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Abstract. This paper presents an adjoint method for sensitivity analysis that is used in an aero-structural air-
craft design framework. The aero-structural analysis uses high-fidelity models of both the aerodynamics and the
structures. Aero-structural sensitivities are computed using a coupled-adjoint approach that is based on previously
developed single discipline sensitivity analysis. Alternative strategies for coupled sensitivity analysis are also
discussed. The aircraft geometry and a structure of fixed topology are parameterized using a large number of
design variables. The aero-structural sensitivities of aerodynamic and structural functions with respect to these
design variables are computed and compared with results given by the complex-step derivative approximation.
The coupled-adjoint procedure is shown to yield very accurate sensitivities and to be computationally efficient,
making high-fidelity aero-structural design feasible for problems with thousands of design variables.
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1. Introduction

During the past decade the advancement of numerical methods for the analysis of com-
plex engineering problems such as those found in fluid dynamics and structural mechanics
has reached a mature stage: many difficult numerically intensive problems are now readily
solved with modern computer facilities. In fact, the aircraft design community is increas-
ingly using computational fluid dynamics (CFD) and computational structural mechanics
(CSM) tools to replace traditional approaches based on simplified theories and wind tunnel
testing. With the advancement of these numerical analysis methods well underway, the
focus for engineers is shifting toward integrating these analysis tools into numerical design
procedures.

These design procedures are usually based on computational analysis methods that eval-
uate the relative merit of a set of feasible designs. The performance of a design is quantified
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by an objective function that is computed using one or several analysis tools, while the
design parameters are controlled by an optimization algorithm.

There are a large number of optimization algorithms, but they all fall into one of two
main categories. In the first category we have the zeroth order methods which include grid
searches, genetic algorithms, neural networks, random searches and simulated annealing.
None of these approaches rely on any information other than the value of the objective
function. Their most significant limitation is that, as the number of design parameters
increases, the number of function evaluations needed to reach the optimum rapidly increases
beyond what is computationally feasible.

Optimization algorithms in the second category use not only the value of the objective
function but also its gradient with respect to the design parameters. The main advantage of
these gradient methods is that they converge to the optimum with a significantly smaller
number of function evaluations. Unfortunately, these methods only work well when the
objective function varies smoothly within the design space. Furthermore, these methods
only guarantee convergence to a local optimum.

Both classes of optimization algorithms have a role in solving engineering problems.
In a problem with a limited number of design variables that has multiple local minima or
discontinuities, it is clear that a zeroth order method is more suitable. On the other hand,
many single-discipline high-fidelity aircraft design problems are characterized by having a
large number of design variables and smooth design spaces. These problems are amenable
to the use of gradient-based optimization algorithms. In particular, gradient methods are
used extensively for aerodynamic shape optimization (ASO) problems because these prob-
lems are often parameterized with hundreds of design variables and usually require com-
putationally expensive high-fidelity analyses. With a few notable exceptions (Sasaki et al.,
2001; Obayashi and Sasaki, 2002) these requirements make the use of zeroth order methods
infeasible for high-fidelity ASO problems.

The field of sensitivity analysis emerged to address the need for computing gradients
accurately and efficiently. A sensitivity analysis method that is very commonly used is
finite differencing, where for each design variable, the design is perturbed and analyzed
to determine the new value of the objective function. Although finite differences are not
known for being particularly accurate or computationally efficient, they are extremely
easy to implement. The complex-step derivative approximation (Martins et al., 2003) is
a recently developed method for calculating sensitivities that maintains the simplicity of
finite differences but is much more accurate. Yet another technique, algorithmic differenti-
ation (Bischof et al., 1992; Griewank, 2000), automatically differentiates a given algorithm
by adding source code that computes the required sensitivities. With the exception of the
reverse mode of algorithmic differentiation (Griewank, 2000), the main disadvantage of
the approaches mentioned thus far is that the cost of computing sensitivities is directly
proportional to the number of design variables. Thus, even though a forward-based gradient
calculation method is computationally more efficient than a zeroth order method, the cost of
computing gradients can still be prohibitive when optimizing a design parameterized with
a large number of variables.

Fortunately, there are other techniques for computing sensitivities whose cost is indepen-
dent of the number of design variables. In particular, the adjoint method discussed in this
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article is such an alternative. Adjoint methods allow the computation of sensitivities for an
arbitrary number of design variables, at a cost that is similar to that of a single function
evaluation. Applications of the adjoint method are now well known in CSM (Adelman and
Haftka, 1986) and CFD (Jameson, 1989; Reuther et al., 1999a). However, only recently has
the this method been applied to the computation of sensitivities of coupled high-fidelity
systems (Martins et al., 2001, 2002; Maute et al., 2001).

Despite revolutionary accomplishments in single-discipline applications, progress to-
wards the development of high-fidelity, multidisciplinary design optimization (MDO) meth-
ods has been slow. The level of coupling between disciplines is highly problem dependent
and significantly affects the choice of algorithm. Multiple difficulties also arise from the
heterogeneity among design problems: an approach that is applicable to one discipline may
not be compatible with the others.

An important feature that characterizes the various solution strategies for MDO problems
is the allowable level of disciplinary autonomy in the analysis and optimization components.
Excellent discussions of these issues are presented by Sobieszczanski-Sobieski and Haftka
(1996) and Alexandrov and Lewis (1999). The allowable level of disciplinary autonomy
is usually inversely proportional to the bandwidth of the interdisciplinary coupling. Thus,
for highly coupled problems it may be necessary to resort to fully integrated MDO, while
for more weakly coupled problems, modular strategies may hold an advantage in terms
of ease of implementation. With these constraints in mind, a number of ideas for solving
complex MDO problems have been developed. These ideas include multilevel optimization
strategies (Alexandrov and Dennis, 1994; Kodiyalam and Sobieszczanski-Sobieski, 2002),
collaborative optimization (Braun and Kroo, 1996; Kroo, 1996; DeMiguel and Murray,
2000), individual discipline-feasible methods (Cramer et al., 1994), as well as tightly cou-
pled optimization procedures. The main difference between the different MDO strategies
is the degree of coupling that is required between the disciplines in both the analysis and
the optimization procedures.

In the particular case of high-fidelity aero-structural optimization, the coupling between
disciplines has a very high bandwidth. Furthermore, the values of the objective functions
and constraints depend on highly coupled multidisciplinary analyses (MDA). Therefore,
we believe that a tightly coupled MDO environment is more appropriate for aero-structural
optimization.

The difficulty in formulating this type of MDO problem is that there are significant
technical challenges when implementing tightly coupled analysis and design procedures.
Not only must MDA be performed at each design iteration but, in the case of gradient-based
optimization, the coupled sensitivities must also be computed at each iteration.

