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πMDO is a software framework which allows the automatic implementation of multidisci-
plinary design optimization (MDO) architectures to find the optimum of any appropriately
defined multidisciplinary problem. A significant improvement and extension of the πMDO
framework is presented. Using the inherent advantages of πMDO’s object oriented and
highly flexible structure, several semi-analytic sensitivity methods are implemented for the
MDO architectures within the framework. Their generalized nature allows the application
of these powerful and efficient methods to any problem defined within πMDO, without
modification to the existing structure of the problem. Further, exploiting information
gathered by these methods, a new “meta” MDO architecture is proposed which dynami-
cally reconfigures the problem to speed the optimization while maintaining the fidelity of
the original analysis. This hybrid approach uses the existing architectures in πMDO en-
capsulated within each other to reduce the dimensionality of coupling between disciplines.
Again, due to the object oriented nature of πMDO, no modifications are required to the
problem statement or the MDO architectures within the framework. Initial results sug-
gest that both these additions produce valuable performance gains while maintaining the
general flexibility and simplicity characteristic of πMDO.

Nomenclature

f Function of interest (Objective function to be minimized)
z Global design variable (Design variable which affects one or more disciplines)
xi Local design variable (Design variable which only affects a single discipline)
yj Coupling variable (Outputs of a discipline analysis input to at least one other discipline)
R Residual of a discipline governing equation
c Constraint (Global or local constraint to be satisfied)
z∗, x∗, y∗ System level target variables, used in collaborative optimization

I. Introduction

Multidisciplinary design optimization is a growing area of research which seeks faster, and more optimal,
solutions to multi-disciplinary design problems. πMDO14 is a software framework which uses object oriented
programming techniques and the mathematical reconfigurability of MDO problems to quickly apply various
MDO architectures to any arbitrary multi-disciplinary problem. Presently, πMDO includes support for the
user to provide sensitivities directly to the optimizer, or it can solve for these sensitivities through real
or complex step finite differencing.16 While the user could provide analytic or semi-analytic sensitivities
directly to the optimizer, they would be problem and architecture dependent and detrimentally affect the
simplicity and adaptability of the framework. Fortunately, the object oriented nature of πMDO allows the
application of more efficient semi-analytic methods while maintaining the simple and generalised form of the
framework. An additional goal of πMDO is to spur the development of improved MDO architectures and
methods. Information derived from the semi-analytic methods can aid in the development of hybrid and
more efficient MDO architectures that combine the benefits of the existing architectures within πMDO.
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I.A. Background

The semi-analytic sensitivity methods applied to πMDO reduce the computational expense of finding the
sensitivities required for gradient based optimization while retaining the general applicability of finite differ-
encing or automatic differentiation. In general, they exploit the structure of a multi-disciplinary problem to
solve for the global or system level derivatives using only the partial derivatives from individual disciplines
(the sub-system level). The two major forms of semi-analytic sensitivity methods applied were the Global
Sensitivity Equations 1 and 2 (GSE1 and GSE2)18 or direct methods, and the coupled adjoint method12.11

I.A.1. Semi-Analytic Sensitivity Methods

In general, a multidisciplinary problem can be described as the minimization of a function f with respect
to certain design variables as shown below. The objective function f is directly dependent on the global
and local design variables z and x, and implicitly dependent on each discipline analysis y (z, x). Finally, c
represents a constraint at either the discipline or global level, and R represents the residuals of the governing
equations for each discipline which should be driven to zero at a multidisciplinary feasible solution.

minimize f (z, x, y (z, x))
w.r.t. z, x

s.t. c (z, x, y (z, x)) ≤ 0
R (x, y (z, x)) = 0

The sensitivity of the objective function f can be written using the chain rule as in equation 1 below. For
the sake of brevity xn represents the set of design variables z, x at the system level.

df

dxn
=

∂f

∂xn
+
∂f

∂yi

dyi
dxn

(1)

Martins12 showed that this was analogous to equation 2 assuming a converged multidisciplinary solution
(residuals are equal to zero). The semi-analytic methods applied to πMDO solve equation 2 and essentially
differ only in the order in which they perform the required matrix multiplication.

df

dxn
=

∂f

∂xn
+
∂f

∂yi

[
∂R
∂y

]−1
∂R
∂xn

(2)

For the GSE2 and non residual version of the adjoint method, the partials ∂R
∂y are replaced with the partials

∂yi

∂yj
of the discipline output coupling variables with respect to the outputs of the other disciplines.

