
language for parts of the implementation that are performance critical. Furthermore, this
Fortran layer is coded in a modular way, so developers can easily implement new turbulence
models or modify the governing equations without needing to change the core code. Finally,
we use the portable, extensible toolkit for scientific computation (PETSc) as the underly-
ing linear algebra package [32]. This provides us with state-of-the-art implementations of
modern linear algebra algorithms, which we rely on for the nonlinear and linear solvers in
ADflow. These factors lower the initial coding investment when implementing new features
in ADflow and enable users to extend the code for their multidisciplinary applications.

5.3 Previous results obtained with ADflow

ADflow is the core CFD solver in the multidisciplinary design optimization of aircraft with
high-fidelity (MACH) framework [5]. We have also used the ADflow API to develop an
OpenMDAO wrapper. We have used these two frameworks to solve the design optimization
problems listed in Table 1.

22

Table 1: Optimization problems solved with ADflow.

Application References

Aerodynamic shape optimization

2D transonic aerodynamic shape optimization [33, 34]
3D transonic aerodynamic shape optimization [35–38]
Optimization of novel configurations [39–41]
Formulation of buffet constraint for wing design optimization [42]
2D and 3D supersonic aerodynamic shape optimization [43]
Optimization with spatial integration constraints [44, 45]
Simultaneous design optimization of shape, trajectory, and aircraft allocation [46]

Aerostructural design optimization

Optimization of a transport configuration [47–49]
Optimization with tow-steered composite structures [50, 51]
Optimization of morphing trailing edge device [52, 53]
Optimization with flutter constraints [54–56]

Aeropropulsive design optimization

Boundary layer ingestion modeling [57]
Design optimization of a boundary layer ingestion system [58–61]

Design optimization of wind turbines

Aerodynamic shape optimization of wind turbine blades [62, 63]

Optimization of hydrofoils

Hydrodynamic hydrofoil shape optimization [64]
Hydrostructural optimization of metallic and composite hydrofoils [65–67]

We have used ADflow for both 2D and 3D aerodynamic shape optimization studies. Li
et al. [33] developed a data-based approach for analysis and optimization of airfoil shapes

23

that resulted in the online airfoil analysis and design optimization tool Webfoil. 4 Mangano
and Martins [43] performed multipoint shape optimization of airfoils with mixed transonic
and supersonic conditions. He et al. [34] developed a robust framework for aerodynamic
shape optimization and demonstrated it for an airfoil shape optimization that started from
a circle shape and converged to a supercritical airfoil.

Besides these 2D results, we have performed various investigations based on the NASA
Common Research Model (CRM) [68] for both aerodynamic and aerostructural shape op-
timization. These include single- and multipoint optimizations of the CRM wing [35, 37],
and the aerodynamic shape optimization of the CRM wing-body-tail configuration [38, 42].
Some of these cases are open benchmarks developed by the AIAA Aerodynamic Design
Optimization Discussion Group. While these efforts focused only on aerodynamics, they
demonstrate that ADflow can be used in design optimization with geometry manipulation
and mesh deformation algorithms.

We used ADflow along with Toolkit for the Analysis of Composite Structures (TACS) [69]
in the MACH framework to perform aerostructural design optimization. These include multi-
point [47] and multi-mission [48] optimizations of the CRM configuration that resulted in the
development of open benchmark cases for aerostructural design optimization studies, includ-
ing a higher aspect ratio version of the CRM configuration [49]. These studies demonstrate
the effectiveness of ADflow within a multidisciplinary analysis and optimization framework
that considers both aerodynamics and structures.

Using MACH, we have also applied our methodology to the design optimization of aircraft
utilizing new technologies, such as tow-steered composite wings [50, 51] and morphing wing
technology [36, 52, 53]. ADflow has been used in design optimization of novel configurations,
including flying wings [39], blended-wing-body aircraft [40], and the D8 configuration [70].
The overset implementation in ADflow [71] enabled us to create a component based aerody-
namic shape optimization framework [72], which was used to perform the design optimization
of a strut-braced wing configuration [41].

We have also coupled ADflow to pyCycle [73] using the OpenMDAO framework [19] to
perform aeropropulsive design optimization [59]. This coupling is important for studying
boundary layer ingestion concepts because they require the simultaneous consideration of
aerodynamics and propulsion [57]. This framework was used to optimize the design of the
STARC-ABL concept [58–61].

We have extended the MACH framework to handle spatial integration constraints [44, 45]
and we are currently developing a time-spectral formulation for flutter prediction [54–56].
Furthermore, we are improving the OpenMDAO integration of ADflow to achieve even more
flexibility to include other disciplines in the optimization formulations, such as a combined
design-allocation optimization problem [46].

Beyond the aircraft applications cited above, we have used ADflow in design optimization
of wind-turbines [62, 63] and hydrofoils [66, 67]. One set of baseline and optimized hydrofoils
was built and validated in a water tunnel, yielding good agreement with the numerical
predictions [65]. Even though ADflow solves the compressible flow equations, the design

4http://webfoil.engin.umich.edu

24

http://webfoil.engin.umich.edu

optimization capabilities of ADflow made it a good choice for these incompressible flow
design problems.

All of this work was made possible by the considerations we listed in the previous sub-
section. The flexibility of the API enabled us to couple ADflow to different frameworks and
disciplines, while the efficiency of the code reduced the cost of these massive problems.

6 Computational performance
While the performance of a multidisciplinary analysis and optimization setup depends on
many factors, we focus on the impact of treating the flow solver as a library using three
problems. These problems also serve as additional example problems that demonstrate the
flexibility of the API.

The first problem is a simple aerodynamic optimization with two design variables, which
gives an idea of the relative importance of different phases of the solutions process in an aero-
dynamic optimization. The second problem is a simple aerostructural analysis, which high-
lights the additional areas of a multidisciplinary analysis that become performance critical—
more specifically, the reduced cost of the flow solution process relative to other portions of
the analysis. Finally, in the third problem, we solve an aerostructural optimization problem
with the same two design variables. This case extends the multidisciplinary analysis com-
parison to a full optimization and further demonstrates how the API developed in this work
addresses those challenges.

All three cases are based on the CRM aircraft configuration that consists of wing, fuselage,
and horizontal tail. The results are reported in TauBench work units (TWU) as defined by
the guidelines from the International Workshop on High-Order CFD Methods 5. This allows
for a normalized comparison of the results between different computers and codes, rather
than relying on a more subjective iteration count or wall time comparison.

6.1 TauBench reference

To benchmark the cost of the computations in this work, we use the TauBench reference test.
As outlined in the guidelines, we have run TauBench three times with the command: mpirun
-np 1 ./TauBench -n 250000 -s 10. This yields a processor TWU time of 6.238 seconds
as a reference when running in the NASA Pleiades Cluster with the Ivy Bridge nodes. The
detailed results are shown in Table 2.

6.2 Common Research Model

We use the CRM geometry for the aerodynamic optimization and the aerostructural analysis.
This is a wing-body-tail geometry that is representative of a large commercial transport air-
craft [68]. We have selected this case because it provides a realistic example of optimizations
that can be run with ADflow. The aerodynamic model is based on previous work by Chen

5https://www.grc.nasa.gov/hiocfd/guidelines/, accessed March 2020

25

https://www.grc.nasa.gov/hiocfd/guidelines/

Table 2: TauBench work unit (TWU) results for the NASA Pleiades Cluster with the Ivy
Bridge nodes

Run Computation time Communication time Ratio Total time

1 6.189 0.022 0.004 6.211
2 6.217 0.026 0.004 6.243
3 6.233 0.026 0.004 6.259

Average 6.213 0.025 0.004 6.238

et al. [38], while the aerostructural model is the undeformed CRM benchmark developed by
Brooks et al. [49].