This work presents a tightly coupled approach to high-fidelity aero-structural MDO that
uses CFD and CSM. Section 2 presents the analysis framework and explains in detail how
the CFD and CSM software are integrated to obtain accurate and efficient aero-structural
solutions. Section 3 describes the optimization problem that we propose to solve, placing
into context the sensitivity calculations that are the primary focus of this article. Sensitivity
analysis theory is presented in Section 4. In addition to the coupled-adjoint sensitivity
analysis that we implement, a brief discussion of alternative coupled sensitivity analysis
methods and their associated costs is presented. Finally, in Section 5, we show a sensitivity
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validation study that demonstrates the accuracy and efficiency of this newly developed
method. Timings are included for cases with thousands of design variables.

2. Aero-structural analysis framework

The foundation for both the coupled analysis procedure and the coupled-adjoint solver is
an aero-structural design framework previously developed by the authors (Reuther et al.,
1999c; Martins, 2002). The framework consists of an aerodynamic analysis and design
module (which includes a geometry engine and a mesh perturbation algorithm), a linear
finite-element structural analysis and design module, an aero-structural coupling procedure
(for both the analyses and the sensitivities), and various pre-processing tools that are used
to setup aero-structural design problems. The multidisciplinary nature of this framework is
illustrated in Figure 1 where the aircraft geometry, the CFD mesh and flow solution, and
the primary structure inside the wing are shown.

The aerodynamic analysis and design module, SYN107-MB (Reuther et al., 1999a), is a
multiblock parallel flow solver that is applicable to both the Euler and the Reynolds aver-
aged Navier—Stokes equations. This solver represents the state-of-the art, being accurate and
efficient for the computation of the flow around full aircraft configurations (Reuther et al.,
1997; Yao et al., 2001). SYN107-MB also includes an adjoint solver for aerodynamic sensi-
tivity analysis that relies on the same mesh and solution strategy as the flow solver (Reuther
et al., 1996). Completing the aerodynamics module are a parametric geometry engine and
a mesh perturbation package (Reuther et al., 1999a, b).

The structural analysis package is FESMEH, a linear finite-element solver developed
by Holden (1999). The package includes two element types that are suitable for computing

Figure 1. Aero-structural model and solution of a supersonic business jet configuration, showing a slice of the
grid and the internal structure of the wing.
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structural displacements and stresses of wing-like structures. Although this solver is not as
general as some commercially-available packages, it is still representative of the challenges
that are encountered when using large models with tens of thousands of degrees of freedom.

In aero-structural analysis, there is a clear interdependence in the equilibrium state of the
two systems: the flow solution depends on deflections calculated by the structures, and the
structural solution depends on the loads calculated by the flow solver. In this section we
consider three aspects of the high-fidelity coupling between the aerodynamic and structural
analyses: the geometry engine and the transfer of loads and displacements. The procedures
for the transfer of displacements and loads are based on work by Brown (1997). Alternative
procedures have been developed by other researchers (Maman and Farhat, 1995; Cebral
and Lohner, 1997a, b).

2.1. Geometry engine and database

The aircraft is surrounded by fluid which is separated from the structure by the fluid-
structure interface. Therefore, there is a well-defined surface in three-dimensional space
which constitutes the outer-mold line (OML). Because of the importance of the OML
in aero-structural analysis and design problems, a separate utility—Aerosurf—is used to
generate and manage the OML. Aerosurf was specifically created for the analysis and design
of aircraft configurations (Reuther et al., 1999a, b).

The baseline geometry of an aircraft configuration is given to Aerosurf in the form
of separate components, each one being described by a series of cross-sections in three-
dimensional space. These components can be fuselages, pylons, nacelles, and wing-like
surfaces. Aerosurf intersects these components and divides the resulting surface into a
series of patches. At this stage, Aerosurf creates a parametric description of each patch and
then distributes points on their surface, forming a fine structured watertight mesh. Thus,
the set of points formed by the grids of all patches represents a discretization of the OML
within Aerosurf.

In addition to providing a high-fidelity description of the aircraft geometry, Aerosurfalso
manages a centralized database for the analysis and design of the aircraft. During analysis,
any information that needs to be exchanged through the fluid-structure interface—such as
aerodynamic pressures and structural displacements—is interpolated onto the OML points.
Changes in the OML shape can be due to either structural displacements during aero-
structural analysis or changes in shape design variables between design cycles. While the
OML changes due to structural displacements are transferred directly to the OML points,
changes due to shape design variables are applied to the un-intersected components first
and then these components are re-intersected, creating a new discretized representation of
the OML.

2.2. Displacement transfer

The displacements calculated by the CSM solver are first transferred onto the OML grid,
and then onto the CFD surface mesh. Each OML point is associated with a point on the
surface of the CSM model in a pre-processing step, as shown in Figure 2. The association
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Figure 2. Displacement extrapolation procedure.

is performed by locating the point on the CSM model surface that is closest to each OML
point.

During aero-structural analyses, the displacement of each associated point is computed
by interpolating the CSM nodal displacements of the element containing that point. For
consistency, the structural finite-element shape functions are used to perform this interpo-
lation. (If the element basis functions are not known, as in the case of commercial CSM
software, an isoparametric approximation is sufficiently accurate.) The displacement is then
transferred onto the OML point using extrapolation functions that emulate a rigid link be-
tween the OML point and the associated point on the surface of the structural model. For
small angular deflections we use the linear relationship

Ar; = njjuj, (1)

where we use index notation to write the product of the matrix »;; with the vector of CSM
node displacements u ;.

Unlike the nodes of the CSM model, the CFD surface mesh points are assumed to
exist on the OML. Figure 3 shows a representation of both the OML and CFD meshes.
The parametric coordinates of the CFD surface mesh points on the corresponding OML
patches are calculated in a pre-processing step via closest point projection. Therefore the
patch number and the parametric coordinates of the associated point uniquely define the

Figure 3. OML and CFD surface meshes on an Aerosurf patch.
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Figure 4. Mesh perturbation procedure used by WARPMB.

transfer operator. The CFD points are assumed to be “tied” to these parametric locations
and any displacement of the OML, due to either design variable perturbations or structural
displacements, is transferred to the CFD surface mesh points by evaluating their parametric
locations on the corresponding Aerosurf patches.

Once a perturbation is applied to the surface of the CFD mesh, it must be propagated
throughout the whole multiblock mesh. This volume mesh perturbation is achieved very
efficiently by using the WARPMB algorithm. WARPMB perturbs the volume mesh in four
stages and is illustrated in Figure 4. The procedure is as follows:

1. Block faces directly affected by the surface mesh movement—the active faces—are
explicitly perturbed.

2. Edges with end points in contact with active faces—in the same or in adjacent blocks—
are implicitly perturbed using an arc-length attenuation method.

3. The interiors of faces that are bordered by implicitly perturbed edges or share common
edges with adjacent active faces are implicitly perturbed with WARP3QD, a three-
dimensional in-plane mesh perturbation algorithm.

4. A final routine, WARP3D, is used to perturb the interiors of blocks that have at least one
active or perturbed face.

2.3.  Load transfer

The load transfer procedure consists in converting the pressures calculated by the CFD
algorithm to the structural nodes through the OML points.

