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Abstract The wind energy industry relies heavily on CFD to analyze new turbine designs. To utilize
CFD earlier in the design process, where lower fidelity methods such as BEM are more common, requires the
development of new tools. Tools that utilize numerical optimization are particularly valuable because they
reduce the reliance on design by trial and error. We present the first comprehensive 3D CFD adjoint-based
shape optimization of a modern 10 MW offshore wind turbine. The optimization problem is aligned with
a case study from IEA Wind Task 37, making it possible to compare our findings with the BEM results
from this case study, and therefore allowing us to determine the value of design optimization based on high-
fidelity models. The comparison shows that the overall design trends suggested by the two models do agree,
and that it is particularly valuable to consult the high-fidelity model in areas such as root and tip where
BEM is inaccurate. In addition, we compare two different CFD solvers to quantify the effect of modeling
compressibility and to estimate the accuracy of the chosen grid resolution and order of convergence of the
solver. Meshes up to 14 · 106 cells are used in the optimization whereby flow details are resolved. The
present work shows that it is now possible to successfully optimize modern wind turbines aerodynamically
under normal operating conditions using Reynolds-averaged Navier–Stokes (RANS) models. The key benefit
of a 3D RANS approach is that it is possible to optimize the blade planform and cross-sectional shape
simultaneously, thus tailoring the shape to the actual 3D flow over the rotor. This work does not address
evaluation of extreme loads used for structural sizing, where BEM-based methods have proven very accurate,
and therefore will likely remain the method of choice.

1 Introduction
Wind turbine rotor optimization aims to maximize wind energy extraction and has been an important area
of research for decades. A common metric is to minimize the levelized cost of energy (LCoE) [1], which
can be decreased by lowering installation costs and operating expenses or by increasing the annual energy
production (AEP). Simply upscaling the turbine leads to an increase in swept area, which in turn extracts
more energy. However, a naive upscaling does not capture the complexity of the problem [2].

A major drawback of naive upscaling is that mass increases with the cube of the rotor radius. The
industry avoids the prohibitive mass increase by improving the blade design, which has resulted in blades
that are more slender for a given power rating, where the increase in loads (and therefore mass) can be kept
low. This further results in blades with increased capacity factors.

Traditionally, the blade design optimization process has been sequential, where the optimization of air-
foils and planform are performed in two distinct steps. In the present work, we optimize the airfoils and
the planform concurrently using 3D computational fluid dynamics (CFD). This concurrent design optimiza-
tion process is vital for the industry because, as previously shown, concurrent design processes result in a
larger gain compared to sequential counterparts [3], which is the main principle in multidisciplinary design
optimization (MDO) [4].

The use of 3D CFD is particularly valuable near the turbine blade root and tip, since the blade element
momentum (BEM) method uses empirical models to capture 3D effects for these regions. The increase in
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fidelity also allows us to explore out-of-plane features such as blade pre-bend and winglets, which is outside
the scope of traditional BEM approaches.

Industry still relies heavily on BEM, given that the 3D CFD shape design of rotors poses several challenges.
One of these challenges is modeling all the load cases that drive the design during an optimization. Much
work has been done in steady state computations with steady uniform inflow, but to truly generate realistic
loads, one should transition to turbulent inflow and accurately resolve the time domain. This poses an
immense challenge in terms of memory and computation time and is an active area of research.

In this paper, we present results from a high-fidelity aerodynamic shape optimization of a 10 MW off-
shore wind turbine rotor. By “high-fidelity”, we mean a detailed modeling of the rotor in 3D and the use
of Reynolds-averaged Navier–Stokes (RANS) equations to model the aerodynamics throughout the opti-
mization. The optimization is based on the case study from the International Energy Agency (IEA) Wind
Task 371, which allows for a comparison with the low-fidelity BEM results from this case study. Low-fidelity
tools offer a fast and reliable modeling approach. However, BEM does not capture the physics as completely
as high-fidelity CFD-based tools that solve the RANS equations. In the present work, we aim to quantify
the pros and cons of each approach.

Ideally, one would include all the relevant disciplines in such an optimization. This has been addressed
in previous work using BEM-based aeroelastic tools combined with various cross-sectional analytical or
finite-element-based structural tools.

Zahle et al. [5] showed that simultaneous design of the aerodynamic shape and structural layout of a
blade leads to passive load alleviation. This was achieved through bend-twist coupling, which increased the
AEP without increasing loads and blade mass. The LCoE has been minimized by other researchers while
taking aerodynamics, structures, and controls into account, thereby truly treating it as an MDO problem
both for 5 MW turbines [6] and for 20 MW turbines [7]. While we could tackle high-fidelity aerostructural
optimization using tools that have already been demonstrated in aircraft wing design [8–10], we focus solely
on aerodynamic shape optimization in the present work.

We start the remainder of this paper with a literature review on wind turbine optimization. We then
explain the methodology (Sec. 3), followed by a comparison between the compressible flow solver and an
incompressible flow solver (Sec. 4). The design optimization problem is presented in Sec. 5, followed by the
optimization results in Sec. 6. We end with our conclusions in Sec. 7.

2 Literature review
This literature review on wind turbine optimization is divided into three overall approaches: those that use
low-fidelity and multi-fidelity models (Sec. 2.1), approaches that use CFD models without adjoint sensitivities
(Sec. 2.2), and approaches that use CFD models with adjoint solvers (Sec. 2.3).

2.1 Low-fidelity and multi-fidelity shape optimization
CFD-based aerodynamic shape optimization is still rarely used in wind energy research, but both the
aerospace and the automotive communities have been using it increasingly often [11, 12]. However, when it
comes to low-fidelity shape optimization, the wind energy community has a large body of work.

BEM codes have been used extensively throughout the wind energy community for aerodynamic opti-
mization. These codes are easy to implement and incur low computational cost. Robustness has been an
issue in BEM codes, as they do not always converge [13]. Robustness is critical, especially when the analysis
is part of an optimization cycle. A lack of robustness will slow down the convergence in the best case, and
interrupt the optimization altogether in the worst case. To address this issue, Ning [14] re-parameterized
the BEM equations using a single local inflow angle, resulting in guaranteed convergence.

It has long been known that the design of wind turbines is inherently a multidisciplinary endeavor. There
have been more than two decades of research where BEM has been coupled with elastic beam models to
account for structural deflections and material failure [15], including work in wind turbine optimization
considering site-specific winds [16–19].

BEM has also been coupled to structural models with different levels of fidelity. This allowed Bottasso
et al. [20] to study possible configurations to achieve bend-twist coupling resulting in load alleviation. They
found that the highest load reduction is obtained by combining (passive) bend-twist coupling and (active)
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individual pitch control instead of using only a single approach. Another example where BEM is part of
a larger multidisciplinary toolkit applied to the study of load alleviation is that of Zahle et al. [5], who
maximized AEP without exceeding the original overall loads of a 10 MW reference wind turbine (RWT).
They achieved a 8.7% AEP increase through passive load alleviation without an increase in the blade mass
and only minor increases in the loads, despite blades that were 9% longer. The parameterization was
comprised of 60 design variables and just as in the work of [20], they computed the gradients with finite
differences. After an initial step size study, they ran a reduced set of design load cases to obtain the final
turbine design, which was then evaluated on the full design load basis. Their work is a demonstration of the
power of integrating design approaches.

As we will detail later, gradient-based optimization algorithms, combined with an adjoint method for
computing the gradients, provide a powerful approach to address large-scale problems. For multidisciplinary
systems, it is necessary to compute coupled derivatives, which presents additional challenges [21, 22]. Ning
and Petch [23] introduced the application of the coupled adjoint method to the MDO of wind turbines.

One obstacle in using BEM codes is that the lift and drag data must be at hand. Typically, one uses data
from wind tunnel experiments or low-fidelity numerical models, such as a panel code [19]. Another option is
to use high-fidelity methods such as RANS CFD to generate the lift and drag coefficients for the BEM code
[3, 24]. Barrett and Ning [3] combine BEM with both panel and 2D RANS CFD in a comparison between two
integrated blade design approaches (“precomputational” and “free-form”) and a sequential approach. They
used a panel code iteratively to converge the BEM residual and then either a panel code or CFD to generate
the final lift and drag coefficients. Like Zahle et al. [5], they argued for the integrated design approach,
but they found that the precomputational approach achieved most of the benefits yielded by the free-form
approach. This is impressive, since the precomputational approach took marginally more computation time
than the sequential approach.

Gradient-based, gradient-free, and hybrid approaches have all been used to optimize airfoils using panel
codes. An example of a gradient-based optimization approach is the Risø-B1 airfoil family, which currently
is in commercial use by several manufacturers. Fuglsang et al. [25] described the design and experimental
verification process, where they used an in-house MDO tool. They carried out the numerical design studies
using XFOIL [26] and used the VELUX wind tunnel for 2D experimental verification. Due to concerns with
XFOIL’s accuracy in predicting separation, they opted to verify the optimization results using the CFD code
EllipSys2D, thus combining fidelities in an attempt to balance speed and accuracy.

Grasso et al. optimized airfoils dedicated to both the blade tip [27] and the blade root [28], using gradient-
based and hybrid approaches, respectively, both based on the panel code RFOIL, which is based on XFOIL.
More recent airfoil studies have turned to large, offshore, pitch-controlled wind turbines, including tests with
vortex generators that resulted in the development of a new airfoil family [29].

Medium-fidelity vortex methods are popular aerodynamic models in wind turbine applications. Vortex
theory is based on potential flow, which does not model the viscous effects modeled in RANS CFD. However,
it does provide a more realistic solution than BEM codes while still keeping the computational cost low com-
pared to CFD. Well-established vortex codes in the wind energy community include the GENeral Unsteady
Vortex Particle (GENUVP) code [30], the Aerodynamic Wind Turbine Simulation Module (AWSM) [31],
and the Method for Interactive Rotor Aeroelastic Simulations (MIRAS) [32].

