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1 Introduction
Multidisciplinary design optimization (MDO) studies the theory and application of numerical
optimization techniques to the design of engineering systems involving multiple disciplines
or components. Aircraft are prime examples of multidisciplinary systems, so it is no coin-
cidence that MDO emerged within the aerospace research community. MDO originated in
the late 1970s (Haftka, 1977; Haftka and Shore, 1979), following the successful application
of numerical optimization to structural design in the 1960s (Schmit, 1960; Schmit Jr., 1981).
Aircraft design was one of the first applications of MDO because there is much to be gained
by simultaneously considering the various disciplines involved.

One of the first applications of MDO was aircraft wing design, where aerodynamics,
structures, and controls are strongly coupled disciplines (Ashley, 1982; Green, 1987; Gross-
man et al., 1988, 1990; Jansen et al., 2010; Kenway and Martins, 2014). MDO has since
been extended to include aircraft sizing (Kroo et al., 1994; Wakayama, 1998) and has been
applied to a wide range of other engineering systems (Martins and Lambe, 2013).

One crucial aspect to consider in MDO is how to organize the coupling and optimization of
the various disciplines involved. Research on the options for this organization has lead to the
development of various MDO architectures (Martins and Lambe, 2013). MDO architectures
can be either monolithic or distributed. In a monolithic approach, a single optimization
problem is solved. In a distributed approach, the same problem is partitioned into multiple
subproblems involving smaller subsets of the variables and constraints. In spite of numerous
efforts, distributed architectures have been unable to outperform monolithic architectures in
terms of convergence rate (Tedford and Martins, 2010).

In aircraft design optimization problems, the objective and constraint functions are usu-
ally nonlinear, and thus a general purpose nonlinear optimizer that can handle constraints
is required. There are two main classes of optimization algorithms: gradient-based and
gradient-free (or derivative-free) algorithms. Gradient-free algorithms require only the val-
ues of the objective and constraint functions, while gradient-based algorithms, also require
the gradients of these functions with respect to the design variables. Gradient-based methods
utilize the gradient information to find the most promising directions in the design variable
space, and converge to the optimum more quickly. This is especially true for problems with
large numbers of design variables. Fig. 1 illustrates this by plotting the number of func-
tion evaluations required to minimized a multidimensional Rosenbrock function subject to
nonlinear constraints. The number of function evaluation for the gradient-free optimizers
(ALPSO, NSGA2) scale exponentially, and it becomes infeasible to perform optimization
with respect to O(102) design variables or more using this type of algorithms. On the other
hand, the gradient-based algorithms (SNOPT, SLSQP) scale much better, exhibiting lin-
ear convergence or better depending on the method used to compute the gradients. As we
can see, computing the derivatives analytically makes a big difference in the performance.
Thus, computing derivatives accurately and efficiently is essential for effective gradient-based
optimization. The various methods for computing derivatives are described in Section 2.

One of the issues with gradient-based optimizers is that they are based on the assumption
that the functions involved are continuous and differentiable. In practice, a few discontinu-
ities or non-differentiable points do not impede a gradient-based optimizer from converging
to a minimum, unless the discontinuity is at a minimum itself. Another issue often cited
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Figure 1: Computational cost of minimizing a constrained multidimensional Rosenbrock
function with respect to the number of design variables. The gradient-free optimiz-
ers (ALPSO, NSGA2) scale exponentially, while the gradient-based optimizers (SNOPT,
SLSQP) scale linearly with finite-difference derivatives (FD), and better than linearly with
analytic derivatives (AN).

with gradient-based optimization is that it converges to only one local minimum. While this
is true, there is no optimization algorithm that is guaranteed to find the global minimum
of a general non-convex function. Some gradient-free algorithms (including the two bench-
marked in Fig. 1) do a wider exploration of the design space, which might find a better local
minimum and even the global minimum. However, gradient-free algorithms require large
numbers of function evaluations, and the computational cost becomes intractable for O(102)
design variables or more. In the author’s experience, the existence of multiple local minima
(multimodality) has been overstated. In aerodynamic shape optimization, for example, we
tried to find multiple local minima, but we were unsuccessful (Lyu et al., 2015). We have had
similar experience in other aircraft design and engineering systems optimization problems.

Given the facts above, it is clear that our only hope for solving large-scale aircraft design
optimization problems—problems withO(102) design variables or more—is to use a gradient-
based optimization. One of the main challenges we tackle in these these lectures is to develop
methods for computing gradients as accurately and efficiently as possible. Computing the
derivatives of systems where multiple disciplines are coupled introduces another dimension
to this challenge.

In the next section of this lecture, we start by introducing the various methods for com-
puting derivatives. Then, we unify these methods in Section 3 using a single equation: the
unifying chain rule. This unification leads to a new framework for solving the state of mul-
tidisciplinary systems and their derivatives, which we describe in Section 4. To demonstrate
this new strategy, we use it in an aircraft application in Section 5, where the mission profile,
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airline allocation, and aircraft design are simultaneously optimized.
In Part 2 of this lecture, we develop a framework for the MDO of aircraft configurations

based on high-fidelity models, with emphasis on the coupling of the aerodynamics and struc-
tures disciplines. This leads to results in the aerostructural design optimization of flexible
wings, which we discuss in detail.

2 Methods for computing derivatives
Derivatives play a central role in several numerical algorithms, such as Newton–Krylov meth-
ods applied to the solution of the PDEs. In the context of this lecture, we are particularly
interested in computing derivatives to inform gradient-based optimization algorithms.

The accuracy of the derivative computation affects the convergence behavior of the solver
used in the algorithm. In the case of gradient-based optimization, accurate derivatives are
important to ensure robust and efficient convergence, especially for problems with large
numbers of design variables and constraints. The precision of the gradients limits how close
we can get to the optimum solution, and inaccurate gradients can cause the optimizer to
halt or to take a less direct route to the optimum that requires more iterations.

To solve an optimization problem, a gradient-based algorithm requires the derivatives
of the objective function with respect to each design variable, and the derivatives of all
the constraints with respect to the design variables. In general, we need to compute the
derivatives vector-valued function f with respect to a vector of independent variables x,
which yields a Jacobian matrix,

df
dx =



df1

dx1
· · · df1

dxnx... . . . ...
dfnf

dx1
· · ·

dfnf

dxnx

 , (1)

which is an nf × nx matrix.

2.1 Finite differences
Finite-difference methods are widely used to compute derivatives due to their simplicity and
the fact that they can be implemented even when a the function evaluation is provided as
black box. Finite-difference formulas are derived by combining Taylor series expansions.
Using the right combinations of these expansions, it is possible to obtain finite-difference
formulas that estimate an arbitrary order derivative with any required order truncation
error. The simplest finite-difference formula can be directly derived from one Taylor series
expansion, yielding

df
dxj

= f(x+ ejh)− f(x)
h

+O(h), (2)

where h is a small perturbation and ej is a vector of zeros with a unity entry in row j. This
formula requires the evaluation of the model at the reference point x and one perturbed
point x+ejh, and yields one column of the Jacobian (1). Each additional column requires an
additional evaluation of the computational model. Hence, the cost of computing the complete
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Jacobian is proportional to the number of input variables, nx. When the computational
model is nonlinear, the constant of proportionality with respect to the number of variables
can be less than one if the solutions for the successive steps are warm-started with the
previous solution.

Estimating derivatives using finite-difference formulas is subject to the step-size dilemma:
we want to reduce the truncation error by reducing h but below a certain value of h, errors
due to subtractive cancellation become dominant, and for small enough h, the finite-different
formula just yields zero.