In order to transfer pressures from the CFD surface mesh to the OML points, we identify,
in a pre-processing step, the appropriate “donor cell” and the parametric location of each
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OML point within this cell. The pressures at the OML points are then calculated using
bilinear interpolation. The underlying assumption that ensures the accuracy of this simple
transfer is that the OML mesh is of comparable or better fidelity than that of the CFD surface
mesh, and that the two surface representations are consistent and contiguous.

In translating interpolated pressures from the OML surface into CSM nodal forces, it is
crucial that both consistency and conservation be maintained. The property of consistency
specifies that the resultant forces and moments due to the pressure field, must be equal to
the sum of the nodal forces and moments. There are an infinite number of CSM load vectors
that satisfy this requirement. However, we also require that the load transfer be conservative.
Conservation stipulates that the virtual work performed by the load vector, f;, undergoing
a virtual displacement of the structural model, §u ;, must be equal to the work performed by
the pressure field, p, undergoing the equivalent displacement of the OML mesh, §r;. The
virtual work in the CSM model is given by the dot product

(SWCSM = ijuj, (2)

while the virtual work performed by the fluid acting on the surface of the OML mesh is
given by the surface integration

(SWCFD:/pn;Br,» dS, (3)
S

where the integral is taken over the entire OML and n; represents the the unit vector normal
to the OML. For a conservative scheme, § Werp = 6 Weswm, and a consistent and conservative
load vector can be shown to be given by

fi prninijds’ “4)
s

where we used the linear relationship (1) for the virtual displacements §r;. In Figure 5 we
can see how the pressure field (which has been interpolated from the CFD mesh to the points
on the OML) is integrated over an OML patch to produce a force vector that is translated
into the nodal forces of a CSM element using equation (4).

As mentioned in Section 2.2, the transfer matrix 7;; is calculated in a pre-processing
step. Note that this matrix plays a dual role: it provides the appropriate weighting factors
for both the transfer of OML pressures to CSM load vectors (4) and the transfer of the CSM
displacements to OML point displacement (1).

2.4. Aero-structural iteration
The aerodynamic and structural solvers are coupled by exchanging information at regular

intervals during the convergence process. This coupling is greatly simplified by the fact that
we only consider static aeroelastic solutions, and hence time accuracy is not an issue.
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Figure 5. Transfer of the pressure on the OML points to the nodal forces on a given finite element.
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Figure 6. Schematic representation of the aero-structural iteration procedure.

A diagram representing the aero-structural iteration is shown in Figure 6. The first time
the flow solver is called, the displacement field of the structure is initialized to zero. After
N iterations of the flow solver, the surface pressures are translated into nodal forces and
the structural solver is called. The new displacement field is then translated to a movement
of the CFD mesh and N more flow solver iterations are performed. The process continues
until the state of the flow and the structure have converged as determined by the norm of
the flow solver and structural displacement residuals. In our case, N typically corresponds
to 10 iterations.

For the configuration shown in Figure 1, running the aero-structural solver in Euler
mode requires 86 multigrid cycles to reduce the average density residual by five orders
of magnitude. This represents only a 15% increase when compared with the number of
multigrid cycles that are required for a rigid calculation.

Another factor that must be considered when comparing the cost of an aero-structural so-
lution to an aerodynamics-only solution is the computational cost incurred by the
structural solver. For the linear finite-element models we use, most of this cost is due
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to the factorization of the stiffness matrix. However, since for linear structures the stiffness
matrix does not change unless the structure is modified, only one factorization is neces-
sary for each aero-structural solution. During the aero-structural iteration the load vector
changes periodically, and the displacement field can be quickly updated in a back-solve
operation.

In cases with hundreds of thousands of degrees of freedom, for which it is impractical
to factorize the stiffness matrix explicitly, the cost of the structural solution becomes sig-
nificant, and we would have to resort to efficient solution methods for multiple right-hand
sides.

3. Aero-structural design methodology

In this section we describe the optimization problem we propose to solve, in order to put
into context the sensitivities whose computation is the focus of this article.

3.1.  Design parameterization

The aircraft design is parameterized using two types of design variables. The first type of
variable controls the OML of the configuration while the second type of variable dictates
the sizing of underlying structure. The OML design variables can be applied to any of
the un-intersected components used to define the aircraft geometry. For each wing-like
component (main wing, canard, horizontal tail, etc.), the shape is modified at a number of
specified airfoil sections. Each of these sections is independently modified and the spanwise
resolution is controlled by the number and the position of the sections. The airfoil shape
modifications are linearly lofted between stations. Various types of design variables may
be applied to the airfoils: twist, leading and trailing edge droop, and Hicks—Henne bump
functions, among others. The Hicks—Henne functions are of the form

b(e) = x, [ sin (n;“ ) )]tz, (5)

where 7, is the location of the maximum of the bump in the range 0 < ¢ < l at ¢ = 1y,
since the maximum occurs when {* = 1/2, where « = log(1/2)/logt;. The parameter
t, controls the width of the bump. The advantage of these functions is that when they are
applied to a smooth airfoil, that airfoil remains smooth.

The structural design variables are the thicknesses of the structural finite elements. The
topology of the structure remains unchanged, i.e., the number of spars and ribs and their
position are fixed throughout the optimization. Using any of these discrete parameters
as design variables results in a discontinuous design space that is not compatible with
the gradient-based design approach that we use. Note that since the OML determines the
location of the nodes of the structural model, variations of the OML have an effect on the
depth of the spars and ribs of the wing box.
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3.2.  Objective function

From the detailed mission analysis of a particular aircraft it is possible to find the correct
trade-off between aerodynamic drag and structural weight. This means that we can optimize
a design by minimizing the objective function,

I =aCp+ W, (6)

where Cp is the drag coefficient, W is the structural weight and « and § are scalar parameters.

To perform gradient-based optimization, we need the sensitivities of the objective func-
tion (6) with respect to all the design variables. Since this objective function is a linear
combination of the drag coefficient and the structural weight, its sensitivity can be written
as

d/ dCp dw
d—xn = dxn +'6d—x”

)

The computation of the structural weight sensitivity, dW/dx, is easy, since the weight
calculation is independent of the aero-structural solution. This gradient is calculated analyt-
ically for the structural thickness variables and by finite differences for the OML variables.
The drag coefficient sensitivity, dCp/ dx,, is not this simple since it does depend on the
aero-structural solution.

3.3.  Constraints

In addition to minimizing the objective function (6), the aero-structural optimization prob-
lem is subject to a number of constraints, the most significant of which are the constraints
on the structural stress of each element in the CSM model.

In our methodology, and for reasons that we discuss in Section 4, the structural constraints
are lumped into a single Kreisselmeier—Steinhauser (KS) function. Suppose that we have
the following constraint for each structural finite element,

gn=1—2">0, ®)
Oy

where o, is the von Mises stress in the element m, and o, is the yield stress of the material.
The corresponding KS function for the complete structure is defined as

KS = —% In [Ze—ﬂgm } 9)

m

This function represents a lower bound envelope of all the constraint inequalities and p
is a positive parameter that expresses how close this bound is to the actual minimum of
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the constraints. The use of KS functions constitutes a viable alternative to treating con-
straints separately. The effectiveness of the method has been demonstrated for structural
optimization problems with thousands of constraints (Akgiin et al., 1999).