These vortex codes have been widely used in analysis, but applications to design optimization have
been less frequent. Early optimization studies were performed by Zhiquan et al. [33], Chattot [34], and
Badreddinne et al. [35]. More recent efforts based on vortex codes include those of Sessarego et al. [36],
who report on a surrogate-based optimization methodology, and of Lawton and Crawford [37], who use
the complex-step method to carry out the gradient-based optimization of a winglet. Researchers have also
developed analytic gradient computation for vortex methods by re-formulating the vortex dynamics using
the finite element method (FEM) [38]. However, BEM is still well-entrenched and is currently the default
choice for optimization.

2.2 High-fidelity CFD-based shape optimization without adjoint gradients
Barrett and Ning [24] compared two numerical models of different fidelities (a panel code and RANS CFD)
to wind tunnel data. They found that the choice of aerodynamic model had a large impact on the optimal
design, which thereby stresses the need for high-fidelity models such as RANS. This agrees with Lyu et al.
[39], who report serious issues with Euler-based aircraft wing design due to missing viscous effects (compared
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to RANS-based design). They found that while Euler-based design yields some insights, the RANS-based
optimization is needed to achieve a realistic design. Therefore, we limit the discussion in the present section
to RANS CFD optimization.

Kwon et al. [40] used 2D RANS with a transition model to carry out gradient-based optimization using
finite differences with nine design variables and achieved an 11% increase in torque. Similarly, Ribeiro et al.
[41] used nine design variables and a gradient-free method (a genetic algorithm) to perform both multi-
objective and single-objective optimizations. By training a surrogate model, they sped up the optimization
process by almost 50% while achieving similar results. Liang and Li [42] used two design variables (thickness
and camber) to carry out 2D shape optimization with a gradient-free method of airfoils (NACA0015) for
vertical axis wind turbines (VAWTs). A subsequent 3D modeling and CFD evaluation of the VAWT using
the optimized airfoils achieved power coefficient increases up to 7%. Finally, Zahle et al. [43] carried out an
airfoil optimization and wind tunnel validation. The developed optimization framework, based on the open-
source framework OpenMDAO [44], included a combination of panel (XFOIL) and CFD (EllipSys2D) codes
for the analysis, where the turbulence is described using the k − ω shear-stress transport (SST) turbulence

model [45] and two transition models: γ−R̃eθ [46–48] and the eN Drela–Giles transition model [49] described
by Madsen [50, Chapter 6]. They used a total of 21 design variables and computed the gradients using finite
differences. They ran 20 optimizations under various conditions, and since each optimization involved 2640
CFD simulations, they split the procedure into two steps of increasing fidelity to save time: First, they
optimized using XFOIL, and then, they used this intermediate result as a starting point for a subsequent
CFD-based optimization. Such “warm starts” are now common practice, and we also use them in the present
work. Using this framework, Zahle et al. [43] completed the optimization of a 30% and a 36% airfoil called
LRP22-30 3 and LRP2-36, respectively. Finally, through experimental results from the Stuttgart Laminar
Wind Tunnel for both LRP2-30 and LRP2-36, as well as the FFA-W3 counterparts (FFA-W3-301 and FFA-
W3-360), they demonstrated that the new airfoils exhibit a superior performance compared to the FFA-W3
airfoils.

Shape optimization has also been used to optimize turbine blades using 3D CFD in conjunction with
gradient-free and gradient-based methods. Vucina et al. [51] used 3D RANS and a genetic algorithm to
optimize the shape of wind turbine blades with up to 25 design variables. They concluded that their
gradient-free framework was functional and robust, but also that many CFD evaluations were needed for
the optimizer to converge due to the high number of variables. As a final example of the use of gradient-free
methods with 3D CFD models, Elfarra et al. [52] optimized a winglet, also using a genetic algorithm. They
used two design variables (cant and twist angle) to optimize the torque, resulting in a 9% increase in power
production. The results were obtained by training a surrogate model (an artificial neural network) using 24
CFD samples to reduce computational time.

There has been an increasing interest in blade extensions and winglets for wind turbines, since they can
offer a cost-effective alternative to a complete blade re-design for site-specific performance enhancements.
Zahle et al. [53] explore such a design problem. They used 12 design variables to maximize the energy
production while satisfying certain load constraints from the original blade design. Like Elfarra et al. [52],
they also used a surrogate model that they trained using a random sampling strategy. Here, they seek a more
balanced design by using multiple wind speeds throughout the sampling. Using gradient-based optimization
on the resulting surrogate model, they obtain a power increase of 2.6% by adding a winglet, while not
increasing the flapwise bending moment at 90% radius.

To optimize with respect to large numbers of variables, gradient-based algorithms are the only hope if
one wishes to achieve convergence to an optimum in a reasonable amount of time [54]. The efficiency of
gradient-based optimization is dependent in large part on the cost and accuracy of computing the gradients.
Finite differences provide a way to compute gradients that is easy to implement, but they are subject
to numerical errors, and they scale poorly with the number of design variables [55]. The complex-step
derivative approximation method is an alternative to finite differences that is much more accurate, but still
scales linearly with the number of variables [55]. This method has been widely used, including in some wind
energy applications [3, 19]. Some efforts tried to reduce the computational cost by using semi-empirical
gradients [15], surrogate models [41, 52, 53], and mixed-fidelity models [3, 43]. For large numbers of
variables, the adjoint method provides an efficient way to compute the required gradients [56, 57], a fact

2LRP stands for Light Rotor Project
3https://energiteknologi.dk/node/1197
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that has also been verified in the wind energy community [58]. The adjoint method is the subject of the
next section.

2.3 High-fidelity CFD-based optimization using the adjoint method
We now detail previous efforts on RANS CFD-based shape optimization using the adjoint method, which
we also use in the present work. These efforts are listed in Table 1.

Table 1: Overview of related work using the adjoint method.

Reference Turbine? Adjoint Dim. Re ¶¶ Mesh size † DVs Iterations §
Ritlop and Nadarajah [59] – Discr. 2D 2.0 · 106 3.3 · 104 385 100–200
Khayatzadeh and Nadarajah [60]– Discr. 2D 2.1 · 106 1.3 · 105 385 –
Schramm et al. [61] – Cont. 2D 3.0 · 106 5.5 · 104 720 –
Schramm et al. [62] – Cont. 2D 7.9 · 106 – 480 –
Barrett and Ning [24] – Cont. ¶ 2D 1.0 · 106 1.4 · 104 10–22 [Table 2] –
Vorspel et al. [58] – Cont. 2D 5.0 · 104 5.0 · 104 2–364 [Table 1] –
Schramm et al. [63] – Cont. 2D 2.0 · 106 2.1 · 105 20–50 0–30 [Fig. 5,7]
Barrett and Ning [3] – Cont. ¶ 2D 1.0 · 106 1.4 · 104 10–68 [Table 1] –

Economon et al. [64] – Cont. 2D 1.0 · 103 3.2 · 104 50 10
NREL VI 3D 1.0 · 106 7.9 · 106 84 3

Vorspel et al. [65] – Cont. 2D 5.0 · 104 – 2 30 [Fig. 3]
– 3D 1.2 · 106 2.4 · 106 – ¡8 [Fig. 6]

Dhert et al. [66] NREL VI Discr. 3D 1.0 · 106 2.6 · 106 ‡ 1–252 9–23
Vorspel et al. [67] NREL VI Cont. 3D 1.0 · 106 5.2 · 106 ‡‡ 5–9 ¡8 [Fig. 5]
Tsiakas et al. [68] MEXICO Cont. 3D 1.0 · 106 2.5 · 106 §§ 135 10 [Fig. 4]
Madsen et al. (present work) IEA Discr. 3D 1.0 · 107 1.4 · 107 1–154 100–200

† Number of cells in largest mesh used for optimization § Not all papers state the number of optimization
iterations explicitly. In some cases, we report the number of iterations estimated from the cited figures. As
mentioned in [58], this number depends on the optimization problem and optimizer settings, meaning that
cross-setup comparison is difficult.
§§ Tsiakas et al. [68] only gives the number of mesh nodes.
‡ Reduced geometry where the root section was removed.
‡‡ Applied symmetric BCs double the mesh size compared to others.
¶¶ In cases where a range of Reynolds numbers were used, we report the maximum values.
? We only found high-fidelity shape optimization for three turbine configurations in the literature: two
smaller turbines—NREL Phase VI and MEXICO [69]—and the large, commercial-scale IEA 10 MW wind
turbine. We find it reasonable to assume that the simulations for NREL Phase VI and MEXICO have a
Reynolds number on the order of Re = 106 [70, p. 152];[p. 10]ieatask29phase1, while we estimate the
Reynolds number for the IEA turbine to be on the order of Re = 107 [71, p. 15-16].

Ritlop and Nadarajah [59] were the first to use a high-fidelity shape optimization method with an adjoint
solver for wind turbine profiles. They optimize the lift-to-drag ratio starting from the S809 airfoil using a
compressible solver, a low-Mach preconditioner (both for flow and adjoint solver), and the Spalart–Allmaras
(SA) turbulence model and find a tendency to increase camber to gain more lift. Finally, they point to the
k − ω SST turbulence model and a transition model as needed improvements. Khayatzadeh and Nadarajah
[60] optimized the same airfoil using an enhanced framework that included the cited improvements, where
they attempted to postpone the onset of transition. They concluded that both the capability and accuracy
of the discrete adjoint optimization framework improved by including the new adjoint variables for the
transition model.

There have been several contributions to 2D RANS shape optimization that use the continuous adjoint
approach [61–63, 72]. In these efforts, the continuous adjoint implemented for ducted flows in the flow solver
OpenFOAM [73] was extended to handle external aerodynamics. First, Schramm et al. [61] optimized the
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lift-to-drag ratio of the DU 91-W2-250 profile using 720 design variables while constraining cross-sectional
area. They use the “frozen turbulence” assumption, which means that no adjoint equation is used for the
turbulence model. Since each surface point in this work is a design variable, they smooth the gradient for
stability. The result is a 5.7% to 59% increase in lift-to-drag ratio for angles of attack ranging from 6.15◦ to
9.66◦.

