
(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

AW A A
A01-16733

AIAA-2000-0921
The Connection Between the
Complex-Step Derivative Approximation and
Algorithmic Differentiation
J. R. R. A. Martins, P. Sturdza and J. J. Alonso
Stanford University
Stanford, CA 94305

39th Aerospace Sciences Meeting and Exhibit
January 8-11,2001/Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, Va. 22091

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
Ju

ly
 2

7,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
00

1-
92

1

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2001-921&domain=pdf&date_stamp=2012-08-22

(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

AIAA-2001-0921

THE CONNECTION BETWEEN THE COMPLEX-STEP DERIVATIVE
APPROXIMATION AND ALGORITHMIC DIFFERENTIATION

Joaquim R. R. A. Martins, * Peter Sturdza, f and Juan J. Alonso *
Department of Aeronautics and Astronautics

Stanford University, Stanford, CA

Abstract

This paper presents improvements to the complex-
step derivative approximation method which in-
crease its accuracy and robustness. These improve-
ments unveil the connection to algorithmic differen-
tiation theory. The choice between these two meth-
ods then hinges on a trade-off between ease of im-
plementation and execution efficiency. Automatic
implementations for Fortran and C/C++ are pre-
sented and their relative merits are discussed. These
new methods were successfully implemented in two
very large multidisciplinary programs and the re-
sulting sensitivities are shown to be as accurate as
the analyses. Accuracy and ease of implementation
make these tools very attractive options for sensitiv-
ity analysis.

Introduction

Sensitivity analysis is an important field of engineer-
ing research. One of its main applications is for de-
sign optimization methods that use gradient-based
optimizers. The calculation of sensitivity informa-
tion is usually the costliest step in the optimization
cycle and the optimization process often fails due to
inaccurate sensitivity information.

The complex-step derivative approximation is a
method for estimating sensitivities that has been
shown to have a relatively easy implementation
while yielding very accurate results.1 The poten-
tial of this technique has been recognized and it has
been used in CFD sensitivity analysis by Anderson2

and in an MDO environment by Newman.3 The de-
tails and automatic implementation of this method

"Graduate Student, AIAA Student Member
t Graduate Student, Not an AIAA Member
* Assistant Professor, AIAA Member

Copyright ©2001 by the authors. Published by the American
Institute of Aeronautics and Astronautics, Inc., with permis-
sion.

have been described by the authors.1'4
In this paper we present further research on

the complex-step derivative approximation, starting
with some of the problems that we have found in
the original implementation. In the process of solv-
ing these problems, we realized that the complex-
step method could be improved, leading to a form
of algorithmic differentiation. Algorithmic differen-
tiation — also known as computational differentia-
tion or automatic differentiation — is a well known
method based on the systematic application of the
differentiation chain rule to computer programs.5

The first objective of this paper is to show how the
complex-step derivative approximation is related to
algorithmic differentiation, further contributing to
the understanding of this relatively new method. On
the implementation side, we will continue to focus
on automatic implementations, discussing the trade-
offs between complex step and algorithmic differen-
tiation for the cases of Fortran and C/C++. Fi-
nally, computational results corresponding to these
two programming languages will be presented.

The Connection

Complex-Step Method Basics

Finite-differencing formulae are common for esti-
mating derivatives. These formulae may be de-
rived by truncating a Taylor series expansion about
a given point x. When estimating sensitivities us-
ing these formulae we are faced with the "step size
dilemma", i.e. the desire to choose a small step size
to minimize truncation error while avoiding the use
of a step so small that errors due to subtractive can-
cellation become dominant.

The complex-step derivative approximation is an
equally simple first derivative estimate for real func-
tions and may be obtained using complex calculus.
If / is a real function of real variables and it is an-
alytic, we can expand it in a Taylor series about a

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
Ju

ly
 2

7,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
00

1-
92

1

(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

real point x using an imaginary step ih. Solving
this series for the first derivative yields the following
approximation:

df I m [f (x + ih)] i
(1)dx h ' " 3!

The result is an O(h2) estimate of the derivative of
/ which is not subject to subtractive cancellation
error, since it does not involve a difference opera-
tion. This constitutes a tremendous advantage over
the finite-difference approach. For more details on
the theory and implementation of this method, the
reader is encouraged to consult previously published
work.1

Improving the Complex-Step Method

WThen using the complex-step derivative approxima-
tion, in order to effectively eliminate truncation er-
rors, it is typical to use a step that is many orders
of magnitude smaller than the real part of the cal-
culation. For most operations, having real and com-
plex parts that differ by many orders of magnitude
does not pose a problem, as the real and imaginary
parts effectively remain separate. With 64 bit float-
ing point precision, for example, a complex step of
10~20 results in no truncation errors if the real part
of the computation is of order one.

However, there are some complex functions where
a small imaginary part may vanish. Consider, for
example, the definition of the inverse sine function
as used in the previous implementation:1

arcsin(z) = -ilog \iz + (2)

This function does not maintain accurate derivatives
if the complex step is too small because it mixes the
imaginary and real parts of the numbers during its
computation. If z — x + ih where x — 0(1) and
h — (9(10~20), then in the following operation,

iz -f z = (x — h) + i (x -f h), (3)

h disappears when using finite-precision arithmetic
and the the derivative information is lost.