In the section that follows we focus our attention on the main goal of this article: the
efficient computation of the drag coefficient gradients, dCp/dx,, and the KS function
gradients, dKS/ dx,, with respect to both aerodynamic and structural design variables.

4. Coupled sensitivity analysis
4.1. General formulation

The main objective is to calculate the sensitivity of a multidisciplinary function of interest
with respect to a number of design variables. The function of interest can be either the
objective function or any of the constraints specified in the optimization problem. In general,
such functions depend not only on the design variables, but also on the physical state of the
multidisciplinary system. Thus we can write the function as

I = I(xn’ )’i), (10)

where x,, represents the vector of design variables and y; is the state variable vector.

For a given vector x,, the solution of the governing equations of the multidisciplinary
system yields a vector y;, thus establishing the dependence of the state of the system on the
design variables. We denote these governing equations by

Ric (xn, yi (xn)) = 0. (1)

The first instance of x, in the above equation indicates the fact that the residual of the
governing equations may depend explicitly on x,. In the case of a structural solver, for
example, changing the size of an element has a direct effect on the stiffness matrix. By
solving the governing equations we determine the state, y;, which depends implicitly on the
design variables through the solution of the system. These equations may be non-linear, in
which case the usual procedure is to drive residuals, Ry, to zero using an iterative method.

Since the number of equations must equal the number of state variables, the ranges of
the indices i and k are the same, thatis, i,k = 1, ..., Ng. In the case of a structural solver,
for example, Ny is the number of degrees of freedom, while for a CFD solver, N is the
number of mesh points multiplied by the number of state variables at each point. In the
more general case of a multidisciplinary system, R represents all the governing equations
of the different disciplines, including their coupling.

A graphical representation of the system of governing equations is shown in Figure 7,
with the design variables x,, as the inputs and I as the output. The two arrows leading to
I illustrate the fact that the objective function typically depends on the state variables and
may also be an explicit function of the design variables.
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Figure 7. Schematic representation of the governing equations (R = 0), design variables (x,), state variables
(yi), and objective function (I), for an arbitrary system.

As a first step toward obtaining the derivatives that we ultimately want to compute, we
use the chain rule to write the total sensitivity of / as

dar 9l N a1 dy;
dx, 9x, dy; dx,’

12)

fori =1,...,Ng,n =1,..., N,. Index notation is used to denote the vector dot prod-
ucts. It is important to distinguish the total and partial derivatives in this equation. The
partial derivatives can be directly evaluated by varying the denominator and re-evaluating
the function in the numerator. The total derivatives, however, require the solution of the mul-
tidisciplinary problem. Thus, all the terms in the total sensitivity equation (12) are easily
computed except for dy;/ dx,.

Since the governing equations must always be satisfied, the total derivative of the residu-
als (11) with respect to any design variable must also be zero. Expanding the total derivative
of the governing equations with respect to the design variables we can write,

de E)Rk 8Rk dy,‘

= :O’ 13
dxn 8-Xn * 3)’: d-xn ( )

forall i,k = 1,...,Ng and n = 1,..., N,. This expression provides the means for
computing the total sensitivity of the state variables with respect to the design variables. By
rewriting equation (13) as

OR dy;  ORx
dy; dx,  Ox,

(14)

we can solve for dy;/dx, and substitute this result into the total derivative equation (12),
to obtain

—dyi/dx,
—_—
dl 9l Al [oR:] ' aR
=—-—|== £, (15)
dx, ox, dy; [ oy 0x,
| S
—

The inverse of the Jacobian dR;/dy; is not necessarily explicitly calculated. In the case of
large iterative problems neither this matrix nor its factorization are usually stored due to
their prohibitive size.
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The approach where we first calculate dy;/dx, using equation (14) and then substitute
the result in the expression for the total sensitivity (15) is called the direct method. Note
that solving for dy;/ dx, requires the solution of the matrix equation (14) for each design
variable x,. A change in the design variable affects only the right-hand side of the equation,
so for problems where the matrix R, /dy; can be explicitly factorized and stored, solving
for multiple right-hand-side vectors by back substitution would be relatively inexpensive.
However, for large iterative problems—such as the ones encountered in CFD—the matrix
dRy/0dy; is never factorized explicitly and the system of equations requires an iterative
solution which is usually as costly as solving the governing equations. When we multiply
this cost by the number of design variables, the total cost for calculating the sensitivity
vector may become unacceptable.

Returning to the total sensitivity equation (15), we observe that there is an alternative
option for computing the total sensitivity d//dx,. The auxiliary vector W can be obtained
by solving the adjoint equations

1
IR U, = _ar (16)
ay; 0yi

The vector W, is usually called the adjoint vector and is substituted into equation (15) to find
the total sensitivity. In contrast with the direct method, the adjoint vector does not depend
on the design variables, x,, but instead depends on the function of interest, /.

We can now see that the choice of the solution procedure (direct vs. adjoint) to obtain the
total sensitivity (15) has a substantial impact on the cost of sensitivity analysis. Although all
the partial derivative terms are the same for both the direct and adjoint methods, the order
of the operations is not. Notice that once dy;/ dx, is computed, it is valid for any function
1, but must be recomputed for each design variable (direct method). On the other hand, W},
is valid for all design variables, but must be recomputed for each function (adjoint method).

The cost involved in calculating sensitivities using the adjoint method is therefore prac-
tically independent of the number of design variables. After having solved the governing
equations, the adjoint equations are solved only once for each I. Moreover, the cost of
solution of the adjoint equations is similar to that of the solution of the governing equations
since they are of similar complexity and the partial derivative terms are easily computed.

Therefore, if the number of design variables is greater than the number of functions for
which we seek sensitivity information, the adjoint method is computationally more efficient.
Otherwise, if the number of functions to be differentiated is greater than the number of design
variables, the direct method would be a better choice.

The adjoint method has been widely used for single discipline sensitivity analysis and
examples of its application include structural sensitivity analysis (Adelman and Haftka,
1986) and aerodynamic shape optimization (Jameson, 1989; Jameson et al., 1998).

4.2.  Aero-structural sensitivity equations

Although the theory we have just presented is applicable to multidisciplinary systems (pro-
vided that the governing equations for all disciplines are included in R;) we now explicitly
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Figure 8. Schematic representation of the aero-structural system.

discuss the sensitivity analysis of multidisciplinary systems, using aero-structural optimiza-
tion as an example. This example illustrates the fundamental computational cost issues that
motivate our choice of strategy for sensitivity analysis. The following equations and dis-
cussion can easily be generalized for cases with additional disciplines.