I.A.2. Global Sensitivity Equations

Sobieski18 examined the use of discipline level partial derivatives to directly calculate system total derivatives.
He showed mathematically that the partials ∂R

∂y in equation (2) were analogous to the partial derivative of
the outputs of a discipline with respect to the state variables of the other disciplines in the system ∂yi

∂yj
. He

proposed two versions of the global sensitivity equations, GSE1 and GSE2, where GSE1 uses the partial
derivatives of the discipline residuals, and GSE2 uses the partial derivatives of discipline outputs.

The implementation of GSE1 and GSE2 is identical except for the partial derivatives used, so the GSE1,
or direct method10 is explained. GSE2 can be implemented by replacing the residual term R with the
discipline output yi.
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I.A.3. Direct Method (GSE1)

In the direct method, the total derivative dyi

dxn
is calculated by solving equation 3 and then multiplied by ∂f

∂yi

to find the system totals as in equation 1. The direct method requires the solution of dyi

dxn
once for every

design variable, so it is more useful when the number of output functions k is greater than the number of
design variables n.

∂Ri
∂Rj

[
dyi
dxn

]
=
∂Rj
∂xn

, j = 0 .. k , j 6= i (3)

Within πMDO, any discipline governing equation which has an affect on another discipline is defined as a
coupling variable, hence for GSE2 the partial derivatives of a discipline’s output variables replace the residual
partials of GSE1. In situations with iterative or computationally expensive discipline analyses, GSE1 may
have an advantage over GSE2. GSE1, however, requires the existence of separate residual analysis code
which must be provided by the user. GSE2 is therefore more widely applicable, whereas GSE1 may be faster
in certain situations.

I.A.4. Coupled Adjoint Method

In the adjoint method, the adjoint vector ψ or ∂f
∂yi

[
∂R
∂y

]−1

is first calculated by solving equation (4). ψ is

then substituted into equation (2) to find the total derivative df
dxn

.

∂R
∂y

ψ = − ∂f
∂yi

(4)

This requires the vector ψ to be calculated only once for each function of interest, it is therefore useful
in situations where the number of design variables exceeds the number of system level functions. Further,
as with the GSE2 method, Martins12 contends that this formulation would also be valid using the partial
derivatives of discipline outputs ∂yi

∂yj
in place of the residual based formulation of equation 2.

Both the adjoint and direct methods have the potential to reduce the computational expense of finding
the total derivatives of a multidisciplinary problem. Because only partial derivatives are required by these
methods, they avoid the completion of a system level analysis for every design variable or function. Further,
the practitioner has considerable flexibility in calculating the partial derivatives required by these methods.
Finite differencing, complex step,13 automatic differentiation15,9 or even hand derived analytic methods
can be used. πMDO allows users to define the partial derivatives required or can automatically calculate
them using finite differencing or complex step methods. The availability of several variants of semi-analytic
method maximizes their flexibility and the potential gains. For example, the direct method can be used to
calculate the numerous system level constraints of a problem while the adjoint method is used for the single
objective function.