In a later work, Schramm et al. [62, 72] presented a finite-difference verification of the adjoint gradients.
The same group performed the shape optimization of an upstream leading edge (LE) slat for the DU 91-W2-
250 airfoil and a validation of the framework using wind tunnel data, showing good agreement below stall
[62]. The optimization, which used 480 design variables, resulted in a 2% decrease in drag. As mentioned
previously, there have been other efforts in turbine blade design using 2D RANS CFD with the adjoint
method [3, 24] that used the open-source compressible solver SU2 [74]. These works couple the 2D RANS
and adjoint model to BEM, panel, and beam element analysis codes to arrive at a 3D multifidelity and
multidisciplinary design framework.

[58] present a benchmark of different optimization algorithms (Nelder–Mead, steepest descent, and Quasi-
Newton) for unconstrained shape optimization in 2D, where the continuous adjoint solver within OpenFOAM
is used. The benchmark optimization problem is to find a target lift coefficient, c∗l , from any baseline shape,
s0. However, they both consider computation time and ease of use to grade the algorithms. As already
mentioned, they point to the use of the adjoint method to compute the gradient for a large number of
design variables. They recommend that further analysis be done within constrained optimization and within
multidisciplinary optimization.

In a more recent work within unconstrained optimization, Schramm et al. [63] investigated the effect of
the “frozen turbulence” assumption in 2D. They carried out their investigations on the NACA 0012 and DU
93-W-210 airfoils. In this single point study, they concluded that the implementation of adjoint turbulence
models results in better gradients than those obtained through the frozen turbulence assumption. Finally,
they specifically mention thickness constraints as a future work topic.

OpenFOAM with a continuous adjoint solver has also been used in 3D. This was done by Vorspel et al.
[65], who first performed a 2D test case with two design variables. The 3D test case consisted of an extruded
airfoil with a spanwise length of five chords and a mesh of 2.4 ·106 cells with an y+ of 2.5. They investigated
both a twist and a bend-twist coupling case but found that the bending had no discernible effect. This is
something they expect to change for future rotating blades applications.

The above work does not model the rotation, which is important to get the correct local angle of attack
along the blade and thus accurately compute the forces acting on the blade. Several 3D adjoint-based
optimization efforts model rotation effects, three of which studied the NREL Phase VI rotor [64, 66, 67], and
another which studied the MEXICO rotor [68]. Economon et al. [64] used a continuous adjoint formulation
to perform single point aerodynamic shape optimization using a compressible RANS model. In 2D, they
reduced drag starting from a NACA 4412 profile baseline by 4.86% under imposed thickness constraints.
They used a total of 50 design variables and completed ten design iterations. In 3D, they improved the
torque coefficient on a mesh with 7.9 million cells by 4% using 84 shape variables with no constraints
imposed on geometry or loads. The FFD box covered part of the blade such that both the trailing edge
and the innermost part of the blade could not derform. The optimization was not fully converged, as only
three design iterations were performed. One drawback in this early work is the use of the frozen turbulence
assumption, which they also identified as an area of future work.

Dhert et al. [66] used a discrete adjoint solver to carry out a multipoint optimization of a two-bladed rotor
using a 2.6 million cell mesh, where they maximized the torque coefficient using up to 252 design variables.
They used pitch, twist, and local shape design variables while constraining the thickness between 15% and
50% of the local blade chord to ensure adequate space for a structural box. The final multipoint optimization
resulted in a 22.1% increase in torque coefficient, but also increased the thrust by 69%. The original design
was meant to be a three-bladed rotor, which explains the low thrust coefficients in the reported results [66,
Table 1]. They found the optimized shapes for both single and multipoint optimization exhibited highly
cambered trailing edges at the root region where the wind speed is reduced. While this does agree with what
has been reported in 2D cases [59], it is also exactly what one would expect when chord is not included as a
design variable.

The present work builds on Dhert et al. [66], who used the same CFD solver, ADflow. Our improvements
are summarized in Table 2. One major improvement has to do with the adjoint implementation that was
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used. As we will explain in more detail later (in Sec. 3.2.2), our adjoint implementation uses the automatic
differentiation (AD) technique to compute certain derivatives [75]. One major improvement is that we
implemented the more memory-efficient reverse automatic differentiation. Dhert et al. [66] was forced to use
the less memory-efficient forward automatic differentiation because the reverse option did not include the
rotating terms required to model wind turbine rotors. We also added constraints on maximum thrust and
flapwise bending moment to align with the IEA case study and enlarged the design space to include chord
design variables. Furthermore, Dhert et al. [66] carried out their studies on the turbine blade excluding the
root because of flow solution convergence issues, whereas we include the root. This was made possible
by the robustness of the new approximate Newton–Krylov (ANK) solver in ADflow, which also increases its
speed [76]. Finally, we achieve an optimality convergence tolerance that is up to five orders of magnitude
lower.

Table 2: Overview of differences between the work by [66] and the present work.

Dhert et al. [66] Present work

Geometry
Reduced geometry Entire geometry
(no root) included

Adjoint derivatives Forward AD Reverse AD

Convergence
[10−1, 10−2] [10−2, 10−7]

of optimization

Optimization iterations O(101) O(102)

Maximum mesh size (million) 2.60 14.16

Another recent effort is that of Vorspel et al. [67], who performed unconstrained optimization of the
NREL Phase VI rotor where they minimized the thrust by varying up to nine twist design variables using a
steepest descent optimization algorithm. Not surprisingly, they mention convergence issues, in part due to
the turbine being stall regulated and exhibiting separated flow at some inflow speeds. Vortices at tip and
root further impaired the convergence, which in turn resulted in poor gradient quality. They addressed this
issue by limiting the deformable area to only the outer 50% of the blade length, which limited the shape
design optimization. Like Economon et al. [64], they used the frozen turbulence assumption. However, they
differed in choice of turbulence model: Vorspel et al. [67] used the k − ω SST model, while Economon et al.
[64] used the SA turbulence model. For future work, they suggested the use of more efficient optimization
algorithms, and mentioned the inclusion of the adjoint turbulence equations and the study of turbines that
are not stall regulated.

Finally, Tsiakas et al. [68] used a continuous adjoint approach that included the SA turbulence equations
to optimize the MEXICO RWT. The flow was modeled by the incompressible RANS equations and solved
in a co-moving frame of reference. They maximized the power for a single wind speed of 10 m/s. Compared
to the present work, they used a different parameterization technique based on volumetric non-uniform
rational B-splines (NURBS), which confine the blade in a small volume. NURBS are used both for the
deformation of the surface and the volume meshes, and the outermost NURBS control points are fixed to
keep the outer volume mesh fixed. This only ensures C0 continuity. They use 385 NURBS, resulting in 135
design variables, which are only allowed to move in the direction perpendicular to the rotor plane. This
choice of parameterization limits the design space; for example, no chord increase can be obtained without
simultaneously changing profile shape. The flow and adjoint solvers take advantage of graphics processing
units (GPUs) hardware, resulting in fast solutions. Indeed, they state that the overall optimization process
can run up to 50 times faster on GPUs than on CPUs. They obtained a 3% increase in the objective function
and attribute this modest improvement to the limited freedom in the parameterization.

In spite of the contributions cited above, many improvements are needed before we achieve the ultimate
goal of providing a “push-button solution” for wind turbine manufacturers. This paper contributes some of
these improvements by including all of the following features in a comprehensive high-fidelity 3D RANS-based
shape optimization framework:

1. Enforcement of geometric constraints to ensure structural feasibility
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2. Normal operation rotor load constraints limiting thrust and flapwise bending moment

3. More precision and stability in the convergence of flow and adjoint solvers

4. Full turbulence model adjoint

5. A comprehensive set of design variables

6. Modeling and deformation of the entire blade shape

In Table 3, the present work is compared to the above cited 3D shape optimization efforts on wind turbine
rotors.

Table 3: Overview of aerodynamic optimization works of wind turbine rotors using the adjoint method.

Reference Multi
Turbu- Deformation Geometry Load constraints Geometric Design variables
lence ( = full blade) ( = full blade) Thrust Moment constraints Twist Chord Shape

Economon et al. [64]
Dhert et al. [66]
Vorspel et al. [67]
Tsiakas et al. [68]
Present work

Multi: Multipoint optimization; Turbulence: Whether the turbulence model is included in the adjoint
solver; Deformation: Whether the entire blade was allowed to deform; Geometry: Whether the entire
blade was modeled; Geometric constraints: Whether any geometric constraints were imposed

As previously mentioned, structural considerations are crucial in wind turbine design. Anderson et al.
[77] partially addressed this issue by coupling the NSU3D RANS solver with the AStrO structural finite
element solver through a fluid-structure interface to converge on realistic, steady-state loads on the SWiFT
RWT. They used Abaqus to make a finite element model with shell elements. They performed a purely
structural optimization of the composite blade, with the loads computed by the CFD. The optimization’s
objective was to, using gradient-based optimization, minimize the off-axis stress with respect to 16 310 ply
orientation variables. They completed ten optimization iterations considering five different load cases and
achieved a reduction in the maximum fatigue stress between 40% and 60%. They did so without adding
any constraints, but they did assume the material to be a single-ply, unidirectional fiber composite for each
blade section. The logical next step would be to perform the simultaneous optimization of the structural
sizing and aerodynamic shape optimization, as is already done in aircraft wing design [8].

3 Methodology
We now briefly describe all components of the optimization framework. The overall workflow is shown in
Fig. 1 using an extended design structure matrix (XSDM) diagram [78]. An initial set of design variable
values, x(0), is given to the optimizer. The optimizer passes the current design variables to the surface
deformation module, prompting it to update the surface mesh (except for the very first iteration). The
surface deformation module also provides analytic derivatives of the surface mesh with respect to the design
variables, dxs/dx. After the surface mesh has been updated, it is passed to the volume deformation module,
which updates the volume mesh and computes its analytic derivatives with respect to the surface mesh,
dxv/dxs. Then, the flow solver computes the flow states, w. These states are passed to the adjoint solver,
which computes the total derivative. Finally, the objective function, f (e.g., torque), as well as its derivatives,
df/dx, are provided to the optimizer, which computes a new step for another optimization iteration. Both
the surface and volume deformation steps are fast explicit operations. On the other hand, the flow and
adjoint solvers are costly iterative operations that take up the vast majority of the computation time. The
optimization process involves O(102) major iterations, which is an absolute minimum bound on the number
of CFD solutions and mesh updates; there are additional CFD solutions within each major iteration.
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Figure 1: Extended design structure matrix (XDSM) showing the optimization framework. Green blocks
are iterative solvers, whereas red boxes represent explicit functions. Black lines represent the process flow in
the order of the numbers; gray lines represent data dependencies.

