pyMDO: An Object-Oriented Framework for
Multidisciplinary Design Optimization
JOAQUIM R. R. A. MARTINS, CHRISTOPHER MARRIAGE, and

NATHAN TEDFORD
University of Toronto Institute for Aerospace Studies

We present pyMDO, an object-oriented framework that facilitates the usage and development of
algorithms for multidisciplinary optimization (MDO). The resulting implementation of the MDO
methods is efficient and portable. The main advantage of the proposed framework is that it is flexi-
ble, with a strong emphasis on object-oriented classes and operator overloading, and it is therefore
useful for the rapid development and evaluation of new MDO methods. The top layer interface
is programmed in Python and it allows for the layers below the interface to be programmed in C,
C++, Fortran, and other languages. We describe an implementation of pyMDO and demonstrate
that we can take advantage of object-oriented programming to obtain intuitive, easy-to-read, and
easy-to-develop codes that are at the same time efficient. This allows developers to focus on the
new algorithms they are developing and testing, rather than on implementation details. Examples
demonstrate the user interface and the corresponding results show that the various MDO methods
yield the correct solutions.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Object-oriented design methods; D.2.13 [Software Engineering]|: Reusable Software—
Reusable libraries; D.1.5 [Programming Techniques]: Object-Oriented Programming; G.1.6
[Numerical Analysis]: Optimization—Nonlinear programming, constrained optimization; G.4
[Mathematical Software]: Algorithm design and analysis

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Multidisciplinary design optimization, object-oriented
programming

ACM Reference Format:

Martins, J. R. R. A., Marriage, C., and Tedford, N. 2009. pyMDO: An object-oriented framework for
multidisciplinary design optimization. ACM Trans. Math. Softw. 36, 4, Article 20 (August 2009),
25 pages. DOI = 10.1145/1555386.1555389. http://doi.acm.org/10.1145/1555386.1555389.

The authors are very grateful for the support provided by the Canada Research Chairs program
and the Natural Sciences and Engineering Research Council.

Authors’ addresses: J. R. R. A. Martins, University of Toronto Institute for Aerospace Studies,
4925 Dufferin St., Toronto, ON M3H 5T6, Canada; email: martins@utias.utoronto.ca; C. Marriage
and N. Tedford, email: {chris.marriage, nathan.tedford }@utoronto.ca.

Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies show this notice on the first page or initial screen of a
display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from the Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.

(© 2009 ACM 0098-3500/2009/08-ART20 $10.00 DOI: 10.1145/1555386.1555389.
http://doi.acm.org/10.1145/1555386.1555389.

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

20

20: 2 . J. R. R. A. Martins et al.

1. INTRODUCTION

Multidisciplinary design optimization (MDO) is an area related to the design of
engineering systems. MDO problems require execution of several simulations,
each representing a specific engineering discipline. For example, in aerospace
engineering, the state of an aircraft wing and outputs of interest are found by
solving both the aerodynamic and structural state partial differential equa-
tions (PDEs). Thus, when the outputs—such as the drag coefficient—are used
as objectives or constraints in an optimization problem, they depend on the
states of both disciplines, as well as on design variables associated with both
the aerodynamic shape and structural sizing.

Various MDO problem solution approaches exist, each requiring different
degrees of autonomy for the disciplinary subsystem computations. The ap-
proaches range from fully integrated, where a single optimizer controls coupled
multidisciplinary simulations, to multilevel distributed methods that optimize
disciplinary objectives in their respective domains.

Design variables can be classified as global or local. Local design variables
directly affect the states of only one discipline, while global design variables
affect two or more.

For a given discipline i, the state y; is obtained by the respective simulation.
We can write a simulation i as sets of equality constraints,

Ri(‘Z»xi:yi(Z:x»yj)):O: j=19~-~9i_17i+17-~-9N9 (1)

where z are the global design variables, x the local variables, and N the num-
ber of disciplines. Note that each simulation is only affected directly by the
variables local to its discipline, x;. In general, the simulation might also de-
pend on the states off all other disciplines, y ;.

A general MDO problem can be stated as

minimize [(z,x, yi(z, x,y))
with respect to z,x (2)
subject to ¢ (2, x, yi(z, x,¥))) > 0,

where [is the objective function, ¢ is the vector of constraints, and y is the vec-
tor of states for all disciplines, which are determined by the multidisciplinary
simulations (1). The variables in y can also be seen as the coupling variables,
since each subset y; can potentially affect all disciplines j # 1.

MDO formulations with single-level optimization are well understood
[Cramer et al. 1994]. Various multilevel formulations have been proposed, but
their practicality is under investigation, and their theory has not been unified
to the same degree.

A number of articles discussed the relative performance of various MDO
methods [Padula et al. 1996; Sobieszczanski-Sobieski and Haftka 1997;
Alexandrov and Kodiyalam 1998; Kodiyalam 1998; Kodiyalam and Yuan 2000;
Perez et al. 2004; Brown and Olds 2006; Tedford and Martins 2006a]. They
considered a small number of problems—ranging from one to 10—because

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

pyMDO: Object-Oriented Framework for Multidisciplinary Optimization . 20: 3

statistical comparisons were outside the scope of those efforts. However, most
methods must ultimately be compared on statistical grounds, and in that case
a framework for a unified implementation of MDO methods becomes extremely
useful. Such a comparison must necessarily include a set of problems that is
large enough for the results to be statistically significant. Even if a suite with
a large number of MDO problems existed, a very large effort would be required
to implement all known MDO methods for every problem, since current imple-
mentation approaches are formulation specific and problem specific, and do not
emphasize reusability. Furthermore, researchers who wish to test a new MDO
algorithm must develop their code from scratch, including the code of one or
more existing algorithms for benchmarking.

There has been, however, some progress in toward reusability. Alexandrov
and Lewis [2004a; 2004b] developed a standard abstract syntax for MDO prob-
lems and methods that enables the reusability of basic components. The de-
velopment of pyMDO was partially motivated by these seminal articles.

The value of using object-oriented programming for numerical optimization
has already been recognized, especially in cases where multiple algorithms are
required in the same software framework. DAKOTA, for example, is a software
toolkit developed at Sandia National Laboratories that provides various opti-
mization algorithms, parameter estimation, uncertainty quantification with
sampling, reliability, sensitivity analysis, design of experiments, and parame-
ter study capabilities [Eldred et al. 1996; 2006]. Another open-source project
worth mentioning is OPT++, developed by Meza et al. [2007]. This is an object-
oriented toolkit for nonlinear optimization that makes use of inheritance to
provide a common interface to users, while making it easy for developers to
add new algorithms.

The goal of this research is to develop a framework for MDO algorithms that
facilitates the following:

—Use. Ease of use is achieved by defining a common, algorithm-independent
interface for describing MDO problems. For general users, the aim is to
provide an interface with which the MDO problem is easily stated. pyMDO is
then responsible for implementing the various MDO methods automatically.