Most gradient-based optimizers use finite-differences by default to compute the gradients.
For problems with large numbers of design variables, the computation of the derivatives
usually becomes the bottleneck in the optimization cycle. In addition, inaccuracies in the
derivatives due to subtractive cancellation are often the culprit in cases where gradient-based
optimizers fail to converge. Therefore, we need methods that are both more accurate and
efficient.

2.2 Complex-step method
The complex-step derivative approximation computes derivatives of real functions using com-
plex variables. This method originated with the work of Lyness and Moler (1967). They
developed several methods that made use of complex variables, including a reliable method
for calculating the nth derivative of an analytic function. This technique was rediscovered by
Squire and Trapp (1998), who derived a simple formula for estimating the first derivative.
This estimate is very accurate, extremely robust, and easy to implement (Martins et al.,
2003).

The first application of this approach to an iterative solver was by Anderson et al. (2001),
who used it to compute derivatives of a Navier–Stokes solver, and later multidisciplinary sys-
tems (Newman III et al., 2003). Martins et al. (2003) showed that the complex-step method
is generally applicable to any computer program and described the detailed procedure for
its implementation. They also presented an alternative way of deriving and understanding
the complex step, and connect this to automatic differentiation (explained in Section 2.3).
The complex-step method requires access to the source code. Martins et al. (2003) provide
a script that facilitates the implementation of the complex-step method to Fortran codes,
and explain how to implement this method in Matlab, C/C++, and Python.

The cost of computing a gradient using the complex-step, like finite differences, is pro-
portional to the number of design variables, so it is not recommended for large-scale opti-
mization. However, the complex-step approach has been extremely useful in the verification
of high-fidelity aerodynamic (Lyu et al., 2013; Mader et al., 2008) and aerostructural deriva-
tives (Kenway et al., 2014; Martins et al., 2005). The complex-step method is now widely
used, with applications not only in engineering, but in the natural sciences as well.

The complex-step derivative approximation, like finite-difference formulas, can also be
derived using a Taylor series expansion. Rather than using a real step h, we now use a pure
imaginary step, ih. If f is a real function in real variables and it is also analytic, we can
expand it in a Taylor series about a real point x as follows:

f(x+ ihej) = f(x) + ih
df
dxj
− h2

2
d2f

dx2
j

− ih3

6
d3f

dx3
j

+ . . . (3)
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Taking the imaginary parts of both sides of this equation and dividing it by h yields

df
dxj

= Im [f(x+ ihej)]
h

+O(h2), (4)

Because there is no subtraction operation in the complex-step derivative approximation (4),
the only source of numerical error is the O(h2) truncation error. By decreasing h to a small
enough value, we can ensure that the truncation error is of the same order as the numerical
precision of the evaluation of f .

To show the how the complex-step method works, we consider an analytic function for
which the derivative was computed to 16 digits and then compared the relative error of the
complex-step approximation (4) to that of the forward finite-difference (2). As we can see in
Fig. 2, the forward-difference estimate initially converges to the exact result at a linear rate
since its truncation error is O(h). However, as the step is reduced below a value of about
10−8, the subtractive cancellation error becomes significant and the estimates are unreliable.
When the interval h is so small that no difference exists in the output (for steps smaller
than 10−16) the finite-difference estimates eventually yields zero and then the relative error
is 1. Comparing the best accuracy of each of these approaches, we can see that by using
finite-difference we only achieve a fraction of the accuracy that is obtained by using the
complex-step approximation.
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Figure 2: Relative error in the derivative estimate versus step size.

2.3 Automatic differentiation
Symbolic differentiation is another option for computing derivatives. One can differentiate
explicit mathematical expressions by hand or by using symbolic differentiation software.
However, many engineering models cannot written explicitly in closed form, relying instead
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on iterative numerical procedures expressed as computer programs. Automatic differentia-
tion (AD)—also known as algorithmic differentiation—is based on the systematic symbolic
differentiation of each line of a computer program, and the accumulation of total derivatives
using the chain rule. The method relies on tools that automatically produce a program that
computes user-specified derivatives based on the original program (Griewank, 2000).

When using AD, we consider all variables assigned in a computer program, t = [t1, t2, . . . , tm]
We consider the first n variables in this set to be independent variables t1, t2, . . . , tn, which for
our purposes are the design variables, x. We also need to consider the dependent variables,
tn+1, tn+2, . . . , tm. These are all the intermediate variables in the algorithm, including the
outputs, f , which are the functions we want to differentiate. We can then write the sequence
of operations in any algorithm as

ti = Ti (t1, t2, . . . ti−1) , i = n+ 1, n+ 2, . . . ,m. (5)

The chain rule can be applied to each of these operations and can be written as

dti
dtj

= δij +
i−1∑
k=j

∂Ti
∂tk

∂tk
∂tj

. (6)

Using the forward mode, we choose one j and keep it fixed. We then work our way forward
in the index i until we get the desired derivative. The reverse mode, on the other hand,
works by fixing i to the index of the quantity we want to differentiate, and working our way
backwards in the index j all the way down to the independent variables.

There are two main ways of implementing automatic differentiation: source code trans-
formation and operator overloading. Tools that use source code transformation add new
statements to the original source code that compute the derivatives of the original state-
ments. The operator overloading approach consists in defining a new user-defined type that
is used instead of real numbers. This new type includes not only the value of the original
variable, but its derivative as well. All intrinsic operations and functions have to be rede-
fined (overloaded) to compute the derivatives together with the original computations. The
operator overloading approach results in fewer changes to the original code, but is usually
less efficient (Griewank, 2000; Pryce and Reid, 1998).

There are automatic differentiation tools available for a variety of programming lan-
guages including C/C++, and Fortran (Carle and Fagan, 2000; Giering and Kaminski, 2002;
Gockenbach, 2000; Hascoët and Pascual, 2004; Pascual and Hascoët, 2005).

2.4 Analytic methods
Analytic methods are based on the linearization of the numerical model equations. Like AD,
the numerical precision of analytic methods is the same as that of the original algorithm. In
addition, analytic methods are usually more efficient than AD for a given problem. How-
ever, analytic methods are much more involved than the other methods, since they require
detailed knowledge of the computational model and a long implementation time. Analytic
methods are applicable when we have a quantity of interest f that depends implicitly on the
independent variables of interest x as follows

f = F (x, y(x)). (7)
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The implicit relationship between the state variables y and the independent variables is
defined by the solution of a set of governing equations that can be written as residuals,

r = R(x, y(x)) = 0. (8)

By writing the computational model in this form, we have assumed a discrete analytic
approach. This is in contrast to the continuous approach, in which the equations are differ-
entiated before being discretized. We do not discuss the continuous approach in this lecture,
but ample literature can be found on the subject (Anderson Jr., 1999; Giles and Pierce, 2000;
Jameson, 1988; Liu and Canfield, 2012; Sirkes and Tziperman, 1997), including discussions
comparing the two approaches (Dwight and Brezillon, 2006; Nadarajah and Jameson, 2000;
Peter and Dwight, 2010).