Similarly, in Equation (2), iz is added to a term
with the same magnitude as z. If small enough, the
imaginary part, which carries the derivative infor-
mation, disappears when using finite precision arith-
metic resulting in a value of zero for the derivative.

Even though such an operation that exchanges
real and imaginary parts would not appear explicitly
in a real-valued code, it may be inadvertently intro-
duced in the definition of complex functions. There-
fore, real arithmetic codes that have been modified

to use the complex-step method may be vulnerable
to this weakness.

Another potential problem may arise when the fol-
lowing complex definition of sine is used,

sin(z) =
e — e

2i (4)

If z — x 4- ih, then the imaginary part of the above
equation is

Im [sin(x -h ih)] = cos(x)
eh - e~h

(5)

This term becomes a problem when h is very small
since subtraction of two very similar numbers — eh

and e~h — leads to subtractive cancellation. This
formula is not used in the numeric libraries used by
the authors for the calculation of sine and cosine,
but it may appear in the definitions of tangent and
hyperbolic tangent whose complex definitions must
often be supplied by the user. Rather than using
the definition given in Equation (4), the following
expression is preferred:

sin(x + ih) - sin(x) cosh(h) + i cos(x) sinh(ft). (6)

Note that this expression, for small /i, simplifies to

s'm(x + ih) « sin(ar) -I- ihcos(x). (7)

The real part reduces to the function itself, and the
imaginary part to its derivative multiplied by the
step size.

The application of this approach to the inverse
sine function definition expressed in Equation (2)
can yield an excellent replacement for that equation.
By setting z = x H- ih and applying the approxima-
tion for small /i, we obtain

arcsin(x + ih) = arcsin(x) + i- (8)

This is a much improved definition of the inverse
sine for the purpose of calculating the function sen-
sitivity. Not only is the original difficulty with small
step sizes solved, but truncation error is eliminated
entirely. The real part is the inverse sine function
itself, and the imaginary part, when divided by /i, is
the exact derivative of the function for any value of
h.

It is obvious from a Taylor series expansion that
such an improved function definition can be found
for any analytic complex function, /, by linearizing
about h — 0, i.e.,

f(x + ih) = f(x) 4- ih df(x)
dx ' (9)

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
Ju

ly
 2

7,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
00

1-
92

1

Martins

Martins

(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

The end result is a sensitivity calculation method
that is essentially equivalent to algorithmic differen-
tiation. This means that the complex-step method,
as the step size is reduced, converges to a form of
algorithmic differentiation that is very simple to im-
plement for programming languages with intrinsic
complex variable types that permit function over-
loading.

Algorithmic Differentiation

As mentioned previously, algorithmic differentiation
has been in use for a long time.5'6 The method is
based on the application of the chain rule of differ-
entiation to each operation in the program flow. For
each intermediate variable in the algorithm, a vari-
ation due to one input variable is carried through.
As a simple example, suppose we want to differen-
tiate the multiplication operation, / = Xix2 , with
respect to x\. Table 1 compares how the differen-
tiation would be performed using either algorithmic
differentiation or the complex-step method.

As we can see, algorithmic differentiation stores
the derivative value in a separate set of variables
while the complex step carries the derivative infor-
mation in the imaginary part of the variables. It is
shown that in this case, the complex-step method
performs one extra operation — the calculation of
the term h\h^ — which, for the purposes of calculat-
ing the derivative is superfluous. The complex-step
method will nearly always include these superfluous
computations (which can also be identified in Equa-
tion (6).) The extra computations correspond to the
higher order terms in the Taylor series expansion of
Equation (1).

Although this example involves only one opera-
tion, both methods work for an algorithm involv-
ing an arbitrary sequence of operations by propa-
gating the variation of one input forward through-
out the code. This means that in order to calculate
n derivatives, the differentiated code must be exe-
cuted n times. This particular form of algorithmic
differentiation is called the forward mode. It calcu-
lates the derivatives of all the outputs with respect
to one input. The other mode — the reverse mode^
— has no equivalent in the complex-step method.
When using the reverse mode, the code is executed
forwards and then backwards to calculate derivatives
of one output with respect to n inputs. The total
number of operations is independent of n, but the
memory requirements may be prohibitive, especially
for the case of large iterative algorithms.

Since the use of the complex-step method has only

Algorithmic

Ax2 -0
/ = XiX2

A/ = xi Ax-2 -f xoAxi

df/dxi = A/

Complex-Step
A! = io-*° ———
ft2 = 0
/ — (xi -h ih\)(x2 -f
/ - XiX2 - fti/l2

+i(xi/i2 ^~ x2h\
df/dxi = I m f / h

ih2)

)

Table 1: The differentiation of the multiplication op-
eration / = xi#2 with respect to Xi using algorith-
mic differentiation and the complex-step derivative
approximation.

recently become widespread, there are some issues
that seem unresolved. However, now that this con-
nection to algorithmic differentiation has been es-
tablished, we can look at the extensive research that
has been done on the subject of algorithmic differ-
entiation for some answers.