3.1 Geometry and mesh deformation
To deform the surface geometry and mesh, we use the Python module pyGeo developed by [79], which
implements the FFD [80] technique. Some of the key features of FFD are analytic derivatives and a machine-
precision representation of the baseline geometry.

The volume deformation tool is called IDWarp and is based on the inverse distance weighting function
[81]. IDWarp is a fast and unstructured deformation algorithm that has been demonstrated in aerodynamic
[12, 54] and aerostructural applications [9].

3.2 Flow and adjoint solvers
3.2.1 EllipSys3D
EllipSys3D is an in-house, structured, multiblock, finite volume method (FVM) flow solver developed at
DTU Wind Energy by Michelsen [82, 83] and Sørensen [84], and we use it in the present work to perform the
comparison between CFD solvers. It discretizes the incompressible RANS equations using general curvilinear
coordinates and couples velocity and pressure through the SIMPLE algorithm.

In this study, we run EllipSys3D using the third-order quadratic upwind interpolation for convection
kinematics (QUICK) scheme and the k − ω SST [45] model to calculate the turbulent eddy viscosity, which
compares favorably to other turbulence models for wind turbine applications [85].

EllipSys3D has been validated against experimental data for the MEXICO RWT [86], the NREL Phase VI
RWT [70, 87], and also in a blind comparison [88]. In addition, the unsteady interaction between tower and
blade has been simulated for the NREL Phase VI RWT with EllipSys3D using overset grid capabilities, and
an overall good agreement was found with experimental data [89]. EllipSys3D has been used in various rotor
applications to perform computations, such as aerodynamic power [90] and fluid-structure-interaction [91].
The latter work also encompasses a comparison across fidelities between the CFD-based tool, HAWC2CFD,
and the BEM-based HAWC2 solvers where a good agreement was found. EllipSys3D has also been compared
with OpenFOAM for a case with atmospheric flow over complex terrain. EllipSys3D was found to be 2–6
times faster while producing almost identical numerical results [92]. More recent sources also show that these
two solvers yield comparable results [93–95].

3.2.2 ADflow
ADflow is a compressible RANS solver based on SUmb [96], a structured FVM CFD solver written in
Fortran 90 that uses cell-centered variables on a multiblock grid. Unlike EllipSys3D, ADflow uses the
Spalart–Allmaras (SA) turbulence model [97] and works with state variables computed using the Jameson–
Schmidt–Turkel (JST) scheme. More recently, Kenway et al. [98] implemented overset mesh capability.
ADflow is wrapped with Python to provide a more convenient user interface and to facilitate integration
with optimization algorithms and other components of an MDO framework.

ADflow has been coupled to a structural finite-element solver in the MACH (MDO for aircraft configura-
tions with high fidelity) framework [10], which has been used to perform not only aerostructural optimization
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of aircraft configurations [8, 9, 99, 100], but also hydrostructural optimization of hydrofoils [101, 102].
As previously mentioned, we use an ANK solver, which is implemented in ADflow to provide robustness.

The ANK implementation is important since it is crucial to properly converge the flow field in order to obtain
accurate gradients. Newton–Krylov (NK) methods are not robust because they might not converge if the
starting point is outside the basin-of-attraction. ANK addresses this convergence issue using a globalization
method called pseudo-transient-continuation, which starts with the stable but inefficient backward Euler
method with a small time step, and then increases the time step to approach the higher convergence rate
of the NK solver. The ANK method involves the solution of large linear systems using preconditioners.
These systems are solved in a matrix-free fashion with the GMRES algorithm [103] using the PETSc library
[104–106]. The adjoint solver linear systems are solved using the same algorithm. ADflow is considered
converged when the ratio of the L2 norm of the residuals at iteration n and the same norm of the free stream
residual is below a given tolerance, i.e, when

η ≤ ||R
n||2

||Rfs||2
. (1)

For the optimizations presented below, we typically set η = 10−9, whereas the L2-convergence for the adjoint
equation is set to 10−7. These convergence thresholds are not to be confused with the optimality tolerance,
which we set to 10−4.

One crucial capability in ADflow is the efficient computation of gradients through its adjoint solver.
Together with the geometry and mesh deformation tools mentioned above, and the optimization software
mentioned in the next section, this enables aerodynamic shape optimization with respect to hundreds of
design variables [11, 39, 66]. All the optimization results in Sec. 6 are obtained with the ADflow framework.

We now derive the adjoint equations and briefly explain how they are assembled and solved. A detailed
description of the implementation is provided in previous work [75, 107, 108]. The CFD solver computes
the flow field, w, for a given set of design variables, x, by converging the residuals R(x,w) of the governing
equations to zero. Then, any function of interest, f(x,w), can be computed. Gradient-based optimizers
require the gradient of the objective and constraint functions with respect to the design variables. To
compute this gradient, we use the equation for the total derivative:

df

dx
=
∂f

∂x
+
∂f

∂w

dw

dx
. (2)

Here, the partial derivatives correspond to derivatives of explicit functions, while the total derivative involves
the iterative solution of the governing equations. Thus, the partial derivatives can be found analytically at
a low computational cost, but the direct computation of the total derivative dw/dx should be avoided.
A similar total derivative equation can be written for the residuals, which must remain zero for the CFD
solution to hold and thus,

dR

dx
=
∂R

∂x
+
∂R

∂w

dw

dx
= 0. (3)

We can now substitute the solution of the Jacobian given by the above equation into the total derivative
equation (2) to obtain:

df

dx
=
∂f

∂x
− ∂f

∂w

[
∂R

∂w

]−1

︸ ︷︷ ︸
ΨT

∂R

∂x
, (4)

where we have only partial derivative terms that can be found analytically at a low computational cost. The
linear system in this equation can either be solved by computing the solution Jacobian, dw/dx, from the
linear system from Eq. (3) or by solving the adjoint system:[

∂R

∂w

]T
Ψ =

[
∂f

∂w

]T
, (5)
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where Ψ is the adjoint vector, which can be substituted into the total derivative equation (2), i.e.,

df

dx
=
∂f

∂x
−ΨT ∂R

∂x
. (6)

The cost of the adjoint method is independent of the number of design variables because the adjoint
equation (5) does not contain x. However, if there are multiple functions of interest f , we need to solve
Eq. (5) for each f with a different right-hand side. Given that our problem has O(102) design variables and
only a few functions of interest, the adjoint method is particularly advantageous.

In the adjoint equation (5) and total derivative equation (6), we need to provide two matrices and two
vectors of partial derivatives. As mentioned above, these derivatives involve only explicit operations and
are in principle cheap to compute. However, they still require the differentiation of parts of a complex
CFD code, and a good implementation is essential to preserve the accuracy and efficiency of the adjoint
approach. Traditionally, adjoint method developers have derived these partial derivatives by differentiating
the equations or code manually and programming new functions that compute those derivatives. This
process is labor intensive and prone to programming errors. To address this drawback, Mader et al. [75]
pioneered the use of automatic differentiation to compute the partial derivatives. Automatic differentiation
is a technique that takes a given code and produces new code that computes the derivatives of the outputs
with respects to the inputs [109]. Using a pure automatic differentiation approach to compute our derivatives
of interest, df/dx, would mean applying the automatic differentiation tool to the whole CFD code, including
the iterative solver. While this produces accurate derivatives, it is not an efficient approach. By selectively
using automatic differentiation to produce code that computes only the partial derivatives, which do not
involve the iterative solver, we lower the adjoint implementation effort while keeping the efficiency of the
traditional adjoint implementation approach. There are still many details involved in making our adjoint
implementation approach efficient; these details have been presented in previous work [75, 108].

As briefly mentioned in the introduction, there are two modes for automatic differentiation: the forward
mode and the reverse mode. Dhert et al. [66] had used automatic differentiation in forward mode to compute
and store the flow Jacobian, ∂R/∂w, as well as the other partial derivatives. Then, these stored matrices
are used by the adjoint solver to compute transpose-matrix-vector products to converge the adjoint solution,
Ψ. Using the reverse mode, no storage of the Jacobian is needed. Instead, a matrix-free approach is used,
where the transpose-matrix-vector products required to converge the adjoint solution are computed directly
through the reverse mode derivative routines. While the reverse mode is more efficient in terms of memory
usage, the reverse mode implementation was missing the rotation terms required for wind turbine modeling.
We have fixed this for the implementation in the present work and use the reverse mode instead. The
implemented reverse AD routines may also lead to speed up depending on the number of Krylov iterations
needed to converge the adjoint system.

3.3 Optimizer
We use the Sparse Nonlinear OPTimizer (SNOPT) [110] for all optimizations herein. SNOPT implements
a sequential quadratic programming (SQP) algorithm. We use it through the open-source Python wrapper
pyOptSparse 4, which provides a common interface to this and other optimization software. The conver-
gence in SNOPT is set through the “major optimality tolerance” setting [111]. We aim at converging all
optimization problems to 10−4.

4 Flow solver comparison
In this work, we use ADflow as the CFD solver in the design optimization due to its adjoint gradient
computation and integration with geometry parametrization, mesh deformation, and optimization tools.
However, EllipSys3D has been more thoroughly validated for wind turbine rotor flows, so in this section,
we verify ADflow against EllipSys3D for a three-bladed pitch-regulated rotor geometry. In this section, we
only include a mesh convergence study for one operational condition. A more detailed flow comparison is
included in Appendix A.