I.A.5. MDO Architectures

Multidisciplinary Design Optimization (MDO) architectures are a means of reorganizing a coupled multi-
disciplinary problem into a structure compatible with the mature single discipline optimization algorithms.
In effect, the different architectures translate a coupled multidisciplinary problem to resemble one or more
classical optimization problems. Two broad classes of architectures exist, monolithic and hierarchical (decom-
positional) architectures. Alexandrov et. al. showed that through the reconfigurability of MDO problems, all
other MDO architectures can be derived from the basic problem statement34 given above. πMDO currently
includes three single level architectures: Multidisciplinary Design Feasible (MDF), Individual Discipline Fea-
sible (IDF), and Simultaneous Analysis and Design (SAND). The πMDO framework also includes several
versions of the bi-level architectures Collaborative Optimization (CO), and Concurrent Subspace Optimiza-
tion (CSSO)19.14 Initial attempts at problem reconfiguration were focused on the MDF and CO architectures
due to their unique attributes.
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Multidisciplinary Design Feasible,7 also known as All At Once (AAO),1 is the simplest MDO architecture.
It consists of solving a multidisciplinary analysis at each design point and is the most intuitive to engineers.
The algorithm adjusts the design variables, selects a design point, then performs a fixed point iteration to
converge the coupling variables to a multidisciplinary feasible solution. The MDF architecture minimizes the
objective function of the original problem without modifications. MDF is robust and simple to implement,
but is computationally expensive as a multidisciplinary analysis must be iteratively converged at each design
point. If finite difference sensitivities are used, this multidisciplinary analysis must be converged once for
every design variable, causing performance to deteriorate as the number of variables increases. A diagram
of the MDF architecture is given in figure 1.

Figure 1. Diagram of MDF architecture. The coupled system is iterated about a fixed point until multidisciplinary
feasability is reached.

Collaborative Optimization (CO) is a bi-level, decentralized architecture with optimizations occurring at
both the discipline and system level.5 The problem is decomposed into a system level optimization and a
series of independent optimizations at the discipline level. Local feasibility is maintained at the discipline
level by the sub-system optimizations as they are responsible for satisfying the local discipline constraints.
Inter-disciplinary feasibility is maintained by the use of compatibility constraints. These constraints minimize
the discrepancy between the system level targets and the actual values of the coupling and design variables
at the optimum. Global constraints are handled by the system level optimizer. A diagram of the CO
architecture is given in figure

Mathematically, the CO architecture can be described at the system level as in equation 5. The system
level optimizer sets system targets for the global design variables z∗, local design variables which directly
affect the optimum x∗obj , and for the coupling variables for each discipline y∗. The system level problem
calculates the objective value using these targets, and is responsible for satisfying the global constraints
cglobal, and one compatibility constraint for each discipline Ji.

minimize f (z∗, x∗obj , y∗)
with respect to z∗, x∗obj , y

∗

subject to cglobal (z∗, x∗, y∗ (z, x)) ≤ 0
Ji (zi, zi∗, xi, xi∗, yj , yj∗) = 0

(5)

The subsystem problem is defined as in equation (6). At the subsystem level, the objective is to minimize
that particular discipline’s compatibility constraint, as given in equation (7), while satisfying the local con-
straints. The subsystem optimization has authority over the local and global design variables xi and zi, and
also over the coupling inputs from other disciplines yj . This formulation corresponds to the CO2 formulation
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Figure 2. CO architecture. An independant optimization problem is created for each discipline, with the system level
optimization setting targets for the coupling variables of the sub-optimizations.

presented in5 which uses a quadratic penalty function as the compatibility constraint.

minimize Ji (zi, zi∗, xi, xi∗, yj , yj∗)
with respect to xi, zi, yj

subject to c (xi, zi, yi (xi, yj , zi)) ≤ 0
(6)

Where the compatibility constraint for each discipline Ji is calculated as:

Ji =
∑

(zi − z∗i )2 +
∑

(xi − xi∗)2 +
∑

(yi − y∗i )2 +
∑

(yji − y∗ji)
2 (7)

As the individual optimizations in CO are decoupled from the system level problem, the CO architecture
performs well on distributed problems with low coupling between disciplines. Unfortunately, the output
coupling variables from each discipline are part of both the system level and sub-system level objectives,
so as the dimensionality of the coupling between disciplines increases, the perfomance of the architecture
deteriorates. CO works best for MDO problems with relatively complex disciplinary analyses and low
numbers of coupling variables between disciplines.