Important issues include how to treat singular-
ities,7 differentiability problems due to if state-
ments,8 and the convergence of iterative solvers,9'10

all of which have been addressed by the algorithmic
differentiation research community.

The singularity issue — i.e. what to do when the
derivative is infinite — is handled automatically by
the complex-step method, at the expense of some
accuracy. For example, the computation of \Jx + ih
differs substantially from ^/x + ih-^-^ as x vanishes,
but this has not produced noticeable errors in the
large algorithms that we tested.

Regarding the issue of if statements, in rare cir-
cumstances, modification of the original algorithm
is necessary as its differentiability may be compro-
mised by piece wise function definitions.

Finally, concerning convergence of iterative codes,
the experience of the authors has been that in all
cases the imaginary part converges at a rate similar
to the real part, although somewhat lagged. Fur-
thermore, for engineering applications where the it-
erative process converges to a differentiable function,
it is our experience that the derivative also converges
to the correct result.

Implementations

The implementation of any of the derivative calcu-
lation methods, for practical purposes, should be as
automated as possible. Changing the source code
manually is not only an extremely tedious task, but
is also likely to result in the introduction of coding
errors in the program.

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
Ju

ly
 2

7,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
00

1-
92

1

(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

There are two main possibilities for implementing
algorithmic differentiation: by source code transfor-
mation or by using derived datatypes and operator
overloading.

To implement algorithmic differentiation by
source transformation, the whole code must be pro-
cessed with a parser and all the derivative calcu-
lations are introduced as extra lines of code. The
resulting extended code is greatly enlarged and it
becomes practically unreadable. This fact consti-
tutes an implementation disadvantage as it becomes
impractical to debug this new extended code. One
has to work with the original source, and every time
it is changed (or if different derivatives are desired)
one must rerun the parser before compiling the new
version.

In order to use derived types, we need languages
that support this feature, such as Fortran 90 or
C++. A new type of structure must be created that
contains both the value and its derivative. All the
existing operators must then be re-defined for the
new type. The new operator would have exactly the
same behaviour as before for the value part of the
new type, but use the derivative of the operator to
calculate the derivative portion. This results in a
very elegant implementation since very few changes
are required in the original code.

In the following section, implementations of these
methods will be described in detail for Fortran and
C/C++. Some notes for other programming lan-
guages will also be included.

Fortran

Many tools for automatic algorithmic differentiation
of Fortran programs by source transformation al-
ready exist. Some of these are ADIFOR, TAMC,
DAFOR, GRESS, Odysse and PADRE2.11 As ex-
plained above, extending the original source code is
a method that greatly compromises the code's main-
tainability.

There are also tools for automatic algorithmic dif-
ferentiation of Fortran programs by using derived
datatypes and operator overloading such as AD01,
ADOL-F, IMAS and OPTIMA90.11 They have been
extensively developed and provide the user a lot of
functionality.

However, all of these require the user to make a
series of changes to the source code by hand. These
include selective changes to variable type declara-
tions, the addition of use statements, as well as the
modification of input, output and variable initializa-
tion statements. When dealing with a large program

with a multitude of subroutines, this approach may
be time consuming and prone to errors.

The automatic Fortran differentiation tool pre-
sented in this paper is an improved version of the
complex-step method published previously.1 It is
composed of a a Python script that makes the neces-
sary changes to the source code and Fortran 90 mod-
ule that contains overloaded function definitions.

The Python script has been enhanced by adding
support for a wider range of platforms and compilers
as well as support for MPI based parallel implemen-
tations. Further flexibiliy was added to the script by
addressing file input and output issues.

The new version of the complexify module has
been improved by using the new function defini-
tons discussed in the previous section, i.e., defini-
tions that use the original real function for the real
part and the derivative of the function multiplied by
h for the imaginary part, rather than the complex
function definition.

These new definitions only apply to functions that
are not defined for complex arguments in standard
Fortran, such as tangent, inverse trignometric func-
tions and hyperbolic functions. The reason for not
using these improved definitions for all functions is
that Fortran 90 does not permit the redefinition of
functions that already exist.

The way around this restriction would be to cre-
ate a new type of variable, thus allowing the use of
our own function definitions. This is the approach
adopted by the algorithmic differentiation methods
that use derived datatypes. The drawbacks with this
approach are that there are far more changes re-
quired to the original source code and it is no longer
compatible with some old Fortran constructs.