Figure 8 shows the CFD surface and structural models, as well as the solution at the
aerostructural optimum. The full family of CFD meshes for the CRM is detailed in Table 3.
We use a wing-box mesh with 25 998 third-order shell elements based on 101 129 nodes with
606 774 degrees of freedom. Mesh convergence results for the full family of CFD meshes are
shown in Table 4.

Table 3: CRM mesh data

Level Number of cells Off-wall spacing y+ max.

L0 47,372,288 6.0× 10−5 − 1.2× 10−4 0.3597
L0.5 14,233,600 9.0× 10−5 − 1.8× 10−4 0.5414
L1 5,921,536 1.5× 10−4 − 2.4× 10−4 0.7848
L1.5 1,779,200 1.8× 10−4 − 3.6× 10−4 1.2659
L2 740,192 3.0× 10−4 − 4.8× 10−4 1.9083

Table 4: CRM mesh convergence

Level CL Aerodynamic CD Aerostructural CD

L0 0.500 0.0217 0.0225
L0.5 0.500 0.0219 0.0227
L1 0.500 0.0223 0.0231
L1.5 0.500 0.0237 0.0245
L2 0.500 0.0258 0.0266

26

Figure 8: Common Research Model used for aerodynamic and aerostructural optimization
examples

6.3 Aerodynamic optimization

6.3.1 Problem description

The aerodynamic optimization problem we solve is a two variable problem that can be stated
as

Maximize : ML/D (1)

With respect to : M,α.

This is a simple unconstrained optimization with a well-defined optimum and a smooth
design space in the range of Mach and angles of attack of interest.

The script corresponding to this optimization is listed in Figure 9 and consists of less than
100 lines of code. There is no flow solver specific code in this script; it is possible to switch
between flow solvers simply by changing the flow solver that is selected when creating the
solver instance. Furthermore, the design of the API allows for a powerful optimization to be
completed with a short and readable script, demonstrating the value of the work presented
here.

27

Figure 9: Script that solves the aerodynamic optimization problem.

#Define the aerodynamic problem to solve.
ap = AeroProblem(name=apName, mach=Mach, reynolds=43e6, areaRef=areaRef, alpha=alpha,

chordRef=chordRef , reynoldsLength=chordRef, xRef=1325.90∗.0254
zRef=177.95∗.0254, T=298.15, evalFuncs=[’l/d’])

Add the aerodynamic design variables
ap.addDV(’alpha’,lower = 0.0, upper = alphaUpper , scale=numpy.pi/180.0)
ap.addDV(’mach’, lower = 0.5, upper = 0.89)
Set the user options for the solver
aeroOptions = {user Options}
Create the solver instance
CFDSolver = ADFLOW(options=aeroOptions)
Define a function to compute the L/D
def LiftOverDrag(funcs):

funcs[’l/d’] = funcs[’cl’]/funcs[’cd’]
return funcs
CFDSolver.addUserFunction(’l/d’,[’cl’,’cd’],LiftOverDrag)

Define the function to evaluate the objective
def aeroFuncs(x):

Create the return dictionary
funcs = {}
Set the design variables and evaluate the current Mach number
ap.setDesignVars(x)
ap.evalFunctions(funcs,[’mach’])
Solve the flow and evaluate the functions of interest
CFDSolver(ap)
CFDSolver.evalFunctions(ap, funcs)
CFDSolver.checkSolutionFailure(ap,funcs)
Compute the objective
funcs[’ml/d’] = −1.0∗funcs[’crm mb mach’]∗funcs[’crm mb l/d’]
return funcs

def aeroFuncsSens(x, funcs):
Create the return dictionary
funcsSens = {}
Evaluate the aeroProblem gradients
ap.evalFunctionsSens(funcsSens ,[’mach’])
Evaluate the flow solver Gradients
CFDSolver.evalFunctionsSens(ap, funcsSens)
Compute the composite gradient for the objective
funcsSens[’ml/d’]={}
for key in x:

funcsSens[’ml/d’][key] = −1.0∗(funcs[’crm mb l/d’]∗funcsSens[’crm mb mach’][key]\
+funcs[’crm mb mach’]∗funcsSens[’crm mb l/d’][key])

return funcsSens

Set−up Optimization Problem and Optimize
optProb = Optimization(’opt’, aeroFuncs , comm=MPI.COMM WORLD)
Add variables from the aeroProblem
ap.addVariablesPyOpt(optProb)
Add Objective
optProb.addObj(’ml/d’, scale=1)
Make Instance of Optimizer
optOptions = {user Options}
opt = OPT(args.optimizer , options=optOptions)
Solve
sol = opt(optProb, aeroFuncsSens)

Because this type of aerodynamic shape optimization problem has a smooth design space,
it is well-suited to gradient-based optimization [34, 35]. In this particular problem, it is

28

possible to visualize the design space because we have only two design variables, as shown
in Figure 10. The contours show the variation of the ML/D objective over the region, while
the lines show the optimization paths of the optimization from four different starting points.
We use the algorithm developed by Kenway and Martins [42] to generate these contours.

Figure 10: Aerodynamic ML/D optimization contours

The four starting points (listed in Table 5) were selected to provide four distinct com-
binations of α and Mach number. These points are spread between high and low Mach
numbers over a variety of angles of attack in the design space of interest. This shows the
robustness of the optimization approach and provides a range of optimization results to use
when analyzing the performance of the solver and API. While the four optimization starting
points result in different convergence paths with different solution costs and number of flow
evaluations, all four answers converge to the same optimum.

Table 5: Aerodynamic optimization starting points

Point 1 Point 2 Point 3 Point 4

α 0.5 5.0 2.5 3.0
M 0.88 0.71 0.71 0.85

29

Table 6: Aerodynamic optimization final points

Point 1 Point 2 Point 3 Point 4

α 2.24244 2.24273 2.24267 2.24270
M 0.84365 0.84364 0.84364 0.84364
ML/D 17.92385 17.92384 17.92386 17.92386

The results for the four different starting points are summarized in Tables 6. We show
the values for the objective as well as both design variables. The objective and Mach number
both match to the fifth decimal place for all optimizations, while the angle of attack varies
in the fourth decimal place. This shows that all four cases have converged to the same point.

Table 7 shows the variation in computational cost across the four optimizations. The
different starting points result in a range of ±20% in the average solution cost relative to
the overall average. The spread in the gradient cost is lower, at ±8% of the overall average.
The larger spread in the solution cost is largely due to the two failed solutions in run number
two. Depending on the mode of failure, these failed solutions can take significant amounts
of time to solve, driving up the overall average for that run.

Table 7: Convergence results for the four aerodynamic optimization starting points in TWU

Point 1 Point 2 Point 3 Point 4 Average

Initialization cost 103.10 102.61 103.08 117.60 106.60
Average flow solution cost 7,448.88 9,497.69 8,209.91 7,252.73 8,102.30
Average function evaluation cost 0.12 0.12 0.24 0.24 0.18
Average gradient evaluation cost 7,804.28 7,602.13 6,957.70 7,935.68 7,574.95
Major iteration count 7 8 8 9 8
Total solution failures 0 2 0 0 0.5

To analyze the impact of our API and solver development recommendations on the above
costs, we use the timings from the fourth point to look at a more detailed breakdown of the
computational cost of each part of the solution process.