I.A.6. Reconfigurability

A unique advantage of the object oriented form of the πMDO framework is that individual components
can be reorganized and instantiated at will. Further, this structure extends to the MDO architectures it
implements, allowing multiple architectures to be instantiated simultaneously and for hybrid architectures to
be quickly developed and implemented. In line with the overriding objective of πMDO, this will require no
changes to problem statement or user inputs, save for the ability to specify which disciplines or architectures
to group together.

II. Methodology

The application of these semi-analytic methods to πMDO uses object oriented programming and inher-
itance to maximize the flexibility of the resulting software. Methods to calculate the partial derivatives,
combine them into the semi-analytic methods, and finally apply them to specific MDO architectures were
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incorporated into the existing structure of πMDO. Further, as even the architectures themselves are ob-
jects within the framework, their reconfigurability was explored by combining existing architectures and
encapsulating them within each other.

II.A. Semi-Analytic Methods

The semi-analytic methods were applied according to the theory described in section I. In line with the
philosophy of πMDO, the major tasks required by these methods were incorporated as functions within the
existing class structure and made use of inheritance.20 As shown in figure 3, the routine which calculates the
partial derivatives is contained within the MdoProb class. This routine has provisions to accept user provided
partial derivatives or use the finite difference or complex step method16 to calculate them. Due to its greater
accuracy, the complex step approximation is preferred if the problem supports complex analysis. Because
the finite differencing only incorporates the partials, rather than the total derivatives, it takes significantly
less time. More significantly, this process can be run in parallel on many processors, dramatically reducing
the retrieval time for the partial derivatives. Also contained in the MdoProb class are the basic routines
which assemble the partial derivatives and calculate a solution of either the adjoint or direct methods.
These routines will be inherited by every MDO architecture within πMDO, and those that exploit the semi-
analytic methods will call specific methods from the MdoProb level. Depending on the architecture, different
combinations of adjoint and direct methods will be used to calculate the total derivatives to be passed to
the optimizer. In the final step, the routine at the architecture level will overwrite the existing sensitivities
provided to the optimizer within the OptProb class - in this way the original structure, and adaptability, of
the framework is largely retained while the efficiency of the sensitivity routines is increased.

To maximize the flexibility of the sensitivity methods, the routines which gather the partial derivatives
were designed to allow user provided derivatives for any discipline analysis or constraint. More importantly,
the routines detect which sensitivities have been provided by the user, and calculate any missing derivatives
with finite differencing or the complex step. This allows users to provide all of the derivatives, some, or
none, with the πMDO framework automatically gathering any missing information. Further, the partial
derivatives are input as a python dictionary keyed by variable name. As long as the derivatives are properly
labelled in the dictionary, no set input order or format is required from the user. This allows the practitioner
to provide as many derivatives as they have, in whatever order they want, without sacrificing the generality
and robustness of the semi-analytic methods overall.

II.B. New and modified architectures

To create new higher level architectures, the tightly coupled disciplines of the original problem were combined
into a new “super” discipline object at the system level. When the analysis of this new discipline is invoked,
instead of simply performing an analysis, a multidisciplinary optimization will take place using one of the
existing architectures within πMDO. Crucially, at the system level the optimizer will only see a black
box, not the nested optimization occurring beneath it, so the structure of the existing architectures in
πMDO can remain unchanged even as they are combined and reconfigured. Using this new architecture
as a “meta” architecture to arrange and implement other architectures, the benefits of reconfigurability
can be explored with different combinations of architectures, nested optimizations, and reduced coupling
at the system level. Initial efforts focused on a combination of MDF, for tightly coupled disciplines, and
collaborative optimization28 for the system level, but many combinations are possible and can be explored
in future.

II.B.1. NEST Architecture

In aerospace applications of MDO, difficulty is encountered in solving large problems with many disciplines
and variable degrees of coupling between these disciplines. Bi-level architectures like Collaborative Opti-
mization perform well for problems with low-fidelity coupling between disciplines and relatively complex
discipline level routines. If several disciplines are highly coupled, however, the performance of CO is reduced
at a geometric rate. For tightly coupled problems with few disciplines, monolithic architectures such as
MDF, especially with semi-analytic sensitivites, perform well. The proposed nested optimization (NEST)
architecture combines the attributes of these two architectures to produce a formulation that works for
widely distributed problems with clusters of high local coupling dimensionality. In effect, it extends and
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Figure 3. Concise UML diagram showing the modifications and additions planned for πMDO. Most significantly, the
new semi-analytic sensitivity methods are incorporated into the existing classes to maximize their flexibility.
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automates the original philosophy of collaborative optimization, allowing the practitioner to optimize each
discipline in the most efficient way.