This tool for implementing the complex-step
method represents, in our opinion, a good compro-
mise between ease of implementation and algorithm
efficiency. While pure algorithmic differentiation
is numerically more efficient, the method used in
this paper requires far fewer changes to the origi-
nal source code resulting in improved maintainabil-
ity. Furthermore, practically all the changes are per-
formed automatically by the use of the script. All
the necessary files, together with detailed instruc-
tions are available on the first author's webpage.4

C/C——

The C/C++ implementations of the complex-step
method and algorithmic differentiation are much
more straightforward than the Fortran implemen-
tations. Two different C/C++ implementations are

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
Ju

ly
 2

7,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
00

1-
92

1

(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

Platform

Compiler
Executable size (KB)

Real
Complex
Surreal

Sun Ultral
143MHz

_ g++ 2.95.2
1680
3.84

11.99 (3.1)
6.91 (1.8)

Sun UltraGO
358MHz

CC Sun Works 5.0
1400
1.95

9.38 (4.8)
4.73 (2.4)

Intel Celeron
429MHz

g++ 2.91.66
1032
1.07

3.83 (3.6)
2.31 (2.2)

SGI Octane
IP30 195MHz
MIPSpro 7.30

846
1.21

2.68 (2.2)
1.91 (1.6)

Table 2: Run times (in seconds) for a boundary layer solution with no derivatives; with derivatives via the
complex-step method; and with derivatives using an algorithmic differentiation method.

presented and used in this paper and are available
on the web.4

The first method is analogous to the Fortran im-
plementation, i.e., it uses complex variables and
overloaded complex functions and operators. An
include file, complexify.h, defines a new variable
type called cmplx and all the functions that are nec-
essary in the implementation of the complex-step
method. The inclusion of this file and the replace-
ment of double or float declarations with cmplx is
nearly all that is required.

The remaining work involves dealing with input
and output routines. The usual casting of the in-
puts to cmplx and printing of the outputs using the
realQ and imagO functions works well. For ASCII
files or terminal input and output, the use of the
C++ iostream library is also possible. In this case,
the ">" operator will automatically read in a real
number and properly cast it to cmplx, or read in a
complex number in the Fortran parenthesis format,
e.g., u(2.3,l.e-20)'\ The "<" operator will out-
put in the parenthesis format.

The second method is a version of algorithmic dif-
ferentiation that is basically a realization of Equa-
tion (9). It can be implemented by including a
file called derivify.h. and by replacing declara-
tions of double with declarations of surreal. The
derivify.h file redefines all relational operators,
the basic arithmetic formulae, trigonometric func-
tions, and other formulae in the math library when
applied to the surreal variables. These variables
contain "value" and "derivative" parts analogous to
the real and imaginary parts of complex variables.
It works just as the complex step version does, ex-
cept that the step size may be set to 1 since there is
no truncation error.

One feature available to the C++ programmer is
worth mentioning: templates. Templates make it
possible to write source code that is independent
of variable type declarations. This approach in-

volves considerable work with complicated syntax
in function declarations and requires at least a bit
of object-oriented programming. There is no need,
however, to modify the function bodies themselves
or to change the flow of execution, even for pure C
programs.

The distinct advantage is that the variable types
can be decided at run time, so the very same exe-
cutable can run either the real-valued, the complex
step or the algorithmic differentiation version. This
considerably simplifies version control and debug-
ging since updating or debugging one version of the
code updates and debugs the others — the source
code is literally the same for all three versions of the
program.

An execution speed comparison of the complex
step and pure algorithmic differentiation method on
a finite-difference boundary layer code is shown in
Table 2. The rows labeled "Real," "Complex" and
"Surreal" contain execution times in seconds, and,
in parentheses, the ratios of the latter two methods
to the real-valued execution times. This program
uses C++ templates to implement the three meth-
ods, so the size of the executable can increase con-
siderably. When comparing to the real-valued code,
the executables here are 5 to 7 times larger. How-
ever, there was no time or memory penalty due to
the use of templates.

The basic result is that, as is often stated, the
complex variable version of the program takes about
three times longer to run than the real-valued ver-
sion, and the algorithmically differentiated code
takes about twice as long as the real-valued pro-
gram. Interestingly, the SGI platform is much more
efficient at computing derivatives than the other sys-
tems, either due to a better compiler, its 64 bit hard-
ware architecture, or both.

It should be noted that there are much more
sophisticated algorithmic differentiation packages
available for C/C++.11 The one presented here is

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
Ju

ly
 2

7,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
00

1-
92

1

(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

meant as a simple improvement to the complex-step
method that is equally easy to implement. Other
packages include ADIC,12 an implementation mir-
roring ADIFOR, and ADOL-C,13 a free package that
uses operator overloading and can operate in forward
and reverse modes as well as compute higher order
derivatives.

Other Programming Languages

In addition to the Fortran and C/C++ implemen-
tations described above, some work was done with
other programming languages.

The complex-step method works well under Mat-
lab with practically no changes to the user's source
code.1

A simple implementation of the complex-step
method for Python was also developed for the pur-
poses of this paper. In order to do this, one must
import cmath, a standard module for complex arith-
metic. Then, just as in Fortran 77 or C, functions
such as c_abs, c_atan2 and c_max must be defined.
Since Python supports operator overloading, a more
elegant algorithmic differentiation method similar to
that used in C++ also seems possible.

In general, algorithmic differentiation can be im-
plemented in any programming language that sup-
ports derived datatypes and operator overloading.
For languages that do not have these features, the
complex-step method can be used wherever complex
arithmetic is supported.

Results

Two-Dimensional Flow Solver

The automatic implementation of the complex-step
method for FL082 — a two-dimensional finite vol-
ume solver for the Euler equations — has been
decribed in previous work.1 Although the results
that were presented therein are correct, they did
not achieve the full working precision of the algo-
rithm because of an error in the compilation. There-
fore, we will show results from the same solver that
were obtained using the latest implementation of the
complex-step method.