6.3.2 Initialization

The overall cost of the initialization in this example problem is 117.60 TWU, or 1.6% of
the average solution time, which is negligible. A detailed breakdown of the cost for this call
is shown in Table 8. The entries in this table reflect the fact that the initialization is only
called once, i.e., the mean, minimum and maximum are the same and the standard deviation
is zero. Since the initialization is only called once, that cost is amortized over the number
of solutions required for the optimization.

The two largest costs in the initialization are the partitioning and the preprocessing.
The partitioning includes the reading of the mesh file and splitting it to run in parallel. The

30

preprocessing time consists of the time required to set up the multi-grid structure, commu-
nication patterns, compute mesh metrics, and wall distances. Much of this computational
effort is dependent only on the mesh size and topology, and does not need to be updated
between flow solutions when using the library based solver approach. The exceptions to
this are the mesh metric and wall distance computations, which need to be updated when
the design geometry is changed for each optimization iteration. In the context of this fixed
geometry optimization, this cost is small, but as we will see in the aerostructural analysis
example, this cost can become prohibitive.

Table 8: Initialization cost breakdown (TWU)

Mean Median Minimum Maximum Std. dev.

Library loading 1.00 1.00 1.00 1.00 0.00
Default variable setting 0.01 0.01 0.01 0.01 0.00
Base class initialization 0.04 0.04 0.04 0.04 0.00
Library initialization 0.41 0.41 0.41 0.41 0.00
Partitioning 21.40 21.40 21.40 21.40 0.00
Preprocessing 94.54 94.54 94.54 94.54 0.00
Family setup 0.00 0.00 0.00 0.00 0.00
Flow initialization 0.15 0.15 0.15 0.15 0.00

Total 117.60 117.60 117.60 117.60 0.00

6.3.3 Solution

Table 9 summarizes the variation of the flow solution computational cost over the course of a
nominal optimization. The mean flow solution is over 98% of the total solution cost. If this
were to hold for the entire optimization, the importance of the direct memory API would
be diminished, since the cost of reading and writing the solution would be a small portion
of the overall computational cost.

However, Figure 11 shows that there is a significant variation in solution time over the
course of the optimization. Specifically, the solution times decrease significantly towards the
end of the optimization. Looking at the minimum solution time case, the solution write time
accounts for 12% of the solution time, which is much more significant. Furthermore, if we
add in an additional 120 TWU for an initialization, a full 25% of the call time would be
consumed by non-solution tasks. In such a case, the direct memory access API becomes much
more significant, since 25% of the computational cost can be avoided by not re-initializing
the solver and writing out a solution for every function evaluation.

The full savings from the direct memory API can be assessed by comparing the cost of
re-initializing the solver to the cost of setting the AeroProblem. Setting the AeroProblem
updates the flow conditions for the upcoming flow solution, getting the solver ready to
analyze the new point without fully re-initializing the solver. Table 9 shows that this costs
about 0.4 TWU on average, which is far less expensive than a full initialization.

31

Table 9: Solution cost breakdown (TWU)

Mean Median Minimum Maximum Std. dev.

Set AeroProblem 0.39 0.35 0.08 1.60 0.28
Flow solution 7,162.41 6,921.13 564.39 23,261.70 4,808.93
Write solution 89.93 85.76 75.73 126.12 12.67

Total 7,252.73 7,013.91 643.69 23,342.30 4,808.09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Solution number

0

5000

10000

15000

20000

25000

S
o
lu

ti
o
n
 t

im
e
 (

T
W

U
)

Figure 11: Evolution of flow solution cost during optimization.

6.3.4 Function analysis

The function analysis is the process of computing the engineering values of interest from the
converged states of the CFD solver. These are quantities such as CL and CD that are needed
as outputs of the analysis. This also includes the computation of any user defined functions,
such as L/D.

Table 10 shows the function evaluation costs in work units. These computations are
negligible relative to the cost of solving the flow.

Table 10: Function evaluation time (TWU)

Mean Median Minimum Maximum Std. dev.

Set AeroProblem 0.15 0.10 0.10 0.49 0.12
Function evaluation 0.09 0.03 0.03 0.59 0.17
User function evaluation 0.00 0.00 0.00 0.00 0.00

Total function evaluation 0.24 0.12 0.12 1.01 0.29

32

6.3.5 Gradient computation

In ADflow, we use the adjoint method to compute the gradients of the flow solution. This
method requires the solution of a large linear system to compute the adjoint vector, and then
a matrix-vector product to compute the total derivative of the desired function with respect
to the design variables. In this case, we only have two design variables, but in a typical case
we would have hundreds of variables, making the adjoint approach an efficient method for
computing derivatives [11].

Table 11, lists the costs of computing the gradients. These costs are split between the
cost of computing the adjoint solution and the cost computing the total derivative for the
given adjoint vector. The adjoint solution is the dominant part of this cost, but with a
single output function and multiple design variables, it is the most efficient way to compute
gradients.

The total gradient computation cost is similar to that of the flow solution. The major
difference is that the standard deviation in computational cost is lower than for the flow
solution. This is because the adjoint system is only solved if the flow solution is successful;
therefore, the adjoint equations are always more likely to converge and there are fewer failed
adjoint solutions in a typical optimization, if any.

The other contribution to the smaller standard deviation is that restarting the adjoint
from a previous solution does not benefit the adjoint solution as much as for the flow solution.
In most cases, the adjoint is only evaluated after a change in state values, so it is likely that
the adjoint equations have changed between evaluations. However, since the flow solver is
accessible as a library through memory, the cost of starting with a previous adjoint solution
is negligible, so it is standard practice to do this.

Table 11: Evaluation costs for gradient of L/D with respect to cruise Mach and angle-of-
attack (TWU).

Mean Median Minimum Maximum Std. dev.

Adjoint solution 7,924.01 8,010.54 5,419.97 10,747.64 1,417.50
Total derivative equation 11.47 11.47 11.45 11.52 0.02

Total 7,935.68 8,022.12 5,431.54 10,759.19 1,417.59

6.4 Aerostructural analysis

To consider the characteristics of a multidisciplinary problem, we start by considering a
simple aerostructural analysis, which is again based on the CRM geometry shown in Figure 8.
The flow condition is the starting point for the Point 1 optimization case. Once again, we
analyze the relative costs of the various preprocessing, initialization, and solution tasks. In
this case, we report metrics for the aerodynamic and structural solver, as well as the load
and displacement transfer object, and the overall aerostructural solution process.

33

6.4.1 Initialization

The cost of initializing the aerostructural problem includes the cost of initializing the aero-
dynamic and structural solvers, as well as the cost of linking the two solvers with a load and
displacement transfer object. The costs of these initializations are listed in Table 12. The
cost of initializing the aerostructural class itself is insignificant, so it is not shown here. The
cost of initializing the CFD solver is the same as before–approximately 100 TWU, while the
structural initialization is faster—only 20 TWU. The single largest cost in the initialization
is the setup of the load and displacement transfer object, which takes almost 1000 TWU.
This is due to the search algorithm that finds the connections between the aerodynamic
surface and the structural mesh [5].