In the aero-structural case we have coupled aerodynamic (4;) and structural (S;) gov-
erning equations, and two sets of state variables: the flow state vector, w;, and the vector of
structural displacements, u ;. In the following expressions, we split the vectors of residuals,
states and adjoints into two smaller vectors corresponding to the aerodynamic and structural
systems

o2} o[ e[
i uj

Figure 8 shows a diagram representing the coupling in this system.
Using this new notation, the direct sensitivity equation (14) for an aero-structural system
can be written as

0A AT [ dwy 9 A
ow;  Ju; dx, _ 0x,
S, S du; |~ | 88 (18)
8 wj 8Mj d_xn axn

This equation was first written for a multidisciplinary system by Sobieski (1990). In his
paper, Sobieski also presents an alternative approach to the problem, which he shows is
equivalent to (18), i.e.,

T _dw; dw; ow;
ou;j dx, | _ | 0x, (19)
314]' 7 duj - 814]' ’
T ow; dx, dax,

where Z denotes the identity matrix. Solving either of these equations (18) and (19) yields
the total sensitivity of the state variables with respect to the design variables. This result can
then be substituted into the aero-structural equivalent of the total sensitivity equation (12),

- duj dx,  dw; dx,

= 20
dx, 0Xx, (20)




48 MARTINS, ALONSO AND REUTHER

The biggest disadvantage of these direct approaches, as we discussed earlier, is that the
sensitivity equation must be solved for each design variable x,,. For large iterative coupled
systems, the cost of computing the total sensitivities with respect to many design variables
becomes prohibitive, and this approach is impractical.

In the alternate direct approach (19), the partial derivatives of the state variables of a
given system with respect to the variables of the other system (dw;/du;, du;/dw;) and
the partial derivatives of the state variables with respect to the design variables (dw; /dx,,
ou j/dx,) have a different meaning from the partial derivatives we have seen so far. In this
formulation, the partial derivatives of the state variables of a given system take into account
the solution of that system. Although the solution of the coupled system is not required,
this differs significantly from the partial derivatives of the residuals in the formulation (18),
which do not require the solution of even the single discipline.

The adjoint approach to sensitivity analysis is also applicable to multidisciplinary sys-
tems. In the case of the aero-structural system, the adjoint equation (16) can be written as

oA 2ATT o1
ow;, Ju; k| ow;
P [@]—‘ ol |- @D
Bw,- 3I/tj auj

Note that the matrix in the coupled adjoint equation is the same as in the coupled direct
method (18). In addition to containing the diagonal terms that appear when we solve the
single discipline adjoint equations, this matrix includes off-diagonal terms that express the
sensitivity of one discipline to the state variables of the other. The details of the partial
derivative terms of this matrix are described in Section 4.3.

Finally, for completeness, we note that there is an alternative formulation for the coupled-
adjoint method which is parallel to the alternate direct equations (19),

Cw T ol
ou 7 b — | oL |’
_811},' ! auj

where the partial derivatives have the same meaning as in the alternate direct sensitivity equa-
tions (19) and therefore, as previously discussed, the uncoupled solution of each discipline
is required. This is a disadvantage relative to the standard coupled-adjoint approach (21),
where none of the partial derivatives require the solution of governing equations. The al-
ternate direct and adjoint formulations are, however, not without their advantages. They
are the only suitable approach when disciplinary solvers are available just as black boxes,
that is, if one has access only to the input and output. Furthermore, the size of the matrix
of state variable sensitivities can be reduced since one only needs to consider the coupling
variables.

The alternate adjoint vector, ¥ differs from the standard adjoint and therefore requires
a different total sensitivity equation,

d/ ol - 8w,~ - auj
—_ +1//l_

= , 23
dx, 0x, 23)
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where the partial derivatives of the state variables (dw;/dx,, du;/0x,) also require the
solution of the corresponding governing equations.

Given that the aerodynamic analysis in our case (CFD) is rather costly, and that the
number of coupling variables (all surface pressures and all nodal forces) is O(10%), the
standard coupled-adjoint approach (21) is adopted.

Solving the coupled-adjoint equations (21) by factorizing the full matrix would be ex-
tremely costly, so our approach is to decouple the two disciplines, much like we did for
the aero-structural solution. To solve the coupled-adjoint equations iteratively, the adjoint
vectors are lagged and the two different sets of equations are solved separately. For the
calculation of the adjoint vector of one discipline, we use the adjoint vector of the other
discipline from the previous iteration, i.e., we solve

3 A Al 3S) -
=——— , 24
Bwi k 811),' aw,- ¢l ( )
| ———
Aerodynamic adjoint
S, ol 0A; -
=% %y 25
o, & b, o, Yk (25)

Structural adjoint

where v/, and ¢; are the lagged aerodynamic and structural adjoint vectors respectively.
Upon convergence, the final result given by this system is the same as that given by the
original coupled-adjoint equations (21). We call this the lagged-coupled adjoint (LCA)
method for computing sensitivities of coupled systems. Note that these equations look like
the single discipline adjoint equations for the aerodynamic and structural solvers, with the
addition of forcing terms in the right-hand side that contain the off-diagonal terms of the
residual sensitivity matrix. This allows us to use existing single-discipline adjoint sensitivity
analysis methods. Note also that, even for more than two disciplines, this iterative solution
procedure is nothing more than the well-known block-Jacobi method.

Once both adjoint vectors have converged, we can compute the final sensitivities of the
objective function by using the following expression

d/ a1 oA, 0S5,
ao o T

(26)

which is the coupled version of the total sensitivity equation (15).

The approach for solving the coupled system of sensitivity equations by lagging can also
be used to solve the direct equations (18) and (19) but the disadvantages of these methods
for problems that require iterative methods and are parameterized with a large number of
design variables remain the same.

For the aero-structural optimization problem at hand the aerodynamic portion is usually
characterized by a single objective function, a few aerodynamic constraints, and a large
number of design variables. On the other hand, the structural portion of the optimization
problem involves a large number of constraints dictating that the stress in each element of
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the finite-element model is not to exceed the material yield stress for a set of load condi-
tions. Constrained gradient optimization methods generally require that the user provide
the gradient of both the cost function and each nonlinear constraint with respect to all of the
design variables in the problem. Using the adjoint approach, the evaluation of the gradient
of each constraint would require an independent coupled solution of a large adjoint system.
Since the number of structural constraints is similar to the number of design variables in
the problem (O(10°) or larger), the usefulness of the adjoint approach is questionable in
this case.

The remaining alternatives—the direct and finite-difference methods—are not advanta-
geous either since they both require a number of solutions that is comparable to the number
of design variables. In the absence of other choices that can efficiently evaluate the gradient
of a large number of constraints with respect to a large number of design variables, it is
necessary to reduce the size of the problem either through a reduction in the number of
design variables or through a reduction in the number of nonlinear constraints.

The reason for using KS functions to lump the structural constraints now becomes clear.
By employing KS functions, the number of structural constraints for the problem can be
reduced from (O(10?) to just a few. In some problems, a single KS function may suffice. If
this constraint lumping methodology is effective, an adjoint method would be very efficient
for computing MDO sensitivities.