Since the flow solver is an iterative algorithm, it
is useful to compare the convergence of a given re-
sult with that of its derivative, which is contained
in its complex part. This comparison is shown in
Figure 1 for the drag coefficient and its derivative
with respect to the freestream Mach number. The

50 100 150 200 250 300 350 400 450 500
Iterations

Figure 1: Convergence of CD and
2D flow solver.; e = ^.T^Y1.

for the

drag coefficient converges to the algorithm's preci-
sion, which is almost machine zero. The sensitivity
is shown to lag slightly in the convergence. This
is expected, since the calculation of the sensitivity
of a given quantity is dependent on the value of
that same quantity. After the drag coefficient re-
sult achieves the algorithm's precison, the sensitiv-
ity catches up after about 20 additional iterations.

Complex-Step j
Finite-difference I

10" 10
Step Size, h

Figure 2: Sensitivity estimate errors for d
given by finite-difference and the complex step for
decreasing step size; e = i/re | •

The next plot, Figure 2, shows a comparison be-
tween the estimates of dCo/dM^ given by both the
complex-step and the forward-difference methods for

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
Ju

ly
 2

7,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
00

1-
92

1

(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

various step sizes.
The forward-difference estimate initially improves

since the O(h) truncation error decreases with step
size. However, as the step is reduced below a value of
about 10~10, subtractive cancellation errors become
an issue and the estimates become unreliable. When
the interval h is so small that no difference exists in
the output — for steps smaller than 10~17 — the
finite-difference estimates eventually yield zero.

The complex-step estimate improves quadratically
as the step size is decreased. The estimate is prac-
tically insensitive to variations of step size below an
h of the order of 10~10, value for which the estimate
achieves the accuracy of the flow solver. Although
the complex step size can be made extremely small,
there is a lower limit (h — 10~321) below which un-
derflow starts to occur and the estimate results in
NaN.

When comparing the best accuracy of these
approaches, we see that finite-differencing only
achieves a fraction of the accuracy of the complex-
step approximation.

Three-Dimensional Aero-Structural Solver

The tools that we have developed to implement the
complex-step method automatically were also tested
on a much larger application: a high-fidelity aero-
structural solver that is part of an MDO framework
which was created to solve wing design optimization
problems.14 Since an analytic method for calculat-
ing sensitivities is being developed for this analysis
code, the complex-step method will be an extremely
useful reference for validation.

Figure 3: Aero-structural model and solution of a
transonic jet configuration, showing a slice of the
grid and the wing's internal structure.

Within the aero-structural solver, the aerody-

namic analysis is performed by Reuther et al.'s
SYN107-MB15 — a multiblock Euler flow solver —
which also calculates the sensitivity of the drag and
other aerodynamic quantities with respect to wing
geometry perturbations using an adjoint method.
These perturbations are the shape design variables
and consist of "bump" functions distributed on the
top and bottom surfaces of the wing.15

The wing structure is modeled with FESMEH,16

a finite element solver which includes the following
wing structural components: wing skins, spars and
ribs. In addition to solving for displacements and
stresses, the structural solver is able to calculate the
derivatives of these quantities with respect to ele-
ment dimensions analytically. The coupling of the
aerodynamic and structural analysis codes has pre-
viously been developed by the authors and uses a
consistent and conservative scheme.14

The aero-structural model and a sample solution
are shown in Figure 3. The internal structure of the
wing and a slice of the 3D CFD grid are shown.

100 200 300 400 500
Iterations

600 800

Figure 4: Convergence of CD and
3D aero-structural solver; e =

for the

To validate the complex-step results for this
solver, we chose the derivative of the drag coeffi-
cient to the shape perturbations, accounting for the
structural displacements. There is a three by three
grid of perturbations on each of the wing's surfaces
making up for a total of 18 design variables.

A plot of the convergence of the drag coefficient is
also shown for this case (see Figure 4) , together with
the convergence of the sensitivity corresponding to
the first shape design variable, bi .

As with the case of the two-dimensional flow
solver, the derivative converges at the same rate as

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
Ju

ly
 2

7,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
00

1-
92

1

(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

the coefficient and it lags slightly, taking about 100
additional iterations to achieve the maximum preci-
sion. The maximum precision of the derivative is ob-
served to be slightly lower than the precision of the
coefficient. When looking at the number of digits
that are converged, the coefficient consistently con-
verged to six digits, while the derivative converged
to five or six digits. This might be explained by the
increased round-off errors of complex arithmetic,17

which does not affect the real part when such small
step sizes are used.

0.15H

10

10"

10"

10"

10"
10 10"

Step Size, h

Figure 5: Sensitivity estimate errors for
given by finite-difference and the complex step for
different step sizes; E = .7 i .