As a first step toward obtaining the derivatives that we want to compute, we use the
chain rule to write the total derivative of f as

df
dx = ∂F

∂x
+ ∂F

∂y

dy
dx , (9)

where the result is an nf × nx Jacobian matrix. It is important to distinguish the total and
partial derivatives and define their context. The partial derivatives represent the variation
of f = F (x) with respect to changes in x for a fixed y, while the total derivative df/ dx
takes into account the change in y that is required to keep the residual equations (8) equal
to zero. Since the governing equations must always be satisfied, the total derivative of the
residuals (8) with respect to the design variables must also be zero. Thus, using the chain
rule we obtain

dr
dx = ∂R

∂x
+ ∂R

∂y

dy
dx = 0. (10)

The partial derivatives in Eqs. (9) and (10) can be computed using the methods described
earlier (finite differences, complex step, and AD). The computation of the total derivative
matrix dy/ dx has a much higher computational cost than any of the partial derivatives, since
it requires the solution of the residual equations (8). Rearranging the linearized residual
equations (10) we can compute the total derivative matrix dy/ dx by solving the linear
system,

∂R

∂y

dy
dx = −∂R

∂x
. (11)

Substituting this result into the total derivative equation (9), we obtain

df
dx = ∂F

∂x
− ∂F

∂y

− dy
dx︷ ︸︸ ︷[

∂R

∂y

]−1
∂R

∂x
.︸ ︷︷ ︸

ψ

(12)

The inverse of the square Jacobian matrix ∂R/∂y is not necessarily calculated explicitly. We
use the inverse to denote that this matrix needs to be solved as a linear system with some
right-hand-side vector. Equation (12) shows that there are two ways of obtaining the total
derivative matrix dy/ dx, depending on which right-hand side is chosen for the solution of
the linear system.
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2.4.1 Direct method
The direct method involves solving the linear system with −∂R/∂x as the right-hand side
vector, which results in the linear system (11). This linear system needs to be solved for nx
right-hand sides to get the full Jacobian matrix dy/ dx. Then, we can use dy/ dx in Eq. (9)
to obtain the derivatives of interest, df/ dx.

As in the case of finite differences, the cost of computing derivatives with the direct
method is proportional to the number of design variables, nx. In a case where the computa-
tional model is a nonlinear system, the direct method can be advantageous. Both methods
require the solution of a system of the same size nx times, but the direct method just solves
the linear system (11), while the finite-difference method solves the original nonlinear sys-
tem (8). Even though the various solutions required for the finite-difference method can
be warm-started from a previous solution, a nonlinear solution typically requires multiple
iterations to converge. The direct method is even more advantageous when a factorization
of ∂R/∂y is available, since each solution of the linear system would then consist in an
inexpensive back substitution.

2.4.2 Adjoint method
Adjoint methods for computing derivatives have been known and used for over three decades.
They were first applied to solve optimal control problems and thereafter used to perform
sensitivity analysis of linear structural finite element models. The first application to fluid
dynamics is due to Pironneau (1974). The method was then extended by Jameson (1988) to
perform airfoil shape optimization, and later applied to three-dimensional problems, leading
to aerodynamic shape optimization of complete aircraft configurations (Lyu and Martins,
2013; Reuther et al., 1999a,b; Vassberg and Jameson, 2002) and shape optimization consid-
ering both aerodynamics and structures (Kenway et al., 2012; Martins et al., 2004). The
adjoint method has since been generalized for multidisciplinary systems (Martins and Hwang,
2013).

The adjoint equation is encapsulated in the total derivative equation (12), where we
observe that there is an alternative option for computing the total derivatives: the linear
system involving the large square Jacobian matrix ∂R/∂y can be solved with ∂f/∂y as the
right-hand side. This results in the adjoint equations,[

∂R

∂y

]T
ψ = −

[
∂F

∂y

]T
, (13)

which is a linear systems where ψ is the adjoint matrix (of size ny × nf ). Although this
is usually expressed as a vector, we obtain a matrix due to our generalization for the case
where f is a vector. This linear system needs to be solved for each column of [∂F/∂y]T , and
thus the computational cost is proportional to the number of quantities of interest, nf . The
adjoint vector can then be substituted into Eq. (12) to find the total derivative,

df
dx = ∂F

∂x
+ ψT

∂R

∂x
. (14)

Thus, the cost of computing the Jacobian ∂f/∂x using the adjoint method is independent of
the number of design variables, nx, and instead it is proportional to the number of quantities
of interest, nf .
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As previously mentioned, the partial derivatives shown in these equations need to be
computed using some other method. They can be differentiated symbolically or computed
by finite differences, the complex-step method, or even AD. The use of AD to automatically
produce the code that computes these partials derivatives has shown to be particularly
effective in the development of analytic methods for PDE solvers (Lyu et al., 2013; Mader
et al., 2008). More detail on this technique is provided in Part 2 of this lecture.

By comparing the direct and adjoint method, we also notice that all the partial derivative
terms that need to be computed are identical, and that the difference in their relative cost
comes only from the choice of which right-hand side to use with the residual Jacobian.
Figure 3 shows the sizes of the matrices in Eq. (12), which depend on the shape of df/ dx.
These diagrams illustrate why the direct method is preferable when nx < nf and the adjoint
method is more efficient when nx > nf .

From forward chain rule Solution From reverse chain rule

I 0 0

− ∂R

∂x
− ∂R

∂y
0

− ∂F

∂x
− ∂F

∂y
I







I
dy

dx
df

dx





=

I
0
0





 df

dx
=

∂F

∂x
− ∂F

∂y

[
∂R

∂y

]−1 ∂R

∂x

I− ∂R

∂x

T

− ∂F

∂x

T

0− ∂R

∂y

T

− ∂F

∂y

T

0 0 I







df

dx

T

df

dr

T

I





=

0
0
I







=

= −

nx < nf

=

=

= −

nx > nf

=

Direct method Adjoint method

df

dx
=

∂F

∂x
+

∂F

∂y

dy

dx
− ∂R

∂y

dy

dx
=

∂R

∂x

df

dx
=

∂F

∂x
+

df

dr

∂R
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∂y

T df
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T

=
∂F

∂y

T

= +
− = nx < nf

= +
− =

= +
− = nx > nf

= +
− =

Figure 3: Block matrix diagrams illustrating the structure of the direct and adjoint equations,
assuming that ny � nx, nf . The blue matrices consist of partial derivatives, which are
relatively cheap to compute, and the red matrices consist of the total derivatives computed
by solving the linear systems.

3 Unified mathematical formulation
In this sections, we derive an equation based on the chain rule of differentiation that unifies
all the methods described in Section 2, which inspired a new perspective on the mathematical
formulation of systems with multiple numerical models. This new perspective leads to the
hierarchical strategy for solving multidisciplinary systems and for computing the derivatives
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of these systems that we describe in Section 4.
In our formulation, we use the term numerical model to refer to the discrete variables

and their explicit or implicit definitions, whereas computational model refers to the code
that implements the numerical model. Section 3.1 describes the notation for any general
numerical model, Sec. 3.2 formulates the general numerical model as a single system of
algebraic equations, and in Sec. 3.3 we show how the derivatives of the coupled system are
computed.

3.1 Notation
For our purposes, a variable represents a vector of a single type of physical or abstract
quantity in a numerical model. In many settings, each individual scalar is referred to as a
separate variable; however, in the current context, a group of scalars representing the same
quantity—such as a vector comprised of temperature values at different time instances—is
collectively referred to as a single variable. The only exception is for the design variables:
We call each scalar varied by the optimizer a separate design variable, to remain consistent
with the terminology used in the optimization literature.