Structurally, the NEST architecture exploits the object oriented nature of πMDO. As the variables,
disciplines, and even architectures within the framework all function as individual entities, they can be
reordered and recombined with a minimum of effort. The essential tactic of the NEST architecture is to
modify the discipline structure of the original problem by creating new “super” disciplines that contain
instances of the MDF architecture. Note that the problem statement input to πMDO requires no changes
except for a dictionary indicating which disciplines should be clustered together. In future, this choice can
be automated based on ratios of coupling to design variables and interpretation of the global sensitivity
equations. The reconfiguration for a sample problem is illustrated in figure 4.

Figure 4. Problem Reconfiguration of the NEST architecture. Tightly coupled disciplines are clustered together in
”super” disciplines to reduce system level coupling dimensionality.

The new super disciplines encapsulate an MDF architecture with a slightly modified objective function.
This sub-optimization uses the multidisciplinary analysis and constraint calculations from the MDF for-
mulation with a modified objective function taken from CO. The sub-optimization therefore attempts to
minimize the discrepancy between its output coupling variables and the sytem level targets while satisfying
multidisciplinary feasibility and discipline level constraints for the sub disciplines. More robust convergence
is obtained by using a slightly modified CO formulation, proposed by Perez,17 which makes the compatibility
constraints inequality constraints at the system level. By slightly relaxing the tolerances of these inequality
constraints at the system level, the CO architecture converges faster and more robustly while maintaining
comparable accuracy.

Compared to a normal CO formulation, many coupling variables are removed from the system level
problem, speeding convergence. Compared to a monolithic MDF formulation, there is now autonomy between
most discipline analyses, and the fixed point iteration encompasses fewer disciplines and variables. Using
the CO sub-system objective function as the objective of the MDF sub-optimizations allows the unmodified
post-optimality sensitivity methods from the CO architecture to be used. This speeds implementation and
avoids problem dependant calculation of second order derivatives, required when multilevel optimization
problems are formulated.6
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III. Results

To test the performance of these new methods, a variety of experiments were performed. First, a study
was conducted of the relative computational cost of the adjoint and direct methods and parameters were
developed to guide their application. The performance of the semi-analytic methods applied to the MDF
architecture was then tested for different problem attributes. This was accomplished using a scalable test
problem which allows an arbitrary number of disciplines and variable dimensionality of local and coupling
variables.20 Finally, the reconfigurable architecture was tested on a version of the scalable problem tailored
to have appropriate coupling attributes.

III.A. MDF Implementation

For the initial implementation, the MDF architecture was modified to make use of a coupled adjoint formu-
lation to calculate the sensitivities of the objective function, and a GSE1 direct method for the sensitivities
of the constraint functions. In the final implementation, the choice of which semi-analytic method to apply
will not be arbitrary and will depend on the relative dimensionality of the constraint functions versus the
number of design variables. Even in the initial implementation, however, this approach showed a great im-
provement over the original formulation. Depending on the specific number of local and coupling variables,
the advantage varied, but was always significant. A representative plot of the sensitivity calculation times
for the scalable problem is shown in figure 6 in the appendix. A study of the performance of the modified
architecture with increasing dimensionality was also performed and this is shown in figure ?? in the appendix.