4https://github.com/mdolab/pyoptsparse
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4.1 Fluid model and computational mesh
All simulations are steady state 3D RANS of the rotor only, where effects from both tower and nacelle have
been neglected. Since we study a rigid upwind turbine, neglecting tower and nacelle should have a limited
effect. We also note that we compute the flow field using a co-rotating, non-inertial reference frame that
is attached to the rotor. Therefore, the RANS equations have additional terms to account for Coriolis and
centripetal forces. Just as for the IEA Wind Task 37 case, the three-bladed pitch-regulated rotor geometry
in the analysis is a design based on the DTU 10 MW RWT [71], where both chord and twist distributions
have been altered to allow for more room for improvement using design optimization. We compare the twist
and thickness distributions for the DTU 10 MW RWT and the IEA Wind Task 37 baseline in Fig. 2
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Figure 2: Comparison of chord (left) and twist (right) for the DTU 10 MW RWT and the perturbed design
used as the starting point for the IEA optimization case study. Both the chord and twist are reduced.
The baseline blade design is based on the FFA-W3 airfoil family with relative thicknesses in the range of
[24%, 36%].

The surface mesh consists of three blades, each with 36 blocks. For each blade, there are 256 cells in the
chordwise direction and 128 in the spanwise direction (tip excluded). The surface mesh is generated using
the in-house Parametric Geometry Library (PGL). The tip was constructed using four blocks of 32×32 cells
each, resulting in a total surface mesh with 110 592 mesh cells.

The spherical volume mesh has an O-O topology generated with the hyperbolic in-house mesh generator
HypGrid [112]. Setting the first boundary layer cell height to 10−6 m yields a y+ of around one for the given
operational conditions, and a total of 128 cell layers are grown from the surface mesh where the farthest
vertices reach a distance of 1740 m. This results in a total of 432 blocks, each with 32×32×32 cells, which is
equivalent to 14.155776 million cells. Given a span of R = 89.166 m, the surrounding spherical mesh expands
to about 20 times the blade span.

The mesh we just described above is the finest mesh we use, which we call the L0 mesh. A coarser (L1)
mesh is obtained by coarsening L0 once, i.e., by removing every second cell in all three directions. Similarly,
the L2 mesh is obtained by coarsening L1. Unless otherwise stated, we use these three meshes in all the
work herein. The turbine geometry and the surrounding spherical mesh are shown in Fig. 3, and a more
detailed view of the rotor is shown in Fig. 4.

4.2 Mesh convergence study
To quantify the mesh dependence for each solver, we compute the integrated metrics—torque and thrust—for
the three mesh levels (L0, L1, and L2) and list them in Table 4. The operational condition corresponds
to a wind speed of 8 m/s and rotor speed of 6.69 RPM at zero blade pitch, which is one of the conditions
listed in Table 10 in Appendix A. As is evident from the results for meshes L2, L1, and L0 in Table 4,
ADflow does not produce a sufficiently mesh-independent solution on mesh L0. This agrees with an earlier
mesh convergence study [66, Table 1], where up to 22 million cells were used without reaching convergence.
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Figure 3: The baseline wind turbine design
with the spherical L0 mesh around it. The
blade span is 89.166 m, and the spherical
mesh stretches to 20 times the blade span.
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Figure 4: Baseline geometry used in the
flow solver comparison and as starting point
for the optimization. Each blade has a
surface mesh with 36 square blocks. Each
block has 32× 32 cells, resulting in 110 592
surface mesh cells.

Therefore, we generated a finer mesh with more than 47 million cells called L−1. The L−1 mesh is made
exclusively for the present grid convergence study, and will not be used in the ensuing optimizations.

Table 4: Mesh convergence study for the compressible solver ADflow and the incompressible solver Ellip-
Sys3D. The operational conditions for the convergence study correspond to the 8 m/s case listed in Table 10.
The error percentages are estimated using the Richardson extrapolations from Fig. 5.

ADflow EllipSys3D
Mesh Cells Thrust Error Torque Error Thrust Error Torque Error

[million] [kN] [%] [kNm] [%] [kN] [%] [kNm] [%]

L2 0.221 934 58.6 10403 134.5 584 2.1 4336 3.2
L1 1.769 733 24.4 6156 38.3 578 1.0 4402 1.7
L0 14.155 625 6.1 4877 9.6 573 0.2 4457 0.5
L−1 47.776 603 2.4 4547 2.2 577 0.9 4471 0.2
Extrapolation ∞ 589 0.0 4451 0.0 572 0.0 4475 0.0

Table 4 shows that error reduction from L0 to L−1 for ADflow is much lower (with reductions of about
4% in thrust and 7% in torque) than the error reduction from L2 to L1 (15% and 21%) or from L1 to L0
(22% and 41%). The errors are computed using the Richardson extrapolation values from Fig. 5, which are
based on an estimate of the continuum value (in the limit of an infinitely fine mesh), given by Roache [113]:

fc ≈ f1 +
f1 − f2

r2 − 1
, (7)

where fc is the continuum value, f1 and f2 are the values obtained using the L0 and L1 meshes, respectively,
and r is the grid refinement ratio.

In Table 4, we can also see that the two solvers tend to converge towards the same thrust and torque
continuum values—0.3% difference for thrust and 0.7% difference for torque. Based on the results in this
table, we determine that the L0 mesh represents a reasonable compromise between accuracy (less than 10%
error) and speed.

It is clear from Fig. 5 that mesh level L2 is very coarse and yields very different results. As we will
demonstrate later, the suggested design trends from such a coarse mesh can sometimes lead to savings in
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Figure 5: Richardson extrapolation (7) for the grid convergence study for thrust (left) and torque (right).
Between the two solvers, the extrapolated continuum values for thrust differ by 3%, whereas the error for
the torque values vary by less than 0.7%.

computation time and, other times, lead to completely wrong design trends. Thus, one should use such coarse
meshes with care. We report the results obtained with L2 throughout the presented work to substantiate
this claim.

There is a slight increase in error for EllipSys3D in the thrust value on the finest mesh level, which is
unexpected. It is also surprising that the compressible solver seems to benefit so drastically from an increase
in cell count. Recent studies have suggested this can be the case for some compressible solvers [93]. From the
expressions for the Prandtl–Glauert compressibility corrections [114], one would expect that compressible
effects could be at play, which agrees with our results. Compressibility effects in wind turbine applications
have become increasingly significant as turbine rotor sizes have increased. One of the conclusions from the
AVATAR project was that compressibility effects play a role on large wind turbines [115, p. 9]. In the
AVATAR project, results from EllipSys3D were compared to results from a compressible CFD code. Here,
they studied a case with an inflow speed of 14 m/s and a Mach number of 0.2457 [115, Fig. 8], where the
obtained Cp curves differed in particular on the suction side close to the trailing edge (TE). The resulting
sectional forces on the blade differed up to 12.9% [115, Table. 3]. The cited Mach number of 0.2457 is within
the Mach number range of the present work, where we have Mach numbers close to 0.3 at the tip depending
on the inflow speed. The effects of compressibility near the tip region have recently been studied by Sørensen
et al. [116]. This work also includes results obtained with EllipSys3D. They find that classical compressibility
corrections to incompressible results can be applied in a post-processing step in order to reduce the lift and
drag error to within 2.5% for Mach numbers up to 0.3. The cases studied by Sørensen et al. [116] include
Mach numbers ranging from 0 to 0.5.

This suggests that we could hope to further align the results between ADflow and EllipSys3D in future
work by using classical compressibility corrections. Based on the grid convergence study above and in
Appendix A, where we provide more details on the flow phenomena and solver performance, we conclude
that while there are discrepancies due to different turbulence models, compressibility effects, and numerical
scheme order, the trends for the two solvers largely agree.

5 Implementation
In this section, we first introduce the design optimization problems for all the CFD and BEM cases we solve.
We then explain the FFD parameterization, geometric constraints, and rotor loads constraints.

5.1 Design optimization problem
We adapt and extend the design optimization problem from the IEA Wind Task 37 case study, which is to
maximize the AEP for a range of wind speeds by varying chord and twist, while constraining the increase
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in thrust and bending moment to be no more than 14% and 11%, respectively. Thickness constraints
are enforced over the blade to ensure structural integrity. Mathematically, the IEA Wind Task 37 design
optimization problem can be expressed as follows:

maximize AEP

with respect to twist

chord (8)

subject to T ≤ 1.14 · Tinit

Mbend ≤ 1.11 ·Mbendinit

The AEP is computed using a specified Weibull distribution (with scale and shape parameters A = 8 and
k = 2, respectively) and the power produced for each wind speed, which is computed from the torque, Q,
produced by the turbine (P = ω ·Q).

We solve four different CFD-based optimizations derived from the problem above:

Single point pitch optimization: Maximize torque on the turbine with respect to blade pitch for a single
wind speed (which in this case is equivalent to maximizing AEP). The purpose of this case is to validate
the newly implemented rotational terms in the adjoint solver.

Single point planform optimization: Same as the IEA Task 37 problem (8), except with the objective
of maximizing torque for a single wind speed. We solve this problem because it is well suited for
comparison with BEM.

Single point full shape optimization: Same as the single point planform optimization, but with the
addition of blade shape variables. This problem takes advantage of the additional design freedom that
is not available for BEM-based models.

Multipoint full shape optimization: Same as the IEA Task 37 problem (8), but with the addition of
blade shape variables.

The single point optimizations are all performed for a wind speed of 8 m/s and rotational rate of 6.69 RPM
at zero blade pitch, which is one of the conditions listed in Table 10 in Appendix A. For the multipoint
optimizations, we use the wind speeds 5, 8, and 11 m/s, and the relevant operational conditions can again be
found in Table 10 in Appendix A. Furthermore, we use the initial values at 12 m/s in the thrust and flapwise
bending moment constraint for the multipoint optimizations because we know from the solver comparison
(Sec. A, Fig. 21) that the maximum thrust occurs at that speed.

In addition to the CFD-based optimizations, we solve two BEM-based optimization problems for com-
parison with the CFD-based planform optimization:

BEM1: Identical to the single point planform optimization.

BEM2: Identical to the multipoint full shape optimization, except the shape variables are replaced by
spanwise thickness distribution variables.