Fundamentally, numerical models capture the relationships between quantities, i.e., the
response of one or more quantities to independent changes in other quantities. Thus, it
is useful to classify the variables in a numerical model as either input, state, or output
variables. Input variables are independent variables whose values are set externally by either
the designer or the optimizer, so the design variables (x) for an optimization problem are
a subset of the input variables. Output variables are the dependent variables of interest,
computed explicitly as a function of the input and state variables, and the output variables
contain the objective and constraints in an optimization problem (f). State variables (y)
are dependent variables computed by the model (8) in the process of computing the output
variables, and they are defined by implicit or explicit functions of the design variables and
other state variables. Using this nomenclature, a numerical model can be expressed as:

y1 = Y1(x1, . . . , xm, y2, . . . , yp),
...

yp = Yp(x1, . . . , xm, y1, . . . , yp−1),

f1 = F1(x1, . . . , xm, y1, . . . , yp),
...

fp = Fp(x1, . . . , xm, y1, . . . , yp),

(15)

where some of the state variables also have a residual function Rk associated with them.

3.2 Monolithic formulation
We now reformulate the numerical model (15) as a single system of algebraic equations. We
assume that x∗

k is the value of input variable xk for all k = 1, . . . ,m, at the point at which
the numerical model is being evaluated. The first step is to concatenate the set of input,
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state and output variables into a single vector,

u = (u1, . . . , un)T = (x1, . . . , xm, y1, . . . , yp, f1, . . . , fq)T , (16)

where n = m+ p+ q.
The corresponding residuals are given by,

R1(u) = x1 − x∗
1,

...
Rm(u) = xm − x∗

m,

Rm+1(u) =
{
y1 − Y1(x1, . . . , xm, y2, . . . , yp) , y1 is explicitly defined
−R1(x1, . . . , xm, y1, . . . , yp) , y1 is implicitly defined ,

...

Rm+p(u) =
{
yp − Yp(x1, . . . , xm, y1, . . . , yp−1) , yp is explicitly defined
−Rp(x1, . . . , xm, y1, . . . , yp) , yp is implicitly defined ,

Rm+p+1(u) = f1 − F1(x1, . . . , xm, y1, . . . , yp),
...

Rm+p+q(u) = fq − Fq(x1, . . . , xm, y1, . . . , yp).

(17)

The numerical model can be written more compactly as,

R1(u1, . . . , un) = 0
...

Rn(u1, . . . , un) = 0

⇔ R(u) = 0. (18)

The unified formulation of a numerical model is the algebraic system of equations R(u) =
0, which we call the fundamental system. Its significance lies in the fact that the vector u∗

that solves the fundamental system (18) satisfies the numerical model (15).

3.3 Derivative computation
In the context of optimization, the design variables that the optimizer varies are a subset
of the input variables of the numerical model, and the objective and constraint functions
given to the optimizer are a subset of the output variables of the numerical model. Thus,
the derivatives of interest are a subset of the derivatives of the output variables with respect
to the input variables.

Starting from the fundamental system (18), we can derive an equation that unifies all
four methods described in Sec. 2. As we will see, each method is determined the choice of
the state variables—on one extreme, including no state variables in the vector u results in a
finite-step method and on the other extreme, including the variables from every line of code
in a computational model results in automatic differentiation (Martins and Hwang, 2013).

To obtain the analytic methods of Sec. 2.4, the fundamental system must be defined with
the original residual used for each implicit state variable. For the explicit state variables,
the residuals are defined as the value of the state variables minus the output of the explicit
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function. We begin by defining

x =


x1
...
xm

 , y =


y1
...
yp

 , f =


f1
...
fq

 (19)

as the input, state, and output vectors and defining the respective functions,

Y =


Y1
...
Yp

 , F =


F1
...
Fq

 (20)

Then, the fundamental system has the form,

u =

xy
f

 and R(u) =

 x− x∗

−R(x, y)
f − F (x, y)

 , (21)

and the numerical model is encapsulated in the function,

G : x 7→ F (x, Y (x)), (22)

which maps the inputs x to the outputs f . The derivatives of interest are ∂G/∂x. The
following proposition shows how ∂G/∂x can be computed from the fundamental system
defined by Eq. (21).
Proposition 1. Let R and u be as defined by Eq. (21). If ∂R/∂u is invertible and the
inverse is defined as

∂R

∂u

−1
=

A
xx Axy Axf

Ayx Ayy Ayf

Afx Afy Aff

 , (23)

then the derivatives we seek are in the bottom left block in this Jacobian, i.e.,
∂G
∂x

= Afx, (24)

where ∂R/∂u is evaluated at u∗ satisfying R(u∗) = 0.
Proof. By construction, we have

∂R

∂u

∂(R−1)
∂r

= I =⇒


I 0 0
−∂R
∂x

−∂R
∂x

0

−∂F
∂x

−∂F
∂x

I


A

xx Axy Axf

Ayx Ayy Ayf

Afx Afy Aff

 =

I 0 0
0 I 0
0 0 I

 . (25)

Block-forward substitution for the first block-column yields

A
xx

Ayx

Afx

 =


I

− ∂R

∂y

−1 ∂R

∂x
∂F

∂x
− ∂F

∂y

∂R

∂y

−1 ∂R

∂x

 . (26)
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Now, G is a composition of functions mapping x 7→ (x, Y (x)) and (x, y) 7→ F (x, y), so
applying the chain rule yields

∂G
∂x

=
[
∂F

∂x

∂F

∂y

]  I∂Y
∂x

 . (27)

Since ∂R/∂y is invertible, the implicit function theorem states

∂Y

∂x
= − ∂R

∂y

−1 ∂R

∂x
. (28)

Combining the two equations above yields

∂G

∂x
= ∂F

∂x
− ∂F

∂y

∂R

∂y

−1 ∂R

∂x
. (29)

Therefore,
∂G

∂x
= Afx, (30)

as required.

The application of the inverse function theorem explains why the lower left nf ×nx block
of ∂R/∂u is equal to the Jacobian with the derivatives of interest that we denoted in Sec. 2 as
df/ dx. Assuming ∂R/∂u is invertible, the inverse function theorem guarantees the existence
of a locally defined inverse function R−1 : r 7→ u|R(u) = r that satisfies

∂(R−1)
∂r

=
[
∂R

∂u

]−1

. (31)

The concept of a total derivative is used in many settings, but it is difficult to find a clear
definition in the literature—they are usually defined in terms of other total derivatives as in
Eq. (12). Total derivatives are useful for distinguishing direct and indirect dependence on a
variable. In the total derivative (12), df/ dx captures both the explicit dependence of F on
the argument x and the indirect dependence via other arguments of F (y in this case) that
depend on x.

The Jacobian ∂(R−1)/∂r captures a similar relationship because the (i, j)th entry of the
matrix ∂(R−1)/∂r captures the dependence of the ith component of u on the jth component
of r both explicitly and indirectly via the other components of u. This motivates the following
definition of the total derivative.

Definition 1. Given the algebraic system of equations R(u) = 0, assume ∂R/∂u is invertible
at the solution of this system. The matrix of total derivatives du/dr is defined to be

du
dr = ∂(R−1)

∂r
, (32)

where ∂(R−1)/∂r is evaluated at r = 0.
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Following from Eq. (31), the matrix du/ dr is also equal to the inverse of ∂R/∂u, leading
to

∂R

∂u

du
dr = I = ∂R

∂u

T du
dr

T

, (33)

which we refer to as the unifying chain rule equation. The structure of the left inequality
in this equation is shown in Fig. 4. The left and right equalities are denoted as the forward
mode and the reverse mode, respectively, drawing inspiration from terminology used in AD
(Sec. 2.3). The unifying chain rule (33) was first presented by Martins and Hwang (2013)
with different notation and derivation. In that paper, we also show how this equation unifies
all methods—how the finite-difference method, complex-step method, AD, direct method,
adjoint method, and the chain rule can all be derived from the unifying chain rule (33).
Basically, we can derive the equations for the different methods from the unifying chain
rule (33) by the appropriate definition of R and u. In the extreme case of the finite-difference
or complex-step methods, u is simply the concatenation of the inputs x and outputs f . In
the other end of the spectrum, defining u as every single value in a computer program yields
AD (Martins and Hwang, 2013).