—Development. This is accomplished by using object-oriented programming
concepts such as inheritance and operator overloading, which greatly facil-
itate reusability. These features make it easy for developers to implement
new MDO methods and fine tune existing ones.

—Benchmarking. By making it easy to describe problems in an algorithm-
independent manner, developers can benchmark their own algorithm
against existing MDO algorithms more promptly. Furthermore, the creation
and maintenance of a benchmarking suite will require much less effort.

This article is laid out as follows. The next section outlines MDO methods
implemented in the framework. Section 3 describes the software design of
pyMDO and Section 4 details the implementation. Examples of usage and
numerical results are presented in Section 5. Conclusions and future work are
presented in the final section.

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

20: 4 . J. R. R. A. Martins et al.

2. MDO METHODS

In this section, we present a brief overview of the MDO methods that are im-
plemented in pyMDO. More details on these methods can be found in the liter-
ature [Cramer et al. 1994; Kroo 1997; Tedford and Martins 2006b].

2.1 Multidisciplinary Design Feasible

The traditional approach to MDO has been to solve the set of disciplinary
equations to convergence at each step of the optimization. Cramer et al.
[1994] named this approach multidisciplinary feasible (MDF). This approach
has been used in engineering since the inception of MDO [Haftka and Giirdal
1993; Sobieszczanski-Sobieski and Haftka 1997; Kroo 1997]. It consists in
solving the original problem (2), that is,

minimize [(z,x, y(x, 2))
with respect to z,x (3)

subject to ¢ (z, x, y(x,2)) > 0.

For each iteration, the multidisciplinary state is found by solving the coupled
system of N simulations,

Ri(z, %, yi(z,%,5)) =0, 4)
where i = 1,..., N corresponds to each and every discipline. For a given dis-
cipline, the subscript j represents all disciplines except the local one, that is,
j=1,...,i—1,i+1,..., N. The state of a simulation i affects another simula-

tion jthrough the coupling variables. In general, these variables are functions
of the states. Thus, for the multidisciplinary simulation to converge, it is not
sufficient that the state within each simulation converge: the coupling vari-
ables must converge as well. The coupled simulation is typically solved by
a block-iterative procedure and is considered to be converged when the cou-
pling variables generated by each discipline analysis remain constant (within
a specified tolerance) over successive iterations. This means that feasibility
with respect to the simulation constraints (4) is enforced at each optimization
iteration.

The MDF method is practical for engineers because complex single- and
multidisciplinary simulations have been used well before numerical optimiza-
tion was applied to engineering problems.

2.2 Individual Discipline Feasible

The individual discipline feasible (IDF) method [Cramer et al. 1994; Kroo
1997] removes the need for the iterative procedure that ensures multidiscipli-
nary feasibility in the traditional approach by removing direct communication
between the disciplinary simulations. Each discipline is solved in isolation—
possibly in parallel—and the optimizer is made responsible for the convergence

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

pyMDO: Object-Oriented Framework for Multidisciplinary Optimization . 20: 5

of the multidisciplinary state. The optimization problem can be stated as
follows:

minimize [(z,x,y")
with respect to z,x,y’

subject to ¢ (z,x,y (x,¥,2)) >0 ()
i = yi (x,yﬁ», z) =0,

where y' represents the targe value for the coupling variables chosen by the
optimizer. The states of each discipline, y; are determined by each simulation,
that is, they are such that

Ri (z, xi, vi(z, x, y?)) =0, (6)

where the state of the other disciplines, ys for j # i is determined by the
optimizer.

Using IDF, there is no need for an iterative procedure to converge the mul-
tidisciplinary simulation at each optimization iteration. Consequently, each
simulation can be run in parallel. This approach has also been referred to as
optimizer-based decomposition [Kroo 1997] .

2.3 Simultaneous Analysis and Design

Simultaneous analysis and design (SAND) goes beyond IDF and decouples the
multidisciplinary problem further by treating the governing equations for each
simulation (1) as equality constraints in the optimization problem. The SAND
formulation can be written as a single optimization problem:

minimize f(z,x,y(z,x,y))

with respect to z,x,y

subjectto c(z,x,y(z,x,y)) >0 7

Ri(z,xi,5i(z,%,9;) =0, i=1,...,N,

where R; represents the residuals of the governing equations for each
simulation.

This method is usually impractical for MDO involving large simulations,
such as PDEs in a three-dimensional domains, since specialized algorithms
outperform optimization algorithms when solving these large systems of equa-
tions. To use the SAND approach, it is required that the simulation be in
residual form. Another disadvantage of this method is that if the optimiza-
tion process stops before convergence, there is no guarantee that the design is
physically feasible.

2.4 Collaborative Optimization

Collaborative optimization (CO) [Schmit and Ramanathan 1978; Thareja and
Haftka 1986; Braun and Kroo 1997; Sobieski and Kroo 2000] is a bilevel
MDO approach designed to provide discipline autonomy while maintaining in-
terdisciplinary compatibility. The optimization problem is decomposed into a

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

20: 6 . J. R. R. A. Martins et al.

number of independent optimization subproblems, each corresponding to one
discipline. Each disciplinary optimization is given control over its (local) de-
sign variables and is responsible for satisfying its (local) constraints.

The CO system-level problem is given by

minimize [(2, xopj, ')

with respect to 2, xopi, '
P obj> Y (8)

subject to cgiobal(z’, ¥°)
°]i*=0’ i=1,...,N,

where each J* is a measure of interdisciplinary compatibility that is the so-
lution of the subproblem corresponding to discipline i and N is the number of
disciplines. The vector bej represents local design variables that directly affect
the objective function, and cglohal are the global constraints, that is, constraints
that depend directly on global variables.

Each discipline subproblem i can be stated as

. 12 12
minimize o = [lz; — z; " + [lyi — ¥;ll
with respect to z;, x; 9)

subject to ¢; (xi,zi,yi (xi,yé,zi)) > 0.
For each discipline, a simulation
Ri (z, xi, yilz, %, yé)) =0 (10)

enforces the governing equations and determines the local state variables, y;.

The advantage of CO is that each discipline has a certain autonomy, where
the burden of solving for the sets of local variables and satisfying local con-
straints is distributed. Each discipline can be solved in parallel, which is
advantageous from the computational point of view. Also, the disciplinary
autonomy in the CO formulation mimics the structure and processes used in
industry, and therefore this formulation is likely to be easier to implement in
the industrial setting.

In spite of these benefits, CO is not without its drawbacks. As the number
of coupling variables increase, the dimensionality of the system level problem
increases, as does the number of variables involved with the calculation of
the system level compatibility constraints. Therefore, CO tends to be most
effective on problems for which the number of local variables and states is
much larger than the number of coupling variables. Furthermore, because CO
is a bilevel programming formulation, it suffers from the difficulties inherent
in nonlinear bilevel programming [Alexandrov and Lewis 2002; DeMiguel and
Murray 2006].

2.5 Concurrent Subspace Optimization

Concurrent subspace optimization (CSSO) [Sobieszczanski-Sobieski 1988;
Wujek et al. 1997] is another bilevel MDO method that uses approximations to
model the mutual effect of coupling variables.

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

pyMDO: Object-Oriented Framework for Multidisciplinary Optimization . 20: 7

The CSSO system-level optimization problem can be stated as

minimize f (2, x, §(z, x))
with respect to z,x (11)
subject to ¢ (2, x, §(z,x)) > 0,

where y represents a surrogate model or response surface of the coupling
variables.

Within each discipline i, the following subspace optimization problem is
solved:

minimize [(2, xi, yi (21, %1, 3) .)
with respect to z;, x; (12)
subject to ¢ (zi,xi,yi (Zi,xi,S’j) ,5’1) >0,

where z; and x; represent the global and local variables that directly affect dis-
cipline i. The complements of these respective sets of variables do not affect
discipline i in a direct manner and are kept constant in this subspace opti-
mization. The complement of y; is approximated by 7;, which is the vector of
nonlocal coupling variables given by the surrogate model.

3. SOFTWARE DESIGN

We now explain the choice of programming language and outline our software
design principles, keeping in mind that our objective is to design a framework
that is flexible and efficient, while being straightforward to use.

3.1 Language Selection

We considered a number of programming languages and selected Python
[Beazley 2006], which has a large following in the scientific computing com-
munity [Langtangen 2004].

Python is an interpreted language that can be run in interactive mode, mak-
ing it easy to learn and debug. The downside of being an interpreted language
is that it is much slower than a compiled one. However, because Python excels
at interfacing with other languages, the most numerically intensive computa-
tions are usually implemented in C/C++ or Fortran. Python is then used as the
high-level language connecting the various numerical simulations. Wrapping
C code with Python is straightforward since Python was designed to inter-
face directly with C. It is more involved to wrap C++, but tools such as SWIG
automate this process [Blezek 1998]. For Fortran code, we use f2py, a tool
that automatically creates Python modules that can access all of the function-
ality of the Fortran code [Peterson et al. 2001]. This wrapping procedure has
been tested with various combinations of compilers and platforms [Alonso et al.
2004].

Python is very convenient for scripting but is also a full-fledged program-
ming language that supports object-oriented programming. These features

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

20: 8 . J. R. R. A. Martins et al.

are particularly important for our purposes. A variety of basic data types are
available in Python: numbers (integers, floating point, complex, and unlimited-
length long integers), strings (both ASCII and Unicode), and container objects
(lists and dictionaries). Lists are similar to arrays, but more flexible since they
do not have a fixed size and can be nested. A dictionary is a list whose elements
are associated to a keyword, rather than indices.

The language also supports user-defined raising and catching of exceptions,
resulting in cleaner error handling. It also does automatic garbage collection
that frees the programmer from the burden of memory management.

Python runs on many different computers and operating systems, and
provides numerous standard libraries that support many common program-
ming tasks such as connecting to web servers, regular expressions, and file
handling.

In addition to the useful features we just described, a number of available
Python tools are specially useful in our work, in particular, the scientific com-
puting module, NumPy, and the parallel computing module, pyMPI.

3.2 Design Principles

The design and implementation of pyMDO are based on the following
principles:

—~Clarity. Implementations of MDO methods should resemble the respective
mathematical formulations. This is in contrast to lower-level compiled lan-
guages, which often require complicated function calls or subroutines with a
long list of parameters. When developing this framework, we strove to pro-
vide an intuitive user interface. Our intention is that it should be possible
for this framework to be usable by someone who has only a basic knowledge
of Python and optimization. All classes and methods automatically use a
set of default parameters that can be tuned by overwriting or modifying the
default values.

—Flexibility. This is essential for creating a truly useful framework that can
be used for any MDO problem. The ability of Python to interface with any
code greatly enhances flexibility. The end result is a framework that can
solve a wide range of problems: from small examples coded in Python to
multiple large-scale parallel simulations coded in compiled languages. An-
other feature of pyMDO that adds to its flexibility is that the numerical
optimization modules are interchangeable: one could even use different
optimization packages for the various subproblems of a hierarchical MDO
method.

—Extensibility. MDO methods are far from being completely understood for
all classes of problems. It is important for the framework to be easily ex-
tended so as to develop and validate new methods. The use of inheritance
and operator overloading eases this process immensely.

—Portability. The framework should be easily ported across computer plat-
forms. Since Python is available for all platforms, this is not an issue for
pyMDO and its portability is only limited by the user’s simulation code.

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

pyMDO: Object-Oriented Framework for Multidisciplinary Optimization . 20: 9

1 N —
MDOProb | KO>———| Discipline || simulation
MDF SAND IDF co €SSO
¢ e 19
]
0.* 1
RS
N
—
> oOptProb | Optimizer

Fig. 1. UML class diagram for pyMDO.

4. IMPLEMENTATION

The classes in pyMDO are based on the mathematical objects defined by the
optimization problem (2) and the various MDO formulations. The main base
class is MDOProb, which represents an MDO problem and contains one or more
instances of the OptProb class. All MDO method classes are derived from
MDOProb by inheritance. The relationships between the various classes are
illustrated in Figure 1, the details of which we describe in this section. The
figures throughout this section use the standard unified modeling language
(UML) representation for class diagrams [O’Docherty 2005].

4.1 The OptProb Class

The OptProb class represents a single optimization problem. This class can use
an arbitrary optimization package (shown as “Optimizer” in Figure 1) as long
as it is wrapped with Python. In this work we have used SNOPT, which is a
Fortran SQP package developed by Gill et al. [2002]. The code was wrapped
with Python and encapsulated into the OptProb class [Alonso et al. 2004].

A UML representation of the OptProb class is shown in Figure 2. The main
attributes of this class are a dictionary of variables (vars), which contains the
design and state variables of the problem, and the objective function value
(obj_value). The class methods include the evaluation of the objective and
constraints (eval_objective and eval constraints, respectively), as well as
the computation of sensitivities and the main call to the optimizer (optimize).

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

20: 10 . J. R. R. A. Martins et al.

OptProb

+prob_name: String Default
+arch _name: String = Keyword Argument
+sens_type: String FD
+constraint_type: List = []
+dvar_keys: List

+vars: Dictionary

+n_vars: Integer

+file out: Boolean = True

+system optimizer: Boolean = True
+simultaneous: Boolean = False
+result: String

+obj value: Scalar

+lagrange: 1D Array

#init(in dvar_groups:Dictionary, arch name:String=None)

+eval objective(in vars:Dictionary, out f obj:Scalar)

+obj sensitivity(in vars:Dictionary, out g obj:1D Array)

+eval constraints(in vars:Dictionary,out constraints:1D Array)
+constraint sensitivity(in vars:Dictionary, out g con:2D
Array)

+calc_sens(in f:Function,in vars:Dictionary, in type:String,
out sens:Array)

+optimize()

Fig. 2. UML diagram for the OptProb class.

The default sensitivity analysis method is finite differencing, but users are free
to overwrite the default method definitions and provide their own sensitivities.

4.2 The Discipline Class

As previously mentioned, MDO problems typically require multiple simula-
tions, each of them representing a discipline. To make use of pyMDO, the
simulations can be programmed in any language as long at they are wrapped
with Python using the Discipline class. The UML diagram for this class is
shown in Figure 3. The attributes include lists of input and output variables,
as well as a list of the variables that are local to the discipline. This infor-
mation is used by specific methods to reorganize the MDO problem and also
to decide which variables to read from the main vars dictionary and apply as
inputs or outputs to the analysis.

The definition of these input and output variables for each discipline is very
important. The input variables are fixed within a given discipline and can be
states given by other disciplines or functions of those states. A given disci-
pline outputs its own states, or functions of those states. Furthermore, each

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

pyMDO: Object-Oriented Framework for Multidisciplinary Optimization . 20: 11

Discipline

+name: String

+inputs: List = []
+outputs: Dictionary = {}
+local_vars: List = []
+constraint_ type: List = []

#init (name:String)
+analysis(in vars:Dictionary,out state vars:User Def.): User Provided
+get _coupling(in vars:Dictionary,in state_vars:User Def.,

out coupling vars:Dictionary): User Provided
+constraints(in vars:Dictionary,in state_vars:User Def.,

out constraints:List=[])
+eval_residual(in vars:Dictionary,in state_vars:User Def.,

out residuals:Scalar)

Fig. 3. UML diagram for the Discipline class.

discipline might have a number of local design variables as well as local con-
straints. All this information is essential at the MDO problem level to perform
decomposition when the chosen method demands it.

4.3 The RS Class

The RS class provides a simple yet effective surrogate model—in the form of
a quadratic response surface—to the pyMDO framework. Used by CSSO and
certain implementations of CO [Sobieski and Kroo 2000], this class provides an
approximation of the output of a given function based on the variables passed
to it. The UML diagram for RS class is shown in Figure 4.

The main attributes of the RS class are the foi, or function of interest, a
list of the input variables opt_keys, and the coefficients and bounds of the re-
sponse surface coefficients and RS_bounds respectively. The methods include
evaluate, which returns the approximate function value for given input vari-
ables, and update and regenerate, which modify or completely regenerate the
approximation model in response to motion within the design space. The class
structure of pyMDO allows this quadratic model to be easily replaced with, or
run concurrently with, other approximation methods.

4.4 MDO Methods

4.4.1 The MDOProb Base Class. Since the MDO problem is an optimization
problem, it is only natural that the MDOProb class (shown in Figure 5) inherits
its basic attributes and methods from the OptProb class. Additional attributes
are needed to define the MDO problem, most of which are contained in the
dictionary of Discipline objects.

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

20: 12 . J. R. R. A. Martins et al.

RS

+opt_keys: List = Keyword Argument
+foi: Function = Keyword Argument
-tot_keys: List

+dimension: Integer

-prev_point: 1D Array

+saturated: Boolean

+scaling factor: Scalar = 10**(0.5)
+RS_bounds: Dictionary

-x: 2D Array

-y: 2D Array

+coefficients: 2D Array

+scaling: Dictionary

+alpha: Scalar

-add_center: Integer

#init(in vars:Dictionary,in opt_ keys:List,
in foi:Function,in saturated:Boolean=False)

+evaluate(in vars:Dictionary,in store:Boolean=True,

out state_ info:User Def.)
+update(in vars:Dictionary,in state_vars:User Def.)
+regenerate(in vars:Dictionary)
-generate_scaling factors(in vars:Dictionary)
-generate_ points(vars:Dictionary,out eval points:2D Array)
-axial points(in dimension:Integer,in alpha:Scalar,

out axial points:2D Array)
-cube points(in dimension:Integer,out cube points:2D Array)
-evaluate_points(in vars:Dictionary,in eval_points:2D Array,
in function:Function,out state vars:Dictionary)
-generate_coefficients(in eval points:2D Array,
in state_vars:Dictionary)
-check location(in coded_1d_vars:1D Array,
out expand:Boolean)

Fig. 4. UML diagram for the RS class.

In Figure 1, we can also see that MDOProb is the base class for the various
MDO method classes. This is an abstract class and is therefore never instan-
tiated. The optimize method, for example, is specific to each method and can
only be defined once the class is specialized.

For the bilevel methods (CO and CSSO), a minimum of three instances of the
OptProb class are necessary. They are instantiated in the top level optimize
method and the exact number of instances depends on the particular method
and the number of disciplines in a given problem.

4.4.2 The VDF Class. The MDF class inherits all attributes and methods from
both OptProb and MDOProb. As with all specific method classes, several methods
are overloaded. However, this method is the one that most closely resembles a
single discipline problem and thus little specialization is necessary.

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

pyMDO: Object-Oriented Framework for Multidisciplinary Optimization . 20: 13

MDOProb

+dvar_groups: Dictionary = Keyword Argument
+cp_keys: List

+discipline: Dictionary

+dis_keys: List
+obj key: String =
+obj _discipline: String = Keyword Argument
-separate_obj: Boolean

+RS_precision: Scalar = 0.02

+saturated: Boolean = False

+MDA_reset: Boolean = True

-max_iter: Integer = 1000
+fpi_convergence tol: Scalar = 10**(-14)
+fpi update: Scalar = 0.7
+cs_convergence tol: Scalar 10**(-4)
+coupling init_ type: String = "Automatic"

#init(in dvar_groups:Dictionary,in cp_groups:Dictionary,

in obj_discipline:String,in arch name:String=None)
+mda(in vars:Dictionary,in coupling reset:Boolean=True,

out state_vars:Dictionary)
-mda_convergence(in cp_new:Dictionary,in cp_prev:Dictionary,
out converged:Boolean)

+ida(in vars:Dictionary,out state vars:Dictionary)
+eval objective(in vars:Dictionary,out f obj:Scalar)
-calc_con(in vars:Dictionary,out constraints:Array)

Fig. 5. UML diagram for the MDOProb class.

To evaluate the objective function (eval_objective in Figure 6), a multidisci-
plinary simulation must be performed. The default algorithm used to converge
the multidisciplinary system is a block Gauss—Seidel iteration. The same is
true for the constraints, which are assembled from every discipline and en-
forced simultaneously in the single optimization problem.

4.4.3 The IDF Class. As with the MDF class, the complete set of constraints
is assembled by gathering the constraints from each discipline. However, addi-
tional constraints involving the coupling variables are added according to the
IDF formulation (5). The set of design variables is also augmented to include
the coupling variables.

The objective and constraint functions can be evaluated without converg-
ing the multidisciplinary simulation, that is, only uncoupled simulations are
required. The attributes and methods shown in Figure 7 are identical to the
ones shown for the MDF class. The differences reside in the underlying defini-
tion of methods.

4.4.4 The SAND Class. In this class (Figure 8), the optimizer enforces the
simulation-based constraints as part of the optimization problem. As described

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

20: 14 . J. R. R. A. Martins et al.

MDF

-n_con: Integer
+result: String
+obj_value: Scalar

#init(in dvar groups:Dictionary,in cp_groups:Dictionary,
in obj_discipline:String)

+optimize()

-eval objective(in vars:Dictionary,out f obj:Scalar)

-calc_con(in vars:Dictionary,out constraints:Array)

Fig. 6. UML diagram for the MDF class.

IDF

-n_con: Integer
+result: String
+obj_value: Scalar

#init(in dvar groups:Dictionary,in cp_groups:Dictionary,
in obj_discipline:String)

+optimize()

-eval objective(in vars:Dictionary,out f obj:Scalar)

-calc_con(in vars:Dictionary,out constraints:Array)

Fig. 7. UML diagram for the IDF class.

previously, this is done by enforcing equality constraints corresponding to the
residuals of the governing Equations (1). Thus an additional method for resid-
ual evaluation of each simulation must be provided for the SAND class.

Similarly to IDF, SAND augments both the set of design variables and
constraints relative to the MDF method.

4.4.5 The C0 Class. This class (Figure 9) requires more extensive redefin-
ition of methods and addition of new ones relative to the MDOProb base class.
Since CO is a bilevel method, the optimize method includes calls to the system
level optimization as well as subspace optimizations corresponding to each of
the disciplines.

An OptProbinstance is created for each discipline instance in the MDO prob-
lem. The design variables are then distributed among the different optimiza-
tion problems according to their status as global or local variables. In the case
of local variables, they are the design variables of the optimization problem

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

pyMDO: Object-Oriented Framework for Multidisciplinary Optimization . 20: 15

SAND

-state_keys: List
-n_con: Integer
+result: String
+obj_value: Scalar

#init(in dvar groups:Dictionary,in cp_groups:Dictionary,
in obj discipline:String)

+optimize()

-eval objective(in vars:Dictionary,out f obj:Scalar)

-calc_con(in vars:Dictionary,out constraints:1D Array)

Fig. 8. UML diagram for SAND class.

co

-n_con: Integer
-system_targets: Dictionary
+opt_prob: OptProb Instance
+current_discipline: String
+result: String

+obj_value: Scalar

#init(in dvar groups:Dictionary,in cp_groups:Dictionary,
in obj_discipline:String)
+optimize()
+eval objective(in vars:Dictionary,out f obj:Scalar)
-calc_con(in vars:Dictionary,out constraints:1D Array)
-calc_con_sensitivity(in vars:Dictionary,
out g con:2D Array)
-eval_objective(in vars:Dictionary,out f_obj:Scalar)
-eval constraints(in vars:Dictionary,out constraints:1D Array)

Fig. 9. UML diagram for the CO class.

corresponding to their respective disciplines. For each optimization problem,
individual eval objective, eval _constraints, and analysis methods are de-
fined corresponding to the discipline sub problem. As with IDF, coupling vari-
ables are required to be design variables at the system level.

All local constraints of the original optimization problem are enforced at the
discipline level. Global constraints are handled by the system level optimizer,
which also handles the compatibility constraints specific to CO. The sensitivity
of these constraints is computed using post-optimality sensitivity analysis of
the optimum of each discipline-level optimization after it has converged.

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

20: 16 . J. R. R. A. Martins et al.

CSSO

+n_con: Integer

+convergence: FileOutput Instance
+RS: Response Surface Instance
-input groups: Dictionary
-current_discipline: String
+result: String

+obj_value: Scalar

#init(in dvar_groups:Dictionary,in cp_groups:Dictionary,
obj discipline:String)

+optimize()

eval objective(in vars:Dictionary,out f obj:Scalar)
-calc_con(in vars:Dictionary,out constraints:1D Array)
-eval_objective(in vars:Dictionary,out f obj:Scalar)
-eval_constraints(in vars:Dictionary,out constraints:1D Array)
-regenerate(in true_objective:Scalar,in design_point:Dictionary)

Fig. 10. UML diagram for the CSSO class.

Before any optimization is performed, a multidisciplinary simulation is run
to obtain a suitable starting point that is multidisciplinary feasible. This was
found to greatly increase the efficiency and robustness of the CO method.

Finally, response surfaces are sometimes used to represent the optimal
points of each discipline as a function of the variables of the system-level prob-
lem (the global and coupling variables).

4.4.6 The €SS0 Class. The main differentiating feature of the CSSO
method (Figure 10) is the extensive use of response surface approximations,
in the form of the RS class previously described.

The objective, the constraints, and the set of design variables at the system-
level are identical to the ones in the original MDO problem. What is different
is the way the coupling variables are computed: these are approximated as
functions of the design variables using response surfaces that are modelled on
the analysis method of each discipline instance.

As in the case of CO, an instance of OptProb is required for each discipline.
Due to the slightly different structure of the CSSO class, an instance of the
FileQOutput class is contained within CSSO with modified attributes to accu-
rately represent the system level convergence.

5. RESULTS

For the purpose of demonstration, we will now present results for two differ-
ent problems. Both of the problems are analytic problems that would usually
be formulated as single-discipline problems. The disciplines consist in sets of
explicit coupled equations that yield the states.

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

pyMDO: Object-Oriented Framework for Multidisciplinary Optimization . 20: 17

5.1 Example Problem

The following optimization problem was originally formulated by Sellar et al.
[1996] and was selected to demonstrate the framework. The problem is
defined as,
minimize x% +z9+y;+e 2
with respect to z1, 29,21

subjectto y1/3.16—-1>0 (13)
1-y2/24>0
—-10<2z1 <10
0<z9<10
0 <x; <10,
where y1 and yg are the states of the two disciplines given by
y1(21, 22, %1, y2) = 25 + 1 + 22 — 0.2y3, (14)
y2(21,22, ¥1) = /Y1 +21 + 22. (15)

Although this is a simple problem, it exhibits characteristics of larger MDO
problems. There are two disciplines, each consisting of one state variable that
also functions as a coupling variable (y1, y2). There are two global design vari-
ables (z1, z2) and an additional design variable local to Discipline 1 (x1). The
coupling between the two disciplines is nonlinear as is the coupling between
the disciplines and the system level optimizer. Each discipline has a local con-
straint associated with its state.

With the divisors of the constraint functions formulated as 3.16 and 24,
the global optimum of this problem is (z1,2z92,x1) = (1.9776, 0, 0), where the
objective value is 3.18339 and Discipline 1’s constraint is active.

The Python source code corresponding to the implementation of this opti-
mization problem is shown in Figure 11. This problem was solved successfully
using all five methods from a number of starting points. Underrelaxation was
not required to converge the coupled Equations (14) and (15). Response sur-
face limits were initialized to the upper and lower bounds of the design vari-
ables. The convergence tolerance for the MDA module was set to 10715, All of
SNOPT’s parameters were left at their default values; therefore the optimality
conditions were satisfied to a tolerance of 1076,

Table I presents the computational performance of each of the meth-
ods starting from (z1,z9,x1) = (1,2,5) using both finite differences and the
complex-step method [Squire and Trapp 1998; Martins et al. 2003] to compute
the necessary sensitivities. A step of 1078 was used for the finite differences,
and the value for the complex step was 10720,

Since an analytic solution can be obtained for this problem, the optimum
returned by the optimizer was compared to the exact one. The comparison was
made using an /2-norm of the difference between the optimal design variables
and their corresponding exact values, that is,

ex = [lx — Xexactll2- (16)
ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

20: 18 . J. R. R. A. Martins et al.

Import universal framework module
import MDOProb

Problem setup
dv_groups = {’z1’:1, ’z2’:1, ’x1’:1}

discipline_groups = {’Discipliney 1’: {’y1’:1}, \
’Discipliney2’: {’y2’:1} }
objective_discipline = ’Objective’
Method selection -- MDF, IDF, SAND, CO, CSS0O available.
prob = MDOProb.CO(dv_groups, discipline_groups, objective_discipline)

Set options

prob.name = "Analytic"

prob.sens_type = "CS"

prob.fpi_update = 1.0
prob.fpi_convergence_tol = 1l.e—15
prob.cs_convergence_tol = 1l.e—4
prob.coupling_init_type = "Automatic"

prob.RS_precision = 0.01

Define objective function
def eval_objective(vars):
return array ([vars[’x1’][0]*x%2 + vars[’z2’][0] + vars[’y1’][0] + \
exp(—vars[’y2’][0])])

Define objective dependencies
prob.discipline[’0Objective’]. inputs.extend ([’x1’, ’z2’, ’y1’, ’y2°])
prob.discipline[’0Objective’].analysis = eval_objective

Discipline 1 function definitions
def disl_analysis(vars):

return array ([vars[’z1’]|[0]*%2 + vars[’x1’][0] + vars[’z2’][0] — \
0.2xvars[’y2°][0]])
def disl_get_coupling(vars, state_vars):
vars[’y1’][:] = state_vars [:]
def disl_constraints(vars, state_vars):
return array ([vars[’y1’][0] / 3.16 — 1.0])
def disl_residuals(vars, state_vars):
return array ([vars[’z1’]|[0]*%x2 + vars[’x1’][0] + vars[’z2’]|[0] — \
0.2xvars[’y2’][0] — state_vars [0]])
Discipline setup - Only discipline 1 is shown
prob.discipline[’Discipline, 1’]. inputs.extend ([’z1’, ’x1°, 222’ , ’y2°])

prob.discipline[’Discipline, 1’].local_vars.extend ([’x1’])

].
prob.discipline[’Discipline1’].constraint_type = [’>’]
prob.discipline[’Discipline 1’].analysis = disl_analysis
prob.discipline[’Discipline_ 1’]. get_coupling = disl_get_coupling
prob.discipline[’Discipline_ 1’].constraints = disl_constraints
prob.discipline[’Discipline_ 1’].eval_residual = disl_residuals
Setup design variables - Only variable z1 shown
prob.vars[’z1’].value[0] =1
prob.vars|[’z1’].lower [0] = —10
prob.vars|[’z1’].upper [0] = 10
prob.vars|[’z1’].influence.append(’Discipline 1)
prob.vars|[’z1’].RSLowerLimit [0] = —10
prob.vars[’z1’].RSUpperLimit [0] = 10

Solve the problem and retrieve results
prob.optimize ()

print prob.result

print prob.obj_value

Fig. 11. Python source code that implements the sample MDO problem (13).

Table II shows the error for the various methods, which is within the speci-

fied tolerance for all cases.

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

pyMDO: Object-Oriented Framework for Multidisciplinary Optimization . 20: 19

Table I. Number of Function Calls for the Example Problem; * Denotes Residual Evaluations

Finite difference Complex step

Method Discipline 1 Discipline 2 Discipline 1 Discipline 2
MDF 346 346 238 238
IDF 61 61 55 55
SAND 1+57* 1+57* 1+49* 1+49*
CO 1,291 729 1,079 587
CSSO 1,250 1,188 1,210 1,148

Table II. 72-Norm of Absolute Error in Optimal Design Variables

Method Finite difference Complex step
MDF 1.1515 x 107 1.1506 x 1075
IDF 2.0827 x 1072 2.0803 x 1072
SAND 7.1353 x 1077 7.1356 x 1077
CO 6.1643 x 1076 7.3389 x 10~6
CSSO 7.1386 x 10~ 3.9559 x 1076

To compare convergence histories, we used the relative error of the objective
function value, that is,

f B f exact

. 17
f exact ()

€f=

The convergence histories for the various MDO methods are shown in
Figure 12. For the MDF, IDF, SAND, and CO methods, times are reported
each time the optimizer (system-level optimizer in the case of CO) calls the ob-
jective function. For CSSO, the time is reported at each system-level iteration
and before and after each response surface generation. Flat sections in the con-
vergence history of CSSO represent the time taken to generate the response
surfaces.

As can be seen in Table I, the monolithic methods are more efficient than the
bilevel methods for this problem. IDF is slightly faster than SAND due to
the fact that SAND requires a relatively large computational overhead. Since
the structure of the state variables is left to the discretion of the user, SAND
must restructure them into a common format each time a user provided func-
tion is evaluated. This results in an additional computational effort that is not
directly related to solving the optimization problem.

Though the use of complex-step sensitivity analysis resulted in fewer func-
tion evaluations in all cases, it did not result in substantially faster execution
or a more accurate final variable set. This is because the convergence toler-
ance of the optimizer during each run was held constant. As function evalua-
tions for this particular problem are inexpensive, the increase in the number
of function calls by each of the methods from the complex-step method to the
finite-difference method does not impact the convergence time. As function
evaluations become more expensive in relation to the computational overhead
of each method, the advantages of the complex-step method in reducing the
number of function evaluations should become more apparent.

We should emphasize that since the performance of MDO methods strongly
depends on the type of the problem being solved, the observations noted above
cannot be generalized.

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

20: 20 . J. R. R. A. Martins et al.

102 T

-a-s-8 MDF
101 >>>> [DF .

ee-e-e SAND

o ——— CSSO
10 —— CO N
10-1 -
10-2 -
1073 -
104 .

.
w ——
10-5 -
10-6 -
107 .
108 .
109 1
.
10-10 -
10-11 » 1 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (s)
Fig. 12. Example problem convergence history.

Figure 13 is a directed graph showing the variable dependence for this prob-
lem once the MDF approach is applied. This diagram is automatically gener-
ated by pyMDO. The method that produces this figure extracts variable and
discipline information from the problem data after the problem has been de-
composed. Using the dictionaries of the discipline inputs and outputs as well
as the optimizer design variables, the function maps the variable flow for a
given method and creates an output file in the GraphViz format [Gansner and
North 2000]. Using GraphViz, the structure of the decomposed problem can
then be plotted for a given MDO approach, allowing a deeper understanding
of the structure of both the problem and the approach. Furthermore, an adja-
cency matrix can be derived from these graphs and used to modify or simplify
the structure of the multidisciplinary problem using graph theory.

5.2 Problem with Large Number of Design Variables

A larger and more complex example is also presented. This problem is a ver-
sion of a scalable problem that was developed to automatically generate MDO
problems with arbitrary dimensionality with respect to number of disciplines,
number of global and local design variables, and number of coupling variables
[Tedford and Martins 2006a]. The problem is as follows:

5 5
. . . 2 2
minimize Zzi + Z y;
i=1 i=1
with respect to z, x1, xo, x3, x4, X5, (18)

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

pyMDO: Object-Oriented Framework for Multidisciplinary Optimization . 20: 21

Optimizer OptProb

Global @ 2 71 1
(v

Local Variables 1 1 1 1 x1

g

Disciplines 1

Objective Function Objective

iscipline 2 Discipline 1

Fig. 13. Graph of variable dependencies for the example problem using the MDF approach.

where y; represents the output coupling variables of each discipline and is
determined by

1
y1(z,%1,¥3,¥5) = —C—(Czlz +Cux1 — Cyy3 — Cyy5),
Y1

1
ya(z,x2,¥1,¥3) = _C_(CZZZ + Croxe — Cyy1 — Cy,y3),
Y2

1
y3(z,x3,¥2,¥5) = —5—(C,32 + Cy3x3 — C,,y2 — C,, y5),

Cys
1
va(z,x4,y1,y5) = —C—(Cz42 + Craxy — Cyy1 — Cy,y5),
Y4
1
y5(2, x5, y2,y4) = —C—(Czsz + Cysx5 — Cy,y2 — Cy,y4), (19)
Y5

such that 1—%50 i=1,....5

i

The variable dependencies for this problem are shown in Figure 14.
The problem consists of 5 disciplines (i = 1,...,5) and five global design

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

20: 22 . J. R. R. A. Martins et al.

| Optimizer I OptProb

Global v@

| Disciplines

State Variables

Objective Function

Fig. 14. MDF variable dependency for high-dimensionality problem.

variables, z;. For each discipline there are 300 local variables, x;, and 25 cou-
pling variables, y;. The problem thus consists of 1505 design variables and 125
coupling variables.

In the problem statement ((18) and (19)), all Cs represent a matrix of ran-
domly generated coefficients generated on the first problem initialization, and
reused for subsequent optimizations. The various x and y values, x1, x2, for ex-
ample, represent their respective vectors of design or coupling variables. Due
to the relatively high dimensionality of this problem, the quadratic response
surface implemented in CSSO requires an excessive number of function eval-
uations making this method orders of magnitude slower than the others. The
convergence history of the remaining methods (MDF, IDF, SAND, and CO) is
shown in Figure 15. The performance of each of the architectures in terms of
function evaluations is shown in Table III.

Similarly to the first test problem, the monolithic methods perform better
than the bilevel architectures in this problem. In this case, CO exhibits a much
higher convergence rate than the MDF formulation. In related trials, it was
found that the performance of CO was heavily dependent on the ratio of local
design variables to coupling variables at the discipline level. In this case, the
number of local variables is greater than the number of output coupling vari-

ables, allowing CO to exploit this freedom in the design space and outperform
MDF.

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

pyMDO: Object-Oriented Framework for Multidisciplinary Optimization . 20: 23

102 5 5
10— /-7 PR R TRt
102 TRy S, R
: .
| §
O S FRISEERIIIEPPRTTERPRTE FPPIIERPRITEEPRIERPRIY. SEPPERS SETS A N R ERTERPRIERPRIEE SRR
L8 e | AU TR N
- : :
v 3 ¢
OB e R SEERT] EETRRIRPR .
: L ¢
1010._ ,,,,,,,,,,,,,,,,,,,,,,,, [S B ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
: °
T R S I S I
: [S
1014 | === MDF | | i ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
> [DF : L :
e-e-eo-o SAND : B :
— CO : :
-16] L L
10 10! 102 103 104
Time (s)

Fig. 15. Convergence plot for high-dimensionality problem.

Table III. Number of Function Calls for the High-Dimensionality Problem; * Denotes
Residual Evaluations

Method Discipline 1 Discipline 2 Discipline 3 Discipline 4 Discipline 5

MDF 3,934,410 3,934,410 3,934,410 3,934,410 3,934,410

IDF 84,816 84,816 84,816 84,816 84,816

SAND 1+114,171* 1+114,171* 1+114,171* 1+114,171* 1+114,171*

CO 765,404 712,716 797,444 746,892 740,484
6. SUMMARY

In this article, pyMDO was shown to be a portable and freely accessible tool
for the rapid implementation of MDO methods. The implementation details
are automatically managed by the framework: once a problem is described in
pyMDO, it can be solved using a variety of methods, optimizers, and response
surfaces with reduced effort.

Using carefully designed classes, inheritance, and operator overloading,
the pyMDO framework vastly simplifies the structure of MDO software. In
the process, it enhances the clarity, reuse, and portability of the resulting
program. Additionally, the user interface greatly resembles the algorithms it
implements.

pyMDO makes use of a number of classes with a logical hierarchical struc-
ture and clear syntax. The use of inheritance and consistent code reuse avoids
the need for long lists of parameters and makes the code more intuitive to users

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

20: 24 . J. R. R. A. Martins et al.

who lack an extensive programming background. In a true expression of the
modular software model, all components that are unique to a given algorithm
are encapsulated in either functions or classes.

Given the above attributes and the fact that pyMDO is freely available, we
think that it is a useful platform for benchmarking current MDO methods and
developing new ones.

REFERENCES

ALEXANDROV, N. M. AND KODIYALAM, S. 1998. Initial results of an MDO evaluation survey.
ATAA Paper, ATIAA, Reston, VA, 98-4884.

ALEXANDROV, N. M. AND LEWIS, R. M. 2002. Analytical and computational aspects of collabora-
tive optimization for multidisciplinary design. AIAA J. 40, 2, 301-309.

ALEXANDROV, N. M. AND LEWIS, R. M. 2004a. Reconfigurability in MDO problem synthesis,
part 1. In Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference. ATIAA, Reston, VA, 2004—-4307.

ALEXANDROV, N. M. AND LEWIS, R. M. 2004b. Reconfigurability in MDO problem synthesis,
part 2. In Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference. (Albany, NY). AIAA, Reston, VA, 2004-4308.

ALONSO, J. J., LEGRESLEY, P., VAN DER WEIDE, E., MARTINS, J. R. R. A., AND REUTHER, J. J.
2004. pyMDO: A framework for high-fidelity multi-disciplinary optimization. In Proceedings of
the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. AIAA, Reston,
VA, 2004-4480.

BEAZLEY, D. M. 2006. Python Essential Reference, 3rd ed. Sams, Indianapolis, IN.

BLEZEK, D. 1998. Rapid prototyping with SWIG. C/C++ Users J. 16, 11, 61-66.

BRAUN, R. D. AND KRrR0OO, I. M. 1997. Development and application of the collaborative opti-
mization architecture in a multidisciplinary design environment. In Multidisciplinary Design
Optimization: State of the Art, N. Alexandrov and M. Y. Hussaini, Eds. STAM, Philadelphia, PA.
98-116.

BrROWN, N. F. AND OLDS, J. R. 2006. Evaluation of multidisciplinary optimization techniques
applied to a reusable launch vehicle. J. Space. Rock. 43, 6, 1289-1300.

CRAMER, E. J., DENNIS, J. E., FRANK, P. D., LEWIS, R. M., AND SHUBIN, G. R. 1994. Problem
formulation for multidisciplinary optimization. SIAM oJ. Opt. 4, 4, 754-776.

DEMIGUEL, V. AND MURRAY, W. 2006. A local convergence analysis of bilevel decomposition
algorithms. Opt. Eng. 7, 2, 99-133.

ELDRED, M. S., BROWN, S. L., AbAMS, B. M., DUNLAVY, D. M., GAY, D. M., SWILER, L. P.,
GIUNTA, A. A., HART, W. E., WATSON, J.-P., EDDY, J. P., GRIFFIN, J. D., HouGH, P. D.,
KoLpA, T. G., MARTINEZ-CANALES, M. L., AND WILLIAMS, P. J. 2006. DAKOTA: A Multi-
level Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Un-
certainty Quantification, and Sensitivity Analysis, Version 4.0 User’s Manual. Sandia National
Laboratories, Albuquerque, NM.

ELDRED, M. S., OUTKA, D. E., BOUNHOFF, W. J., WITKOWSKI, W. R., ROMERO, V. J., PONSLET,
E. R., AND CHEN, K. S. 1996. Optimization of complex mechanics simulations with object-
oriented software design. Comput. Model. Sim. Eng. 1, 3, 323-352.

GANSNER, E. R. AND NORTH, S. C. 2000. An open graph visualization system and its applications
to software engineering. Softw.—Pract. Exper. 30, 11, 1203-1233.

GILL, P. E., MURRAY, W., AND SAUNDERS, M. A. 2002. SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM J. Opt. 12, 4, 979-1006.

HAFTKA, R. T. AND GURDAL, Z. 1993. Elements of Structural Optimization, 3rd ed. Kluwer,
Dordrecht, The Netherlands, Chapter 10.

KoDIYALAM, S. 1998. Evaluation of methods for multidisciplinary design optimization (MDO),
part 1. NASA Report CR-2000-210313. NASA, Washington, DC.

KODIYALAM, S. AND YUAN, C. 2000. Evaluation of methods for multidisciplinary design optimiza-
tion (MDO), part 2. NASA Report CR-2000-210313. Nov. Washington, DC.

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

pyMDO: Object-Oriented Framework for Multidisciplinary Optimization . 20: 25

KRro0O, I. M. 1997. MDO for large-scale design. In Multidisciplinary Design Optimization: State-
of-the-Art, N. Alexandrov and M. Y. Hussaini, Eds. STAM, Philadelphia, PA. 22—-44.

LANGTANGEN, H. P. 2004. Python Scripting for Computational Science. Springer, Berlin,
Germany.

MARTINS, J. R. R. A., STURDZA, P., AND ALONSO, J. J. 2003. The complex-step derivative ap-
proximation. ACM Trans. Math. Softw. 29, 3, 245-262.

MEZA, J. C., OLIVA, R. A., HOUGH, P. D., AND WILLIAMS, P. J. 2007. OPT++: An object-oriented
toolkit for nonlinear optimization. ACM Trans. Math. Softw. 33, 2, 12.

O’DOCHERTY, M. 2005. Object-Oriented Analysis and Design. John Wiley and Sons,
New York, NY.

PADULA, S. L., ALEXANDROV, N., AND GREEN, L. L. 1996. MDO test suite at NASA Langley Re-
search Center. In Proceedings of the 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization. AIAA, Reston, VA, 1996-4028.

PEREZ, R. E., L1Uu, H. H. T., AND BEHDINAN, K. 2004. Evaluation of multidisciplinary optimiza-
tion approaches for aircraft conceptual design. In Proceedings of the 10th AIAA/ISSMO Muld-
isiciplinary Analysis and Optimization Conference (Albany, NY). AIAA, Reston, VA, 2004-4537.

PETERSON, P., MARTINS, J. R. R. A., AND ALONSO, dJ. J. 2001. Fortran to Python interface gener-
ator with an application to aerospace engineering. In Proceedings of the 9th International Python
Conference (Long Beach, CA).

SCHMIT, JR., L. A. AND RAMANATHAN, R. K. 1978. Multilevel approach to minimum weight
design including buckling constraints. AIAA J. 16, 2, 97-104.

SELLAR, R. S., BATILL, S. M., AND RENAUD, J. E. 1996. Response surface based, concurrent
subspace optimization for multidisciplinary system design. In Proceedings of the 34th AIAA
Aerospace Sciences Meeting and Exhibit (Reno, NV). ATAA, Reston, VA, 1996-0714.

SOBIESKI, I. P. AND KrROO, I. M. 2000. Collaborative optimization using response surface estima-
tion. AIAA J. 38, 10, 1931-1938.

SOBIESZCZANSKI-SOBIESKI, J. 1988. Optimization by decomposition: A step from hierarchic to
non-hierarchic systems. NASA tech. rep. CP-3031. NASA, Washington, DC.

SOBIESZCZANSKI-SOBIESKI, J. AND HAFTKA, R. T. 1997. Multidisciplinary aerospace design
optimization: Survey of recent developments. Struct. Opt. 14, 1, 1-23.

SQUIRE, W. AND TRAPP, G. 1998. Using complex variables to estimate derivatives of real func-
tions. SIAM Rev. 40, 1, 110-112.

TEDFORD, N. P. AND MARTINS, J. R. R. A. 2006a. Comparison of MDO architectures within a
universal framework. In Proceedings of the 2nd AIAA Multidisciplinary Design Optimization
Specialist Conference (Newport, RI). ATAA, Reston, VA, 2006-1617.

TEDFORD, N. P. AND MARTINS, J. R. R. A. 2006b. On the common structure of MDO problems:
A comparison of architectures. In Proceedings of the 11th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference (Portsmouth, VA). ATAA, Reston, VA, 2006—7080.

THAREJA, R. AND HAFTKA, R. T. 1986. Numerical difficulties associated with using equality
constraints toachieve multi-level decomposition in structural optimization. In Proceedings of
the 27th Structures, Structural Dynamics and Materials Conference (San Antonio, TX). ATAA,
Reston, VA. 21-28.

WUJEK, B., RENAUD, J., AND BATILL, S. 1997. A concurrent engineering approach for multidisci-
plinary design in a distributed computing environment. In Multidisciplinary Design Optimiza-
tion: State of the Art, N. Alexandrov and M. Y. Hussaini, Eds. SIAM, Philadelphia, PA. 189-208.

Received September 2007; revised December 2008; accepted February 2009

ACM Transactions on Mathematical Software, Vol. 36, No. 4, Article 20, Pub. date: August 2009.