On its own, the cost of the initialization is not that significant. Given the approach
outlined in this paper, this costs is only incurred a single time and accounts for less that
5% of the total solution cost. However, as we discuss in Section 6.4.2, if the initialization
cost is incurred repeatedly for aerodynamic and structural solutions in the multidisciplinary
solution process, the overhead associated with it quickly becomes significant.

Table 12: Initialization cost of aerostructural analysis (TWU)

Mean Median Minimum Maximum Std. dev.

Aerodynamic solver 97.11 97.11 97.11 97.11 0.00
Structural solver 20.33 20.33 20.33 20.33 0.00
Transfer object 976.43 976.43 976.43 976.43 0.00

Total 1,093.87 1,093.87 1,093.87 1,093.87 0.00

6.4.2 Aerostructural Solution

The total solution cost for the aerostructural equations is about three times the solution
cost of the aerodynamic solution alone and requires 30 aerostructural iterations to converge
five orders of magnitude. In this case, an aerostructural iteration is a single Gauss–Seidel
iteration between the aerodynamic solver and the structural solver, where the aerodynamic
solver is the first to run.

We typically perform partial solutions—one or two orders of magnitude reduction of the
residual norm—for each solver in each aerostructural iteration to limit wasted computation.

The computational cost of a single aerostructural solution is shown in Table 13. The
majority of this computational cost is due to the CFD solver, which takes over 95% of the
cost. The average structural solution cost is roughly 100 times faster than the CFD solution,
even when including the stiffness matrix factorization required in the first structural solution.
However, the low cost of all of the ancillary computations is largely made possible by the
methods outlined in this work.

If file I/O were used to couple the aerodynamic and structural solvers, the best case
scenario would require reading and writing a file with the force and displacement transfer for

34

every aerostructural iteration. In that scenario, we are comparing the cost of those operations
to the cost of a single aerostructural iteration, rather than the entire aerostructural process.
If we count just the cost of the aerodynamic initialization (97 TWU from Table 12) and
writing the aerodynamic and structural solutions (145 TWU from Table 13, we would get
a cost of 242 TWU. This compares to 760 TWU for an average aerostructural iteration,
which is just over 30% of additional cost. In the more likely scenario of a simple file I/O
wrapper that treats the three components as independent executables, we would need to
re-do all three initializations, the structural matrix factorization, and the solution writing
for each aerostructural iteration. In that scenario, the average single iteration cost would
increase from 760 TWU to 2186 TWU—almost three times the current cost. This makes
it clear that it is imperative to develop solvers as libraries, have them loaded in memory,
and pass data directly, to avoid replicating unnecessary work and driving up the cost of the
multidisciplinary analysis and optimization.

Table 13: Aerostructural solution cost (TWU)

Mean Median Minimum Maximum Std. dev.

Structural solution total 7.83 2.00 1.98 188.31 32.42
Aerodynamic solution total 753.11 750.47 72.56 1,655.40 416.92

Aerostructural problem setup 12.43 12.43 12.43 12.43 –
Load and displacement transfer 0.06 0.06 0.06 0.06 –
Structural pre-solution 188.33 188.33 188.33 188.33 -
Gauss–Seidel solution 23,426.62 23,426.62 23,426.62 23,426.62 –
Solution writing 145.08 145.08 145.08 145.08 –

Aerostructural solution total 23,772.54 23,772.54 23,772.54 23,772.54 –

6.4.3 Coupled gradient computation

To perform aerostructural optimization, we require the coupled gradients, which are com-
puted using a coupled-adjoint approach [5]. The aerostructural gradient computation cost,
shown in Table 14, is roughly 13% more expensive than the equivalent aerodynamic adjoint
computation. This is a much smaller increase in cost than the full nonlinear system. The
main source of this efficiency comes from the coupled-Krylov solution algorithm used to solve
the linear system, which is more efficient than the simpler Gauss–Seidel algorithm used to
solve the nonlinear aerostructural problem itself. A full description of these methods and
their application to the solution of both the aerostructural system and the corresponding
coupled adjoint system is presented by Kenway et al. [5]. The cost of the aircraft mass gradi-
ent is significantly smaller than the L/D adjoint because the mass is independent of both the
aerodynamic and structural states, so the adjoint vector is zero and there is no requirement
to solve the coupled linear system. In this table, the statistical values are constant because
there is only one linear solution computed for a single analysis, since a fully-coupled Krylov
approach is used to solve the coupled linear system.

35

The implementation of the coupled-Krylov algorithm for the coupled adjoint linear system
is only possible because we treat all disciplines in the multidisciplinary systems as libraries
that provide direct memory access for all components. This allows a fully-coupled linear
system to be setup using the gradient computation methods in each discipline, which can
only be done efficiently through direct memory access. This also simplifies the computation
of the coupled derivatives in the off-diagonal elements of the coupled Jacobian. Because
both solvers are available in memory, the coupled chain-rule accumulation of the derivatives
needed for the coupled adjoint is easier to set up. This accumulation would still be possible
using file I/O, but it would be much less efficient because the amount of data that would
need to be written to and read from disk would be high relative to the problem size.

Table 14: Aerostructural gradient computation cost (TWU)

Mean Median Minimum Maximum Std. dev.

Adjoint setup 0.27 0.27 0.27 0.27 –
Adjoint for L/D 8,651.79 8,651.79 8,651.79 8,651.79 –
Gradient for mass 191.43 191.43 191.43 191.43 –
Total derivative equation 58.21 58.21 58.21 58.21 –

Total 8,901.68 8,901.68 8,901.68 8,901.68 –

6.5 Aerostructural optimization

The final demonstration is an aerostructural optimization, where the optimization problem
formulation is the same as before:

Maximize : ML/D (2)

With respect to : M,α.

However, the wing flexibility is now accounted for because the objective function evaluations
are based on aerostructural computations. This shifts the optimal result because the flexi-
bility of the wing alters the value and intercept of the lift curve slope for the aircraft. As
in the aerostructural analysis above, the coupling with the structural discipline adds several
more components in the timing analysis, which are summarized in Table 15.

The breakdown of the cost for the full optimization history is similar to the values break-
down for the single point analysis, but there are some minor differences. The average total
aerostructural solution cost is lower than for the single-point case. This is mostly because
as the optimization progress, the cost of individual solutions tends to decrease, reducing the
overall average. This is also the reason why the average number of iterations (flow solutions)
per aerostructural solution averages only 16 over the full set of optimizations, rather than
30 for the single point case. There are also flow solution failures in optimizations 2, 3, and
4, which reinforces the points made in Section 2 regarding the graceful handling of solution
failures.

36

Table 15: Breakdown for the cost (in TWU) for aerostructural (AS) optimizations starting
from four different points.