For the independent variables, the r in the denominator of du/ dr can be replaced with
the symbol for the variable itself, as shown in Fig. 4. The derivatives of interest are df/ dx,
which is a sub-block of du/ dr. Computing df/ dx involves solving a linear system with
multiple right-hand sides, so this is more efficient with the left or right equality in Eq. (33),
depending on the relative sizes of f and x.

I

−∂R

∂x

−∂F

∂x

0

−∂R

∂y

−∂F

∂y

0

0

I

I

dy

dx

df

dx

0

dy

dr

df

dr

0

0

I

=

I

0

0

0

I

0

0

0

I

Figure 4: Block structure of the matrices in the left equality of Eq. (33).

4 Hierarchical solution strategy
The unifying chain rule (33) applies to multidisciplinary systems (where R and u contain mul-
tiple sets of sub-vectors), and leads to the modular analysis and unified derivatives (MAUD)
MDO architecture. The high-level objective of the MAUD architecture is to facilitate two
tasks: the evaluation of a computational model with multiple components and the efficient
computation of its derivatives across the various components. The significance of the math-
ematical formulation presented in Sec. 3 is that the different algorithms for performing these
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two tasks are unified in an elegant way that simplifies the implementation of the computa-
tional framework. The task of evaluating a coupled computational model reduces to solving
a system of algebraic equations, and the task of computing derivatives reduces to solving a
system of linear equations.

At the highest level, the MAUD solves four types of systems:

1. The
nonlinear
system

2. The Newton
system

3. Derivatives in
forward mode

4. Derivatives in
reverse mode

R(u) = 0 ∂R

∂u
∆u = −r ∂R

∂u

du
dr = I ∂R

∂u

T du
dr

T

= I

The MAUD architecture is designed to handle components with distributed data paral-
lelism. This means that a problem in MAUD is not necessarily a single system of equations.
Such a monolithic system could result in a significant memory and computational time over-
head. For example, if a computational model has two components that can be run in sequence
because the second component does not influence the first one, it would be more efficient to
run a block Gauss–Seidel iteration over the two components rather than using a Krylov solver
for the whole system. Fig. 5 shows several problems with unique structures that MAUD is
able to exploit. To exploit problem structure, the MAUD architecture performs a recursive
hierarchical algorithm for solving the nonlinear and linear systems. MAUD also adopts a
matrix-free approach, since it uses only nonlinear and linear operations on vectors.
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Figure 5: MAUD exploits the structure of multidisciplinary systems by using assemblies of
serial, parallel, and coupled solution solvers.
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This section describes the MAUD hierarchical solution strategy. Section 4.1 begins by
presenting the hierarchical decomposition of the fundamental system (18) into smaller sys-
tems of algebraic equations. Section 4.2 presents the MAUD hierarchical decomposition
algorithm, and Sec. 4.3 presents the design of MAUD’s data structures.

4.1 Mathematical decomposition
To solve the fundamental system (18) efficiently, we partition the global unknown vector and
system of equations into smaller sets. This partitioning is recursive for additional flexibility
in handling complex multidisciplinary systems, resulting in a hierarchical decomposition of
the fundamental system (18).

We introduce a smaller algebraic system, an intermediate system, that selects a subset
of the fundamental system residuals and unknowns. We define the index set

S = {i+ 1, . . . , j}, 0 ≤ i < j ≤ n, (34)

to represent the indices of the variables that make up the unknowns for this smaller algebraic
system. The residual function for this intermediate system is

RS : D1 × · · · ×Dn → RNi+1 × · · · × RNj , (35)

formed by concatenating the residual functions corresponding to the indices in S. Let pS =
(u1, . . . , ui, uj+1, . . . , un) and uS = (ui+1, . . . , uj) partition u into the parameter vector and
unknown vector, respectively. Then, the intermediate system for index set S implicitly defines
uS as a function of pS:

Ri+1(u1, . . . , ui, ui+1, . . . , uj, uj+1, . . . , un) = 0
...

Rj(u1, . . . , ui︸ ︷︷ ︸
pS

, ui+1, . . . , uj︸ ︷︷ ︸
uS

, uj+1, . . . , un︸ ︷︷ ︸
pS

) = 0

⇔ RS(pS, uS) = 0. (36)

The significance of this definition is that intermediate systems are formulated and solved in
the process of solving the fundamental system. Solving an intermediate system that owns
only one variable or a group of related variables in its unknown vector is analogous to ex-
ecuting a component in the traditional view of MDO—that is, computing the component’s
outputs given the values of the inputs, which are contained in pS in this case. However, this
formulation allows the definition of intermediate systems that group together other interme-
diate systems that may correspond to components, and overall, this enables a hierarchical
decomposition of all the variables in the computational model.

4.2 Solution algorithm
We now present the hierarchical solution algorithm at the core of the MAUD architecture.
The fundamental system owns the full set of n variables in the numerical model at the
hierarchy tree root level. The fundamental system contains a group of intermediate systems
that together partition the n variables and form the second level of the hierarchy tree. Each
of these intermediate systems can contain other intermediate systems, and so on, until we
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reach the leaves of the hierarchy tree, i.e., intermediate systems that do not contain other
intermediate systems.

MAUD enables a small and simple interface that captures all operations required from
any intermediate system. Thus, an intermediate system defined by an index set S is given
by

RS(pS, uS) = 0, (37)

where uS is the unknown vector, pS is the parameter vector, and RS is the residual function.
We assume that there is an implicit function that computes the unknown vector in terms
of the parameter vector. Therefore, we can view pS as the inputs and uS as the outputs of
this system. For a given intermediate system RS(pS, uS) = 0, the interface consists of the
following operations (where we omit the subscript S for brevity):

apply_nonlinear: (p, u) 7→ r = R(p, u).
This operation computes the residual functions for the current intermediate system. It
is used to compute the right-hand side of the linear system in Newton’s method and
to check the convergence of the current intermediate system.

solve_nonlinear: p 7→ u.
This operation solves R(p, u) = 0 inexactly or to the required convergence tolerance.
It is optional to implement this method, since Newton’s method is used when the user
does not provide a custom solver.

apply_linear:


(dp, du) 7→ dr = ∂R

∂p
dp+ ∂R

∂u
du, forward mode

dr 7→
(
dp = ∂R

∂p

T

dr, du = ∂R

∂u

T

dr

)
, reverse mode.

This operation allows the component to implicitly provide Jacobians ∂R/∂(p, u)to
MAUD’s solver. By implementing this as a linear operator, the user does not need
to specify how each component stores or computes the Jacobian. This constitutes a
single, simple interface that can handle sparse of dense Jacobians, as well as Jacobian-
free components. Either the forward or reverse modes can be used for computing the
derivatives.

solve_linear:


(dr) 7→ du

∣∣∣∣∣∂R∂u du = dr , forward mode

(du) 7→ dr

∣∣∣∣∣ ∂R∂u
T

dr = du , reverse mode.