4.3.  Partial derivative term details

In this section, we describe the calculation of the partial derivative terms in the aero-structural
adjoint equations (24, 25) and the total sensitivity equations (26). This description is divided
into four sections. The first two sections discuss the terms involving the partial derivatives
of the aerodynamic and structural equations respectively. The last two sections cover the
partial derivatives of the drag coefficient (Cp) and the KS function. These four terms are
differentiated with respect to the state vectors (w;, u;) and the vector of design variables

(Xn)-

4.3.1. Partial derivatives of the aerodynamic governing equations. A number of publica-
tions describe in detail the terms involved in the aerodynamic adjoint equation and its asso-
ciated boundary conditions (Jameson, 1989; Jameson et al., 1998; Reuther, 1996; Reuther
et al., 1999a). Although we do not describe these terms in comparable detail, we do ex-
plain the meaning of all the terms, specially those that arise from the inclusion of structural
deformations.

The aerodynamic adjoint equation can be written as

A al
- 27
Bwi w aw,‘ ( )

The components of the right-hand side vector are usually non-zero only for those points on
the CFD surface mesh. The aerodynamic adjoint used in our work is based on a continuous
formulation that is derived from the partial differential equations that govern the flow. The
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adjoint partial differential equations are then discretized using the same scheme and mesh
as the flow equations. This is in contrast with the discrete approach, where the governing
equations of the flow are first discretized and an adjoint version of these discrete equations
is then constructed by taking the transpose of 9.4 /dw;.

The Jacobian 9.4, /dw; in the adjoint equation (27) represents the variation of the residuals
for each cell of the CFD mesh due to changes in the flow solution for every cell in the mesh.
When a flow variable at a given cell center is perturbed the residuals of that cell and
other cells in its vicinity are modified. The extent of the influence of these flow variable
perturbations depends on the stencil used in the flow solver: in our case, a single-level halo
of cells is affected. Therefore, even though 9.4, /dw; is a very large square matrix, it is also
extremely sparse and its non-zero terms can be easily calculated using finite differences. In
our coupled-adjoint solver this matrix is never stored explicitly and the adjoint equation (24)
is solved iteratively, much like the flow equations.

The off-diagonal term 9.4, /du; in the LCA equation (25) represents the effect that the
structural displacements have on the residuals of the CFD equations through the perturbation
of the CFD mesh. When a given structural node moves, both the surface and the interior
of the CFD grid must be perturbed, thus affecting a large number of CFD mesh points.
Even though the flow variables are constant in the calculation of this partial derivative,
the change in the mesh geometry affects the sum of the fluxes, whose variation is easily
obtained by recalculating the residuals for the perturbed cells. Because the actual term
we want to compute in equation (25) is the product of this matrix, 0.4;/0u;, with the
lagged aerodynamic adjoint vector, v, it is possible to multiply each column j by the
adjoint vector as it is calculated. This approach eliminates the need to store the complete
matrix, since we only need to store a vector with the same dimension as that of the adjoint
vector.

The term 9.4, /9, in the total sensitivity equation (26) represents the direct effect of the
design variables on the CFD residuals of all cells in the mesh. For finite-element thickness
design variables, this term is identically zero, since these design variables do not affect the
CFD residuals explicitly. For shape design variables, this Jacobian is similar to 3.4 /du;,
since a change in an OML design variable also perturbs the CFD grid. In the present work,
this term is calculated by finite differencing, since the mesh perturbation algorithm is very
efficient. Again, the term we ultimately want is the vector that results from the product
Yy 0.Ay/9x,, and the matrix multiplication can be performed as each row of the matrix is
calculated.

The number of CFD mesh perturbations required for the calculation of the aerodynamic
equation sensitivities is equal to N, + NsM, where N, is the number of design variables,
Ng is the number of surface degrees of freedom of the structural model and M is the
number of times the adjoint vectors are exchanged in the iterative solution of the LCA
equations (24) and (25). The cost of computing v 3.4;/dx, is proportional to N,, while
the computation of d.A;/0u; Yy is proportional to Ng and must be performed M times.
Since N, + NsM can be very large, it is extremely important that the mesh perturbation
procedure be efficient. This is achieved in the present work because the mesh perturbation
algorithm is completely algebraic. The fact that the CFD mesh is structured makes it possible
to attenuate perturbations applied to the surface throughout the volume mesh, as described
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in Section 2.2. In Section 5.2 we compare the cost of the complete sensitivity analysis to
the cost of the mesh perturbations.

4.3.2. Partial derivatives of the structural governing equations. When using linear finite-
element models for structural analysis, the discretized governing equations are given by

Sl = szuj — f[ = 0, (28)

where, K;; is the global stiffness matrix of the structure, u; is the vector of nodal displace-
ments, and f; is the vector of applied nodal forces. In our case, the structural model has a
relatively small number of degrees of freedom—((10*)—and a Cholesky factorization is
appropriate to solve for the unknown displacements. The factorization is explicitly stored
and is used to solve the structural equations multiple times with different load vectors.
For large finite-element models, where the number of degrees of freedom exceeds O(10%),
alternative approaches to solving the structural equations (28) are used.

To calculate structural sensitivities using the adjoint method we need the partial derivative
of the structural governing equations (28) with respect to the displacements, which is nothing
more than the global stiffness matrix, i.e.,

39S
= — k. (29)

ou j
Hence, the adjoint equations for the structural system are

ol
Kjip = . (30)
j

Since the stiffness matrix is symmetric (K;; = K ), the structural adjoint equations (30)
have the same matrix as the structural governing equations (28), i.e., the system is self
adjoint. The only difference between these two sets of equations is the vector in right-hand
side: instead of the load vector in the governing equations (28), the adjoint equations (30)
have a vector (often referred to as pseudo load) related to the function of interest, /. As
previously mentioned, the stiffness matrix is factorized once when solving for the displace-
ments and therefore, it is possible to use this factorization to solve for ¢; with only a small
additional cost.

The derivative of the structural governing equations with respect to the flow variables,
0S;/0w;, is the other off-diagonal term in the aero-structural adjoint equations (21). In the
LCA equation (25) we need this term to compute the lagged term 3S;/dw; ¢;. The only
term in the governing equations (28) that the flow variables affect directly is the applied
force, and thus

& _ O _ 3 dpr
awi Bwi Bpir Bwi ’

€1V

where we note that the flow variables affect the structural forces via the surface pressures, p;:.
Although the matrix dp; /ow; is rather large, it is very sparse since the surface pressures
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depend only on a small subset of the flow variables. The matrix df;/dp; is calculated
analytically by examining the procedure that integrates the pressures in the CFD mesh and
transfers them to the structural nodes to obtain the applied forces. The resulting matrix,
dS;/dw;, is rather large, of O(10° x 10°), but is never stored explicitly. Since the term we
want is actually the vector 9S5;/9w; ¢, we calculate one row at a time and perform the dot
product with the structural adjoint vector.

Finally, we also need the partial derivative with respect to the design variables, 0S;/9x,,.
The shape design variables have a direct effect on both the stiffness matrix and the load
vector. Although this partial derivative assumes a constant surface pressure field, a variation
in the OML affects the transfer of these pressures to structural loads. Hence,

08, oK, ofi
= u; — .
8x,, axn ! axn

(32)

The element thickness design variables also affect the stiffness matrix, but not the force,
and therefore df /dx, = 0 in this case. As in the case of 9S5;/dw;, this matrix is computed
by finite differences and multiplied by the structural adjoint vector, one row at a time,
eliminating unnecessary storage overhead.