The thickness is handled by interpolating between the pre-defined airfoil data. While both BEM1 and BEM2
use specified airfoil polar data, BEM2 can change the relative thickness of the airfoils. The airfoils vary from
72% to 24% in relative thickness.

5.2 Parameterization
The baseline design is shown on the left of Fig. 6, along with the three FFD boxes used to parameterize the
geometry. The FFD boxes have 10×2×9 control points (shown in black), where 10 is the number of control
points from LE to TE, 9 is the number of spanwise sections, and 2 corresponds to the top and bottom of the
FFD box. Our approach to deciding on the number of control points is to use the largest number possible
to provide maximum freedom in the optimization. However, as the density of control points approaches that
of the CFD mesh, numerical issues occur because the physical model no longer resolves the effect of the
geometry change. We have found that as a rule of thumb, we should have no more than one control point
for every four CFD mesh points.
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The FFD boxes are used to apply the pitch, twist, chord, and shape variables to each blade. Since we
want all three blades to have the same pitch and shape, the variables are forced to be the same. Furthermore,
the FFD boxes have two fixed sections close to each other at the root to ensure C1 continuity there, while
the seven outer sections are free to move and deform the blades. Pitch, xpitch, is achieved by rotating all
free FFD sections by the same amount along the reference axis, which is at 35% of the chord from the
LE. Twist, xtwist, is achieved by rotating each spanwise section of FFD control points independently. The
chord variables, xchord, are achieved by scaling each spanwise section in the chord and thickness direction.
Thus, the relative thickness at each section is preserved during the CFD planform optimization. Only for
the full shape optimizations, where the shape variables are added, can the relative thickness change. The
shape variables, xshape, move each control point independently in the direction perpendicular to the chord
to control the airfoil shape.

In Fig. 6, the thickness constraints are highlighted in blue. The thickness constraints in the BEM
comparison are only enforced on the inner 80% of the blade, as detailed in the definition of the IEA case
study. This is also visualized in Fig. 6 (mid-right).

There were a few necessary changes we made to the IEA case study, but only for the full shape op-
timizations. One such deviation is the dashed segment connected to the thickness limit curve in Fig. 6,
which prevents negative cell volumes. Furthermore, there are constraints applied to the LE and TE of the
FFD box. The LE/TE constraints (shown in red in Fig. 6) are only implemented for the single point and
multipoint full shape optimizations. These constraints force each pair of points to move exactly the same
amount in opposite directions, so that the mid point in the segment remains stationary. This ensures that
the individual FFD control points do not apply skewing twist, since they are meant to control only airfoil
profiles. Finally, we mention that the thickness limit is fully imposed only for the fourth thickness constraint
(counting from the LE), while the remaining nine constraints in a section are relaxed to not unnecessarily
restrict the possible design space.

Figure 6: Overview of baseline geometry and FFD boxes (left). Each FFD box has nine spanwise sections.
Each blade (upper right) has 15 thickness constraints (blue) and seven LE/TE constraints (red). Thickness
distributions (mid-right) are for the baseline thickness (green) and minimum allowed thickness (purple).
Profile section (bottom right) at 36 m span shows the shape control points (20), the thickness constraints
(ten blue segments) and LE/TE constraints (two red segments). The LE/TE constraints are only relevant
for the full shape optimizations.

6 Results
The results are split into the four main problems listed in Table 5. First, we perform a single design variable
optimization where pitch is varied to maximize the torque (Sec. 6.1). This simple optimization is included
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to validate the adjoint formulation for rotating frame of reference flows. Second, we perform a planform
optimization where chord and twist are varied (Sec. 6.2). This optimization is well suited for comparison
with BEM results because the airfoil shapes do not change. The two final optimizations are full shape
optimization problems where all variables, including airfoil shape variables, are allowed to change. First, we
solve the problem as a single point optimization (Sec. 6.3). Then, we solve it as a multipoint optimization
(Sec. 6.4).

Table 5: Overview of optimization problems.

Optimization
Objective

Design variables
BEM comparison

problem Pitch Twist Chord Shape Total

Single point pitch Torque 1 1
Single point planform Torque 7 7 14
Single point full shape Torque 7 7 140 154
Multipoint full shape AEP 7 7 140 154

6.1 Pitch optimization
In the pitch optimization, the pitch angle for the seven outer FFD sections on each blade is controlled by
a single design variable. The optimization result is an increase in torque of 25.7%, 26.1%, and 23.0% for
mesh levels L2, L1, and L0, respectively. Figures 7–9 summarize the optimization history for the three mesh
levels.

Figure 7 shows the torque as a function of pitch. Before optimizing, we performed a sweep of CFD
evaluations of the torque for the whole range of pitch values, for all three mesh levels. These are represented
by black dots in Fig. 7. The thin, black lines are linearly interpolated from these points. Although the
torque value varies between mesh levels, the trends are consistent, and the maximum torque is achieved
around 7 degrees of pitch. The optimization histories for each mesh are shown in color; they start from the
initial pitch, x0, and end at the optimal one, x∗. The purple line shows the optimization history on the
finest (L0) mesh that was obtained by using the result from a coarser mesh (L2) as a starting point. We
use this “warm start” technique since coarser meshes are much faster to converge. This technique leads to a
reduction of computation time since fewer steps are taken by the optimizer on the finest mesh level. This is
seen in Table 6, where only four steps were needed instead of the 16 steps taken in the original optimization.
In this case, it reduced the computation time with approximately 50%. As expected, the result of this warm
start optimization is identical to the result of optimizing solely on the finest mesh level. Now that we have
introduced (and visualized in Fig. 7) the use of warm starts, we will start using them regularly. This means
that an L1 optimization from now on uses the result of an L2 optimization, and an L0 optimization uses the
result of an L1 optimization.

As shown in Fig. 8, all optimizations converged to an optimality of at least 10−4 (black, dashed line).
Figure 9 shows the merit function, which combines the scaled objective function value and constraint feasi-
bility. The merit function value is equivalent to the scaled objective function value when all constraints are
satisfied towards the end of the optimization process. As we can see in Fig. 9, the curves flatten towards the
end, and further iterations are not worthwhile because the optimizer reaches the limit of what it can achieve
with the provided precision of the function evaluations. The pitch optimizations are summarized in Table
6.

6.2 Planform optimization
For the planform optimization, described in Sec. 5.1, both twist and chord are controlled at the seven outer
FFD sections along the blade, which results in 14 design variables. The high-fidelity planform optimization
results are visualized in Figs. 10–12, which show the final chord and twist distributions as well as the history
of the convergence and merit functions.

As we can see in Fig. 10, the optimized shape for the finest mesh level has a large increase in chord towards
the root and a decrease in chord towards the tip, just as we would expect for an aerodynamically optimized
blade. The optimized chord distribution is reminiscent of the DTU 10 MW turbine’s chord distribution from
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Table 6: Pitch design variable optimization. All runs used 216 processors. This means that, for example,
the L2 optimization had an actual wall clock time just under 30 min.

Mesh Cells Twist Torque(x0) Torque(x∗) CPU time Iterations Improvement
[million] [deg] [kNm] [kNm] [h]

L2 0.221 8.35 10403 13074 106.9 20 25.7%
L1 1.769 6.67 6156 7763 1004.1 19 26.1%
L0 † 14.155 7.19 4877 6001 6436.3 4 23.0%
L0 14.155 7.19 4877 6001 12734.7 16 23.0%

† Warm started with the L2 optimum, resulting in a total CPU time of 106.9h+ 6436.3h = 6543.2h.
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Fig. 2, which was also designed for maximum power. However, the DTU 10 MW root chord is not as high
due to a constraint on maximum chord of 6.2 m. Turning to the optimized twist (green curve) in the lower
plot in Fig. 10, we see it exhibits a large variation towards the tip compared to its baseline. The result is a
more aggressive twist distribution.

Comparing the results across mesh levels, there is a much larger spread than for the pitch optimization.
The result using the coarsest (L2) mesh is significantly different from the ones obtained with the finer
meshes (L1 and L0); therefore, the L2 mesh is too coarse to obtain physically representative results, which is
consistent with the mesh convergence study (Table 4). We cannot rule out that, in some cases, the L2 result
can be useful to perform a warm start sequence, as shown for the pitch optimization (Fig. 7 and Table 6).
However, the planform results certainly show that one should use the L2 mesh with care and not for final
results.

Figure 11 shows the convergence history for the three mesh levels. Again, all optimizations were converged
to at least 10−4. In Fig. 12, we see a similar trend to that of the pitch optimization (Fig. 9), where much of
the improvement is gained in the first half of the optimization. Thus, an easy way to speed up the design
process would be to take an intermediate design. However, one should make sure to check the constraint
feasibility, since SQP methods often explore infeasible regions before fully converging. The sharp initial
decrease for L1 is due to the (infeasible) warm start from L2. Note that the function is scaled differently
for each mesh level to accommodate all the results in one figure.
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We now compare our L0 result from the planform optimization to our results from the BEM1 and BEM2
optimization problems. We obtain the BEM results by running HAWTOpt2 [5], which uses HAWCStab2
[117] as the underlying analysis code. Since this is a comparison between results obtained with completely
different models, we do not expect an exact match, but we expect similar trends. As previously mentioned,
the CFD planform optimization problem and the BEM1 optimization are completely identical in problem
definition, and the relative thickness is fixed in both optimizations. For the BEM2 optimization, the main
difference is that it is solved as a multipoint optimization and that the relative thicknesses can be changed
through interpolation. We refer to Sec. 5 for further information.