This operation implements the inverse of ∂R/∂u as a linear operator. Like solve_nonlinear,
it is optional, since the framework uses a Krylov iterative solver if apply_linear is
known.

linearize: This operation is part of the interface because many problems require an initial
assembly (and in some cases factorization) of the Jacobian, and repeated applications
of the matrix or factorization have a substantially lower cost.
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The software design for this hierarchical algorithm is naturally object-oriented, with an
instance of a System class created for each intermediate system. The lowest-level intermedi-
ate systems—the leaves in the tree—are instances of the ElementarySystem class, while all
other intermediate systems are instances of the CompoundSystem class, because they contain
other System instances. In other words, the ElementarySystem objects are grouped to-
gether by CompoundSystem objects, which can in turn be grouped by other CompoundSystem
objects. Figure 6 illustrates the containment relationships between the ElementarySystem
class, CompoundSystem class, and variables for a general computational model.

CompoundSystem

CompoundSystemCompoundSystem CompoundSystem

ElementarySystem ElementarySystem

Variable Variable Variable Variable

Figure 6: Class containment diagram showing the relationships between objects in a com-
putational model implemented in the MAUD architecture.

The ElementarySystem and CompoundSystem classes inherit from a base System class.
The ElementarySystem class has three derived classes, reflecting whether the system con-
tains independent, explicitly defined, or implicitly defined variables. The user implements
each component in MAUD as a class inheriting from one of these three classes and directly
implements operations such as computing the residual function value. Each component con-
tains a subset of the variables, which form the unknown vector in the component’s intermedi-
ate system. During initialization, the ElementarySystem object must declare its variables as
well as its arguments—external variables that depend on the ElementarySystem variables.

In contrast, the CompoundSystem class is meant to group other System objects together,
so their operations recursively call those of their children. Moreover, they perform transfer of
data potentially distributed across multiple processors. The CompoundSystem class has two
derived classes that handle parallelism in different ways. In the hierarchy tree in Fig. 6, the
root CompoundSystem is stored and run on all processors running the job. If a given system
object is a SerialSystem, it passes all of its processors to the System objects it contains
and runs its recursive operations sequentially among the contained systems. If a system
object is a ParallelSystem, it partitions its group of processors among the System objects
it contains and runs its recursive operations concurrently among the contained systems. The
same applies to all CompoundSystem objects, and in this manner, each System object is
assigned a subset of or all of its containing System object’s processors. The MAUD class
inheritance diagram is shown in Fig. 7. This object-oriented design allows all of MAUD’s
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System

ElementarySystem CompoundSystem

ExplicitSystemIndependentSystem ImplicitSystem SerialSystem ParallelSystem

Figure 7: Class inheritance diagram showing the relationships between the System classes.

built-in solvers to be implemented as methods of one of the base system classes. Table 1
shows the classes where each built-in solver is implemented.

Table 1: MAUD’s’ four elementary operations and their implementations in each type of
System class.

System classes
System CompoundSystem ElementarySystem

V
irt

ua
lm

et
ho

ds

apply_nonlinear — Recursive User-implemented
apply_linear — Recursive User-implemented or FD∗

solve_nonlinear Newton with Nonlinear block Optional
line search Gauss–Seidel/Jacobi

solve_linear Krylov-type with Linear block Optional
preconditioning Gauss–Seidel/Jacobi
*FD: finite-difference approximation of the Jacobian.

4.3 Data structures
Efficient data structures are necessary to avoid memory and computing overhead in problems
with large numbers of unknowns. For each system, MAUD stores six vectors: u, p, and f
for the nonlinear problem and du, dp, and df for the linear problem. The latter three can
be interpreted as buffers that contain the data for the solution vector or the right-hand side
vector, depending on the situation. Among these six vectors, u, du, f , and df are instances
of the UnknownVec class, while p and dp are instances of the ParameterVec class.

For the UnknownVec instances, data is shared with contained or containing systems; that
is, the full u, du, f , and df vectors are allocated in the top-level CompoundSystem, and all
other systems store pointers onto sub-vectors of the global vector. Compared to allocat-
ing separate vectors in each system, this approach saves memory as well as computation
time, since the subsystems operate directly on sub-vectors of the larger system’s vector A
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ParameterVec stores only the variables and components that an ElementarySystem de-
clares. For illustration, Fig. 8 shows how the u and p vectors are stored. MAUD automates
parallel data transfer between UnknownVec and ParameterVec instances.

Legend

u, pointer

u, allocated

p, pointer

p, allocated

...

v1 · · · vi1 vi1+1 · · · vi2 vi2+1 · · · vN

Data stored on processor k

CompoundSystem

CompoundSystem

...

CompoundSystem

ElementarySystem

Variables

Figure 8: Data storage for the u and p vectors for an ElementarySystem object and all of
the CompoundSystem instances above it in the hierarchy tree.

4.4 Implementation
A minimalistic framework based on the MAUD architecture has been implemented using the
Python programming language. This implementation depends only on the NumPy package for
handling local vectors and on the petsc4py package to use the portable, extensible toolkit
for scientific computation (PETSc) (Balay et al., 1997). PETSc is used for all parallel data
transfers, and its Krylov iterative methods are used as MAUD’s linear solvers, with flexible
generalized minimal residual (fGMRES) as the default solver. The entire implementation
is contained in a single Python file with about one thousand lines of code, thanks to the
MAUD architecture’s monolithic mathematical formulation and the use of PETSc.

The MAUD architecture has been adopted as the algorithmic core of NASA’s OpenM-
DAO framework (Gray et al., 2013). OpenMDAO is an open-source computational frame-
work designed to facilitate the solution of multidisciplinary optimization problems. Since it
uses MAUD, OpenMDAO provides coupled adjoint-based derivative computation, as one of
its key features. The mission analysis and allocation models described in the next section
have also been implemented in OpenMDAO.

5 Application to aircraft design
We now present an application of MAUD to the large-scale optimization of an aircraft con-
figuration where the airline allocation, mission profile, and aircraft design are all optimized
simultaneously.

5.1 Motivation
Typically, when performing aircraft design optimization, only a limited number of flight
conditions is considered. For instance, aerodynamic shape optimization using CFD might be
run at a fixed, pre-determined set of lift coefficients that represent typical values of similarly-
sized aircraft during actual operation (Kenway and Martins, 2015). Similarly, aerostructural
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optimization that couples CFD and FEA designs the aerodynamic shape and structural
sizing simultaneously, while considering fuel burn for a limited number of flight conditions
(Kenway and Martins, 2014; Liem et al., 2015).

Herein we aim to widen the scope of the high-fidelity optimization to include some of the
requirement-definition part of conceptual design. Instead of optimizing the aircraft design for
a set of representative missions—or a design range, design Mach number, and payload—we
let the algorithm choose on which routes in a network it is optimal to fly this next-generation
aircraft, and which cruise Mach numbers are optimal on those routes. Thus, we view the
problem from the airline’s perspective, since the airlines are the customers who define the
requirements in the conceptual-design sense.

With this formulation, the objective function is the profit margin for the airline. We
assume an airline network—a set of routes that the airline operates—as well as a finite-sized
fleet of existing and next-generation aircraft that the airline can deploy on those routes. The
optimizer chooses how to allocate the fleet of aircraft, selects the optimal mission profile for
each aircraft flying on each route, and designs the next-generation aircraft, all at the same
time. Thus, we call this formulation allocation-mission-design optimization (AMD), since
all three aspect are optimized simultaneously within a single problem. In this approach, the
effective design range and payload for the next-generation aircraft is implicitly determined
through optimization. The optimizer has the ability to design a smaller aircraft that is
particularly efficient for short-range missions, or it could size the aircraft for long-range
missions and cover the short-range routes for which it is over-designed using existing aircraft.

This section presents the first implementation and solution of the AMD optimization
problem (Hwang and Martins, 2016). For the design component, we do aerodynamic shape
optimization based on 3D Euler CFD. In the mission component, we optimize the shape of
the altitude profiles for each mission, and we also make the cruise Mach number for each
mission a design variable with a linear Mach number variation during climb and descent. For
the allocation, we consider a hypothetical 128-route network with fixed passenger demand on
each route and a fleet consisting of 4 existing types of aircraft in addition to the simultaneous
design of the next-generation aircraft.

5.2 Computational models
The software components that are integrated to solve the AMD optimization problem in-
clude: a CFD mesh deformation algorithm, a CFD solver, a mission analysis model, an
aircraft allocation model, and an optimizer.

The CFD mesh deformation algorithm we use propagates the displacements and rotations
from the deformed surface to the full CFD volume mesh by using inverse-distance weights
(Uyttersprot, 2014).

The CFD solver is SUMad, a structured multi-block finite-volume solver with multigrid
(van der Weide et al., 2006). SUMad includes an adjoint implementation using reverse-
mode automatic differentiation (Lyu et al., 2013). SUMad solves the Reynolds-averaged
Navier–Stokes (RANS) equations or the Euler equations in parallel using the fourth-order
Runge–Kutta scheme or the diagonally dominant alternating direction implicit (DDADI)
scheme, combined with the Newton–Krylov method. Herein, we solve the Euler equations
using SUMad to reduce computation time.
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The mission analysis tool discretizes the full mission profile using a collocation approach
and solves the vertical and horizontal equilibrium equations, the trim condition, and the
ordinary differential equation for fuel weight (Kao et al., 2015). The equations are all coupled
to the aircraft performance model, which is represented using a surrogate model for lift and
drag coefficients as functions of Mach number and angle of attack. The mission analysis
takes the altitude and Mach number profiles as inputs, parametrized using B-splines, and
its outputs are fuel burn, block time, and aggregated values for idle and maximum thrust
constraints.

There are two approaches used for mission profile optimization: direct and indirect (Betts,
1998). The direct approach applies the optimality conditions after discretizing the equilib-
rium equations, while the indirect approach differentiates the equilibrium equations first and
then discretizes them. Our mission analysis tool takes the direct approach, as it is more
amenable to coupling with other disciplines.

One of the advantages of optimizing the altitude profiles is that we are able to consider
continuous descent approach, also known as optimized descent profile. Optimized descent
is part of the FAA’s next generation air transportation system (NextGen), currently in
development to achieve reductions in noise and fuel burn. To this end, continuous descent
tests have been conducted recently at several airports (Clarke et al., 2013; Micallef et al.,
2014; Shresta et al., 2009).

Figure 9 lists all the variables in the mission analysis, including the shapes of the Jaco-
bians in each connection between variables. The variables are organized into five groups, also
known as assemblies, both for convenience and to take advantage of the hierarchical solution
algorithm in MAUD. We use nonlinear block Gauss–Seidel across the 5 groups and within
all but the CoupledAnalysis assembly, which internally uses a Newton solver to resolve the
coupling.

The inputs are the B-spline control points for the altitudes and their corresponding
horizontal positions. The resolution depends on the mission range; typically we use between
10 and 50 control points, with 100 to 250 discretization points. The Bsplines assembly
then computes the actual values of the altitudes, horizontal coordinates, and slopes. The
AtmosphericProperties assembly parametrizes the Mach number, temperature, pressure,
density, and airspeed in terms of the altitude. The thrust-specific fuel consumption is also a
simple function of altitude, but more elaborate models can be used in future work.

The CoupledAnalysis assembly contains the core of the mission analysis model. Given
an initial guess for the fuel weight at every point in the mission, it applies the vertical
equilibrium equation to solve for the required lift coefficient using

CL = W cos γ
1
2ρv

2S
− CT sinα. (38)

Next, the surrogate model for CL is used to solve an implicit function to determine the angle
of attack that produces this target CL with the residual,

C̃L(α,M)− CL = 0, (39)

where C̃L is the surrogate model. The surrogate model for drag coefficient, C̃D, is then
evaluated using the computed angle of attack to determine the resulting drag coefficient

24



Inputs Bsplines AtmosphericProperties CoupledAnalysis Outputs

x̃ h̃ x h γ M T P ρ v SFC CL α CD CT Ẇf Wf Tm τ T0 T1 fb t
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Ẇf

Wf

Tm

τ

T0

T1

fb

t

Figure 9: Dependency graph for the variables in a mission analysis.

from
CD = C̃D(α,M). (40)

Then, the horizontal equilibrium equation is used to compute the thrust coefficient from

CT = CD
cosα + W sin γ

1
2ρv

2S cosα. (41)

Finally, the ordinary differential equation for the fuel weight is given by

Ẇf = SFC
CT

1
2ρv

2S

v cos γ . (42)

This must be integrated backwards from the last mission point that has a small amount of
reserve fuel, and this produces a new estimate of aircraft weight that requires us to iterate
back to the first step of the CoupledAnalysis assembly.

The Outputs component performs a series of postprocessing computations, including the
maximum thrust estimate at altitude, given by

Tm = Tm,SL
P

PSL

√
TSL
T
, (43)
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where the maximum thrust is expressed in terms of pressure and temperature, and the
respective sea-level values. There is no guarantee that the engine is sized to fly the mission as
evaluated by the CoupledAnalysis assembly; thus, we define nonlinear constraints that the
throttle setting is between idle and maximum, and let the optimizer make sure this is satisfied.
However, these thrust constraints must be satisfied at every point in the mission, so we
aggregate them using the Kreisselmeier–Steinhauser function (Kreisselmeier and Steinhauser,
1979; Poon and Martins, 2007). The two outputs of the mission analysis that are of interest
in the allocation problem are the fuel burn and block time, which are computed at the end.

The allocation problem is formulated with two sets of design variables: the number of
flights per day flown by a type of aircraft on a given route, and the number of passengers per
flight for a given type of aircraft and a given route. Here, the formulation maximizes profit
subject the operational and demand constraints (Hwang et al., 2015). The airline profit is
evaluated using estimates for ticket price and operating costs, using

profit =
nrt∑
i

nac∑
j

[
price_paxi,j · pax_flti,j · flt_dayi,j

]
(44)

−
nrt∑
i

nac∑
j

[
(cost_flti,j + cost_fuel · fuel_flti,j) · flt_dayi,j

]
,

where price_paxi,j is the ticket price per flight, cost_flti,j is the total cost of operating a
flight minus fuel, cost_fuel is the cost per unit fuel, and fuel_flt is the total fuel burn on a
flight.

The allocation problem contributes two inequality constraints to the allocation-mission
optimization. The first constraint ensures that the total number of people that fly on a given
route on a given day is less than the total demand for that route, and it is expressed as

total_paxi =
nac∑
j

[
pax_flti,j · flt_dati,j

]
≤ demandi , 1 ≤ i ≤ nrt. (45)

The second constraint takes into consideration how many aircraft of a given type are actually
owned by the airline, and it is given by

usagej =
nrt∑
i

[
flt_dayi,j · (time_flti,j(1 + maintj) + turn_flt)

]
≤ 12hr·num_acj , 1 ≤ j ≤ nac,

(46)
where time_flti,j is the block time for a flight, maintj is the maintenance time required as a
multiple of block time, turn_flt is the turnaround time between flights, and num_acj is the
number of aircraft available for a given type.