4.3.3. Partial derivatives of the drag coefficient. When solving the adjoint equations for
I = Cp, we need the partial derivative dCp/dw; to calculate the right-hand side of the first
aero-structural adjoint equation (24). The value of C, only depends on the flow variables
corresponding to those cells that lie on the surface of the aircraft, so this vector is very
sparse. The non-zero sensitivities in this vector are obtained analytically by differentiating
the numerical integration procedure of the surface pressures that produces Cp.

The second aero-structural adjoint equation (25) contains another partial derivative of
Cp, but this one is taken with respect to the structural displacements. The vector dCp /0u ;
represents the change in the drag coefficient due to the displacement of the wing while
keeping the pressure field constant. The structural displacements affect the drag directly,
since they change the wing surface over which the pressure is integrated. This vector of
sensitivities is efficiently computed by finite differencing.

Finally, in order to calculate the total sensitivity of the drag coefficient using equation (26),
we need the term dCp /dx,. This represents the change in the drag coefficient due to design
variable perturbations, while keeping the pressure and displacement fields constant. In
the case of shape perturbations, dCp/dx, is analogous to dCp/du; because these design
variables change the surface of integration. This vector is also inexpensively calculated
using finite differences. For structural design variables this term is zero because they do not
affect the OML directly.

4.3.4. Partial derivatives of the KS function. As discussed in Section 3.3, the other set of
sensitivities we are ultimately interested in is that of the KS function (9), i.e., when I = KS.
Since this function depends directly on the stresses we use the chain rule to write,

0KS _ dKS dg,, doy,
du;  dgm 0o, uj

(33)
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Differentiating the KS function (9) we can write the first term as

-1
dKS
- [Ze_pgm’ } eren (34)

9gm

The second term is easily derived from the definition of the stress constraints (8),

dgm 1
Em _ 2 (35)

a0y, oy

To obtain the third term of equation (33) we consider the expression that relates the stresses
to the displacement field,

Om = Smjuj- (36)

Given the linear nature of this relationship, the partial derivative we need is simply

doy,
20 S (37)
8u_,-

Using these results we can rewrite the partial derivative (33) as

-1
dKS
o, = [%Ze"’gm’] eI Sy (38)
J

We use this term in the right-hand side of the structural adjoint equation (30)—or equa-
tion (25) in the aero-structural case—to solve for the adjoint vector that corresponds to the
sensitivities of the KS function.

For the case where I = KS, the right-hand-side of the aerodynamic adjoint equation (24)
includes dKS/dw;. This term is zero, since the stresses do not depend explicitly on the
loads. They only depend on the loads implicitly, through the displacements.

Finally, the last partial derivative of the KS function, 0KS/dx,, appears in the total
sensitivity equation (26). This term represents the variation of the lumped stresses for
fixed loads and displacements. As in the case of the partial derivative with respect to the
displacements (33), we can use the chain rule to write

9KS _ 9KS dg,, o,
axl’l B agﬂl 8Um axﬂ )

(39)

Since we have derived the two first partial derivative terms (34, 35) we are left with only one
new term, the partial derivative of the stresses with respect to the design variables. Taking
the derivative of the stress-displacement relationship (36) yields

90y, 0S)
= Sy, (40)

9x,  Ox,
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where 0S,,;/0x, is calculated using finite differences. For element thickness design vari-
ables, 0o, /0x, = 0, since S,,; does not depend on these variables for the type of finite
elements we use. However, when the OML is perturbed, §,,,;—and hence the stresses—can
vary in a given element if its shape is distorted.

5. Results

In this section we compare the aero-structural sensitivities of a supersonic business jet
configuration given by the LCA with both finite differences and the complex-step method.
This business jet configuration is being developed by the ASSET Research Corporation and
it is designed to achieve a large percentage of laminar flow on a low-sweep wing, resulting
in decreased friction drag (Kroo et al., 2002). The aircraft is to fly at Mach 1.5 and have a
range of 5, 300 nautical miles.

To compute the flow for this configuration, we use the CFD mesh shown in Figure 1.
This is a multiblock Euler mesh with 36 blocks and a total of 220,000 mesh points.

The structural model of the wing is also shown in Figure 1 and consists of a wing box
with six spars evenly distributed from 15% to 80% of the chord. Ribs are distributed along
the span at every tenth of the semispan. A total of 640 finite elements are used in the
construction of this model.

5.1.  Aero-structural sensitivity validation

To gain confidence in the effectiveness of the aero-structural coupled-adjoint sensitivities
for use in design optimization, we must ensure that the values of the gradients are accurate.
For this purpose, we chose to validate the four sets of sensitivities discussed below. For
comparison purposes, we compute the exact discrete value of these sensitivities using the
complex-step derivative approximation (Martins et al., 2003).

In this sensitivity study two different functions are considered: the aircraft drag coefficient,
Cp, and the KS function (9). The sensitivities of these two quantities with respect to
both OML shape design variables and structural design variables are validated. The design
variables are as described in Section 3.1.

5.1.1. Drag coefficient sensitivities. The aero-structural sensitivities of the drag coefficient
with respect to shape perturbations are shown in Figure 9. The ten shape perturbations were
chosen to be Hicks—Henne bumps distributed chordwise on the upper surface of two adjacent
airfoils around the quarter span. Note that the lines connecting the points in this graphs do
not have a physical meaning and are drawn solely for the sake of readability.

The plot shows very good agreement between the coupled-adjoint and the complex-step
results, with an average relative error between the two of only 3.5%. This error is partially
due to the fact that we use a discretization of the continuous adjoint equations that is
only consistent with the values given by the complex-step method (or finite differences)
in the limit of very fine meshes. This fact has been demonstrated in comparisons between
different approaches to solving the adjoint equations (Nadarajah and Jameson, 2000). The
other source of error is the fact that the partial derivative terms described in Section 4.3 are
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Figure 9. Sensitivities of the drag coefficient with respect to shape perturbations.

estimated by finite differences and are therefore subject to both Taylor series truncation and
subtractive cancellation errors.

Note that all these sensitivities are fofal sensitivities in the sense that they account for the
coupling between aerodynamics and structures. To verify the need for taking the coupling
into account, the same set of sensitivities was calculated for fixed structural displacements,
where the displacement field is frozen after the aero-structural solution. This is equivalent
to assuming that the wing, after the initial aeroelastic deformation, is infinitely rigid as far as
the computation of sensitivities is concerned. When calculating these sensitivities using the
complex step, the reference solution is aero-structural, but only the flow solver is called for
each shape perturbation. When using the adjoint method, this is equivalent to solving only
the aerodynamic adjoint in (24) and omitting the partial derivatives of S; in the gradient
calculation (26). Figure 9 shows that the single-system sensitivities exhibit significantly
lower magnitudes and even opposite signs for many of the design variables when compared
with the coupled sensitivities. The use of single-discipline sensitivities would therefore lead
to erroneous design decisions.