^ ' I / r e / I

Figure 5 shows a plot analogous that of Figure 2.
In this case the finite-difference result has an ac-
ceptable precision for only one step size (h = 10~2).
Again, the complex-step method yields accurate re-
sults for step sizes ranging from h — 10~2 to h —
10-200

The results corresponding to the complete shape
sensitivity vector are shown in Figure 6. Although
many different sets of finite-difference results were
obtained, only the best set is plotted here. The plot
shows no discernible difference between the two sets
of results.

Again, we would like to emphasize that while there
was considerable effort involved in obtaining rea-
sonable finite-difference results by trying different
step sizes, no such studies were necessary with the
complex-step method.

•O- Complex-Step, h = 1x10'20

Finite-Difference, h = 1x10~2

Figure 6: Comparison of the estimates for the shape
sensitivities of the drag coefficient, dCo/dbi.

Supersonic Viscous/Inviscid Solver

The following example illustrates how the complex-
step method can be applied to an analysis from
which it is very difficult to extract accurate finite
difference gradients. It is a complicated code that
uses input and output file manipulations to com-
bine five computer programs including an iterative
Euler solver and boundary layer solutions featuring
transition prediction. This code was developed for
supporting design work of the supersonic Natural
Laminar Flow aircraft concept.18

In this framework, Python is used as the glue that
joins the many programs that constitute the function
analysis with an optimizer that requires values and
derivatives of the objective and constraints. Gra-
dients are computed with the complex-step method
and with algorithmic differentiation in the Fortran,
C++ and Python programming languages. The se-
quence of calculations for each function evaluation
is as follows:

• The Python wrapper program is given a list of
design variables by the optimizer. It then be-
gins by computing, using complex variables, a
geometry description for the grid generator.

• CH-GRID, written by D. Saunders and J.
Reuther at NASA Ames, automatically gener-
ates a 3D grid for either a wing alone or a wing-
body. It is a Fortran 90 program which was
complexified with the script described in this
paper.

• CFL3D19 provides the supersonic Euler flow so-

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
Ju

ly
 2

7,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
00

1-
92

1

(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

Figure 7: Trapezoidal wing with 5% thick biconvex
airfoils, 32° leading edge sweep, 22.5 ft root chord,
5.45 ft tip chord and 18.94 ft semispan.

lution. Starting with Version 6, CFL3D comes
with the complex-step method already imple-
mented.

• The Euler solution is post-processed by a C++
program that was complexified following the de-
scription in this paper.

• A quasi-3D boundary-layer solver18 is then exe-
cuted on the wing at six spanwise stations, top
and bottom, by the Python wrapper (viscous-
inviscid iterations are not required at the su-
personic flight conditions of this NLF aircraft).
It can compute laminar and turbulent bound-
ary layers and also has the capability to predict
the transition location. This boundary-layer
solver uses the C++ algorithmic differentiation
approach.

• The Python wrapper merges the 12 boundary
layer solutions to produce a three-dimensional
skin-friction drag result to which it adds the in-
viscid drag computed by CLF3D and computes
other quantities to evaluate constraints (such as
wing structural weight constraints).

• The above steps are repeated for each of the
design and constraint variables, and then the
Python wrapper passes the values and deriva-
tives to the optimizer.

10U

10"

1 fl-
10"- 10 w

Step Size, h
10 10"

Figure 8: Convergence of gradients as step size is
decreased, e — \f \ •

I / r e / I

The results presented here are gradients of the
skin-friction drag coefficient with respect to the root
chord of the trapezoidal wing depicted in Figure 7
at Mach 2.0, 40,000 ft and 4° angle of attack. The
other design variables are the tip chord, the root and
tip thickness to chord ratios, the leading edge sweep
and the tip twist. Twist and thickness vary linearly
spanwise, and the area is held constant. Therefore,
when the root chord varies, the trailing edge sweep
and wingspan change.

A comparison of finite central difference results
with the complex-step gradients is shown in Fig-
ures 8-11. The first one, computed with a laminar
boundary layer, shows the rather poor quality finite
difference gradients of this analysis.

There are several properties of this analysis that
make it difficult to extract useful finite difference
data. The most obvious is transition. It is difficult
to truly smooth the movement of the transition front
when transition prediction is computed on a dis-
cretized domain. Since transition has such a large ef-
fect on skin friction, this difficulty is expected to ad-
versely affect finite difference gradients of drag. Ad-
ditionally, the discretization of the boundary layer
by computing it along 12 arcs that change curvature
and location as the wing planform is perturbed is
suspected to cause some noise in the laminar solu-
tion as well (these arcs, their purpose, and further
details of the boundary layer solution and transition
prediction are described elsewhere.18)

A plot of the gradient itself in Figure 9 shows that
finite difference and complex-step results do agree
for step sizes larger than 0.001 feet. Figure 10 de-

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
Ju

ly
 2

7,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
00

1-
92

1

(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

x 1 0 x10

Step Size, h
10

Figure 9: Gradient of skin friction drag coefficient
with respect to wing root chord computed with var-
ious step sizes (laminar boundary layer).

picts the drag coefficient as it varies with pertur-
bations in root chord. The slope computed with
the complex-step at 22.5 ft chord is in good agree-
ment with the function evaluations in the vicinity.
Figure 11 shows the expected noise increase for the
same conditions when transition to turbulent flow
is computed. The complex-step slope, however, re-
mains very reasonable — not too far from a least
squares fit of the data.