The BEM optimizations are performed with SNOPT. The baseline and optimized chord and twist distri-
butions are shown in Fig. 13. Although both chord and twist distributions show clear discrepancies for the
final designs, there are several similar traits. When it comes to chord, there is a large difference in maximum
chord. BEM1 converges to a 26% increase, BEM2 converges to a 74% increase, and the CFD optimization
converges to somewhere between these two (43%). BEM1 is the surprising result of the three, because it
seems that the relation between power and thrust is so poor that it makes little sense to increase the chord at
the root. This is owed to the fact that BEM1 has fixed relative thickness for all sections. It makes sense that
BEM2 can increase the chord further since it can change the relative thickness. Given that our CFD-based
planform optimization also has fixed relative thickness, it also makes sense that the BEM2 chord values are
larger than those from the CFD-based planform optimization.
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Both the BEM1 and the BEM2 results have a steeper, more pronounced increase in chord values, which we
suspect our CFD framework could not reproduce due to difference in the parametrization. The two innermost
fixed FFD sections ensuring the C1 mesh continuity make such a steep increase in chord impossible so close
to the root. As a final comment on the discrepancies at the root, we suspect that BEM profile data for such
thick airfoils are far from precise. Besides, the empirical 3D correction used on said 2D profile data is also
likely to be imprecise. Needles to say, the combination of the two could yield shaky results. To make matters
worse, we know from the comparative analysis (Fig. 23) that separation reaches up to about 37 m span,
which further complicates the situation. A more uniform picture is seen for the tip region where the chord
distributions have converged to a reduced chord, where only minor differences can be seen. In conclusion,
the overall trends in optimal chord distribution are mirrored across the BEM and CFD models, and the
discrepancies are less pronounced towards the tip.
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Figure 13: Comparison between optimal chord (left) and twist (right) distributions for the IEA Wind Task 37
case study. The three design optimization problems: i) single point planform optimization, ii) BEM1, and
iii) BEM2 are further described in Sec. 5.1.

As for the twist comparison (Fig. 13, right) both CFD and BEM results exhibit the overall trend of
decreasing the twist relative to the baseline, but the BEM twist is consistently 1–2 degrees lower than the
CFD result. This difference is likely due to the different modeling. The CFD parametrization is limited
near the root due to the two fixed sections that enforce C1 continuity, so it cannot match the more abrupt
change in twist for the BEM result in that region. The BEM2 result exhibits an increase in twist near
the root, which is very different from the BEM1 trend. This is because BEM2 is free to control the chord
while lowering the relative thickness. Thus, BEM2 uses a large chord increase near the root to optimize the
loading, instead of using twist. The planform optimization and BEM comparison is summarized in Table 7.

Using values for torque from Table 7, we can obtain the power coefficient, CP , defined as:

CP =
P

(1/2)ρV 3A
, (9)

where P is power, ρ is the air density, V is wind speed, and A is the area swept by the rotor. The resulting
coefficients are CP = [1.04, 0.62, 0.48] for mesh levels L2, L1, and L0 respectively. Clearly, the coarser the
mesh, the more unphysical the coefficient. The Betz limit for power coefficients (CPBetz

= 0.59) is violated
for L2 and L1, which draws the results from coarse mesh levels into doubt. Judging from the huge spread in
these coefficients, it is not surprising that the optimized designs differ greatly across mesh levels.

6.3 Single point shape optimization
We now solve the full shape optimization problem as a single point optimization. As stated in Sec. 5, this
problem is equivalent to optimizing for torque, when only a single wind speed is used. Figure 14 shows
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Table 7: Planform optimization comparison between CFD and BEM results.

Mesh Cells
CFD † BEM1 † BEM2 ††

Torque( x0) Torque( x∗) Improvement Improvement Improvement
[million] [kNm] [kNm]

L2 0.221 10403 11573 11.25%
L1 1.769 6156 6928 12.54% 8.06% 22.46%
L0 14.155 4877 5417 11.07%

† Relative improvement in torque
†† Relative improvement in AEP

convergence (left) and scaled merit function (right) histories for the free form shape optimizations. Since we
typically request an optimization convergence tolerance that is smaller than what is possible for the level
of the CFD solver convergence, the optimizer stops before the optimization convergence tolerance is met.
Comparing the convergence history to similar plots for the pitch and planform optimizations (Figs. 8 and
11), we see that as the mesh is refined, the optimization is better converged, and the finest mesh level almost
meets the requested tolerance (black dashed line). However, the scaled merit function plots (Fig. 14, right)
do seem flat for L2 and L1 (albeit the latter curve is less smooth), hinting that the merit function could have
plateaued.
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Figure 14: Convergence history (left) and scaled merit functions history (right) for the single point shape
optimizations.

Table 8 shows the improvement achieved by the optimization. The achieved improvement on the finest
mesh (15.89%) is higher than that of the planform optimization (11.07%, Tab. 7), which is expected because
this case includes all the planform design optimization variables plus the additional freedom to optimize the
airfoil shapes. One should not compare these results to the pitch optimization results since they do not
include any thrust constraint. A comparison to the BEM code results is given farther down in Tab. 9 once
the multipoint optimization results have been presented.

We now turn to the shape and pressure (Cp) distributions for the baseline and optimized geometries in
Fig. 15. The optimized blade increases the chord near the root, similarly to the planform optimization.

Comparing the airfoil shapes and corresponding Cp distributions at the bottom of Fig. 15, we can see
that the optimization reduced the thickness and slightly increased the camber. The thickness reduction is
expected when considering only the aerodynamics with no structural strength constraints. Since we use
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Table 8: Overview of single point optimization results for the operational conditions of the 8 m/s case listed
in Table 10.

Mesh Cells Torque( x0) Torque( x∗) Improvement
[million] [kNm] [kNm]

L2 0.221 10403 12705 22.13%
L1 1.769 6156 7373 19.77%
L0 14.155 4877 5652 15.89%

Figure 15: Comparison of Cp distributions for the baseline and optimized result from the single point shape
optimization. There is an increase in TE camber, especially at the root, as well as a less pronounced suction
peak.
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thickness constraints as a surrogate for structural feasibility, the optimizer exploits this by producing the
thinnest airfoils that satisfy these constraints. The increased camber, owed to the physical incentive to
generate more lift, is consistent with the results of Dhert et al. [66], but the increase in camber here is
more modest because the optimizer can increase the torque by tailoring camber, chord, and twist instead
of just camber. The incentive to operate at high lift coefficient is due to the fact that high Cl/Cd is most
easily achieved by operating at high Cl, especially for airfoils designed taking only fully turbulent flow into
account.

Another feature of the optimized airfoil shapes is the sharper LE. This is expected, due to the fact that
we are maximizing the performance at a single wind speed. This shape is not robust to changes in wind
speed and would perform poorly at other wind speeds. This issue can be addressed by enforcing the LE
radius constraints or by considering the performance for multiple wind speeds in the objective function, as
we will see in the next section.

6.4 Multipoint shape optimization
The motivation for this multipoint optimization is to take a whole range of wind speeds into consideration
to achieve a more robust design. We consider both cases for normal power production and also cases leading
to peak loading conditions. The design optimization problem and model are the same as those for the single
point optimizations (detailed in Sec. 5.1), except for the objective function. The objective function here is
the AEP estimate, which we describe in Sec. 5.1.

When it comes to selecting the wind speeds in a multipoint optimization, it is important to consider
speeds that lie outside the ideal operational range. Typically, the rotational rate of the wind turbine rotor
is controlled to match at target tip speed ratio, which is the ratio of the tip speed and the wind speed, given
by λ = ωR/V . As long as the tip speed ratio is the same, the blade angle of attack is the same, and a
given design has similar aerodynamic performance. However, for low wind speeds, the rotational speed has
a lower bound to avoid tower excitation, and at higher wind speeds, the rotational speed is kept constant,
and the turbine starts regulating pitch to maintain rated mechanical power. In our case, the target tip speed
ratio is λ = 7.8, and the rotor speeds corresponding to the minimum and maximum limits are 6.0 RPM and
9.6 RPM, respectively. The variation of rotor speed with wind speed is shown in Fig. 16. There are two
reasons we consider wind speeds outside the constant tip speed ratio range. First, the angles of attack are
different at these operating points, which should lead to a more balanced design. Additionally, we need to
consider the loads constraints defined in the optimization case study. For this reason, we choose 5 m/s as
the lower wind speed, and 11 m/s, because this is just below the wind speed at which the rotor reaches rated
rotational speed and rated power and thus peak thrust and flapwise moment.

Research has shown that, in reality, the angle of attack varies significantly (more than 4◦) over just one
rotor revolution [118, Fig. 5]). The explanation for this can be found in the complex operating conditions for
turbines containing, for example, turbulent inflow and inflow wind shear. To simulate these effects, it would
be ideal to add turbulent inflow and transition from steady state RANS to unsteady RANS. A cheaper way
could be a multipoint optimization with a fixed RPM for all turbines operating at slightly different wind
speeds. We leave this for future work.

The history of convergence and merit functions are shown in Fig. 17. Just as for the single point
optimization, the selected threshold is not quite met. However, as before, the scaled merit function flattens
enough that we determined that the design is close enough to the optimum.

We first turn to the airfoil shape to assess the effect of adding geometrical constraints while taking multiple
angles of attack into consideration. The airfoil shapes for the multipoint optimizations are compared to the
single point ones in Fig. 18. As we can see, the LE shapes are somewhat improved, but still unrealistically
sharp. This points towards the necessity of including off-design operational cases resulting in wider ranges
of angles of attack, where such a sharp LE would result in deterioration in performance.

To obtain more realistic LE shapes, we added an LE thickness constraint to the optimization problem.
The geometric constraint was enforced as a thickness constraint close to the LE. The resulting shapes are
shown in Fig. 19, where we compare them to the shape obtained by the multipoint optimization without
the LE constraints. While we choose to focus solely on the 2D profile improvement from single point to
multipoint, the optimizations are indeed all 3D rotor optimizations. As we can see, enforcing the geometric
constraint results in a more round LE shape that is much more similar to previously published wind turbine
airfoil shapes.
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Figure 17: History of convergence (LHS) and scaled merit functions (RHS) for the multipoint shape opti-
mizations.

Figure 18: Comparison of airfoil profiles obtained from single point and multipoint optimizations. The
profiles are taken from 35, 64, and 84 m spanwise positions.
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Figure 19: Comparison of airfoil profiles obtained from multipoint optimizations with and without LE
geometric constraint.