III.A.1. Sensitivity Validation

To validate the sensitivities calculated by the semi-analytic methods, they were compared to the results
achieved by complex step and finite differencing for a representative problem. Table III.A.1 shows some
representative calculated sensitivities for the scalable problem and the agreement between the original and
semi-analytic results. In this case, the complex step sensitivities calculated over the whole problem were used
as the exact reference. With a sufficiently small step size, i.e the 10−20 πMDO uses as a default, these can be
considered accurate to machine zero13 and are equivalent to those obtained by automatic differentiation.15

The semi-analytic results were found to be accurate to within 10−14 when the complex step method was
used to calculate the partial derivatives and 10−7 when finite differencing was used. This greater error in the
finite difference results is most likely the result of less accurate partial derivatives due to subtractive cancella-
tion. For this particular problem, the residual based (GSE1) and residual free (GSE2) methods had the same
order of accuracy but this may vary depending on problem implementation and the underlying residual codes.

Original Semi-Analytic
Sensitivity Complex Step Complex Step Finite Difference

df
dz1

1.5011619793190241 1.5011619793190372 1.5011618970987384
df
dx1

8.8643743255674643 8.8643743255674483 8.8643745004156376
df
dx2

8.3048445951781069 8.3048445951781247 8.3048452336145004
dc2
dz1

0.0346907368144533 0.0346907368144535 0.0346907368695189
dc2
dx1

-0.0693803453125928 -0.0693803453125925 -0.0693803456558495
dc2
dx2

0.0526057938095800 0.0526057938095803 0.0526057937144702
Max

Difference - 2.1e− 015 7.7e− 008
Table 1. Sensitivity Validation: Selected Semi-Analytic Sensitivities calculated for the Scalable Problem

One interesting note is that the accuracy of the final sensitivities for the MDF architecture is heavily
dependent on the solution of the multidisciplinary solution (MDA) at each iteration. If the individual
discipline analyses or residual codes are not converged tightly enough, the final calculated sensitivities are
significantly affected. To counter this effect, a residual convergence check was added to the gauss seidel
solver to ensure individual residuals are less than 1E−14 before the MDA exits. It is left to the practitioner
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to adjust this convergence tolerance and trade the accuracy of final sensitivities against the computational
cost of more MDA iterations. Overall, the effect of the tolerance is relatively inelastic so the default setting
is 10−14for more accurate sensitivities.

The relative performance of the direct and adjoint methods are problem dependant and directly related
to the number of design variables and constraints of the input problem. A study was performed to measure
the performance of the adjoint and direct methods for different ratios of design variables to constraints.
As πMDO is presently set up to handle only single objective optimization problems, the adjoint method
will clearly be the preferred choice for the objective sensitivities. Depending on the number of constraint
calculations and input design variables, the faster method, whether adjoint or direct, is automatically selected
for the constraint sensitivities. This can also be determined manually by the user. A series of trials was run
on a scalable mathematical problem with varying numbers of constraints and design variables. The results
were calculated using the GSE2 and Adjoint2 methods (residual free), and are displayed in figure5.
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Figure 5. Calculation times for constraint sensitivities using the adjoint and direct methods.

III.A.2. Performance compared to other architectures

The performance of the semi-analytic sensitivity methods was extensively tested and compared against a
number of different MDO architectures. An initial comparison was made to the sensitivity calculation
times using finite differencing. This is shown in figure 6 for one instance of the scalable problem, with
three disciplines and twenty local design variables and twenty coupling variables per discipline. Whether
the partial derivatives are gathered with the finite difference or complex step method, the improvement is
dramatic. The majority of the improvement is due to a reduction in the number of multidisciplinary analyses
(MDAs) that must be converged for each iteration. With finite difference or complex step sensitivities, one
MDA is performed for each design variable at every iteration. With the semi-analytic methods, despite the
higher computational overhead of the matric multiplication, only one MDA is required per iteration. This
results in vast reduction in computational time and function calls.

This effect can also be shown by comparing the function calls required to converge two problems to
within 10−6, shown in tableIII.A.2. The first problem is a simple two discipline analytic test problem?,14

and the second is a scalable test problem that can be configured with variable numbers of disciplines, local
and global design variables, and coupling variables.14 It has a quadratic objective function and discipline
analysis routines, with linear constraints.