The gradient-based optimizer we use to solve this problem is SNOPT (Gill et al., 2002),
through the pyOpt Python interface (Perez et al., 2012). SNOPT is an active-set sequential
quadratic programming (SQP) algorithm designed to handle sparse nonlinear constrained
optimization problems, so it is well-suited to the current application. In addition to the thou-
sands of design variables, the AMD optimization also has tens of thousands of constraints,
mostly from the 128 mission analysis, but the tens of thousands by thousands-sized Jacobian
is sparse.
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5.3 Problem description
We now describe the wing geometry and parametrization, the Mach number parametrization,
and the optimization problem.

The geometry that we analyze is a swept, linearly-tapered wing that based on a scaled
version of the Boeing 717 wing. Figure 10 shows the result of a CFD analysis of the wing
using the Euler equations at a Mach number of 0.78 and an angle of attack of 3◦. Since we
model only the wing, the additional sources of drag (such as fuselage drag, trim drag, and
viscous drag) are accounted for by subtracting the computed drag at a nominal condition
from the expected drag for an aircraft of this size.

Figure 10: Euler analysis result of the geometry at M = 0.78 and α = 0.3◦.

The full AMD optimization problem is summarized in Table 2. There are 6 twist and
72 shape design variables (shown in Fig. 11) with a minimum wing volume constraint and a
10× 10 grid of points on the wing at which a minimum thickness is enforced. Each mission

Figure 11: Geometry parametrization using free-form deformation with a tensor-product
B-spline volume.

analysis contributes a cruise Mach number design variable and altitude control points, the
number of which varies depending on the mission range. The mission analyses also contribute
minimum and maximum thrust constraints aggregated using the Kreisselmeier–Steinhauser
function and linear constraints on the maximum climb and descent angle. The allocation
problem adds passengers per flight and flights per day design variables for each type of
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Variable Quantity
maximize profit

with respect to twist 6
shape 72
cruise Mach number for each route (between 0.6 and 0.82) 1× 128
altitude control points for each route 4,575
passengers per flight for each aircraft type and route 5× 128
flights per day for each aircraft type and route 5× 128
Total number of design variables 6,061

subject to wing volume constraint 1
wing thickness constraints 100
idle thrust KS constraint for each route 128
maximum thrust KS constraint for each route 128
linear climb angle bounds for each mission 22,875
demand constraint for each route 128
total flight time constraint for each aircraft 5
Total number of constraints 23,365

Table 2: The 128-route allocation-mission-design optimization problem.

existing or new aircraft, for each of the 128 routes. There is also a demand constraint that
limits the total number of passengers traveling on a route in a given day, and an aircraft
utilization constraint that takes into account the finite number of aircraft of each type that
the airline owns.

5.4 Results
The main question in this work is whether the AMD optimization is significantly different
from the conventional design-only optimization. First, we consider the twist and lift distri-
butions, shown in Fig. 12. In both the AMD and design optimization cases, we observe that
the lift distributions are close to elliptical in both cases.

Figure 13 shows slices of the wing, were we can see differences between the AMD and the
conventional design results. We observe that they are both thicker overall and have thicker
leading and trailing edges when compared to the initial design, though this result would
likely be different if we were capturing viscous effects with the RANS equations (Lyu et al.,
2015). The AMD and design-only results are sufficiently different to demonstrate that the
coupling with allocation and mission analysis is not negligible.
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Figure 12: Planform view, optimal twist distribution, and optimized lift distribution; initial
design (green), AMD optimization (blue), design optimization (red), elliptical lift distribu-
tion (gray).
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Figure 13: Airfoil shapes for the initial design (green), AMD optimization (blue), and design
optimization result (red).

As we can see in Fig. 14, there is a 27% increase in airline profit per day going from the
allocation-only optimization to the AMD optimization. The result from the allocation-only
optimization yields a daily profit of about $23.4 million, and the AMD-optimized result has
a profit of $29.8 million.

We can see in Fig. 15 how the allocation-only and AMD optimization results differ. The
most noteworthy difference between the two is that the AMD optimization flies the next-
generation aircraft on the shorter-range routes much more. We see more directly in Fig. 16
that the next-generation aircraft enjoys the largest share of the total number of passengers
flown per day, but this share increases in AMD optimization, as one would expect since the
design of the next-generation aircraft improves in the AMD optimization.

Allocation-only opt. 23.4

Problem Profit (106 $)

AMD opt. 29.8

Figure 14: The AMD optimization produces 27% more profit than the allocation-only opti-
mization.
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Allocation-only optimization result

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
0

1,000

2,000

3,000

4,000

Range [nmi]

N
u
m
b
er

o
f
p
as
se
n
g
er
s/
d
ay

E170
B738
B777
B747
NG

AMD optimization result

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
0

1,000

2,000

3,000

4,000

Range [nmi]

N
u
m
b
er

of
p
as
se
n
ge
rs
/d

ay

E170
B738
B777
B747
NG

Figure 15: Total number of passengers flown per day for each of the 128 missions shown
according to their range.
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Figure 16: Percentage of the passengers flown on each type of aircraft.
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6 Summary
In Part 1 of this lecture we presented a novel way to couple multiple heterogeneous compu-
tational methods efficiently—the MAUD architecture. We started by arguing that to solve
large-scale aircraft design optimization, we require gradient-based optimization with an ef-
ficient way to compute the gradients. We reviewed the various options for computing the
gradients and unify these methods using the unifying chain rule equation (33). The equation
also applies to multidisciplinary systems, enabling the efficient computation of derivatives of
coupled systems. The unifying chain rule leads to the development of MAUD, a framework
for modular analysis and derivative computation. We use partitioning using a hierarchical
strategy that speeds up the solution using parallel computing. The nonlinear solvers used
in MAUD are Newton’s method with a line search, inexact nonlinear block Gauss–Seidel or
Jacobi, or any problem-specific user-provided solver. The linear solvers are a Krylov iterative
method with variable preconditioning, inexact linear block Gauss–Seidel or Jacobi, or any
problem-specific user-provided solver. These nonlinear and linear solvers can be executed at
any level of a hierarchical decomposition of the system of equations.

MAUD’s key features can be summarized as follows. First, its parallel data passing
greatly facilitates distributed-memory parallel computation. It allows components that have
parallel vectors as arguments to not be aware of how those parallel vectors are distributed
across their processors. Second, MAUD automatically solves the nonlinear and linear systems
that arise. When the user provides a custom solver, the framework uses it; otherwise, it uses
its built-in solvers. The third benefit is the automated computation of derivatives given
partial derivatives of each component. MAUD uses the analytic methods for computing
derivatives, which can compute a full gradient with respect to all inputs at a cost that has
the same order of magnitude as that of running the simulation.

MAUD can be applied to any problem that deterministically computes a set of variables
as a continuous function of others. The coupled derivative computation provides a significant
increase in efficiency when there are implicit state variables and when there is a feedback
loop among the dependencies between variables. The core of MAUD has been implemented
in OpenMDAO (Heath and Gray, 2012), an open-source computational framework developed
by NASA.

To demonstrate the MAUD approach, we solved an aircraft design problem where alloca-
tion, mission, and design variables are optimized simultaneously. The optimization problem
sought to maximize airline profit by designing a next-generation aircraft and solving an al-
location problem to decide how to allocate this aircraft and a fleet of existing aircraft to a
128-route network. We showed that the AMD approach resulted in a 27% increase in airline
profit relative to the conventional allocation-only optimization.

In Part 2 of this lecture, we also use gradient-based optimization with efficient methods
for computing multidisciplinary derivatives, focusing on the coupling between high-fidelity
aerodynamic and structural solvers, and corresponding wing design optimization results.
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