Having verified that the resulting shapes for the multipoint full shape optimizations are much improved,
we now compare the multipoint optimization results to other optimization results in Table 9. Whereas the
single point BEM1 result (8.06%) is close to the single point planform optimization result (11.07%), the
multipoint BEM2 result (22.46%) is comparable to the multipoint full shape optimizations result (23.76%)
since relative thicknesses can change in both cases. The multipoint result (23.76%) is somewhat higher
than the single point full shape optimization result (15.89%), which can be explained by the relaxed thrust
constraint for multipoint optimizations. Here, we use the thrust from the 12 m/s case instead of the 8 m/s
case to define the initial constraint values for thrust and bending moment. Indeed, the thrust constraint
relaxation results in the constraint not being active at convergence for the CFD-based multipoint full shape
optimization, as seen in Tab. 9.

These results do not show that the industry can necessarily gain a 20% increase simply by using high-
fidelity optimization. Indeed, the amount of improvement depends on the performance of the baseline
turbine. Since we study an intentionally poor baseline design, we therefore get a large improvement.

Table 9: Overview of optimization results. As further detailed in Sec. 5.1, the single point and multipoint
optimizations use the operational conditions for the 8 m/s case and 5, 8, and 11 m/s cases, respectively.
Operational conditions are listed in Table 10.

Mesh Cells Constraints ( = active) Improvement
[million] Thrust Bending moment

Single point BEM1 - - 8.06%
results: Planform L0 14.155 11.07%

Full shape L0 14.155 15.89%
Multipoint BEM2 - - 22.46%
results: Full shape L0 14.155 - 23.76%

To analyze the optimized designs from single point and multipoint shape optimizations in more detail,
we plot the spanwise forces for both optimized and baseline designs in Fig. 20. The normal force acts normal
to the rotor plane and, integrated over all three blades, yields the rotor thrust. Likewise, the torque can be
derived from the driving force by integrating its first moment along all three blades.

For the single point shape optimization results, we see, as expected, an overall large increase in tangential
loading across the blade, and we observe that a high loading is achieved in the root region of the blade as
well. This is partially due to the chord increase, but also due to the fact that the blade is optimized based
on modeling that accounts for the complex three-dimensional flow field, which is particularly dominant in
the root region. The thrust constraint and moment constraint were both essential for the design to be
industrially relevant for the single point result: The thrust constraint helped lower the overall thrust values
to maintain structural feasibility. The bending moment constraint resulted in a change in the normal force
distribution, where the peak moved farther inboard to reduce high loads close to the tip region, as one would
expect. Based on the optimization output, we can verify that both constraints are active for the single point
optimization, meaning that thrust and moment have reached the upper limits of 14% and 11% increase in
thrust and moment, respectively. In the multipoint full shape optimization, the moment constraint is again
active at an 11% increase in bending moment. However, the thrust constraint is only at 11% and is, as
mentioned, not active at convergence due to the relaxed constraint. With these constraints, we could add
span as a design variable in future work.

We find the same overall trends for the multipoint results as we did for the single point optimization.
The relaxed thrust constraint for the multipoint optimization results in a rotor with slightly higher loads,
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which explains why the more robust design from the multipoint optimization outperforms the single point
result.
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Figure 20: Comparison of normal (left) and driving (right) forces for baseline and optimized designs. The
shape optimization increases the normal force, and the peak has also moved further inboard. The driving
force is increased considerably both at the root and close to the tip region.

The multipoint optimization problem presented in this section is functional, but should be further im-
proved in the future to obtain truly practical wind turbines. First, the laminar to turbulent boundary layer
transition should be modeled, since this affects the optimal airfoil shapes. In this work, we just assumed the
boundary layer to be turbulent throughout. Second, a wider range of operating points should be considered
by, for example, varying the rotation rate or pitch setting for a given wind speed.

7 Conclusion
In this work, we presented results from the high-fidelity RANS-based shape optimization of a 10 MW RWT.
Based on our literature review of the high-fidelity shape optimization efforts in wind turbine design, we
determined that this was a promising area of research.

We compared two state-of-the-art compressible and incompressible CFD solvers to quantify the mesh
dependence and discrepancies across different RANS models applied on the same rotor. The results were
compatible, and future work involving classical compressibility corrections was identified.

We investigated the advantage of using higher fidelity models by comparing our optimization results
to low-fidelity BEM results from the same case study. We did this through a planform optimization with
chord and twist variables, where shape changes were restricted to keep the design case comparable with the
BEM-based optimization. The overall design trends were the same across fidelities, with differences due the
parameterizations and models. The same overall amount of improvement was observed.

Finally, full shape optimization was performed with respect to twist, chord, and airfoil shape design
variables, which raised the number of design variables from 14 to 154. Here, the planform results were
further improved with a factor of 1.44. The improvement was enabled by a decrease in relative thickness as
well as the novel airfoil shapes.

While further developments are required to obtain truly practical wind turbine blade shapes, this work
shows that with the right tools, we can model the entire geometry, including the root, and optimize modern
wind turbine rotors at the cost of O(102) CFD evaluations.
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A Extended flow solver comparison
The following is a continuation of Sec. 4 to extend the comparison between the flow solvers: EllipSys3D and
ADflow.

A.1 Operational conditions
The case study is defined with a cut-in speed of 4 m/s and a cut-out speed of 25 m/s. Within this range, we
use the eight operational conditions defined in Table 10 to compare the solvers.

Table 10: Operational conditions for the simulations in the analysis. For the compressible solver (ADflow),
we use velocity, density, and temperature as input parameters. ADflow then computes the complete ther-
modynamic conditions. The density is set to 1.225 kg m−3, temperature to 15 ◦C, and dynamic viscosity
to 1.784 · 10−5 kg m−1 s−1.

Wind speed RPM Rotational rate †, ω Pitch
[m s−1] [−] [rad s−1] [deg]

4 6.00 0.63 0
6 6.00 0.63 0
8 6.69 0.70 0

10 8.36 0.88 0
11 9.20 0.96 0
12 9.60 1.01 0
15 9.60 1.01 6.74
25 9.60 1.01 19.00

† Based on a target tip speed ratio of γ = 7.8, where 6.0 ≤ RPM ≤ 9.6.

A.2 Integrated loads
Integrated loads, in the form of thrust and torque, have been computed for each simulation in Table 10
and are visualized in Fig. 21. As seen, the ADflow results are consistently higher than the EllipSys3D
results. This trend could partially be accounted for by applying the mentioned Prandtl–Glauert correction
to the incompressible computations, but is also a result of ADflow results on mesh L0 not being fully mesh
independent, as shown in Table 4. As a low-fidelity reference, we have added the integrated loads (in gray)
from steady state BEM results using HAWCStab2. A general agreement between the CFD results and the
HAWCStab2 results can be seen save for the torque value at 25 m/s, which could be corrected with a slight
change in pitch setting given in Table 10. Agreement is expected between EllipSys3D and BEM since the
airfoil data used in BEM is computed using EllipSys2D.

A.3 Spanwise forces, pressure distribution and flow visualization
Figure 22 shows the spanwise forces, and shows that the difference between solvers is more or less spread
out over the entire span. Not surprisingly, the ADflow values are consistently higher. We will re-visit the
distribution of spanwise forces after the optimization to inspect where performance increase occurs on the
blade. Turning to the surface restricted streamlines in Fig. 23, we first note the rather large amount of
separation. Even the pressure side shows a distinct area of separation from 19 m to 41 m span. Comparing
said area with the pressure side separation for the unperturbed DTU 10 MW rotor in Fig. 24, where only
a small separation area at the root is seen, it is clear that the perturbed design we use as a starting point
for the optimization seen in Fig. 23 suffers a more poor aerodynamic design owed to the reduced chord
distribution and increase in relative thickness. The suction side in Fig. 23 looks more like one would expect,
save for the expanded separation area reaching just above 37 m in the spanwise direction. Here, the DTU
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Figure 21: Total thrust (LHS) and torque (RHS) as a function of wind speed for the rotor geometry used as
the starting point for the optimization computed using mesh L0. As expected, the torque increases rapidly
from cut-in speed to the rated speed at 12 m/s, which is also where the thrust peak occurs. From rated
to cut-out, the torque curve flattens. Here, the pitch setting found with steady state BEM results using
HAWCStab2 (seen in gray) clearly does not result in the CFD solvers tracking rated power accurately due to
the model changes. ADflow consistently overshoots the EllipSys results, which is consistent with the trend
seen in Table 4. Operational conditions for the eight simulations are given in Table 10.
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Figure 22: Spanwise distribution of the normal force (LHS) and driving force (RHS) for the 8 m/s case listed
in Table 10.
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10 MW only has separation below the 32 m span, as seen in Fig. 24.

Figure 23: Surface restricted streamlines from the EllipSys solution for a wind speed of 8 m/s, both for the
pressure side (top) and the suction side (bottom) for the perturbed design we use as a starting point for
the optimization. The operational conditions are listed in Table 10.

Figure 24: Surface restricted streamlines from the EllipSys solution obtained using the original DTU 10
MW wind turbine geometry for the 8 m/s case in Table 10 both for the pressure side (top) and the suction
side (bottom).

In Fig. 25 we compare the obtained Cp curves at three spanwise positions: 35 m, 64 m, and 84 m (positions
marked in red in Fig. 23), where the Cp distribution is found using the dynamic pressure, and the farfield
pressure, p∞:

Cp =
p− p∞

(1/2)ρ(V 2∞ + (rω)2)
. (10)

The slice at 35 m shows the least consistent comparison, which we suspect is due to the large amount of
separation present both at suction and pressure side. Given that the solvers use different turbulence models,
it would be surprising to find a perfect match at this position. We also note that the pressure side separation
results in a Cp curve with a typical flat, squeezed shape in the 30% closest to the trailing edge (TE). The Cp
curves for the sections at 64 m span and 84 m span show, in general, a better likeness to one another. Early
investigations showed that the chordwise distribution of cells has a distinct impact on the solvers’ ability
to capture the stagnation point and suction peak. Therefore, we chose a distribution that seemed to have
enough cells close to the stagnation point while still having an adequate amount of cells to resolve the TE
area. In general, the ADflow suction peaks seem to be more pronounced than those from EllipSys3D. The
same can be said for the blunt TE, where the ADflow Cp curve again has a more pronounced spike.
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