Note that the original finite difference method calls each discipline the same number of times, regardless
of the dimensionality of the disciplines local and coupling variables. The partial derivative routines for
the adjoint and direct methods are decoupled from each other, and hence call individual disciplines the
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Figure 6. Comparison of sensitivity calculation times using the original finite difference method and the new semi-
analytic methods. Calculation times are normalized to the multi-disciplinary analysis performed by the MDF architec-
ture.

Case Function Calls
Architecture Sens. Type Discipline 1 Discipline 2 Discipline 3 Discipline 4 Total

Analytic Problem
MDF Original CS 395 395 - - 790

FD 675 675 - - 1350
MDF semi-analytic CS 258 240 - - 498

FD 313 277 - - 590

Scalable Problem
MDF Original CS 347638 347638 347638 347638 1390552

FD 380588 380588 380588 380588 1522352
MDF semi-analytic CS 12571 11641 13501 12571 50284

FD 12941 12011 13871 12941 51764
Table 2. Function call comparison for semi-analytic sensitivity methods. Note that this comparison is of the total
analysis calls per discipline, including finite differencing.
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minimum number of times based on their complexity. This can further reduce sensitivity analysis times
for problems with variable coupling between disciplines. For both these problems the discipline analysis
routines are very inexpensive analytic functions. From the reduction in function calls, it is clear that the
semi-analytic methods would have even more of a speed advantage for computationally expensive iterative
discipline analyses. Additionally, the finite difference runs take more function calls than complex step, but
the distribution is identical. Therefore, for the remainder of the trials, the complex step method was used
for all architectures.

The performance of the adjoint method was also tested for increasing numbers of local design variables.
For this trial, the problem was configured with 5 global design variables, and 5 distinct disciplines with 10
coupling (state) variables each. The disciplines were fully coupled, meaning the analysis of each discipline
required the coupling variables from all other disciplines. The number of local design variables per discipline
was increased, and several randomly generated problems were solved using various architectures. The results
of this trial are shown in figure 7.

101 102 103 104

Local Variables (total)

101

102

103

104

105

T
im

e
 (

s
)

MDF
IDF
SAND
CO
MDF adjoint

Figure 7. Convergence times for various MDO architectures as the number of local design variables increases. As the
local dimensionality goes up, the MDF method with semi-analytic sensitivities converges faster than any of the other
architectures.

As expected, the MDF method with semi-analytic sensitivities was significantly faster than the original
MDF implementation using the complex step method. It was surprising how well the semi-analytic methods
performed against the other architectures - as the local dimensionality increased, the modified MDF archi-
tecture converged faster than any of the other approaches. The trial was repeated, but with a random (and
variable) number of coupling variables per discipline, and randomly selected coupling between disciplines.
For each discipline, the number of coupling variables was randomly selected between 10 and 30 per discipline.
Similarly, each discipline was coupled to 3 of the 4 other disciplines, but these connections were at random.
Due to this random selection, the resulting plot is more scattered, but the overall trend is the same. The
results for the randomized coupling problem are shown in figure 8.

Overall, the semi-analytic methods dramatically improved the performance of the MDF architecture. It
converged faster, with fewer function calls, and more robustly than the original implementation. Further,
the flexibility incorporated into the partial derivative routines allows further improvements through the use
of residual codes or user provided derivatives. If the disciplines can be differentiated independantly from
each other, the semi-analytic form of the MDF architecture has clear advantages for most test problems.
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Figure 8. Performance of various architectures for variable coupling, variable dimensionality problem. For a given
number of design variables, the coupling between disciplines and number of coupling variables per discipline were
randomly selected.

III.B. NEST Results

A version of the scalable problem was tailored to explore the advantages of the nested optimization architec-
ture. This problem has five disciplines, two of them tightly coupled with a large number of state variables.
A smaller number of state variables from these two disciplines are used in the objective function, and as
coupling variables with the remaining disciplines. The structure of this test problem is shown in figure 4,
and the particulars are given below.