Conclusions

New insights into the complex-step method have
been presented. Solutions to several subtle problems
in its implementation have been clarified, and its re-
lationship to traditional algorithmic differentiation
methods has been exposed. This enables the appli-
cation of a substantial body of knowledge — that
of the algorithmic differentiation community — to
the complex-step method, answering many impor-
tant questions.

The complex-step technique may still be the eas-
iest of any derivative calculation method to imple-
ment, particularly in legacy codes and in codes that
mix programming languages. Furthermore, the re-
sulting complexified code is no harder to debug and
maintain than the original.

The example implementations and their results il-
lustrate these points clearly and put forward two
excellent uses for the method: validating a more so-
phisticated gradient calculation scheme and provid-

* Function Evaluations
Complex-Step Slope

22.495 22.505

Figure 10: Skin friction drag coefficient as a function
of wing root chord with a laminar boundary layer.

ing accurate and smooth gradients for analyses that
accumulate substantial computational noise.

Acknowledgements

The authors would like to thank Dr. James Reuther
for his invaluable help, particularly with SYN107-
MB and the aero-structural solver. He was unfortu-
nately demoted from the top of the first page to this
section because of bureaucratic constraints.

References

[1] Martins, J. R. R. A., I. M. Kroo, and J. J.
Alonso "An Automated Method for Sensitivity
Analysis using Complex Variables" Proceedings
of the 38th Aerospace Sciences Meeting, Reno,
NV, January 2000. AIAA Paper 2000-0689.

[2] Anderson, W. K., J. C. Newman, D. L. Whit-
field, E. J. Nielsen, "Sensitivity Analysis for
the Navier-Stokes Equations on Unstructured
Meshes Using Complex Variables", AIAA Pa-
per No. 99-3294, Proceedings of the 17th Ap-
plied Aerodynamics Conference, 28 Jun. 1999.

[3] Newman, J. C. , W. K. Anderson, D. L. Whit-
field, "Multidisciplinary Sensitivity Derivatives
Using Complex Variables", MSSU-COE-ERC-
98-08, Jul. 1998.

[4] http: //aero-comlab. Stanford. edu/jmartins

[5] Griewank, A., Evaluating Derivatives, SIAM,
Philadelphia, 2000.

10

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
Ju

ly
 2

7,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
00

1-
92

1

(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

* Function Evaluations I
— Complex-Step Slope

22.495 22.505

Figure 11: Skin friction drag coefficient as a function
of wing root chord with transition to turbulent flow
in the boundary layer.

[6] Bischof, C., A. Carle, G. Corliss, A. Grienwank,
P. Hoveland, "ADIFOR: Generating Derivative
Codes from Fortran Programs", Scientific Pro-
gramming, Vol. 1, No. 1, 1992, pp. 11-29.

[7] Bischof, C., G. Corliss, A. Grienwank, "ADI-
FOR Exception Handling", Argonne Technical
Memorandum, MCS-TM-159, 1991.

[8] Beck, T. and H. Fischer, "The if-problem in
automatic differentiation", Journal of Compu-
tational and Applied Mathematics, Vol. 50, pp.
119-131, 1994.

[9] Griewank, A., C. Bischof, "Derivative Conver-
gence for Iterative Equation Solvers" Optimiza-
tion Methods and Software, Vol. 2, pp. 321-355,
1993.

[10] Beck, T., "Automatic Differentiation of itera-
tive processes" Journal of Computational and
Applied Mathematics, Vol. 50, pp. 109-118,
1994.

[11] http: //www. sc. rwth-aachen. de/Research
/AD/subj ect.html

[12] Bischof, C., L. Roh, A. Mauer, "ADIC - An
Extensible Automatic Differentiation Tool
for ANSI-C," to appear in Software: Prac-
tice and Experience, also ANL/MCS-P626-1196
(ftp: / /info. mcs. anl. gov/pub/techjreports
/reportS/P626.ps.Z)

[13] Griewank, A., et al., "ADOL-C: A Package
for the Automatic Differentiation of Algorithms
Written in C/C++," ACM TOMS, Vol. 22(2),
June 199, pp. 131-167, Algorithm 755.

[14] Reuther, J., J. J. Alonso, J. R. R. A. Mar-
tins, and S. C. Smith, "A Coupled Aero-
Structural Optimization Method for Complete
Aircraft Configurations", Proceedings of the
37th Aerospace Sciences Meeting, AIAA Paper
1999-0187. Reno, NV, January 1999.

[15] Reuther, J., J. J. Alonso and A. Jameson,
"Constrained Multipoint Aerodynamic Shape
Optimization Using an Adjoint Formulation
and Parallel Computers: Part I", Journal of
Aircraft, 36(1):51-60, 1999.

[16] Holden, M. E., "Aeroelastic Optimization using
the Collocation Method", PhD Thesis, Stan-
ford, May 1999.

[17] Olver, F. W. J., "Error Analysis of Complex
Arithmetic", Computational Aspects of Com-
plex Analysis, pp. 279-292, 1983.