Figure 10 also shows the sensitivity of the drag coefficient, this time with respect to
the thicknesses of five skin groups and five spar groups distributed along the span. The
agreement in this case is even better: the average relative error is only 1.6%. Even though
these are sensitivities with respect to internal structural variables that do not modify the jig
OML, coupled sensitivity analysis is still required.

5.1.2. KS function sensitivities. 'The sensitivities of the KS function with respect to the two
sets of design variables described above are shown in Figures 11 and 12. The results show
that the coupled-adjoint sensitivities are extremely accurate, with average relative errors of
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Figure 10. Sensitivities of the drag coefficient with respect to structural thicknesses.
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Figure 11. Sensitivities of the KS function with respect to shape perturbations.

2.9% and 1.6%, respectively. In Figure 12 we observe that the sensitivity of the KS function
with respect to the first structural thickness is much higher than the remaining sensitivities.
This markedly different magnitude is due to the fact that this particular structural design
variable corresponds to the thickness of the top and bottom skins of the wing bay closest to
the root, where the stress is the highest at this particular load condition.
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Figure 12. Sensitivities of the KS function with respect to structural thicknesses.

The sensitivities of the KS function for fixed loads are also shown in Figures 11 and 12.
Using the complex-step method, these sensitivities were calculated by calling only the
structural solver after the initial aero-structural solution has converged, which is equivalent
to using just equations (25, 26) without the partial derivatives of 4, after solving the aero-
structural system. The difference in these sensitivities when compared to the coupled ones is
not as dramatic as in the fixed displacements case shown in Figure 9, but it is still significant.

5.2.  Computational efficiency

5.2.1. Comparison of the coupled adjoint with finite differencing. The cost of calculating
a gradient vector using either the finite-difference or the complex-step methods is expected
to be linearly dependent on the number of design variables. This expectation is confirmed
in Figure 13 where the gradient calculation times are shown for increasing numbers of
design variables. The time axis is normalized with respect to the time required for a single
aero-structural solution (98 seconds on 9 processors of an SGI Origin 2000).

The cost of a finite-difference gradient evaluation can be linearly approximated by the
equation 1.04+0.38 x N,, where N, is the number of design variables. Notice that one might
expect this method to incur a computational cost equivalent to one aero-structural solution
per additional design variable. The cost per additional design variable is lower than this
because each additional aero-structural calculation does not start from a uniform flow-field
initial condition, but from the previously converged solution, which is closer to the final
solution.
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Figure 13. Computational time vs. number of design variables for finite differencing, complex step and coupled
adjoint. The time is normalized with respect to the time required for one aero-structural solution.

The same applies to the cost of the complex-step method. Because the function evaluations
require complex arithmetic, the cost of the complex step method is, on average, 2.4 times
higher than that of finite differencing. However, this cost penalty is worthwhile since there
is no need to find an acceptable step size a priori, as is the case for finite-difference
approximations (Martins et al., 2003).

The cost of computing sensitivities using the coupled-adjoint procedure is in theory
independent of the number of variables. Using our implementation, however, some of the
partial derivatives in the total sensitivity equation (26) are calculated using finite differences
and therefore, there is a small dependence on the number of design variables. The line
representing the cost of the coupled adjoint in Figure 13 has a slope of 0.01 which is
between one and two orders of magnitude less than the slope for the other two lines.

In short, the cost of computing sensitivities with respect to hundreds or even thousands
of variables is acceptable when using the coupled-adjoint approach, while it is impractical
to use finite-differences or the complex-step method for such a large number of design
variables, even with current state-of-the-art parallel computing systems.

5.2.2. Coupled-adjoint solution. The constant terms in the equations for the straight lines
of Figure 13 represent the cost of each procedure when no sensitivities are required. For
the finite-difference case, this is equivalent to one aero-structural solution, and hence the
constant is 1.0. When performing the aero-structural solution using complex arithmetic, the
cost rises to 2.1 times the real arithmetic solution.

The cost of computing the coupled-adjoint vectors (without computing the gradients) is
3.4. This cost includes the aero-structural solution—which is required before solving the
adjoint equations—and hence the aero-structural adjoint computation alone incurs a cost of
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Table 1. Computational times for solving the LCA equations (24) and (25).

Aero-structural solution 1.000

Aero-structural adjoint

Aerodynamic adjoint equation (24) 0.597
RHS of equation (24) 0.642
Structural adjoint equation (25) <0.001
RHS of equation (25) 1.203

2.4. To gain a better understanding of how this cost it divided, we timed the computation for
four different components of the aero-structural adjoint equations (24) and (25) as shown
in Table 1.

The cost of solving the lagged aerodynamic adjoint equation (24)—not including the
computation of the right-hand-side vector—is about 0.6 times the aero-structural solution.
This is expected, since the cost of solving the adjoint equations of a given system is usually
similar to the cost of solving the corresponding governing equations. The cost of computing
right-hand-side of the same equation, is also about 0.6. This cost is almost exclusively due
to the lagged term 8S;/dw; ¢;, which is partially computed using finite differences, as
explained in Section 4.3.2. Note that the cost of computing this term is proportional to the
number of OML points, which is 4,200 in our calculations.

The computation time for solving the lagged structural adjoint equation (25) is negligible.
Again, this does not account for the computation of the right-hand side of that equation. The
cost of solving this equation is so low because the factorization of the matrix has already
been computed and only one back-solve operation is required. The computation time for
the right-hand side of this equation, however, is rather high: 1.2. Again, this is almost solely
due to the lagged term, which is d.A;/0u;; Y in this case. As explained in Section 4.3.1
this term is computed using finite differences and therefore its cost is proportional to the
number of structural surface degrees of freedom, which in this case is equal to 396.

6. Conclusions

An adjoint method for coupled sensitivity analysis of high-fidelity aero-structural systems
was presented. The aero-structural adjoint sensitivity equations were compared with two
different direct formulations to show that, as in the case of single disciplines, the adjoint
formulation is preferred when the number of design variables is significantly larger than
the number of functions of interest. An alternate adjoint formulation, which had not been
previously published, was also presented.

The sensitivities computed by the lagged-coupled adjoint method were compared to
sensitivities given by the complex-step derivative approximation and shown to be extremely
accurate, having an average relative error of 2%. The coupled aero-structural sensitivities
were also compared to single-discipline sensitivities. Large deviations from the coupled
results show that the true fully-coupled sensitivities are essential for aero-structural design
optimization.
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In realistic aero-structural design problems with hundreds or even thousands of design
variables, there is a considerable reduction in computational cost when using the coupled-
adjoint method as opposed to either finite differences or the complex step. This is due to
the fact that the cost associated with the adjoint method is practically independent of the
number of design variables.

We believe that this integrated approach to aero-structural design is a first step in the
development of high-fidelity MDO environments, since aerodynamics and structures are
two very tightly coupled core disciplines in aircraft design. In the future, this framework is
expected to be complemented by additional disciplines that may or may not use the same
integration strategies, depending on the bandwidth requirements of the problem.
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