Point 1 Point 2 Point 3 Point 4 Average

Flow initialization 113.69 115.81 116.21 114.90 115.15
Structural initialization 20.89 29.29 20.39 20.41 22.75
Transfer initialization 978.81 985.34 975.31 986.62 981.52
Average flow solution 1,048.44 1,043.49 1,035.46 928.12 1,013.88
Average structural solution 2.97 2.74 2.59 2.39 2.67
Average AS solution 18,726.47 21,579.10 14,589.84 11,276.55 16,542.99
Average AS function evaluation 0.51 0.49 0.47 0.47 0.49
Average AS gradient computation 7,922.07 7,262.83 7,450.85 7,743.60 7,594.84
Major iteration count 8 9 7 8 8.00
Total solution failures 0 2 1 1 1.00
Total flow solutions 284 595 378 590 461.75
Total structural solutions 300 624 405 639 492.00
Total AS solutions 16 29 27 49 30.25
Average flow solutions per AS solution 18 21 14 12 16

7 Conclusion
The requirements for a flow solver used in multidisciplinary analysis and optimization are
different than the requirements for a stand-alone flow solver. We introduce a series of require-
ments that are necessary for an efficient multidisciplinary solver, discuss the idea of treating
the flow solver as a library (rather than a stand-alone code), and introduce an API that
makes it possible to set up complex multidisciplinary analysis and optimization problems
using compact scripts written in a high-level language.

As a specific example of a flow solver following these guidelines, we introduce the open-
source CFD solver ADflow. 6 Using ADflow, we quantify the impact of these requirements on
the computational performance of aerodynamic optimization, aerostructural analyses, and
aerostructural optimization.

We show that for aerodynamic optimization with a direct memory access API saves
12% to 25% of the optimization time, while for an aerostructural optimization, the cost
can be reduced by up to a factor of three compared to a file I/O based approach. These
results conclusively demonstrate the benefits of having a direct memory access API for
multidisciplinary analysis codes.

ADflow has already been used extensively to investigate aerodynamic and aerostructural
design optimization problems. ADflow is part of a wider aerodynamic shape optimization
tool suite (MACH-Aero), which is also available under an open-source license. Several of
those investigations resulted in open benchmarks that can be built on by other researchers.
In addition, the ADflow API could be re-used for other flow solvers, which could then be
used interchangeably in the MACH-Aero framework.

6https://github.com/mdolab/adflow, accessed March 2020

37

https://github.com/mdolab/adflow

8 Acknowledgments
Resources supporting this work were provided by the NASA High-End Computing (HEC)
Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research
Center.

Appendix A: A brief history of ADflow
The core solver in ADflow is derived from SUmb [74], which is a structured, multi-block CFD
solver with a second-order finite-volume discretization, that was developed in the early 2000’s
at Stanford University. In addition to the basic second order finite-volume scheme, SUmb has
the capability to run steady, unsteady, and time-spectral cases with fixed or moving meshes,
and it has several turbulence models available, including Spalart–Allmaras, k-ω, k-ω SST,
k-τ , and v2-f. The mean flow is solved with an explicit Runge–Kutta multi-grid scheme
and the turbulence models are all solved with a segregated DDADI scheme. This code was
originally developed to run as a stand alone executable, reading options from a text input
file. The code was written in module-based Fortran 90 with MPI for parallelization and was
demonstrated to successfully solve large CFD problems using thousands of cores [74].

ADflow has been under development since 2006 in the Multidisciplinary Design Opti-
mization Laboratory. Several significant features have been added over this period of devel-
opment. These include an adjoint solver for steady-state Euler equations in 2006–2007 [75]
and a time-spectral solver in 2012 [76], as well as a discrete adjoint for the RANS equations
in 2013 [77]. In 2015, the RANS adjoint solver was updated with a Jacobian-free adjoint
solver by Kenway et al. [11], greatly reducing the memory requirements of the adjoint solver.
The Python API presented in this work was developed from 2006 to 2013 and has remained
largely unchanged since the end of that period. The addition of the adjoint solver facilitated
the implementation of the NK solver, which significantly improved the performance of the
code for optimization. This original NK solver implementation has recently been superseded
by the implementation of a more robust approximate ANK algorithm by Yildirim et al. [58].
The ability to solve overset meshes was also added in 2016–2017 by Kenway et al. [71].

ADflow was released as open-source software on March 28, 2019, under the GNU Lesser
General Public License (LGPL), version 2.1.

References
[1] Venkatamaran, S., and Haftka, R. T., “Structural optimization complexity: what has

Moore’s law done for us?” Structural and Multidisciplinary Optimization, Vol. 28, 2004,
pp. 375–387. doi:10.1007/s00158-004-0415-y.

[2] Parkinson, C., “Parkinson’s Law or the pursuit of progress.” The Economist, 1959.

[3] Thimbleby, H., “Viewpoint. Computerised Parkinson’s law,” Computing & Control En-
gineering Journal, Vol. 4, No. 5, 1993, pp. 197–198. doi:10.1049/cce:19930049.

38

https://doi.org/10.1007/s00158-004-0415-y
https://doi.org/10.1049/cce:19930049

[4] Vassberg, J. C., DeHaan, M. A., Rivers, M. S., and Wahls, R. A., “Retrospective on
the Common Research Model for Computational Fluid Dynamics Validation Studies,”
Journal of Aircraft, Vol. 55, No. 4, 2018, pp. 1325–1337. doi:10.2514/1.C034906.

[5] Kenway, G. K. W., Kennedy, G. J., and Martins, J. R. R. A., “Scalable Parallel Ap-
proach for High-Fidelity Steady-State Aeroelastic Analysis and Derivative Computa-
tions,” AIAA Journal, Vol. 52, No. 5, 2014, pp. 935–951. doi:10.2514/1.J052255.

[6] Kenway, G. K. W., “A Scalable, Parallel Approach for Multi-Point, High-Fidelity
Aerostructural Optimization of Aircraft Configurations,” Ph.D. thesis, University of
Toronto, 2013.

[7] Yu, Y., Lyu, Z., Xu, Z., and Martins, J. R. R. A., “On the Influence of Optimization
Algorithm and Starting Design on Wing Aerodynamic Shape Optimization,” Aerospace
Science and Technology, Vol. 75, 2018, pp. 183–199. doi:10.1016/j.ast.2018.01.016.

[8] Jameson, A., “Aerodynamic Design via Control Theory,” Journal of Scientific Comput-
ing, Vol. 3, No. 3, 1988, pp. 233–260. doi:10.1007/BF01061285.

[9] Giles, M. B., and Pierce, N. A., “An Introduction to the Adjoint Approach
to Design,” Flow, Turbulence and Combustion, Vol. 65, 2000, pp. 393–415.
doi:10.1023/A:1011430410075.

[10] Martins, J. R. R. A., and Hwang, J. T., “Review and Unification of Methods for Com-
puting Derivatives of Multidisciplinary Computational Models,” AIAA Journal, Vol. 51,
No. 11, 2013, pp. 2582–2599. doi:10.2514/1.J052184.

[11] Kenway, G. K. W., Mader, C. A., He, P., and Martins, J. R. R. A., “Effective Adjoint
Approaches for Computational Fluid Dynamics,” Progress in Aerospace Sciences, Vol.
110, 2019, p. 100542. doi:10.1016/j.paerosci.2019.05.002.

[12] He, P., Mader, C. A., Martins, J. R. R. A., and Maki, K. J., “An Aerodynamic De-
sign Optimization Framework Using a Discrete Adjoint Approach with OpenFOAM,”
Computers & Fluids, Vol. 168, 2018, pp. 285–303. doi:10.1016/j.compfluid.2018.04.012.

[13] Gazaix, M., Jollès, A., and Lazareff, M., “The elsA object-oriented computational tool
for industrial applications,” Proceeding of the ICAS 2002 Congress, ICAS, 2002.

[14] Cambier, L., Heib, S., and Plot, S., “The ONERA elsA CFD software: input from
research and feedback from industry,” Mechanics and Industry, Vol. 14, No. 3, 2013.
doi:I10.1051/meca/2013056.

[15] Weller, H. G., Tabor, G., Jasak, H., and Fureby, C., “A tensorial approach to computa-
tional continuum mechanics using object-oriented techniques,” Computers in Physics,
Vol. 12, No. 6, 1998, pp. 620–631. doi:10.1063/1.168744.

39

https://doi.org/10.2514/1.C034906
https://doi.org/10.2514/1.J052255
https://doi.org/10.1016/j.ast.2018.01.016
https://doi.org/10.1007/BF01061285
https://doi.org/10.1023/A:1011430410075
https://doi.org/10.2514/1.J052184
https://doi.org/10.1016/j.paerosci.2019.05.002
https://doi.org/10.1016/j.compfluid.2018.04.012
https://doi.org/I10.1051/meca/2013056
https://doi.org/10.1063/1.168744

[16] Jasak, H., Jemcov, A., and Tuković, Z., “OpenFOAM: A C++ Library for Complex
Physics Simulations,” International Workshop on Coupled Methods in Numerical Dy-
namics, IUC, Citeseer, 2007.

[17] Kennedy, G. J., and Martins, J. R. R. A., “A parallel aerostructural optimization frame-
work for aircraft design studies,” Structural and Multidisciplinary Optimization, Vol. 50,
No. 6, 2014, pp. 1079–1101. doi:10.1007/s00158-014-1108-9.

[18] Drela, M., “XFOIL: An Analysis and Design System for Low Reynolds Number Air-
foils,” Low Reynolds Number Aerodynamics, edited by T. J. Mueller, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1989, pp. 1–12. doi:10.1007/978-3-642-84010-4 1.

[19] Gray, J. S., Hwang, J. T., Martins, J. R. R. A., Moore, K. T., and Naylor, B. A.,
“OpenMDAO: An open-source framework for multidisciplinary design, analysis, and
optimization,” Structural and Multidisciplinary Optimization, Vol. 59, No. 4, 2019, pp.
1075–1104. doi:10.1007/s00158-019-02211-z.

[20] Hwang, J. T., and Martins, J. R. R. A., “A computational architecture for coupling het-
erogeneous numerical models and computing coupled derivatives,” ACM Transactions
on Mathematical Software, Vol. 44, No. 4, 2018, p. Article 37. doi:10.1145/3182393.

[21] Yildirim, A., Kenway, G. K. W., Mader, C. A., and Martins, J. R. R. A., “A Jacobian-
free approximate Newton–Krylov startup strategy for RANS simulations,” Journal of
Computational Physics, Vol. 397, 2019, p. 108741. doi:10.1016/j.jcp.2019.06.018.

[22] Kenway, G. K., Kennedy, G. J., and Martins, J. R. R. A., “A CAD-Free
Approach to High-Fidelity Aerostructural Optimization,” Proceedings of the 13th
AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Fort Worth, TX,
2010. doi:10.2514/6.2010-9231.

[23] Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solution of the Euler Equations
by Finite Volume Methods Using Runge–Kutta Time Stepping Schemes,” 14th Fluid
and Plasma Dynamics Conference, 1981. doi:10.2514/6.1981-1259.

[24] Turkel, E., and Vatsa, V. N., “Effects of Artificial Viscosity on Three-Dimensional Flow
Solutions,” AIAA Journal, Vol. 32, 1994, pp. 39–45. doi:10.2514/3.11948.

[25] van Leer, B., “Towards the ultimate conservative difference scheme. V. A second-order
sequel to Godunov’s method,” Journal of Computational Physics, Vol. 32, 1979, pp.
101–136. doi:10.1016/0021-9991(79)90145-1.

[26] Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Differ-
ence Schemes,” Journal of Computational Physics, Vol. 43, 1981, pp. 357–372.
doi:10.1016/0021-9991(81)90128-5.

[27] Spalart, P., and Allmaras, S., “A One-Equation Turbulence Model for Aerodynamic
Flows,” La Recherche Aerospatiale, Vol. 1, 1994, pp. 5–21.

40

https://doi.org/10.1007/s00158-014-1108-9
https://doi.org/10.1007/978-3-642-84010-4_1
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1145/3182393
https://doi.org/10.1016/j.jcp.2019.06.018
https://doi.org/10.2514/6.2010-9231
https://doi.org/10.2514/6.1981-1259
https://doi.org/10.2514/3.11948
https://doi.org/10.1016/0021-9991(79)90145-1
https://doi.org/10.1016/0021-9991(81)90128-5

[28] Wilcox, D. C., Turbulence Modeling for CFD, 3rd ed., DCW Industries, Inc., La Cãnada,
CA, 2006.

[29] Menter, F. R., “Two-equation eddy-viscosity turbulence models for engineering appli-
cations,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598–1605. doi:10.2514/3.12149.

[30] Rumsey, C., “NASA Turbulence Modeling Resource,” https://turbmodels.larc.

nasa.gov, 2019. Accessed: 2019-03-27.

[31] Klopfer, G., Hung, C., Van der Wijngaart, R., and Onufer, J., “A diagonalized diagonal
dominant alternating direction implicit (D3ADI) scheme and subiteration correction,”
29th AIAA, Fluid Dynamics Conference, Albuquerque, NM, 1998. doi:10.2514/6.1998-
2824.

[32] Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F., “Efficient Management of
Parallelism in Object Oriented Numerical Software Libraries,” Modern Software Tools
for Scientific Computing, edited by E. Arge, A. M. Bruaset, and H. P. Langtangen,
Birkhäuser Press, 1997, pp. 163–202. doi:10.1007/978-1-4612-1986-6 8.

[33] Li, J., Bouhlel, M. A., and Martins, J. R. R. A., “Data-based Approach for Fast Air-
foil Analysis and Optimization,” AIAA Journal, Vol. 57, No. 2, 2019, pp. 581–596.
doi:10.2514/1.J057129.

[34] He, X., Li, J., Mader, C. A., Yildirim, A., and Martins, J. R. R. A., “Robust aerody-
namic shape optimization—from a circle to an airfoil,” Aerospace Science and Technol-
ogy, Vol. 87, 2019, pp. 48–61. doi:10.1016/j.ast.2019.01.051.

[35] Lyu, Z., Kenway, G. K. W., and Martins, J. R. R. A., “Aerodynamic Shape Optimiza-
tion Investigations of the Common Research Model Wing Benchmark,” AIAA Journal,
Vol. 53, No. 4, 2015, pp. 968–985. doi:10.2514/1.J053318.

[36] Lyu, Z., and Martins, J. R. R. A., “Aerodynamic Shape Optimization of an Adaptive
Morphing Trailing Edge Wing,” Journal of Aircraft, Vol. 52, No. 6, 2015, pp. 1951–1970.
doi:10.2514/1.C033116.

[37] Kenway, G. K. W., and Martins, J. R. R. A., “Multipoint Aerodynamic Shape Opti-
mization Investigations of the Common Research Model Wing,” AIAA Journal, Vol. 54,
No. 1, 2016, pp. 113–128. doi:10.2514/1.J054154.

[38] Chen, S., Lyu, Z., Kenway, G. K. W., and Martins, J. R. R. A., “Aerodynamic Shape
Optimization of the Common Research Model Wing-Body-Tail Configuration,” Journal
of Aircraft, Vol. 53, No. 1, 2016, pp. 276–293. doi:10.2514/1.C033328.

[39] Mader, C. A., and Martins, J. R. R. A., “Stability-Constrained Aerodynamic Shape
Optimization of Flying Wings,” Journal of Aircraft, Vol. 50, No. 5, 2013, pp. 1431–
1449. doi:10.2514/1.C031956.

41

https://doi.org/10.2514/3.12149
https://turbmodels.larc.nasa.gov
https://turbmodels.larc.nasa.gov
https://doi.org/10.2514/6.1998-2824
https://doi.org/10.2514/6.1998-2824
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.2514/1.J057129
https://doi.org/10.1016/j.ast.2019.01.051
https://doi.org/10.2514/1.J053318
https://doi.org/10.2514/1.C033116
https://doi.org/10.2514/1.J054154
https://doi.org/10.2514/1.C033328
https://doi.org/10.2514/1.C031956

[40] Lyu, Z., and Martins, J. R. R. A., “Aerodynamic Design Optimization Studies of a
Blended-Wing-Body Aircraft,” Journal of Aircraft, Vol. 51, No. 5, 2014, pp. 1604–1617.
doi:10.2514/1.C032491.

[41] Secco, N. R., and Martins, J. R. R. A., “RANS-based Aerodynamic Shape Optimization
of a Strut-braced Wing with Overset Meshes,” Journal of Aircraft, Vol. 56, No. 1, 2019,
pp. 217–227. doi:10.2514/1.C034934.

[42] Kenway, G. K. W., and Martins, J. R. R. A., “Buffet Onset Constraint Formulation for
Aerodynamic Shape Optimization,” AIAA Journal, Vol. 55, No. 6, 2017, pp. 1930–1947.
doi:10.2514/1.J055172.

[43] Mangano, M., and Martins, J. R. R. A., “Multipoint Aerodynamic Shape Optimization
for Subsonic and Supersonic Regimes,” 57th AIAA Aerospace Sciences Meeting, AIAA
SciTech Forum, 2019, San Diego, CA, 2019. doi:10.2514/6.2019-0696.

[44] Brelje, B. J., and Martins, J. R. R. A., “Coupled component sizing and aerodynamic
shape optimization via geometric constraints,” AIAA AVIATION Forum, American
Institute of Aeronautics and Astronautics, Dallas, TX, 2019. doi:10.2514/6.2019-3105.

[45] Brelje, B. J., Anibal, J., Yildirim, A., Mader, C. A., and Martins, J. R., “Flexible
Formulation of Spatial Integration Constraints in Aerodynamic Shape Optimization,”
AIAA Journal, 2020. (In press).

[46] Hwang, J. T., Jasa, J., and Martins, J. R. R. A., “High-fidelity design-allocation opti-
mization of a commercial aircraft maximizing airline profit,” Journal of Aircraft, Vol. 56,
No. 3, 2019, pp. 1165–1178. doi:10.2514/1.C035082.

[47] Kenway, G. K. W., and Martins, J. R. R. A., “Multipoint High-Fidelity Aerostructural
Optimization of a Transport Aircraft Configuration,” Journal of Aircraft, Vol. 51, No. 1,
2014, pp. 144–160. doi:10.2514/1.C032150.

[48] Liem, R. P., Kenway, G. K. W., and Martins, J. R. R. A., “Multimission Aircraft
Fuel Burn Minimization via Multipoint Aerostructural Optimization,” AIAA Journal,
Vol. 53, No. 1, 2015, pp. 104–122. doi:10.2514/1.J052940.

[49] Brooks, T. R., Kenway, G. K. W., and Martins, J. R. R. A., “Benchmark Aerostructural
Models for the Study of Transonic Aircraft Wings,” AIAA Journal, Vol. 56, No. 7, 2018,
pp. 2840–2855. doi:10.2514/1.J056603.

[50] Brooks, T. R., and Martins, J. R. R. A., “On Manufacturing Constraints for Tow-steered
Composite Design Optimization,” Composite Structures, Vol. 204, 2018, pp. 548–559.
doi:10.1016/j.compstruct.2018.07.100.

[51] Brooks, T. R., Martins, J. R. R. A., and Kennedy, G. J., “High-fidelity Aerostruc-
tural Optimization of Tow-steered Composite Wings,” Journal of Fluids and Structures,
Vol. 88, 2019, pp. 122–147. doi:10.1016/j.jfluidstructs.2019.04.005.

42

https://doi.org/10.2514/1.C032491
https://doi.org/10.2514/1.C034934
https://doi.org/10.2514/1.J055172
https://doi.org/10.2514/6.2019-0696
https://doi.org/10.2514/6.2019-3105
https://doi.org/10.2514/1.C035082
https://doi.org/10.2514/1.C032150
https://doi.org/10.2514/1.J052940
https://doi.org/10.2514/1.J056603
https://doi.org/10.1016/j.compstruct.2018.07.100
https://doi.org/10.1016/j.jfluidstructs.2019.04.005

[52] Burdette, D. A., and Martins, J. R. R. A., “Design of a Transonic Wing with an
Adaptive Morphing Trailing Edge via Aerostructural Optimization,” Aerospace Science
and Technology, Vol. 81, 2018, pp. 192–203. doi:10.1016/j.ast.2018.08.004.

[53] Burdette, D. A., and Martins, J. R. R. A., “Impact of Morphing Trailing Edge on
Mission Performance for the Common Research Model,” Journal of Aircraft, Vol. 56,
No. 1, 2019, pp. 369–384. doi:10.2514/1.C034967.

[54] He, S., Jonsson, E., Mader, C. A., and Martins, J. R. R. A., “A Coupled Newton–Krylov
Time-Spectral Solver for Wing Flutter and LCO Prediction,” AIAA Aviation Forum,
Dallas, TX, 2019. doi:10.2514/6.2019-3549.

[55] He, S., Jonsson, E., Mader, C. A., and Martins, J. R. R. A., “Aerodynamic Shape Op-
timization with Time Spectral Flutter Adjoint,” 2019 AIAA/ASCE/AHS/ASC Struc-
tures, Structural Dynamics, and Materials Conference, American Institute of Aeronau-
tics and Astronautics, San Diego, CA, 2019. doi:10.2514/6.2019-0697.

[56] He, S., Jonsson, E., Mader, C. A., and Martins, J. R. R. A., “A Coupled Newton–Krylov
Time Spectral Solver for Flutter Prediction,” 2018 AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, American Institute of Aeronautics and
Astronautics, Kissimmee, FL, 2018. doi:10.2514/6.2018-2149.

[57] Gray, J. S., Mader, C. A., Kenway, G. K. W., and Martins, J. R. R. A., “Modeling
Boundary Layer Ingestion Using a Coupled Aeropropulsive Analysis,” Journal of Air-
craft, Vol. 55, No. 3, 2018, pp. 1191–1199. doi:10.2514/1.C034601.

[58] Yildirim, A., Gray, J. S., Mader, C. A., and Martins, J. R. R. A., “Aeropropulsive
Design Optimization of a Boundary Layer Ingestion System,” AIAA Aviation Forum,
Dallas, TX, 2019. doi:10.2514/6.2019-3455.

[59] Gray, J. S., and Martins, J. R. R. A., “Coupled Aeropropulsive Design Optimization of
a Boundary-Layer Ingestion Propulsor,” The Aeronautical Journal, Vol. 123, No. 1259,
2019, pp. 121–137. doi:10.1017/aer.2018.120.

[60] Gray, J. S., Kenway, G. K. W., Mader, C. A., and Martins, J. R. R. A., “Aero-propulsive
Design Optimization of a Turboelectric Boundary Layer Ingestion Propulsion System,”
2018 AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Atlanta,
GA, 2018. doi:10.2514/6.2018-3976, AIAA 2018-3976.

[61] Kenway, G. K., and Kiris, C. C., “Aerodynamic Shape Optimization of the STARC-ABL
Concept for Minimal Inlet Distortion,” AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, American Institute of Aeronautics and Astronau-
tics, 2018. doi:10.2514/6.2018-1912.

[62] Madsen, M. H. A., Zahle, F., Sørensen, N. N., and Martins, J. R. R. A., “Multipoint
high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine,”
Wind Energy Science, Vol. 4, 2019, pp. 163–192. doi:10.5194/wes-4-163-2019.

43

https://doi.org/10.1016/j.ast.2018.08.004
https://doi.org/10.2514/1.C034967
https://doi.org/10.2514/6.2019-3549
https://doi.org/10.2514/6.2019-0697
https://doi.org/10.2514/6.2018-2149
https://doi.org/10.2514/1.C034601
https://doi.org/10.2514/6.2019-3455
https://doi.org/10.1017/aer.2018.120
https://doi.org/10.2514/6.2018-3976
https://doi.org/10.2514/6.2018-1912
https://doi.org/10.5194/wes-4-163-2019

[63] Dhert, T., Ashuri, T., and Martins, J. R. R. A., “Aerodynamic Shape Optimization of
Wind Turbine Blades Using a Reynolds-Averaged Navier–Stokes Model and an Adjoint
Method,” Wind Energy, Vol. 20, No. 5, 2017, pp. 909–926. doi:10.1002/we.2070.

[64] Garg, N., Kenway, G. K. W., Lyu, Z., Martins, J. R. R. A., and Young, Y. L., “High-
fidelity Hydrodynamic Shape Optimization of a 3-D Hydrofoil,” Journal of Ship Re-
search, Vol. 59, No. 4, 2015, pp. 209–226. doi:10.5957/JOSR.59.4.150046.

[65] Garg, N., Pearce, B. W., Brandner, P. A., Phillips, A. W., Martins, J. R. R. A., and
Young, Y. L., “Experimental Investigation of a Hydrofoil Designed via Hydrostruc-
tural Optimization,” Journal of Fluids and Structures, Vol. 84, 2019, pp. 243–262.
doi:10.1016/j.jfluidstructs.2018.10.010.

[66] Garg, N., Kenway, G. K. W., Martins, J. R. R. A., and Young, Y. L., “High-fidelity
Multipoint Hydrostructural Optimization of a 3-D Hydrofoil,” Journal of Fluids and
Structures, Vol. 71, 2017, pp. 15–39. doi:10.1016/j.jfluidstructs.2017.02.001.

[67] Liao, Y., Garg, N., Martins, J. R. R. A., and Young, Y. L., “Viscous Fluid Structure
Interaction Response of Composite Hydrofoils,” Composite Structures, Vol. 212, 2019,
pp. 571–585. doi:10.1016/j.compstruct.2019.01.043.

[68] Vassberg, J. C., DeHaan, M. A., Rivers, S. M., and Wahls, R. A., “Develop-
ment of a Common Research Model for Applied CFD Validation Studies,” 2008.
doi:10.2514/6.2008-6919.

[69] Kennedy, G. J., and Martins, J. R. R. A., “A Parallel Finite-Element Frame-
work for Large-Scale Gradient-Based Design Optimization of High-Performance
Structures,” Finite Elements in Analysis and Design, Vol. 87, 2014, pp. 56–73.
doi:10.1016/j.finel.2014.04.011.

[70] Mader, C. A., Kenway, G. K., Martins, J. R. R. A., and Uranga, A., “Aerostructural
Optimization of the D8 Wing with Varying Cruise Mach Numbers,” 18th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, American Institute of Aero-
nautics and Astronautics, 2017. doi:10.2514/6.2017-4436.

[71] Kenway, G. K. W., Secco, N., Martins, J. R. R. A., Mishra, A., and Duraisamy, K., “An
Efficient Parallel Overset Method for Aerodynamic Shape Optimization,” Proceedings
of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, AIAA SciTech Forum, Grapevine, TX, 2017. doi:10.2514/6.2017-0357.

[72] Secco, N. R., Jasa, J. P., Kenway, G. K. W., and Martins, J. R. R. A., “Component-
based Geometry Manipulation for Aerodynamic Shape Optimization with Overset
Meshes,” AIAA Journal, Vol. 56, No. 9, 2018, pp. 3667–3679. doi:10.2514/1.J056550.

44

https://doi.org/10.1002/we.2070
https://doi.org/10.5957/JOSR.59.4.150046
https://doi.org/10.1016/j.jfluidstructs.2018.10.010
https://doi.org/10.1016/j.jfluidstructs.2017.02.001
https://doi.org/10.1016/j.compstruct.2019.01.043
https://doi.org/10.2514/6.2008-6919
https://doi.org/10.1016/j.finel.2014.04.011
https://doi.org/10.2514/6.2017-4436
https://doi.org/10.2514/6.2017-0357
https://doi.org/10.2514/1.J056550

[73] Gray, J. S., Chin, J., Hearn, T., Hendricks, E., Lavelle, T., and Martins, J. R.
R. A., “Chemical Equilibrium Analysis with Adjoint Derivatives for Propulsion Cy-
cle Analysis,” Journal of Propulsion and Power, Vol. 33, No. 5, 2017, pp. 1041–1052.
doi:10.2514/1.B36215.

[74] van der Weide, E., Kalitzin, G., Schluter, J., and Alonso, J. J., “Unsteady Turbo-
machinery Computations Using Massively Parallel Platforms,” Proceedings of the 44th
AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2006. doi:10.2514/6.2006-
421, AIAA 2006-0421.

[75] Mader, C. A., Martins, J. R. R. A., Alonso, J. J., and van der Weide, E., “ADjoint:
An Approach for the Rapid Development of Discrete Adjoint Solvers,” AIAA Journal,
Vol. 46, No. 4, 2008, pp. 863–873. doi:10.2514/1.29123.

[76] Mader, C. A., and Martins, J. R. R. A., “Derivatives for Time-Spectral Computational
Fluid Dynamics Using an Automatic Differentiation Adjoint,” AIAA Journal, Vol. 50,
No. 12, 2012, pp. 2809–2819. doi:10.2514/1.J051658.

[77] Lyu, Z., Kenway, G. K., Paige, C., and Martins, J. R. R. A., “Automatic Differenti-
ation Adjoint of the Reynolds-Averaged Navier–Stokes Equations with a Turbulence
Model,” 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, 2013.
doi:10.2514/6.2013-2581.

45

https://doi.org/10.2514/1.B36215
https://doi.org/10.2514/6.2006-421
https://doi.org/10.2514/6.2006-421
https://doi.org/10.2514/1.29123
https://doi.org/10.2514/1.J051658
https://doi.org/10.2514/6.2013-2581

	Introduction
	Requirements for an efficient multidisciplinary flow solver
	The CFD solver as a library
	Python API
	ADflow: A CFD solver for multidisciplinary analysis and optimization
	Computational performance
	Conclusion
	Acknowledgments