[18] Sturdza, P., V. M. Manning, I. M. Kroo, and
R. R. Tracy, "Boundary Layer Calculations
for Preliminary Design of Wings in Supersonic
Flow," AIAA Paper 99-3104, Proceedings of
the 17th Applied Aerodynamics Conference, 28
June 1999.

[19] Krist, S. L., R. T. Biedron, and C. L.
Rumsey, CFL3D User's Manual (Version 5.0)
NASA/TM-1998-208444, June 1998.

11

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
Ju

ly
 2

7,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
00

1-
92

1

https://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2001-921&system=10.2514%2F2.2413&citationId=p_19

This article has been cited by:

1. J. D. Stigter, D. Joubert, J. Molenaar. 2017. Observability of Complex Systems: Finding the Gap. Scientific Reports 7:1. . [Crossref]
2. Yisheng Gao, Yizhao Wu, Jian Xia. 2017. Automatic differentiation based discrete adjoint method for aerodynamic design

optimization on unstructured meshes. Chinese Journal of Aeronautics 30:2, 611-627. [Crossref]
3. F. Alobaid, B. Epple, R. Leithner, H. Müller, H. Zindler, K. Ponweiser, H. Walter. Numerical Methods 161-320. [Crossref]
4. R. Leithner, A. Witkowski, H. Zindler. Power Plant Simulation—Transient and Steady-State 601-693. [Crossref]
5. Etienne Pellegrini, Ryan P. Russell. 2016. On the Computation and Accuracy of Trajectory State Transition Matrices. Journal of

Guidance, Control, and Dynamics 39:11, 2485-2499. [Abstract] [Full Text] [PDF] [PDF Plus]
6. Ting Gong, George A. McMechan. 2016. Target-oriented linear least squares and nonlinear, trust-region Newton inversions of

plane waves using AVA and PVA data for elastic model parameters. GEOPHYSICS 81:5, R325-R338. [Crossref]
7. D. Chernikov, P. Krokhmal, O. I. Zhupanska, C. L. Pasiliao. 2015. A two-stage stochastic PDE-constrained optimization approach

to vibration control of an electrically conductive composite plate subjected to mechanical and electromagnetic loads. Structural
and Multidisciplinary Optimization 52:2, 337-352. [Crossref]

8. Ramy Rashad, David W. Zingg. Aerodynamic Shape Optimization for Natural Laminar Flow Using a Discrete-Adjoint Approach .
[Citation] [PDF] [PDF Plus]

9. K.-L. Lai, J.L. Crassidis. 2008. Extensions of the first and second complex-step derivative approximations. Journal of
Computational and Applied Mathematics 219:1, 276-293. [Crossref]

10. Curran Crawford, Jim Platts. Updating and Optimization of a Coning Rotor Concept . [Citation] [PDF] [PDF Plus]
11. Jongrae Kim, Declan G. Bates, Ian Postlethwaite. 2006. Nonlinear robust performance analysis using complex-step gradient

approximation. Automatica 42:1, 177-182. [Crossref]
12. Jongrae Kim, Declan G. Bates, Ian Postlethwaite. 2005. COMPLEX-STEP GRADIENT APPROXIMATION FOR

ROBUSTNESS ANALYSIS OF NONLINEAR SYSTEMS. IFAC Proceedings Volumes 38:1, 1-6. [Crossref]
13. N. Butuk, J.-P. Pemba. 2003. Computing CHEMKIN Sensitivities Using Complex Variables. Journal of Engineering for Gas

Turbines and Power 125:3, 854. [Crossref]
14. L.I. Cervino, T.R. Bewley. Adjoint analysis and control opportunities in a 2D jet 1842-1847. [Crossref]

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
M

IC
H

IG
A

N
 o

n
Ju

ly
 2

7,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
00

1-
92

1

https://doi.org/10.1038/s41598-017-16682-x
https://doi.org/10.1016/j.cja.2017.01.009
https://doi.org/10.1007/978-3-7091-4855-6_3
https://doi.org/10.1007/978-3-7091-4855-6_7
https://doi.org/10.2514/1.G001920
https://arc.aiaa.org/doi/full/10.2514/1.G001920
https://arc.aiaa.org/doi/pdf/10.2514/1.G001920
https://arc.aiaa.org/doi/pdfplus/10.2514/1.G001920
https://doi.org/10.1190/geo2015-0471.1
https://doi.org/10.1007/s00158-015-1238-8
https://doi.org/10.2514/6.2015-3061
https://arc.aiaa.org/doi/pdf/10.2514/6.2015-3061
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2015-3061
https://doi.org/10.1016/j.cam.2007.07.026
https://doi.org/10.2514/6.2006-607
https://arc.aiaa.org/doi/pdf/10.2514/6.2006-607
https://arc.aiaa.org/doi/pdfplus/10.2514/6.2006-607
https://doi.org/10.1016/j.automatica.2005.09.008
https://doi.org/10.3182/20050703-6-CZ-1902.00944
https://doi.org/10.1115/1.1469006
https://doi.org/10.1109/CDC.2003.1272881

	Cit p_19:

