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1 Introduction

With regard to flight, the wing is arguably the most
crucial component. As the legendary Boeing aircraft
designer Jack Steiner put it, “The wing is where you’re
going to fail.” In a book detailing the origins of the
Boeing 747 Jumbo Jet, Irving [5] writes:

Designing the wing involved literally thou-
sands of decisions that could add up to an
invaluable asset, a proprietary store of knowl-
edge. A competitor could look at the wing,
measure it even, and make a good guess about
its internal structure. But a wing has as many
invisible tricks built into its shape as a Savile
Row suit; you would need to tear it apart and
study every strand to figure out its secrets.

These “invisible tricks” are a reflection of the complex-
ity involved in modeling the physics governing wing
performance. The function of the wing is to provide
enough lift to counteract the aircraft weight, while pro-
ducing the least amount of drag (which lowers the re-
quired engine thrust). Lift and drag can be predicted
through aerodynamic models that vary in sophistica-
tion and computational effort. For the flight speeds of
commercial airliners (78-86% the speed of sound, or
830-925km/h), the aerodynamic flow is compressible,
and the wings usually generate shock waves. This sit-
uation, together with the fact that the wing flexibility
couples the aerodynamic shape to the structural layout
and sizing, contributes to the “invisible tricks” men-
tioned above.

We must be able to model before we optimize. To
model the lift and drag accurately at transonic speeds
where shocks are present requires computational fluid
dynamics (CFD), which solves PDEs over the three-
To model the flexibility of the
wing, we must couple the aerodynamic model with a
structural model that predicts the deflected wing shape

dimensional domain.

given the aerodynamic loads. Thus the complete wing
model typically involves solving a multiphysics PDE
model with at least O(10%) unknowns.

The “thousands of decisions” cited in the above
quote can be mapped to design variables, which in-
volve both aerodynamic shape and structural design
variables. The aerodynamic flow (and hence lift and
drag) is sensitive to the slightest change in aerodynamic
shape, so one must parameterize the shape with a large
number of local changes.

A truly practical objective function for aircraft design
is difficult to define because it depends on the balance
between acquisition cost and aircraft performance. This
balance depends on the business model of the particular
airline, as well as on the current price of fuel. Acqui-
sition cost is notoriously difficult to model. Aircraft
performance can be modeled as operating cost, which
depends on two main factors: the speed and the fuel
consumption. The faster the airplane can fly, the lower
the costs associated with time (e.g., crew salaries) and
the more productive it can be by moving more passen-
gers. Beyond a certain point, however, speed comes at
the cost of greater fuel consumption.

When optimizing both aerodynamics and structures,
we need to consider the effect of the aerodynamic shape
variables and structural sizing variables on the weight,
which also affects the fuel burn. Thus complex multi-
disciplinary trade-offs are involved in such an objec-
tive function. Numerical optimization is a powerful
tool that can perform these trade-offs automatically.
Aerospace engineering researchers recognized this as
soon as multiphysics models for wings were available,
establishing the field of multidisciplinary design opti-
mization (MDO) [4, 12]. So far, the MDO of aircraft
has involved mostly low-fidelity models that are based
on either simplified physics or empirical models, with
few design variables and constraints.

In this article, we show a wing design example where
we tackle the compounding challenges of modeling the
wing with large systems of coupled PDEs while optimiz-
ing it with respect to hundreds of design variables. We
are able to meet these challenges successfully through
the use of high-performance parallel computing, fast
coupled PDE solvers, state-of-the-art gradient-based
optimization, and an efficient approach for computing
the coupled derivatives for the PDEs.

2 Optimization Problem

As we mentioned, determining the real objective func-
tion in aircraft design is difficult because of the vari-
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ability in the cost of time, fuel price, and airline routes.
We avoid this issue by choosing the fuel burn as the ob-
jective function to be minimized. However, the meth-
ods presented here are applicable to any other objective
function.

The design variables are wing shape and structural
sizing parameters, as shown in Fig. 1. Two main groups
of wing shape variables exist: those that define the plan-
form shape, and those that define the airfoil sections.
The planform variables determine what the wing looks
like when viewed from above. We use area, sweep, span,
and taper to define the planform shape. The airfoil
shape requires O(10?) variables so that enough freedom
is provided to reduce the aerodynamic drag. Typically,
O(10') airfoil sections are distributed in the spanwise
direction, each of which is allowed to change its shape
independently. The wing shape is then obtained by
performing an interpolation in the spanwise direction.

The shape modifications due to these shape variables
are applied by using free-form deformation (FFD) [1].
This approach consists in defining a volume that en-
closes the wing geometry and then manipulating the
surface of the volume, which changes the inside of the
volume continuously. The FFD variables change both
the aerodynamic surface and the structure inside the
wing.

The structure inside the wing, called the wing box,
usually consists of a grid of spars (laid out in the span-
wise direction), ribs (laid out perpendicularly to the
spars), and skins that cover the wing. All these ele-
ments are thin shells, and the structural sizing variables
are the thicknesses of these shells. All sizing variables
are subject to constraints on the variation in thickness
of adjacent elements for manufacturing reasons.

The design variables are listed in Table 1. In addition
to the wing shape and structural sizing, the angle of at-
tack is included as a design variable in order to provide
the optimizer with a way to satisfy the lift constraint.

Most of the constraints in this wing design problem
are there to ensure that the wing is strong enough to
sustain certain maneuvers without structural failure.
We consider two maneuvers: a 2.5 g pull-up maneuver
and a —1 g push-over maneuver. We prevent structural
failure by constraining the stress in the structure to
stay below the yield stress of the material and by con-
straining the structure from buckling at the allowable
loads. An aggregation function is used to handle these
constraints [13].

The objective functions and constraints in our wing
design optimization problem (Table 1) are nonlinear,
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Figure 1: Wing aerostructural design variables [7].

with the exception of the adjacency and geometric con-
straints, which are linear. These functions are also non-
convex in general; but because of the complexity of the
functions involved and the cost of the coupled PDE
solutions, we currently cannot prove global optimality.
However, we have studied the existence of local minima
in aerodynamic shape optimization [9].

The models for the coupled aerodynamic and struc-
tural PDEs that need to be solved in order to evaluate
the objective and constraints are not included explic-
itly in the optimization constraints because they are
solved with specialized algorithms. This constitutes
a reduced-space approach to a PDE-constrained opti-
mization problem. At each optimization iteration, the
aerostructural solver computes the objectives and con-
straints for the given set of design variables.

3 Computational Models

The physics of the wing must be modeled by coupling an
aerodynamics model that computes the flow field (along
with the corresponding drag and lift) and a structural
model that computes the wing displacement field (along
with the corresponding stress field and buckling param-
eters).

Here we consider high-fidelity models in the form of
the Reynolds-averaged Navier—Stokes (RANS) PDEs,
which can model transonic flow with shocks and pro-
vides drag estimates that include both pressure drag
and skin friction drag. To solve the RANS equa-
tions, we use a finite-volume, cell-centered multiblock
solver [14]. The main flow is solved by using an
alternating direction implicit (ADI) method method
along with geometric multigrid. A segregated Spalart—
Allmaras turbulence equation is iterated with the diago-
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Table 1: Aerostructural wing design optimization problem (adapted from [7]).

Function/Variable Quantity
minimize Fuel burn

with respect to Wing span 1
Wing sweep 1

Wing chord 1

Wing twist 8

FFD control point vertical position 192

Angle of attack at each flight condition 3

Cruise altitude 1

Upper and lower stiffener pitch 2

Leading and trailing edge spar stiffener pitch 2

Rib thickness 45

Panel thickness for skins and spars 172

Panel stiffener thickness for skins and spars 172

Panel stiffener height for skins and spars 172

Panel length for skin and spars 172

Total number of design variables 944

subject to Lift=weight at each flight condition 3
Lift coefficient < 0.525 to ensure buffet margin 1

Leading edge thickness must not decrease 20

Trailing edge thickness must not decrease 20

Trailing edge spar height must not be less than 80% of the initial 20

Wing planform area must be greater than or equal to initial 1

Wing fuel volume must be greater than or equal to initial 1

Panel length variable must match wing geometry 172

Aggregate stress must not exceed the yield stress at 2.5 and —1g 4

Aggregate buckling must not exceed the critical value at 2.5 and —1g 4

Thickness must not vary by more than 2.5 mm between elements 504

Leading and trailing edge displacement constraint 16

Total number of constraints 938

nally dominant alternating direction implicit (DDADI)
method.

We solve the RANS equations in the three-
dimensional domain surrounding the aircraft. The com-
putation of the drag, lift, and moment coefficients con-
sists in the numerical integration of the flow pressure
and shear stress distribution on the surface of the air-
craft.

The structural solver is a parallel direct solver that
uses a Schur complement decomposition [6]. For the
thin-shell problems typical of aircraft structures, we of-
ten have matrix condition numbers O(10°), but this
solver is able to handle such problems.

The coupled aerostructural system is solved by using
nonlinear block Gauss—Seidel with Aitken acceleration,
which has proved to be robust for the range of flight
conditions considered [8].

4 Optimization Algorithm

In selecting an optimization algorithm, two fundamen-
tal choices exist: gradient-free or gradient-based meth-
ods. Our wing design optimization application faces
two compounding challenges: large numbers of design
variables (O(10%) or more) and a high cost of evaluating
the objective and constraints (which involve the solu-
tion of coupled PDEs with O(10%) variables). Since the
number of iterations required by gradient-free methods
does not scale well with the number of optimization
variables, we use a gradient-based method. In par-
ticular, we use SNOPT [3], an implementation of the
sequential quadratic programming algorithm suitable
for general nonlinear constrained problems. Given the
efficiency of gradient-based methods, we can address
the two compounding challenges mentioned above, pro-
vided we can evaluate the required gradients efficiently.
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5 Computing Gradients

With a gradient-based optimizer, the efficiency of the
overall optimization hinges on an efficient evaluation of
the gradients of the objective and constraint functions
with respect to the design variables. Several methods
are available for evaluating derivatives of PDE systems:
finite differences, the complex-step method, algorithmic
differentiation (forward or reverse mode), and analytic
methods (direct or adjoint) [11]. The computational
cost of these methods is proportional either to the num-
ber of design variables, or to the number of functions
being differentiated.

Since we have a large number of design variables,
the best options are the reverse-mode algorithmic dif-
ferentiation or the adjoint method. In our applications
we tend to use a hybrid approach that combines the
adjoint method with algorithmic differentiation (both
reverse and forward modes).

We now derive the adjoint method for evaluating the
derivatives of a function of interest, f(x,y(x)) (which
in our case are the objective function and constraints),
with respect to the design variables x. The state vari-
able vector y is determined implicitly by the solution
of the PDEs, R(z,y(x)) = 0, for a given z. Using the
chain rule, we calculate the gradient of f with respect

to x:
daf _of  of dy
Oy dx’

de  Ox
A similar expression can be written for the Jacobian of
R:

(1)

AR _OR ORdy

de Oz Oy de
We can now solve this linear system to evaluate the gra-
dients of the state variables with respect to the design

variables. Substituting this solution into the evaluation
of the gradient of f (1) yields

a4 _os _of [oR] " o
de 0z Oy |0y ox’

The adjoint method consists of factorizing the Jacobian
OR/0y with 0f/0y. That is, we solve the adjoint equa-

tions .
orR|"  of
{ay] v=-3L @)

where 1 is the adjoint vector. We can then substitute
the result into the total gradient equation (1),

df of  pOR
5—%4‘1/} P (3)

to get the required gradient. The partial derivatives in
these equations are inexpensive to evaluate, since they
do not require the solution of the PDEs. The compu-
tational cost of evaluating gradients with the adjoint
method is independent of the number of design vari-
ables but dependent on the number of functions of in-
terest. Thus, this method is efficient when considering
the wing design problem defined in Sec. 2, which has
944 design variables and 14 nonlinear constraints (the
other 924 constraints are linear, and thus their Jacobian
is constant).

The discrete adjoint solver for our CFD model was
developed by forming Egs. (2) and (3), where the par-
tial derivatives are implemented by performing algo-
rithmic differentiation in the relevant parts of the orig-
inal code [10]. A discrete adjoint method is also imple-
mented in our structural solver [6].

The adjoint method can be extended to coupled
systems, such as the aerostructural system of equa-
tions considered here [2, 8]. For the implementation
of the coupled adjoint to be efficient, we ensured that
the computation of each of the partial derivatives in
Egs. (2) and (3) scales well with the number of proces-
sors [8]. The coupled adjoint equations are solved by
using a coupled Krylov method, which converges faster
than the linear block Gauss—Seidel method [8].

6 Wing Design Optimization

We now present the solution to the design optimiza-
tion problem described in Sec. 2. The initial aircraft
geometry is the Common Research Model (CRM) con-
figuration [15], which is representative of a twin-aisle
long-range airliner. The CFD solver uses a structured
volume grid with 745,472 cells, resulting in more than
4.47 million degrees of freedom, while the wing box
structural model has 190,710 degrees of freedom.

The planform and front views of this aircraft are
shown on the left side of the geometry shown in the
upper left quadrant of Fig. 2. The right side of this
geometry shows the optimized aircraft. The pressure
coefficient contours shown on the initial wing (left) are
closely spaced in the outboard area near the trailing
edge, indicating a shock wave, while the optimized wing
(right) shows evenly spaced contours and no shock. The
optimization reduced the drag while incurring a weight
penalty, resulting in a net reduction in fuel burn. The
front view of the aircraft shows the deflected shapes of
the wings for both the cruise and maneuver conditions.

The upper right quadrant shows the wing structural
box. The top two wings show a color map of the struc-
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Figure 2: Initial wing design (left/red) and aerostructurally optimized wing (right/blue), showing planform view and front
view (top left), wing box structure (top right), spanwise lift, twist and thickness distributions (bottom left), and airfoil

sections with pressures (bottom right).

tural thickness distributions for the initial (left) and op-
timized (right) wing. The right wing shows the higher
thicknesses that are required to strengthen the higher
span wing. The bottom two wings show the values for
the stress and buckling constraints, which are under the
critical values (i.e., less than 1.0).

The bottom right quadrant shows four airfoil sections
of the wing from the root (A) to the wingtip (D). The
initial airfoils are shown in red, and the optimized air-
foils are shown in blue, together with the respective
pressure distributions.

7 Conclusion

In this article, we introduced a wing design problem
where physics-based models of both the aerodynamics

and structures were needed. Such a problem is subject
to the compounding challenges of modeling the wing
with large systems of coupled PDEs while optimizing
the wing with respect to hundreds of design variables.
We were able to tackle this problem through the use of
high-performance parallel computing to solve the model
PDEs, a nonlinear block Gauss—Seidel method for solv-
ing the coupled system, an SQP optimizer, and a cou-
pled adjoint approach for computing the derivatives of
the coupled PDEs. This proved to be a powerful com-
bination that should be applicable to many other mul-
tiphysics design optimization problems.

We demonstrated these techniques in the design op-
timization of a large transport aircraft. The optimizer
was able to tradeoff aerodynamic drag and structural



Volume 23 Number 1 April 2015

weight in just the right proportions to achieve the low-
est possible fuel burn. Almost one thousand geometric
shape and structural sizing variables were optimized
subject to a similar number of constraints. While a
number of constraints still need to be considered be-
fore these results can be directly used by aircraft man-
ufacturers, we have demonstrated the feasibility of per-
forming wing design optimization by using high-fidelity
multiphysics models.
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1 Max-Cut and Stable-Set

Many classical NP-complete graph optimization prob-
lems have relaxations based on semidefinite optimiza-
tion. Two prominent examples are Maz-Cut and Stable-

Set.

We consider the Max-Cut problem in the following
form. Given a symmetric matrix L of order n, find

zyo = max{c! Le: ce€ {—1,1}"}.
The cut polytope CUT,, is defined as
CUT,, := conv{cc! : c € {—1,1}"}.

Clearly, zpc = max{(L,X) : X € CUT}. The cut
polytope is contained in the spectrahedron

CORR := {X : diag(X) = e, X = 0},

consisting of all correlation matrices, those semidefinite
matrices having the all-ones vector e on the main di-
agonal. Optimizing over CORR yields one of the most
well-studied semidefinite optimization problems,

zcorr = max{(L, X): X € CORR}. (1)

It was introduced (in dual form) by Delorme and Pol-
jak [7]. Goemans and Williamson [8] provided a the-
oretical error analysis showing that zp;c > 0.878 -
zoorr for graphs with nonnegative edge weights.
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