Discipline 1 Discipline 2 Discipline 3 Discipline 4 Discipline 5 Objective

Inputs y2 y1 y11, y4, y5 y22, y3, y5 y3, y4 y11, y22, y3, y4, y5

Outputs y1, y11 y2, y22 y3 y4 y5 -

Table 3. Structure of scalable problem tailored to showcase reconfigurability

The function calls required for each of the MDF, CO, and NEST architectures to converge to the optimum
are given below in figure III.B.

The function calls show the new architecture allocating computational effort properly to the most highly
coupled disciplines. In this initial implementation, the modified MDF architecture used for the tightly
coupled disciplines does not make use of the semi-analytic sensitivity methods. Once the semi-analytic
methods are implemented on the sub-optimization, the performance of the NEST architecture should improve
dramatically. Further, the effect of reducing the coupling dimensionality on the system level CO problem is
clearly shown - the NEST architecture has fewer function calls for disciplines three, four, and five than the
CO architecture. When the number of coupling variables at the system level is increased, the performance
of CO and MDF will deteriorate at a faster rate than that of the nested optimization.

Though the NEST architecture is not currently competitive with the existing architectures for this design
problem, it demonstrates the inherent flexibility and power of the πMDO framework. With the addition of
semi-analytic sensitivities to the nested optimizations, it is likely that the NEST architecture will converge
faster, and with fewer function calls, for specific classes of problems. Further, the fact that multiple instances
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Case Function Calls
Architecture Discipline 1 Discipline 2 Discipline 3 Discipline 4 Discipline 5 Total

MDF 79543 79543 79543 79543 79543 397715

CO2 6128 5645 1768 1513 1607 16661

NEST 197532 197532 1355 1304 1302 399025

Table 4. Function call comparison for semi-analytic sensitivity methods. Note that this comparison is of the total
analysis calls per discipline, including finite differencing.

of MDO architectures can be instantiated, reconfigured, and converge towards the same optimum as the
original problem demonstrates the concept of reorganizing architectures within πMDO is sound. As new
test problems are introduced and the architectures within the framework mature, hybrid approaches can
therefore be developed with the best attributes for each situation.

IV. Future Work

The advantage of semi-analytic sensitivity methods were conclusively demonstrated by their application
to the MDF architecture and subsequent testing. Further investigation is required to see if there is any benefit
to incorporating these methods into the other architectures within πMDO. These other architectures, IDF,
SAND, BLISS, CSSO, etc.14 will be examined to see if they can benefit from the application of these methods.
In the case of the monolithic architectures such as SAND and IDF, the coupled sensitivity analysis would
likely have no advantage when calculating the objective sensitivity. Depending on whether the constraints
are global or local in nature, there may be some advantage to incorporating the global sensitivity equations.

An initial investigation proved the feasibility and relative ease of implementation of nested architectures
within πMDO. Currently, the disciplines to be grouped are user defined, but automatic grouping or at least
suggested configurations will be incorporated into the framework. This will be accomplished by comparing
problem attributes including dimensionality of coupling between disciplines and even the values of individual
sensitivities in the GSE matrix. Further, the semi-analytic sensitivity methods will be incorporated into the
sub-optimizations of the NEST architecture. This should dramatically improve performance and allow larger
problems, with consequently greater potential advantages to the NEST approach, to be tested. To this end,
it will be applied to several test problems alongside the existing architectures in πMDO. These problems will
encompass representative but largely abstract mathematical problems and more realistic medium fidelity
optimization problems from the engineering world. The results gained from this process will allow the
performance of each architecture in various situations to be compared and add to the knowledge base for
future practitioners of MDO.

V. Conclusion

The addition of generalized semi-analytic sensitivity methods to the πMDO framework was found to
greatly increase the performance and flexibility of several architectures. When applied to the MDF architec-
ture, these methods both decoupled the computational effort between disciplines and reduced convergence
time by an order of magnitude. Exploiting the object oriented nature of πMDO, an examination was per-
formed of the benefits of hybrid architectures incorporating nested MDO architectures. The potential of
these hybrid architectures to reduce coupling dimensionality at the system level was demonstrated, and
with the addition of the semi-analytic sensitivity methods these architectures have the potential to speed
optimization for problems with uneven coupling between disciplines.
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